Understanding Replication in Databases and DistributesieBys

M. Wiesmann, F. Pedone, A. Schiper B. Kemme, G. Alonso
Operating Systems Laboratory Institute of InformationtSyss

Swiss Federal Institute of Technology (EPFL) Swiss Fedesdltute of Technology (ETHZ)

IN-Ecublens, CH-1015 Lausanne ETH Zentrum, CH-8092 Ziirich
{wiesmann,pedone,schiper}@Isemail.epfl.ch {kemme std@inf.ethz.ch
http://lsewww.epfl.ch/ http://www.inf.ethz.ch/depadnt/IS/iks/
Abstract

Replication is an area of interest to both distributed systand databases. The solutions developed from
these two perspectives are conceptually similar but diffemany aspects: model, assumptions, mechanisms,
guarantees provided, and implementation. In this paperproeide an abstract and “neutral” framework to
compare replication techniques from both communities itesgf the many subtle differences. The framework
has been designed to emphasize the role played by differechanisms and to facilitate comparisons. With
this, it is possible to get a functional comparison of margasi that is valuable for both didactic and practical
purposes. The paper describes the replication technicgegbin both communities, compares them, and points
out ways in which they can be integrated to arrive to bett@ramobust replication protocols.

Keywords Replication protocols, database replication, replicaiomparison, fault tolerant systems, group com-
munication, distributed systems

Technical Areas Distributed Fault-Tolerant Systems and Distributed Altions

Contact Author Fernando Pedone (pedone@Ilsemail.epfl.ch)

1 Introduction

Replication has been studied in many areas, especiallgirilmited systems (mainly for fault tolerance purposes)
and in databases (mainly for performance reasons). In theséelds, the techniques and mechanisms used are
similar, and yet, comparing the protocols developed in W@ tommunities is a frustrating exercise that many
researchers have unsuccessfully attempted. Due to the sudnteties involved, mechanisms that are concep-
tually identical, end up being very different in practices & result, it is very difficult to take results from one

area and apply them in the other. In the last few years, asgbdine DRAGON project [Dra98], we have de-
voted our efforts to enhance database replication meamariy taking advantage of some of the properties of
group communication primitives. We have shown how group rmemication can be embedded into a database
[AAAS97, PGS97, PGS98] and used as part of the transactiorage to guarantee serialisable execution of
transactions over replicated data [KA98, KA99]. We have alsown how some of the overheads associated with
group communication can be hidden behind the cost of exggtrnsactions, thereby greatly enhancing perfor-
mance and removing one of the serious limitations of grouproanication primitives [KPAS99a]. This work has
proven the importance of and the need for a common undeiisgodthe replication protocols used by the two
communities.

In this paper, we present a model that allows to compare astthguish existing replication protocols in
databases and distributed systems. We start by introdaciuggy abstract replication protocol representing what
we consider to be the key phases of any replication stratelping this abstract protocol as the base line, we
analyse a variety of replication protocols from both datasasand distributed systems, and show their similarities
and differences. With these ideas, we parameterise theqmistand provide an accurate view of the problems
addressed by each one of them. Providing such a classifigagionits to systematically explore the solution space
and give a good baseline for the development of new protoddhkile such work is conceptual in nature, we
believe it is a valuable contribution since it provides a moeeded perspective on replication protocols. However,
the contribution is not only a didactic one but also emingpthctical. In recent years, and in addition to our work,
many researchers have started to explore the combinatidatabase and distributed system solutions [RTKA96,
SAA98, PMS99, HAA99]. The results of this paper will help twsv which protocols complement each other and
how they can be combined.

The paper is organised as follows. Section 2 introducesaplication functional model and discusses some ba-
sis for our comparison. Section 3 and Section 4 presentoajiin protocols in distributed systems and databases,
respectively. In both cases, instead of concentrating ecip protocols, we focus on more general classes of
replication algorithms. Section 5 refines the discussi@s@nted in Section 4 for more complex transaction mod-
els. Section 6 discusses the different aspects of the pafdagiges an conclusion.

2 Replication as an Abstract Problem

Replication in databases and distributed systems rely fiereint assumptions and offer different guarantees to

the clients. Therefore, to understand its forms, replozathust be seen as an abstract problem. In this section,
we discuss the context of replication in databases andhlistd systems, and introduce a functional model of

replication.

2.1 Replication Context

Hereafter, we assume that the system is composed of a egpl@fasover which operations must be performed.
The operations are issued blfents Communication between different system componentsiisliand replicas)
takes place by exchanging messages.

In this context, distributed systems distinguish betwdrsynchronousind theasynchronousystem model.

In the synchronous model there is a known bound on the relatiocess speed and on the message transmission
delay, while no such bounds exist in the asynchronous mddiel.key difference is that the synchronous system
allows correct crash detectignwhile the asynchronous system does not (i.e., in an asgnolis system, when
some procesg thinks that some other procegas crashed; might in fact not have crashed). Incorrect crash
detection makes the development of replication algorithonendgifficult. Fortunately, much of the complexity can

be hidden in the so callegroup communication primitivesThis is the approach we have taken in the paper (see
Section 3.1).

Databases are not concerned by the fondamental differéetesen synchronous and asynchronous systems
for the following reason: databases accept to live withckingprotocols (a protocol is said to be blocking if the
crash of some process may prevent the protocol from terimigiatBlocking protocol are even simpler to design
than non blocking protocols based on the synchronous madstributed systems usually look for non-blocking
protocols.

This reflects another fundamental difference betweenibigerd systems and database replication protocols.
It has been shown that the specification of every problem eaddzomposed inteafetyand livenessproper-
ties [AS87}. Database protocols do not treat liveness issues fornaaligart of the protocol specification. Indeed,
the properties ensured by transactions (Atomicity, Caesisy, Isolation, Durability) [GR93] are adlafetyproper-
ties. However, because databases accept to live with lniggkiotocols, liveness is not an issue. For the purpose
of this paper, we concentrate on safety properties.

Finally, database replication protocols may admit, in scases, operator intervention to solve abnormal cases,
like the failure of a server and the appointment of another @way to circumvent blocking). This is usually not
done in distributed system protocols, where the replac¢éofenreplica by another is integrated into the protocol
(non-blocking protocols).

2.2 Functional Model

A replication protocol can be described using five generiasals. These phases represent important steps in
the protocol and will be used to characterise the differ@mraaches. As we will later show, some replication
techniques may skip some phases, order them in a differenhenaiterate over some of them, or merge them
into a simpler sequence. Thus, the protocols can be compardte way they implement each one of the phases

1A safety property says that nothing bad ever happens, whilemess property says that something good eventually évapp

and how they combine the different phases. In this regaréjastract replication protocol can be described as a
sequence of the following five phases (see Figure 1).

1. Request (RE):the client submits an operation to one (or more) replicas.

2. Server coordination (SC):the replica servers coordinate with each other to syncheotlie execution of
the operation.

3. Execution (EX): the operation is executed on the replica servers.
4. Agreement coordination (AC): the replica servers agree on the result of the execution.
5. Response (END)the outcome of the operation is transmitted back to the tlien

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:
Client Server Execution Agreement | |Client
contact Coordination Coordination| |response

—

Client Client

TN T TN] ™
VN VN

Replica 3 / Update

Figure 1: Functional model with the five phases

This functional model represents the basic steps of reicasubmission of an operation, coordination among
the replicas (e.g., to order concurrent operations), exacwf the operation, further coordination among the
replicas (e.g., to guarantee atomicity), and responsectelthnt. The differences between protocols arise due to
the different approaches used in each phase which, in sogae,aabviate the need for some other phase (e.g., when
messages are ordered based on an atomic broadcast prjrfitvegreement coordination phase is not necessary
since itis already performed as part of the process or anrgehie messages).

Within this framework, we will first consider transactionmeposed of a single operation. This can be a single
read or write operation, a more complex operation with rpigtiparameters, or an invocation on a method. A
more advanced transaction model will be considered in &e&i Although restrictive at first glance, this model
is adopted by some database vendors, to handle web docuaneidtored procedures.

Request Phase. During the request phase, a client submits an operatioretsythtem. This can be done in two
ways: the client can directly send the operation to all ezdior the client can send the operation to one replica
which will them send the operation to all others as part ofstever coordination phase.

This distinction, although apparently simple, alreadyadtices some significant differences between databases
and distributed systems. In databases, clients neveraaitaeplicas, and always send the operation to one copy.
The reason is very simple: replication should be transpdcethe client. Being able to send an operation to all
replicas will imply the client has knowledge about the dataltion, schema, and distribution which is not practical
for any database of average size. This is knowledge intiatigitied to the database nodes, thus, client must always
submit the operation to one node which will then send it toottilers. In distributed systems, however, a clear
distinction is made between replication techniques dejpgnezh whether the client sends the operation directly to
all copies (e.g. active replication) or to one copy (e.g.spasreplication).

It could be argued that in both cases, the request mechagmsmbke seen as contactingpexy (a database
node in one case, or a communication module in the other) hiclwcase there are no significant differences
between the two approaches. Conceptually this is true.tiPadly, it is not a very helpful abstraction because of
its implications as it will be discussed below when the défg protocols are compared. For the moment being,
note that distributed systems deal wittocessesvhile database deal witlelational schemasA list of processes
is simpler to handle that a database schema, i.e., a comatiamienodule can be expected to be able to handle a
list of processes but it is not realistic to assume it can leadlatabase schema. In particular, database replication
requires to understand the operation that is going to b@pedd while in distributed systems, operation semantics
usually play no role.

Finally, distributed systems distinguish between detaistic and non-deterministic replica behaviour. Deter-
ministic replica behaviour assumes that when presentddthé same operations in the same order, replicas will
produce the same results. Such an assumption is very difficoiake in a database. Thus, if the different replicas
have to communicate anyway in order to agree on a result, dhmyas well exchange the actual operation. By
shifting the burden of broadcast the request to the sethveitpgic necessary at the client side is greatly simplified
at the price of (theoretically) reducing fault tolerandgfault tolerance is necessary, a back up system can be used,
but this is totally transparent to the client.

Server Coordination Phase. During the server coordination phase, the different rgqgitry to find an order in
which the operations need to be performed. This is the poiraresprotocols differ the most in terms of ordering
strategies, ordering mechanisms, and correctness ariteri

In terms of ordering strategies, databases order opegasiocording to data dependencies. That is, all opera-
tions must have the same data dependencies at all replicgabelause of this reason that operation semantics play
an important role in database replication: an operatiohdhly reads a data item is not the same as an operation
that modifies that data item since the data dependencieslirded are not the same in the two cases. If there
are no direct or indirect dependencies between two opastihey do not need to be ordered because the order
does not matter. Distributed systems, on the other hand;aamenonly based on very strict notions of ordering.
From causality, which is based potentialdependencies without looking at the operation semantidstal order
(either causal or not) in which all operations are ordergrdless of what they are.

In terms of correctness, database protocols use seridiigatulapted to replicated scenarios: one-copy serial-
izability [BHG87]. It is possible to use other correctnesgetialKA98] but, in all cases, the basis for correctness
are data dependencies. Distributed systemdinsarisability andsequential consisten¢pW94]. Linearisability
is strictly stronger than sequential consistency. Lirsdility is based oreal-timedependencies, while sequential
consistency only considers the order in which operatiorsparformed on every individual process. Sequential
consistency allows, under some conditions, to relaidvalues In this respect, sequential consistency has similar-
ities with one-copy serializability, but strictly speagirthe two consistency criteria are different. The distidol
system replication techniques presented in this papenalire linearisability.

Execution Phase. The execution phase represents the actual performing afgbeation. It does not introduce
many differences between protocols, but it is a good indicaf how each approach treats and distributes the
operations. This phase only represents the actual exeaiftibe operation, the applying of the update is typically
done in the Agreement Coordination Phase, even though iagpllge update to other copies may be done by
re-executing the operations.

Agreement Coordination Phase. During this phase, the different replicas make sure that #ledo the same
thing. This phase is interesting because it brings up sombefundamental differences between protocols.
In databases, this phase usually corresponds to a Two PluasmiCProtocol (2PC) during which it is decided
whether the operation will be committed or aborted. Thisggh®s necessary because in databases, the Server
Coordination phase takes care only of ordering operati@me the ordering has been agreed upon, the replicas
need to ensure everybody agrees to actually committingpieeation. Note that being able to order the operations
does not necessarily mean the operation will succeed. Inaddse, there can be many reasons why an operation
succeeds at one site and not at another (load, consistensyraiots, interactions with local operations). This is

a fundamental difference with distributed systems whereean operation has been successfully ordered (in the
Server Coordinator phase) it will be delivered (i.e., “merhed”) and there is no need to do any further checking.

Client Response Phase. The client response phase represents the moment in time thietlient receives a
response from the system. There are two possibilitieseeithe response is sent only after everything has been
settled and the operation has been executed, or the resig@mes® right away and the propagation of changes and
coordination among all replicas is done afterwards. In thgecof databases, this distinction leadd dhe so
called eager or synchronous (no response until everythtasdben done) arj lazy or asynchronous (immediate
response, propagation of changes is done afterwards)qmistdn the distributed systems case, the response takes
place only after the protocol has been executed and no giscoges may arise.

The client response phase is of increasing importance gheproliferation of applications fanobileusers,
where a copy is not always connected to the rest of the systerit does not make sense to wait until updates take
place to let the user see the changes made.

3 Distributed Systems Replication

In this section, we describe the model and the communicatdastractions used by replication protocols in dis-
tributed systems, and present four replication technitjugtshave been proposed in the literature in the context of
distributed systems.

3.1 Replication Model and Abstractions

We consider a distributed system modelled as a set of seringgiemented by servers processes and invoked by
clients processes. The specification of the service defiresdt of invocations that can be issued by the clients.
Each server process has a local state that is modified thiaugtations. We consider that invocations modify the
state of a server in an atomic way, that is, the state charge#ting from an invocation are not applied partially.
The isolation between concurrent invocations is the resibdity of the server, and is typically achieved using
some local synchronisation mechanism. This model is sinvldone operation” transactions in databases (e.g.,
stored procedure). In order to tolerate faults, servicesraplemented by multiple server processes or replicas.

To cope with the complexity of replication, the notiongrbup (of servers) angiroup communication primi-
tiveshave been introduced [Bir93]. The notiongrbupacts as a logical addressing mechanism, allowing the client
to ignore the degree of replication and the identity of thrahiidual server processes of a replicated servi@mup
communication primitiveprovide one-to-many communication with various powerrhantics. These semantics
hide much of the complexity of maintaining the consistentyeplicated servers. The two main group commu-
nication primitives aré\tomic Broadcasfor ABCAST) andView Synchronous Broadcastr VSCAST). We give
here an informal definition of these primitives. A more fotrdefinition of ABCAST can be found in [HT93] and
of VSCAST can be found in [SS93] (see also [BJ87, BSS91]).

Group communication properties can also feature FIFO ogderantees, that is, if a process broadcasts a
messagen before a message’, then no process delivers’ beforem.

Atomic Broadcast (ABCAST). Atomic Broadcast provideatomicityandtotal order. Let m andm’ be two
messages that are ABCAST to the same gr@opservers. The atomicity property ensures that if one memabe
g deliversm (respt.m’), then all (not crashed) membersgéventually delivern (respt.m’). The order property
ensures that if two members gfdeliver bothm andm/, they deliver them in the same order.

View Synchronous Broadcast (VSCAST). The definition of View Synchronous Broadcast is more compliex
is defined in the context of a groypand is based on the notionasequence of viewsg (g), v1(g), ..., vi(g), . ..
of groupg. Each viewy;(g) defines the composition of the group at same time. the members of the group that
are perceived as being correct at tim&Vhenever a procegsin some view;(g) is suspected to have crashed, or
some procesgwants to join, a new view; 1(g) is installed, which reflects the membership change.

Roughly speaking, VSCAST of messageby some member of the groupcurrently in viewv;(g) ensures

the following property: if one procegsin v;(g) deliversm before installing view; 11 (g), than no process installs
view v, 11 (g) before having first deliveregh.

3.2 Active Replication

Active replication, also called the state machine apprd8ch90], is a non-centralised replication technique. Its
key concept is that all replicas receive and process the samence of client requests. Consistency is guaranteed
by assuming that, when provided with the same input in theesarder, replicas will produce the same output.
This assumption implies that servers process requestdétesiministiovay.

Clients do not contact one particular server, but addresseseas a group. In order for servers to receive
the same input in the same order, client requests can beguaitgzhto servers using an Atomic Broadcast. Weaker
communication primitives can also be used if semantic métion about the operation is known (e.g., two requests
that commute do not have to be delivered at all servers inghesrder).

The main advantage of active replication is its simplicéyg(, same code everywhere) and failure transparency.
Failures are fully hidden from the clients, since if a repliails, the requests are still processed by the other rlic

The determinism constraint is the major drawback of thisraagh. Although one might also argue that having
all the processing done on all replicas consumes too muchiress. Notice however, that the alternative, that is,
processing a request at only one replica and transmittiagtéite changes to the others (see next section), in some
cases may be much more complex and expensive than simplytegthe invocation on all sites.

Figure 2 depicts the active replication technique using tonAc Broadcast as communication primitive. In
active replication, phasd®E andSC are merged and phas€ is not used.

Phase 1: _ | Phase 2: Phase 3: Phase 5:
Client | Server Execution Client
Request | | Coordination response

Client Client

N

Atomic
Broadcast

Replica 1l 4

M Tndate |

Update //
Replica 2 : \ Update /

M indats |

Replica 3 4 I Update

Figure 2: Active replication

The following steps are involved in the processing of an tdaguest in the Active Replication, according to
our functional model.

The client sends the request to the servers using an AtBroadcast.
Server coordination is given by the total order propeftthe Atomic Broadcast.

All replicas execute the request in the order they areveledd.

A

No coordination is necessary, as all replica processahmegequest in the same order. Because replica are
deterministic, they all produce the same results.

5. All replica send back their result to the client, and therd typically only waits for the first answer (the
others are ignored).

3.3 Passive Replication

The basic principle of passive replication, also calRrimary Backupreplication, is that clients send their re-
guests to a primary, which executes the requests and seddseumessages to the backups (see Figure 3). The
backups do not execute the invocation, but apply the chgmgesiced by the invocation execution at the primary
(i.e., updates). By doing this, no determinism constramecessary on the execution of invocations, the main
disadvantage of active replication.

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:
Client Server Execution Agreement Client
Request Coordination Coordination Response

VS Client
Broadcast
Replica 1

Update \ ff
Replica 2 I| Aééli
Replica 3 ¥ Apply }

Figure 3: Passive replication

0

Communication between the primary and the backups has tagieg that updates are processed in the same
order, which is the case if primary backup communicationasddl on FIFO channels. However, only FIFO
channels is not enough to ensure correct execution in cafelurde of the primary. For example, consider that
the primary fails before all backups receive the updatesfoertain request, and another replica takes over as a
new primary. Some mechanism has to ensure that updatesystna hew primary will be “properly” ordered with
regard to the updates sent by the faulty primary. VSCAST isahmanism that guarantees these constraints, and
can usually be used to implement the primary backup repicaechnique [GS97].

Passive replication can tolerate non-deterministic ser¢e.g., multi-threaded servers) and uses little pro-
cessing power when compared to other replication techsigt®wever, passive replication suffers from a high

reconfiguration cost when the primary fails.

The five steps of our framework are the following:

1. The client sends the request to the primary.

2. There is no initial coordination.

3. The primary executes

the request.

4. The primary coordinates with the other replicas by semtlie update information to the backups.

5. The primary sends the answer to the client.

3.4 Semi-Active Replication

Semi-active replication is an intermediate solution betwactive and passive replication. Semi-active replicatio
does not require that replicas process service invocatiandeterministic manner. The protocol was originally
proposed in a synchronous model [PCD91]. We present it Inesemiore general system model.

The main difference between semi-active replication aniy@ceplication is that each time replicas have to
make a non-deterministic decision, a process, calledethéer, makes the choice and sends it to fhlowers
Figure 4 depicts Semi-active replication. Phas&sandAC are repeated for each non deterministic choice.

Phase 1:
Client
Request

Client '\ :

Phase 2:
Server
Coordination

Atomic
roadcast

Replica 1

Xa

Phase 3:
Execution

Non
deterministic
point

N\

Update I

Leader

Replica 2

\W

3

Update I

Phase 4: Phase 5:
Agreement Client
Coordination Response
VS Client)
Broadcast
N
¥A I / o
L Apply | >

Replica 3

Update |
|

Figure 4: Semi-active replication

The following steps characterise semi-active replicgtemtording to our framework.

1. The client sends the request to the servers using an AtBroadcast.

2. The servers coordinate using the order given by this AtdBnoadcast.

10

3. All replicas execute the request in the order they areveliedd.

4. In case of a non deterministic choice, thaderinforms thefollowersusing the View Synchronous Broad-
cast.

5. The servers sends back the response to the client.

3.5 Semi-Passive Replication

Semi-passive replication [DSS98] is a variant of passipécation which can be implemented in the asynchronous
model without requiring the view synchronous communiaatioechanism, i.e., without requiring the notion of
views. The main advantage over passive replication is tleavdbr aggressive time-outs value to suspect crashed
processes, without incurring a too important cost for imeor failure suspicions. Because this technique has no
equivalence in the context of database replication, we dadisguss it in detail. Roughly speaking, in semi-
passive replication the Server Coordination (phase 2) hadAgreement Coordination (phase 4) are part of one
single coordination protocol callddonsensus with Deferred Initial Values

3.6 Summary

Figure 5 summarises the different replication approachesstributed systems, grouped according the following
two dimensions: (1) failure transparency for clients, adserver determinism.

Server DeterminismServer Determinism

Needed Not Needed
Server Failure .
Not Transparent fo Passive
the Client
Server Failure CA
Transparent for theg Active Sem'_ ACt'V_e
Client semi-Passive

Figure 5: Replication in distributed systems

4 Database Replication

Replication in database systems is done mainly for perfoo@aeasons. The objective is to access data locally
in order to improve response times and eliminate the overloédaving to communicate with other sites. If
consistency needs to be guaranteed, this is only possibiedd operations. Otherwise, both read and writes can

11

be done locally, leaving consistency in the hands of theigafibn protocol. Fault tolerance is an issue but it is
solved using back up mechanisms which, even being a fornptitegion, are entirely transparent to the clients.

4.1 Replication Model in Databases

A database can be seen as a collection of data items codtiplla database management system. A replicated
database is thus a collection of databases that store oofpilee same data item (for simplicity, we assume full
replication). Hence, we distinguish a logical data it&rand its physical copieX’; on the different sites. The
basic unit of replication is the data item.

Clients access the data by submitting transactions to tfaddse system. An operatien(.X), of a transaction,

T;, can be either a read or a write access to a logical data i¥&nim the database. This logical operation must
then be translated to physical operations on the copiesdilfect. Moreover, a transaction is a unit of work that
executes atomically, i.e., a transaction either commitsbarrts its results on all participating sites. Furthermire
transactions run concurrently they must be isolated froah ether if they conflict. Two operations conflict if both
access the same dataitem and one of them is a write. Isolapoovided by concurrency control mechanisms such
as locking protocols [BHG87] which guarantee serializbilThese protocols are extended to work in replicated
scenarios and to provide 1-copy serializability, the ategporrectness criterion for database replication [BHG87

From an architectural point of view, a client submits itsxgactions to only one database and, in general, it
is connected only to this database. If a database server &ative transactions (not yet committed or aborted)
running on that server are aborted. Clients can then be ctexhéo another database server and re-submit the
transaction. The failure is seen by the client but, in rettiva client’s logic is much simpler. From a practical point
of view, in any working system, failures are the exceptioritsnakes sense to optimise for the situation when
failures do not occur as databases do.

In this section, we will use a very simple form of transactibat consists of a single operation. This allows us
to concentrate on the coordination and interaction stedsvaakes it possible to directly compare with distributed
system approaches. The next section will refine this modettended to normal transactions. Althoughshegle
operationapproach may seem restrictive, it is actually used by mamyneercial systems in the form atored
procedures A stored procedure resembles a procedure call and cordhitiee operations of one transaction. By
invoking the stored procedure, the client invokes a tratisac

4.2 Replication Strategies

Gray et.al [GHPO96] have categorised database replicatioiocols using two parameters (see Figure 6). One
is when update propagation takes place (eager vs. lazy)ansetond is who can perform updates (primary vs.
update-everywhere). In eager replication schemes, updatepropagated within the boundaries of a transaction,
i.e., the user does not receive the commit notification sufiicient copies in the system have been updated. Lazy
schemes, on the other hand, update a local copy, commit dycsome time after the commit, the propagation

12

of the changes takes place. The first approach providesstensy in a straightforward way but it is expensive in
terms of message overhead and response time. Lazy repfictows a wide variety of optimisations, however,
since copies are allowed to diverge, inconsistencies nuigtrr.

update propagation

é Eager Lazy

§ Primary Copy Primary Copy

@

©

S | Eager Lazy

S | Update Everywhere | Update Everywhere

Figure 6: Replication in database systems

In regard to who is allowed to perform updates, the primagycapproach requires all updates to be performed
first at one copy (the primary or master copy) and then at theratopies. This simplifies replica control at the
price of introducing a single point of failure and a potehtiattleneck. The update everywhere approach allows
any copy to be updated, thereby speeding up access but aidtb@pmaking coordination more complex.

4.3 Eager Primary Copy Replication

In an eager primary copy approach, an update operationigéréormed at a primary master copy and then prop-
agated from this master copy to the secondary copies. Wheeprtmary has the confirmation that the secondary
copies have performed the update, it commits and returngification to the user. Ordering of conflicting opera-
tions is determined by the primary site and must be obeyeti&gecondary copies. Reading transactions can be
performed on any site and reading transactions will alwagsthe latest version of each object. Early solutions,
e.g., distributed INGRES [AD76, Sto79], used this approd@rrently, it is only used for fault-tolerance in order
to implement a hot-standby backup mechanism where a prisiexecuted all operations and a secondary site
is ready to immediately take over in case the primary f§iBR93, AKAT96].

Figure 7 shows the steps of the protocol in terms of the fonetimodel as it would be used in a hot stand-by
back-up mechanism. The server coordination phase diseppigge execution takes place only at the primary.
The execution phase involves performing the transactimgeherate the corresponding log records which are then
sent to the secondary and applied. Then a 2PC protocol isieseéduring the agreement coordination phase. Once
this finishes, a response is returned to the client.

2Note that the primary is still a single point of failure, suah approach assumes that a human operator can reconfiguagstaen so that
the back-up is the new primary

13

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:

Client Server Execution Agreement Client

Request Coordination Coordination Response

~
o

R M T imAats | =

Replica 1 Update k 4;:: é >

Replica 2 ¥:ﬂ'— g 8 >
|_

Replica 3 {apply | >

Figure 7: Eager primary copy

From here, it is easy to see that eager primary copy repdicasi functionally equivalent to passive replication
with VSCAST. The only differences are internal to the AgresiCoordination phase (2PC in the case of databases
and VSCAST in the case of distributed systems). This diffeeecan be explained by the use of transactions in
databases. As explained, VSCAST is used to guaranteedghedtions are ordered correctly even after a failure
occur. In a database environment, the use of 2PC guarahtgétthe primary fails, all active transactions will be
aborted. Therefore, there is no need to order operations fbefore the failure” and “after the failure” since there
is only one source and the different views cannot overlah @dtch other.

4.4 Eager Update Everywhere Replication

From a functional point of view there are two types of protsct consider depending on whether they use
distributed locking or atomic broadcast to order confligtoperations.

4.4.1 Distributed Locking Approach

When using distributed locking, a replica can only be aae@sdter it has been locked at all sites. For transactions
with one operation, the replication control runs as folldase Figure 8). The client sends the request to its local
database server. This server sends a lock request to all s#heers which grant or do not grant the lock. The
lock request acts as the Server Coordination phase. If tleisogranted by all sites, we can proceed. If not, the
transaction can be delayed and the request repeated somaftenwards. When all the locks are granted, the
operation is executed at all sites. During the Agreement@ination phase, a 2PC protocol is used to make sure
that all sites commit the transaction. Afterwards, thertligets a response.

A comparison between Figures 4 and 8 shows that semi-aepleEation and eager update everywhere using
distributed locking are conceptually similar. The diffeces arise from the mechanisms used during the Server
Coordination and Agreement Coordination phases. In datha&erver Coordination takes place using 2 Phase

14

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:

Client Server Execution Agreement | |Client
Request Coordination Coordination| |response
Client \ Client)
— 3
Replica 1 \‘ Update e E o
o e
Replica 2 Update g 8
\ g
Replica 3 Update

Figure 8: Eager update everywhere with distributed locking

Locking [BHG87] while in distributed systems this is actéemusing ABCAST. The 2 Phase Commit mechanism
used in the Agreement Coordination phase of the databakeatiyn protocol corresponds to the use of a VSCAST
mechanism in the distributed systems protocol. Note thitcould be assumed that databases are deterministic,
the 2PC mechanism would not be needed and the protocol wedldhotionally identical to active replication (as
shown below).

4.4.2 Data Replication based on Atomic Broadcast

The idea of using group communication primitives to impletne@atabase replication has been around for quite
some time. However, it has not been until recently that tloblem has been tackled with sufficient depth so as
to provide realistic solutions [SR96, KA98, KPAS99a]. Thesie idea behind this approach is to use the total
order guaranteed by ABCAST to provide a hint to the transaatianager on how to order conflicting operations.
Thus, the client submits its request to one database sehiehwhen broadcasts the request to all other database
servers (note that in distributed systems, the client brasid the request directly to all servers). Instead of 2
Phase Locking, the server coordination is done based omthkedrder guaranteed by ABCAST and using some
techniques to obtain the locks in a consistent manner atedl GlKA98, KPAS99b]. Then the operation is executed
and a response sent back to the client. the following stepmaolved in this approach (see Figure 9).

1. the client sends the request to the local server
2. the server forwards the request to all servers which doatd using the order given by the Atomic broadcast.

3. the servers execute the transaction. If two operationflicbthey are executed in the order of the atomic
broadcast.

4. there is no coordination at this point.
5. the local servers sends back the response to the client.

15

Phase 1: Phase 2: Phase 3: Phase 5:
Client Server Execution Client
Request Coordination response
Client Atomic Client)
roadcast

Replica 1 \ Update // -
Replica 2 é Update / i
Replica 3 Update =

Figure 9: Eager update everywhere based on atomic broadcast

The similarities between active replication and eager tpdaerywhere using ABCAST are obvious when
Figures 2 and 9 are compared. The only significant differémtee interaction between the client and the system,
as pointed out above. Regarding the determinism of the dateh a complete study of the requirements and the
conditions under which ABCAST can be used for databasea&idin and when an Agreement Coordination is
necessary can be found in [KA98].

4.5 Lazy Primary Copy

Lazy replication avoids the synchronisation overhead gieeaeplication techniques by providing a response to
the clients before there is any coordination between senioreover, since the coordination will take place only
afterwards, the client only needs to communicate with omeesdefore the operation is executed and a response
given. In the case of primary copy, all clients must conthet$éame server to perform an update. Thus, a lazy
primary copy protocol can be seen as the sequence of phases shFigure 10.

The major aspect of lazy approaches is the Agreement Catidinphase. During this phase, the copies are
brought to a consistent state by propagating all changedexiding on how to apply them. In the case of primary
copy, this phase is relatively straightforward in that aegessary coordination and ordering between transactions
happens at the primary and the replicas need only to applgttaeges as the primary propagates them.

4.6 Lazy Update Everywhere

Also the change to update everywhere approaches is not wgryHigure 11 shows the different steps. Some
time after the transaction commits, the updates are prapdda the other sites. However, as in the case of eager
update everywhere, coordination is much more complicdtad tvith a primary copy approach. Since the other
sites might have run conflicting transactions at the same,titre copies on the different site might not only be

16

Phase 1: Phase 2: Phase 3: Phase 4: Phase 5:

Client Server Execution Client Agreement
Request Coordination Response | |Coordination
Replica 1 Update

Replica 2

Replica 3

Figure 10: Lazy primary copy

stale but inconsistent. Reconciliation is needed to dewidieh updates are the winners and which transactions
must be undone. There are some reconciliation schemesdrbowever, most of them are on a per object basis.
This is enough in the case where one transaction consistseobperation, however, they are not sufficient when
transactions consists of more operations on differentatbje

Phase 1: Phase 2: Phase 3: ||Phase 4: Phase 5:

Client Server Execution ||Client Agreement

Request Coordination Response Coordination

B
s

Replical Update g —}
(&S]

Replica 2 \‘ g

Replica 3 apply Fﬁ-}

Figure 11: Lazy Update Everywhere

A straightforward solution in the case of our simple modebisun an Atomic Broadcast and determine the
after-commit-order according to the order of the atomicdulcast.

Note that the concept of laziness, while existing in disii#dl systems approaches [RL92], is not widely
used. This reflects the fact that those solutions are mamkgldped for fault-tolerant purposes, making an eager
approach obligatory. Lazy approaches, on the other haad, straightforward solution if performance is the main
issue. Response times have to be short not allowing any caomeation within a transaction.

17

5 Transactions

In many databases, transactions are not one single opemt&re not executed via a stored procedure. Instead,
transactions are a partial order of read and write operatidrich are not necessarily available for processing at the
same time. This has important consequences for replicatamtocols. In particular, the protocol has to deal more
explicitly with the execution of the transaction, takingarmccount multiple operations. These new set of protocols
have no equivalent in distributed systems since the nofitr@nsaction is not that common in this community.

5.1 Transactions in the Functional Model

A transactiori; is a partial order of read and write operatianX). These operations are executed over a logical
data item and translated by the replication protocol intgsidal operations over the replicas. Operations conflict
if they are from different transactions, access the same ititn and at least one of them is a write. history

is a partial order of physical operations that includesrgha-transaction orderings and also orders all conflicting
operations. Aserial historyis a history in which the execution of each transaction isintirleaved with the
execution of other transactions. From here, a history imb&able (correct) if it is conflict equivalent to a serial
history. Conflict equivalence implies that the two histerige over the same set of operations and transactions and
operations that conflict are ordered in the same way in batiohés.

The fact that now a transaction has many operations andtibaetoperations need to be properly ordered
with respect to each other requires to modify the functionatlel. The modification involves introducing a loop
including the Server Coordination and Execution phasesi@iBxecution and Agreement Coordination phases,
depending on the protocol used. The loop will be executee émrceach operation that needs to be performed.

5.2 Eager Primary Copy Replication

In the case of primary copy, there is no need for server coatiin. Hence, the loop will involve the Execution
and the Agreement Coordination phase. In this loop an operat performed at the primary copy and then the
changes sent to the replicas. This is done for every operatid at the end, a new Agreement Coordination phase
is executed in order to go through a 2PC protocol that will ogtithe transaction at all sites (Figure 12).

Note that the Agreement Coordination phases for each aperand that at the end use different mechanisms.
If we compare this with the algorithm in Section 4.4.1, weic®that last phase is the same. For each operation
except the last, it suffices to send the operation. In the Agatement Coordination phase, a 2PC protocol is used
to make sure all sites either commit or abort the transaction

An alternative approach to this one is to use shadow copiépeopagate the changes made by a transaction
only after the transaction has completed (note that coreglist not the same as committed!). If this approach is
used, the resulting protocols is identical to that showniguFe 7.

18

Phase 1: Phase 2: Phase 3: || Phase 4: Phase 2: Phase 3: || Phase 4: | Phase 5:
Client Server Execution|| Agreement Server Execution|| Agreement | Client
Request Coordinatio Coordination ||Coordination Coordination | response
(Lctent) | [e)
Client Client
q change changg : \
. propagation propagation o
Replica 1 Update \‘ ff Update k 1 ﬁ E >
Replica 2 & e / ;la—| pply : % § >
2
Replica 3 aooly apply I = >

OPGF!IOH 1 Ope!tion 2 Commit

Figure 12: Eager primary copy approach for transactions

5.3 Lazy Primary Copy Replication

When using lazy replication, updates are not propagatei thiet transaction commits. Then all the updates
performed by the transaction are sent as a unit. Thus, whetresactions have one or more operations does not

make a difference for lazy replication protocols.

5.4 Eager update everywhere replication

We will again look at the two different approaches used tolément eager update everywhere replication.

5.4.1 Distributed Locking

In this case, a lock must be obtained for every operation énttansaction. This requires to repeat the Server
Coordination and Execution phases for every operation.hAtend, once all operations have been processed in
this way, a 2PC protocol is used during the Agreement Coatitin phase to commit or abort the transaction at
all sites (Figure 13).

Note that the use of quorums is orthogonal to this discussigmorums only determine how many sites and
which of them need to be contacted in order to obtain the lo¢kdependently of which sites participate, the
phases of the protocol are the same. In an extreme case, peaations are local (read-one/write-all approach
[BHGB8T]), which still requires the phases shown for all writperations.

19

Phase 1: Phase 2: ||Phase 3: | Phase 4: Phase 2. ||Phase 3: || Phase 4: Phase 5:

Client Server Execution| Agreement |Server Execution|| Agreement || Client

Request Coordination Coordination | Coordination Coordination||response

~
o

Replica 1 \‘ Update \ Update ﬁ ‘é >
o e

Replica 2 Update { Update | g 8 .

. N N
Replica 3 Undate Update =

Oper!tion 1 Ope!tion 2 Commit

Figure 13: Eager update everywhere approach for transectio

5.4.2 Certification Based Database Replication

When using ABCAST to send the operations to all replicas réiselting total order has no bearing on the seri-
alisation order that needs to be produced. For this reasdiogs not make much sense to use ABCAST to send
every operation of a transaction separately. It makes séaseever, to use shadow copies at one site to perform
the operations and then, once the transaction is complsted, all the changes in one single message [KA98].
Due to the fact that now a transaction manager has to unbtimee messages, the agreement coordination phase
gets to be more complicated since it involves deciding wéietiie operations can be executed correctly. This can
be seen as eertificationstep during which sites make sure they can execute transadti the order specified by
the total order established by ABCAST (Figure 14).

6 Discussion

This paper presents a general comparison of replicationoagpes used in the distributed system and database
communities. Our approach was to first characterise remicalgorithms using a generic framework. Our generic
framework identifies five basics steps, and, although singllewed us to classify classical replication protocols
described in the literature on distributed systems andodates.

Figure 15 summarises the combinations of the replicatichrigjues presented in the paper that guarantee
strong consistency (i.e., linearisability and one-copyasisability). From Figure 15 we see that any replication
technique that ensures strong consistency has eithe€amnd/orAC step before th&ND step.

20

Phase 1: Phase 2: Phase 3: || Phase 4: Phase 5:
Client Server Execution || Agreement Client
contact Coordination Coordination response

Client

=
Replica 1 Update >
Replica 2 >
Replica 3 i

Figure 14: Certification based Database Replication

All techniques have at least one synchronisation s&pdr AC). If the execution stepEX) is deterministic,
no synchronisation aftéeX is needed, as the execution will yield the same result onealless. For the same
reason, if only one server does the execution step, the@nead for synchronisation before the execution.

RE | SC | EX | AC | END

RE EX | AC |END

RE | SC | EX END

Figure 15: Possible combination of phases

Figure 16 summarises the different replication techniquéise case of single operation transactions.

Several conclusion can be drawn from this figure. First, princopy and passive replication schemes share
one common trait: they do not have &€ phase (since the primary does the processing, there is ibfoeearly
synchronisation between replicas). Furthermore, updageyeshere replication schemes need the infi@phase
before an update can be executed by the replicas. The ordptan are the Certification based techniques that use
Atomic Broadcast (Sect. 5.4.2). Those techniquesgtamisticin the sense that they do the processing without
initial synchronisation, and abort transactions in ordemaintain consistency. Finally, the difference between
eager and lazy replication techniques is the ordering o”&BeandEND phases: in the eager technique, &@
phase comes first, while in the lazy technique,EiIND phase comes first.

Despite different models, constraints and terminologieplication algorithms for distributed systems and
databases bear several similarities. These similaritiefpo evidence the need for stronger cooperation between
both communities. For example, replicated databases dmnidfit from the abstractions of distributed systems.

21

Model RE | SC | EX | AC | END
Active RE | SC | EX END *
Passive RE EX | AC |[END
x
Semi-Active RE | SC | EX | AC | END S
] @
Eager Primary Copy RE EX AC |END g
Eager Update %
Everywherewith | RE | SC | EX | AC | END o
Distributed Locking] g
Eager Update =<
Everywhere with | RE SC EX END
ABCAST
Certification baseq E
replication RE EX | AC |END ‘ 3
=
Lazy Primary 0
Copy RE EX | END| AC S
Lazy Update E
Everywhere | RE EX | END| AC 5
o
<

Figure 16: Synthetic view of approaches

Presently, we are planning a performance study of the @iffieapproaches, taking into account different workloads

and failures assumptions.

References

[AAAS97] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. xgloiting atomic broadcast in replicated databasesProceedings of
EuroPar (EuroPar'97) Passau (Germany), 1997.

[AD76] P.A. Alsberg and J.D. Day. A principle for resiliertiaring of distributed resources. Broceedings of the International Conference
on Software Engineeringctober 1976.

[AKA +96] G. Alonso, M. Kamath, D. Agrawal, A. El Abbadi, R. Giinthénd C. Mohan. Advanced transaction models in the workflow
contexts. InProceedings of the International Conference on Data Ergyiing, New Orleans, February 1996.

[AS87] B. Alpern and F.B. Schneider. Recognizing safety larahess.Distributed Computing2:117-126, 1987.

[AW94] H. Attiya and J. Welch. Sequential consistency verBnearizability. ACM Transactions on Computer Systerh®(2):91-122,
May 1994.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodm@&encurrency Control and Recovery in Database Systéxddison-Wesley, 1987.

[Bir93] K. P. Birman. The process group approach to reliatiilgtributed computing. Communications of the ACMB6(12):37-53,
December 1993.

[BJ87] K. P. Birman and T. A. Joseph. Exploiting virtual siineny in distributed systems. FRroceedings of the 11th ACM Symposium
on OS Principlespages 123-138, Austin, TX, USA, November 1987. ACM SIGOR3V.

22

[BSS91]

[Dra98]

[DSS98]

[GHPOY6]

[GR93]

[GS97]
[HAAQ9]

[HT93]
[KA98]

[KA99]

K. P. Birman, A. Schiper, and P. Stephenson. Liglgiatecausal and atomic group multica®®CM Transactions on Computer
Systems9(3):272-314, August 1991.

Information & Communcations Systems Research @ro&TH Zirich and Laboratoire de Systémes d’Exploitation
(LSE), EPF Lausanne. DRAGON: Database Replication Based on Group Communicatioday 1998.
http://ww. inf.ethz.ch/department/1S/iks/research/dragon. htm .

X. Défago, A. Schiper, and N. Sergent. Semi-passpdication. InProceedings of the 17th IEEE Symposium on Reliable
Distributed Systems (SRD$pges 43-50, West Lafayette, IN, USA, October 1998.

J. N. Gray, P. Helland, and and D. Shasha P. O'Néié dangers of replication and a solution.Aroceedings of the 1996 ACM
SIGMOD International Conference on Management of Datges 173-82, Montreal, Canada, June 1996. SIGMOD. Miftros
Technical Report MSR-TR-96-17.

J. Gray and A. Reuter.Transaction Processing: concepts and techniqu&ata Management Systems. Morgan Kaufmann
Publishers, Inc., San Mateo (CA), USA, 1993.

R. Guerraoui and A. Schiper. Software-based rejicgor fault tolerance IEEE Computer30(4):68—74, April 1997.

J. Holliday, D. Agrawal, and A. El Abbadi. The perfoance of database replication with group multicast.Ptoceedings of
IEEE International Symposium on Fault Tolerant Computifg€S29) pages 158-165, 1999.

V. Hadzilacos and S. Toueg. Fault-tolerant broaticand related problems. In Sape Mullender, edifistributed Systems
chapter 5. adwe, second edition, 1993.

B. Kemme and G. Alonso. A suite of database repligafwotocols based on group communication primitivesPtaceedings of
the 18th Internationnal Conference on Distributed Commuyittystems (ICDCShmsterdam, The Netherlands, May 1998.

B. Kemme and G. Alonso. Transactions, messages aadtgv Merging group communication and database systen8rdin
Europeean Research Seminar on Advances in Distribute@r83ERSADS'99Madeira Island (Portugal), April 23-28, 1999.
BROADCAST Esprit WG 22455.

[KPAS99a] B. Kemme, F. Pedone, G. Alonso, and A. Schipercéasing transactions over optimistic atomic broadcagbpats. InPro-

ceedings of the International Conference on Distributedn@uoting System#wustin, Texas, 1999. to appear.

[KPAS99b] B. Kemme, F. Pedone, G. Alonso, and A. Schipem@sptimistic atomic broadcast in transaction processysgesns. Technical

[PCDO1]
[PGS97]
[PGS98]
[PMS99]
[RL92]
[RTKA96]
[SAA98]
[Schoo]
[SR96]

[SS93]

[Sto79]

report, Department of Computer Science, ETH Zirich, Margdal

D. Powell, M. Chéréque, and D. Drackley. Faultitatee in Delta-4* ACM Operating Systems Review, SIGOPR2):122-125,
April 1991.

F. Pedone, R. Guerraoui, and A. Schiper. Transaatiordering in replicated databases.Piroceedings of the 16th Symposium
on Reliable Distributed Systems (SRDS;D8)rham, North Carolina, USA, October 1997.

F. Pedone, R. Guerraoui, and A. Schiper. Exploifitgmic broadcast in replicated databases. Ptaceedings of EuroPar
(EuroPar’'98) September 1998.

E. Pacitti, P. Minet, and E. Simon. Fast algorithmisrhaintaining replica consistency in lazy master repéidatiatabases. In
Proceedings of the 25th International Conference on Vergé®atabasesEdinburgh - Scotland - UK, 7-10 September 1999.

S. Ghemawat R. Ladin, B. Liskov. Providing high asaility using lazy replication ACM Transactions on Computer Systems
10(4):360-391, November 1992.

M. Raynal, G. Thia-Kime, and M. Ahamad. From serable to causal transactions for collaborative appliceti Technical
Report 983, Institut de Recherche en Informatique et Systééatoires, February 1996.

I. Stanoi, D. Agrawal, and A. El Abbadi. Using broadt primitives in replicated databases.Rroceedings of the International
Conference on Distributed Computing Systems ICDCS3@8es 148-155, Amsterdam, The Netherlands, May 1998.

F. B. Schneider. Implementing fault-tolerant s=rs using the state machine approach: A tutori®M Computing Surveys
22(4):299-319, December 1990.

A. Schiper and M. Raynal. From group communicatioriramsactions in distributed system&€ommunications of the ACM
39(4):84-87, April 1996.

A. Schiper and A. Sandoz. Uniform reliable multicasta virtually synchronous environment. Proceedings of the 13th
International Conference on Distributed Computing Systéi@6DCS-13) pages 561-568, Pittsburgh, Pennsylvania, USA, May
1993. IEEE Computer Society Press.

M. Stonebraker. Concurrency control and conststesf multiple copies of data in distributediGRES IEEE Transactions on
Software EngineeringSE-5:188-194, May 1979.

23

