

Advanced Client/Server Authentication in TLS

Adam Hess, Jared Jacobson, Hyrum Mills, Ryan Wamsley, Kent E. Seamons, Bryan Smith

Computer Science Department

Brigham Young University

Provo, Utah, USA 84602

seamons@cs.byu.edu

ABSTRACT

Many business transactions on the Internet occur
between strangers, that is, between entities with no prior
relationship and no common security domain. Traditional
security approaches based on identity or capabilities do
not solve the problem of establishing trust between
strangers. New approaches to trust establishment are
required that are secure, scalable, and portable. One new
approach to mutual trust establishment is trust negotiation,
the bilateral exchange of digital credentials to establish
trust gradually. This paper describes the Trust
Negotiation in TLS (TNT) protocol, an extension to the
TLS handshake protocol that incorporates recent advances
in trust negotiation into TLS to provide advanced
client/server authentication in TLS. In this paper we
describe the current limitations in TLS client/server
authentication with respect to trust establishment, and
show how the TNT protocol overcomes them. We also
describe our implementation of TNT, built using PureTLS,
a Java TLS package that is freely available. This
implementation is the first to provide confidential trust
negotiation, verification of private keys during trust
negotiation, and a single trust negotiation protocol
supporting interoperable trust negotiation strategies.

1. Introduction

Many interactions on the Internet occur between
strangers, that is, between entities with no prior
relationship and no common security domain. Traditional
security approaches based on identity or capabilities do not
solve the problem of authentication between strangers,
because strangers do not share a common security domain.
New approaches are required that are secure, scalable, and
portable.

When a server conducts a secure on-line transaction
with a stranger, two common security problems must be
addressed: first, the details of the transaction must remain
confidential; second, the server must authenticate the client
according to a pre-existing policy that specifies who is to
be considered trustworthy for the given transaction. In our
model, authentication of the client is not based on identity
but rather on attribute values encoded in digital
credentials—the online analogues of today’s paper
credentials.

Transport Layer Security (TLS) [4], the IETF
adaptation of Netscape’s SSL V3.0 [5] protocol, can
provide confidentiality. TLS also provides client and
server authentication. However, TLS authentication is not
suitable for strangers trying to conduct business
transactions. For example, a business may be interested in
providing a service to residents of a given state. The
identity of the client accessing the service is irrelevant to
this decision; the client only needs to establish proof of
residency. As discussed further in section 3, TLS does
not provide this form of authentication.

Clients may have their own criteria for trusting servers.
For example, before the client discloses a credential he or
she considers to be sensitive, such as a credit card number
and expiration date, the client may first require a credential
from the server stating that the server will handle the
client’s private information properly. Without this
assurance, customers who do not want their sensitive
information disclosed to others will go elsewhere.

An interesting case to consider occurs when the server
must authenticate the client in order to provide a service,
but the client considers those credentials sensitive. The
client therefore wants to authenticate the server before
disclosing them. In such a case, a strictly one-way model
of authentication will not suffice; mutual authentication is
necessary.

Our approach to mutual trust establishment is called
trust negotiation, the bilateral exchange of digital
credentials to establish trust gradually [10][13][14][15].
Digital credentials contain digitally signed assertions by a
credential issuer about a credential owner. A credential
uses name/value pairs to describe one or more attributes of
the owner. Each credential also contains the public key of
the credential owner and is signed using the issuer's private
key. The owner can answer challenges and otherwise
demonstrate ownership of the credentials. Credentials are
a more general name for certificates, such as X.509v3
certificates [8].

As an example of trust negotiation, an on-line bookstore
may offer discounts to students at accredited universities.
When a first-time customer requests a student discount, he
or she will not have prior knowledge of the bookstore’s
requirements for proof of student status. One approach is
for the server to transmit a policy to the client. Such a
policy could specify that the customer must submit a
student ID and a credit card number in order to make an
on-line purchase and receive a student discount. The
customer (for example, a female student) is only willing to
disclose her credit card number to a business that is a
member of the Better Business Bureau (BBB). In
accordance with her policy, her trust negotiation agent
discloses her student ID and requests that the server return
a BBB member credential to the client. The server then
sends the client a BBB member credential. Finally, the
client submits a valid digital credit card number and
receives the student discount.

Since digital credentials can often contain sensitive
information, associating an access control policy with each
credential controls credential disclosure. As in the
example above, a credential is disclosed only when its
access control policy has been met. For a trust negotiation
to be successful, some credentials must be freely available
on at least one side of the negotiation.

This paper describes the Trust Negotiation in TLS
(TNT) protocol, an extension to the TLS handshake
protocol that incorporates trust negotiation to provide
advanced client/server authentication in TLS. The TNT
protocol is based on recent advances in trust negotiation
and provides a solution for confidential trust negotiations
and for verifying credential ownership. The details of
these issues have so far not been addressed in past trust
negotiation protocol proposals. This paper also describes
our implementation of TNT, which extends PureTLS, a
freely available Java implementation of SSL/TLS (See
http://www.rtfm.com/puretls/ for more details). Section 2
discusses recent advances in the area of trust negotiation.
Section 3 describes the TLS handshake protocol and
identifies current limitations in TLS client/server
authentication with regard to mutual authentication
between strangers. Section 4 contains the description of
the TNT protocol that extends the TLS handshake

protocol. Section 5 describes an implementation of TNT,
and Section 6 discusses related work. Section 7 contains
conclusions and future work plans.

2. Trust negotiation

In our approach to automated trust establishment, trust is
established incrementally by exchanging credentials and
requests for credentials, an iterative process known as trust
negotiation [10][13][14][15]. While a trust negotiation
protocol defines the ordering of messages and the type of
information messages will contain, a trust negotiation
strategy controls the exact content of the messages, i.e.,
which credentials to disclose, when to disclose them, and
when to terminate a negotiation.

Figure 1 introduces our TrustBuilder architecture for
trust negotiation. A security agent mediates access to local
protected resources: services, access control policies, and
credentials. We say a credential or access control policy is
disclosed if it has been sent to the other party in the
negotiation, and that a service is disclosed if the other
party is given access to it. Disclosure of protected
resources is governed by access control policies.

The architecture in figure 1 supports a single protocol
for establishing trust. The architecture is designed to
support customized negotiation strategies. All trust
negotiation strategies share the goal of building trust
through an exchange of digital credentials. The purpose of
this exchange is obtaining access to a protected resource.
Once the access control policy for a particular credential
has been satisfied, a local negotiation strategy must
determine whether the credential is relevant to the current
stage of the negotiation. If so, it will be disclosed.
Different negotiation strategies will use different
definitions of relevance, involving tradeoffs between
computational costs, the length of the negotiation, and the
number of disclosures.

From the handful of trust negotiation strategies
proposed so far in the literature [10][13][14][15], it is clear
that there are endless variations in how to negotiate trust.
It is unlikely that a single strategy will meet the needs of
all users. The TrustBuilder architecture is designed to
support a strategy-independent, policy-language-
independent trust negotiation protocol that ensures
interoperability within a family of negotiation strategies
[15].

Access control policies for local resources specify
credentials that the other negotiation participant must
disclose in order to obtain access to those resources.
During a negotiation, the security agent invokes a local
compliance checker in two ways. First, the security agent
receives credentials from the other participant and checks
to see if the relevant local access control policies are
satisfied by the remote credentials before disclosing a local
protected resource. Second, the agent may also receive

remote access control policies that serve as requests for
local credentials. The agent checks to see whether any
local credentials satisfy the remote access control policy.
If so, the agent uses the negotiation strategy to determine if
and when those local credentials should be disclosed to the
other party to advance negotiation toward the goal of
granting access to the protected resource.

When an access control policy P contains sensitive
information, then P itself requires protection in the form of
an access control policy for access to P. Earlier work in
trust negotiation introduced support for sensitive policies
using policy graphs [10]. The presence of sensitive
policies requires that trust be established gradually. For
example, suppose a client begins an interaction with an
unfamiliar web server. Before sending a sensitive request
for credentials to the server that would reveal information
regarding the nature of the client’s business, the client may
request credentials attesting to how the server handles
private information and whether or not the server conforms
to certified security practices. Once the client has
established this initial level of trust, the client can continue
by sending the sensitive request for further credentials
from the server.

The previous work in trust negotiation has focused on
support for sensitive credentials and access control
policies, the definition and interoperability of trust
negotiation strategies, and a trust negotiation protocol. In
[15], a trust negotiation protocol was presented, along with
the Disclosure Tree Strategy (DTS) family. It was proved
that if two participants each choose a strategy from the
DTS family, they will be able to negotiate trust just as well
as if they had both adopted the same strategy. The issues
of confidentiality and verifying ownership of submitted

credentials during trust negotiation have not been
addressed previously. To date, no implementation of the
negotiation protocol or negotiation strategies exists.

3. Transport Layer Secur ity (TLS)

TLS is a connection-oriented protocol that provides a
secure channel between a client and a server. TLS
supports confidentiality, data integrity, and client/server
authentication. The TLS handshake protocol provides a
means for authentication and the negotiation of security
parameters, such as the encryption algorithms, encryption
keys, MAC keys, etc., that are used to transmit data
securely. The TLS record protocol specifies how
application data is actually transmitted between two
communicating hosts so that confidentiality and data
integrity are provided.

The focus of the research described in this paper is
authentication. Client/server authentication in TLS is
handled in the handshake protocol. In this section, we
describe the TLS handshake protocol for client/server
authentication and identify the limitations in the protocol
for authenticating strangers on the Internet.

The general TLS handshake protocol is illustrated in
Figure 2, with optional messages shaded. The exact
sequence of messages in a given handshake between a
client and server will vary depending on the key exchange
method selected by the client and server during the
handshake. The TLS handshake has four phases. In the
first phase, the client and server exchange hello messages
that are used to establish security parameters used in the
TLS session and settings used during the handshake, such
as the key exchange algorithm. During the second phase,

Figure 1. The TrustBuilder architecture for automated trust negotiation. A security agent who
manages local protected resources and their associated access control policies represents each
negotiation participant. TrustBuilder provides the necessary middleware support for security
agents to enable negotiation strategy interoperability.

Local Site Security Agent

Remote Site Security Agent

Access
control
policies

Protected
Resources

services,
credentials,

policies

Access
control
policies

Disclosures

Protected
Resources

services,
credentials,

policies

Negotiation
Manager

Negotiation
Protocol

Strategy
Engine

Strategy Engine API

Negotiation
Protocol

Strategy
Engine

Strategy Engine API

Negotiation
Manager

the server sends a Certificate message to the client
that may include a server certificate when an RSA key
exchange is used, or Diffie-Hellman parameters when a
Diffie-Hellman key exchange is used. The server may also
request a certificate from the client using the
CertificateRequest message. During the third
phase of the handshake, the client may send its certificate
to the server in a Certificate message along with a
CertificateVerify message so that the server can
verify certificate ownership, if the server requested a client
certificate during the second phase. The client must send
either a pre-master secret encrypted using the server’s
public key, or public Diffie-Hellman parameters, in the
ClientKeyExchange message so that the client and
server can compute a shared master secret. In the fourth
phase of the handshake, the client and server finish the
handshake so that they may begin exchanging application
data.

The full range of handshake variants is beyond the
scope of this paper. Interested readers are referred to
[4][9][12] for a full treatment of the TLS handshake.

3.1. TLS client/server authentication

This section describes the specific form of a TLS
handshake that supports client and server authentication
using the RSA key exchange method, shown in Figure 3.
Using this method, the client and server exchange
certificates with one another for mutual authentication.

The client initiates the handshake by sending a
ClientHello message to the server. The server
responds with a ServerHello message. These
messages contain the necessary information to establish
the security parameters for the TLS session. Although the
messages contain the same parameter types, they have a
slightly different meaning. Table 1 lists the parameters of
these two hello messages and describes their meaning.

The cipher suite parameter is a 4-tuple specifying the
cryptographic algorithms to use in the TLS session. These
include the server authentication algorithm, key exchange
algorithm, bulk encryption algorithm, and digest algorithm
for message integrity.

Client Server

ClientHello

ServerHello

Certificate

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

CertificateRequest

CertificateVerify

Figure 3. The TLS handshake protocol for
client and server authentication using the
RSA key exchange method.

Client Server

ClientHello

ServerHello

Certificate

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

ServerKeyExchange

CertificateRequest

CertificateVerify

Figure 2. The general TLS handshake
protocol with optional messages shaded.

The server continues the handshake by sending a
Certificate message containing an X.509 certificate
or certificate chain. Next, the server sends a
CertificateRequest message, communicating the
following three items of information to the client: first, that
the server requires a client certificate for authentication
purposes; second, a list of certificate types the server is
willing to accept; and third, a list of X.500 distinguished
names of the certificate authorities that the server trusts.
For the kind of handshake being described, the server
specifies the certificate type as RSA. The list of trusted
certificate authorities assists the client in selecting a
certificate or certificate chain to submit that is signed by a
root CA that the server trusts. Finally, the server sends a
ServerHelloDone message indicating that it is now
the client’s turn to continue the handshake.

The third phase of the handshake protocol consists of
messages sent from the client to the server. First, the
client sends a Certificate message to the server
containing an X.509 certificate or certificate chain.

Next, a ClientKeyExchange message is sent
containing a client-generated, pre-master secret to be used
for key generation. The client encrypts the pre-master
secret using the public key contained in the server’s
certificate that was received earlier in the handshake. The
only way for the server to decrypt the message
successfully and obtain the pre-master secret is if the
server possesses the private key associated with the
certificate the server previously sent to the client. Thus,
the ClientKeyExchange serves as an implicit
challenge for the server to prove ownership of the private
key. If the server successfully decrypts the pre-master
secret, the server can generate the correct keys to be used
during the TLS session.

The third phase of the handshake concludes when the
client sends a CertificateVerify message to prove
ownership of the private key associated with the certificate
the client just disclosed to the server. The message
consists of a signed hash of all previous messages
exchanged during the handshake. The server decrypts the

message using the public key contained in the client
certificate and compares the result to a hash of all the
previous messages exchanged during the handshake. This
message serves as an implicit challenge for the client to
prove ownership of the private key associated with the
client certificate.

The handshake now enters the final phase. The client
sends a ChangeCipherSpec message, indicating that
the client will now begin encrypting its communications
using the new cryptographic keys that were just computed.
Then the client sends a Finished message to the server
containing a hash of all the preceding messages exchanged
during the handshake. The server follows suit by sending
its own ChangeCipherSpec and Finished messages
to the client. Upon completion of the handshake,
application data begins to flow through the secure channel.
Note that no application data, such as an HTTP request,
flows from the client to the server until after the encrypted
session is established.

3.2. L imitations in TLS authentication

The following are limitations to authenticating strangers
on the Internet using TLS client/server authentication:
1. Certificates are exchanged in plain text during the

initial TLS handshake. This does not present a danger
that an eavesdropper can intercept the certificate and
misuse it. An attacker who intercepts a certificate is
unable to pose as the owner of the certificate without
obtaining possession of the associated private key,
assuming due diligence on the part of authentication
services to challenge for possession of the associated
private key appropriately whenever a certificate is
presented. However, exchanging certificates in the
clear does introduce privacy risks whenever certificate
contents are sufficiently sensitive that disclosing the
certificate to anyone unauthorized to receive it is
undesirable.

2. The client and the server are limited to disclosing a
single certificate chain to each other. In certain

Parameters ClientHello ServerHello
Version Highest SSL/TLS version supported by client Lower of the client-suggested version and

highest server-supported version
Random Client-generated random structure, used as a nonce Server-generated random structure
SessionID Variable-length session identifier. A zero value

indicates a new session. A non-zero value refers to an
earlier session the client wishes to resume.

If client sends a zero value, server returns
a new session ID, otherwise returns the
old session ID supplied by the client.

CipherSuite List of cryptographic algorithm combinations the client
supports, in decreasing order of preference.

Single cipher suite selected from the list
supplied by the client.

Compression
Method

List of the compression methods supported by the
client

Compression method selected by the
server.

Table 1. A description of the parameters contained in the TLS ClientHello and ServerHello messages.

circumstances, disclosing multiple certificate chains
provides a greater level of trust compared to a single
certificate chain, especially when several attributes are
of interest in determining trust and different
certification authorities are trusted to issue certificates
containing those attributes. Requiring multiple
certificate chains for authentication may also mean that
multiple private keys must be compromised in order for
an imposter to successfully breach the system.

3. The server specifies a list of distinguished names of
certifying authorities that the server trusts when it
requests a client certificate. In contrast, the client has
no such opportunity.

4. The server discloses its certificate before the client
discloses a certificate, forcing the server to always
make the disclosure to a complete stranger.

5. The client always receives a certificate from the server
before it is required to disclose its own certificate to the
server. Although the client is able to verify the validity
of the certificate contents, at the moment the client
discloses a certificate to the server, the client has no
proof that the server owns the certificate that it
disclosed. Thus, the client cannot rely on the server
certificate to determine conclusively whether or not to
trust the server enough to disclose a sensitive client
certificate.

6. If the certificate chain received by either the client or
the server does not completely satisfy their
authentication requirements, there is no facility in the
protocol for requesting additional certificates to meet
all the authentication requirements. The typical
approach is for the client to authenticate the server if a
trusted root CA known to the client signs the root
certificate in the chain. Web clients typically
authenticate the server if the distinguished name in the
certificate matches the DNS name for the web server
host machine. Most often, if servers authenticate
clients at all, they simply verify that the client possesses
the private key associated with the public key presented
certificate.

4. Trust negotiation in TLS

The Trust Negotiation in TLS (TNT) protocol is an
extension to the TLS handshake protocol that is designed
to use trust negotiation to establish trust between strangers.
TNT provides advanced client/server authentication in
TLS by overcoming the limitations of TLS client/server
authentication presented in the previous section. This
section describes the TLS rehandshake and session
resumption procedures and details how TNT leverages
those procedures to support confidential trust negotiations.
This section also describes the TNT protocol for
conducting trust negotiation between a TLS client and
server during a rehandshake. Finally, the definition of new

messages added to TNT that are not already included in
TLS is given using the syntax from the TLS protocol
specification.

4.1. TLS rehandshake

Once a TLS connection is established using the
handshake protocol described in the previous section, it is
possible to conduct a TLS rehandshake. The rehandshake
is simply the TLS handshake performed over an existing,
and likely encrypted, TLS connection. (Although not
common, it is possible for a TLS session to provide
message integrity, but not encryption.) Either the client or
server can initiate a rehandshake.

A client initiates a rehandshake by sending a new
ClientHello message to the server after a previous
handshake has finished. A server can initiate a
rehandshake by sending a ServerHelloRequest
message to a client. The client responds with a
ClientHello message, and the handshake continues as
usual. Either party has the option of ignoring a request for
a rehandshake, but that is rarely done.

The three purposes of a rehandshake in SSL/TLS are:
1) client authentication, 2) cipher suite upgrading, and 3)
replenishment of keying material. Suppose a server is
configured to enforce different security requirements
according to the specific data or service being accessed.
Until the server receives the client’s request, there is no
basis for client authentication. In this case, it is not
possible to authenticate the client during the initial TLS
handshake at the beginning of a connection, because the
server has not yet received any application data from the
client. Only after receiving application data, such as an
HTTP request, can the server authenticate the client based
on the access control policy of the requested service.

The rehandshake is used to upgrade the strength of the
cipher suite in Netscape's Step-Up methodology—similar
to Microsoft's Server Gated Cryptography, or SGC [9].
Before the United States’ export regulations were relaxed,
an exception was granted for the use of strong encryption
during certain financial transactions. For example, a client
using only 40-bit encryption could automatically switch to
stronger encryption when the client determined it had
connected to a web server that was granted an exception to
use strong cryptography, such as a financial institution
outside the United States. For example, suppose a client
connects to a bank in Paraguay and indicates that it is an
exportable client who is only able to support 40-bit
encryption. The bank's server can send back a special
certificate in the TLS handshake indicating that it is
allowed to use strong cryptography with exportable clients.
After receiving this certificate, the client can initiate a
rehandshake to negotiate a TLS session with stronger
encryption.

Using Netscape’s Step-Up methodology, a web browser
initiates a re-handshake at the conclusion of the
handshake. Microsoft’s SGC methodology is
implemented to allow the browser to interrupt the current
handshake and begin a rehandshake. Although this is
arguably more efficient, it does violate the SSL/TLS
specification, which does not allow for a rehandshake to
begin in the middle of a handshake.

A rehandshake is also used to replenish keying
material. This is done to prevent cryptographic attacks on
long-lived sessions. In TLS, the keying material can
consist of up to six different values, depending on the
cipher suite being used. This includes an encryption key,
MAC key, and an initialization vector (IV) for both the
client and server. Keys may also need to be replenished to
prevent CBC rollover when large amounts of data are
being transmitted using a block cipher in CBC mode.
When two data blocks i and j encrypt to the same value c,
if blocks i+1 and j+1 are equal, they will also encrypt to
the same value, revealing patterns in the data to a
cryptanalyst.

Since trust negotiations involve sensitive certificates,
negotiations must be confidential. During TLS
client/server authentication, certificates are exchanged in
plain text in an initial TLS handshake. To overcome this
limitation, TNT is intended for use only during a
rehandshake initiated during an encrypted TLS session, to
keep the trust negotiation confidential.

This paper assumes the server initiates the rehandshake,
to establish trust in a client according to the access control
policy associated with the sensitive resource that the client
has requested to access. In the future, TNT will also
permit a client to establish trust in a server prior to any
application data being passed through the secure channel,
known as client-initiated trust establishment [1].

Single-round trust negotiations do not involve sensitive
certificates, and therefore do not require confidentiality.
Although not addressed in this paper, this simple case
could be supported in the normal TLS handshake. A
simple negotiation occurs, for example, when a server
requests a certificate from the client and the client
immediately discloses the certificate. TNT is designed to
protect sensitive certificates in more complex negotiations.

4.2. TLS session resumption

The performance bottleneck in TLS handshakes is the
public key cryptographic operations [9]. In particular, the
encryption and decryption required to confidentially
exchange a pre-master secret is expensive. One of the
reasons the client must verify the server’s certificate is to
use the server’s public key to encrypt the pre-master secret
in the key exchange.

TLS supports session resumption in order to avoid the
overhead of a full TLS handshake. With session

resumption, an abbreviated handshake occurs as follows.
The client sends a ClientHello message to a server
and includes the sessionID from a previous session
with the server. If the server is willing to resume the
session, the server replies by returning the same
sessionID in the ServerHello message. In order to
resume a session, the client and server reuse the master
secret from the prior session to compute new keying
material, thus avoiding the expensive public-key
operations of a normal handshake. After the
ServerHello message they simply exchange
ChangeCipherSpec and Finished messages, with
the server proceeding first.

The TNT protocol presented in the next section
leverages TLS session resumption in order to avoid the
overhead of needlessly generating a new master secret.
Once the client and server successfully negotiate trust, an
abbreviated handshake takes place, similar to session
resumption. Instead of completing the full handshake, the
client and server compute new keying material by reusing
the master secret from the current TLS session and
conclude by sending ChangeCipherSpec and
Finished messages to one another, with the server
proceeding first.

4.3. TNT protocol

The TNT protocol, shown in figure 4, is designed to
support trust negotiation between a TLS client and server
whenever a TLS client has requested access to a sensitive
service and the access control policy associated with the
service is not satisfied. A TLS server desiring to negotiate
trust with a client initiates a rehandshake by sending a
HelloNegotiationRequest message to the client.
The client responds with a ClientHello message,
followed by the server sending a ServerHello
message. The sessionID included in the hello
messages is the sessionID associated with the current
session, to allow for streamlined session resumption
following a successful trust negotiation.

In order to conduct a successful trust negotiation, the
negotiation participants must first agree on a trust
negotiation strategy family. Once they agree on a strategy
family, each party is free to independently select a
negotiation strategy from that strategy family, with the
guarantee that trust will be successfully negotiated
whenever possible [15]. Two design choices for adding
information on the negotiation strategy family into TLS
are: 1) include the strategy family in the hello messages, or
2) incorporate the strategy family into the TLS cipher
suite. A current IETF Internet draft specifies extensions
to the ClientHello and ServerHello messages that
can be used to communicate support for new capabilities

in a TLS client or server [2]. The draft is work in
progress.

Anticipating that extensibility in the hello messages
will be available in TLS in the future, TNT extends the
Cl i ent Hel l o and Ser ver Hel l o messages to include
the Tr ust Negot i at i onSt r at egyFami l y field.
Using that field in the Cl i ent Hel l o message, a TNT
client includes a list of the negotiation strategy families
that the client supports. The server selects a strategy
family from the list presented by the client and returns it in
the Ser ver Hel l o message.

Following the exchange of hello messages, the TNT
protocol enters the negotiation phase, in which the server
and client take turns disclosing policies and certificates

until the negotiation succeeds or is terminated. During the
server’s turn, the server first discloses zero or more
certificates using a combination of TLS Cer t i f i cat e
and Cer t i f i cat eVer i f y messages. Immediately
following each Cer t i f i cat e message, the server
demonstrates ownership of a private key using the
Cer t i f i cat eVer i f y message, unless the server has
previously demonstrated possession of the private key
earlier in the negotiation. The Cer t i f i cat eVer i f y
message is encrypted using the server’s private key
associated with the certificate the server just disclosed. It
is sent to prove to the client that the server is the owner of
the certificate. Next, the server discloses zero or more
Pol i cy messages. Policies are disclosed to provide hints
to the client regarding the certificates the client can
disclose to advance the negotiation. Finally, the server
sends a Ser ver Tur nDone message indicating that the
server has nothing further to disclose during this round of
the negotiation.

Next, the client takes a turn disclosing information to
advance the negotiation, following the same general
pattern as the server. The client first discloses zero or
more certificates using a combination of Cer t i f i cat e
and Cer t i f i cat eVer i f y messages. Immediately
following each Cer t i f i cat e message, the client
demonstrates ownership of a private key using the
Cer t i f i cat eVer i f y message, unless the client has
previously demonstrated possession of the private key
earlier in the negotiation. Next, the client discloses zero or
more policies to provide hints to the server regarding the
certificates the server can disclose to advance the
negotiation. The client concludes its turn during the
current round of negotiation by sending a
Cl i ent Tur nDone message.

The negotiation continues for a number of rounds until
the server’s policy governing the resource is satisfied or
the negotiation is terminated. The server checks to see
whether the policy is satisfied after each round of the
negotiation. Once the policy is satisfied, the server
successfully concludes the negotiation by sending the
Negot i at i onDone message.

Either party may terminate the negotiation at any time
using the facilities for terminating any other TLS
handshake. The decision to terminate is dependent on the
negotiation strategy. Previous work on trust negotiation
characterizes important properties of negotiation strategies,
including termination [10][13][14][15]. A production
implementation of TNT could use these previous results to
place practical limits on the number of rounds of
negotiation to insure a negotiation does not continue
indefinitely.

The final phase of the TNT protocol is very similar to
the conclusion of the abbreviated TLS handshake. The
server sends a ChangeCi pher Spec message and a

+

Client Server

*

 *

*

 *

HelloNegotiationRequest

ClientHello

ServerHello

Certificate

CertificateVerify

Policy

ServerTurnDone

Certificate

CertificateVerify

Policy

ClientTurnDone

NegotiationDone

ChangeCipherSpec

Finished

Finished

ChangeCipherSpec

Figure 4. The TNT handshake protocol for
negotiating trust during an encrypted TLS
rehandshake, with optional messages shaded.

Fi ni shed message. Once the client replies with the
same two types of messages, the rehandshake is complete.

The following is an example trust negotiation between a
client and server using TNT. Suppose a web browser and
server support TNT. The user is a student purchasing a
book from an online bookstore that offers discounts to
students at accredited universities. Suppose the user
requests a student discount while purchasing a book in the
context of a TLS session. For this example, assume the
client and server are initially unfamiliar with one another.

The server initiates a TLS rehandshake in order to
authenticate the client as a valid student by sending a
Hel l oNegot i at i onRequest message to the client.
The client responds with a Cl i ent Hel l o message,
followed by a Ser ver Hel l o message from the server.
These messages permit the client and server to select a
trust negotiation strategy family and the RSA key
exchange method.

Next, the server sends a Pol i cy message to the client
that describes the certificates the client must submit in
order to receive the discount service. In this case, the
server requires a valid student ID certificate and a credit
card certificate. For this example, we ignore the details of
the valid certificate chains that are required in practice.
The server then sends a Ser ver Tur nDone message.
Suppose the client has the necessary certificates to obtain a
discount, but considers them to be sensitive. In order to
establish trust in the server, the client sends a Pol i cy
message requesting certificates from the server that
demonstrate the server is a member of the Better Business
Bureau and is certified by TRUSTe to follow its privacy
practices to not share private information with any outside
party. The client then sends a Cl i ent Tur nDone
message, indicating it is done with this stage of the
negotiation.

Next, assume the server possesses the certificates that
satisfy the client’s request. The server sends a
Cer t i f i cat e message and a Cer t i f i cat eVer i f y
message for each of the certificate chains associated with
its BBB and TRUSTe certificates, followed by a
Ser ver Tur nDone message. Now that the server is
authorized to receive the client’s certificates, the client
continues the negotiation by sending a Cer t i f i cat e
message and a Cer t i f i cat eVer i f y message for the
two certificates requested earlier by the server, the student
ID and credit card. The client then sends a
Cl i ent Tur nDone message.

Once the client has satisfied the server’s requirements
for the discount service, the server sends a
Negot i at i onDone message. Finally, the handshake
completes according to the abbreviated approach used
during session resumption, with the server and client
sending a ChangeCi pher Spec message and a
Fi ni shed message to one another.

4.4. Overcoming TLS authentication limitations

The TNT protocol overcomes the limitations of TLS
client/server authentication described in section 3.2, as
described in the following list corresponding to each of the
limitations given previously.
1. The TNT protocol is conducted within the scope of a

rehandshake during an encrypted TLS session.
Sensitive certificates are not exchanged in plain text.

2. The client and the server can exchange multiple
certificates during each round of a negotiation.
Requiring multiple certificates from different certifying
authorities can reduce the risk associated with a single
private key compromise. This is the electronic
equivalent of requiring multiple forms of ID.

3. The TNT protocol allows the server to go first.
However, the server is not obligated to disclose all of
its certificates before the client discloses any. The
server can save more sensitive certificates for
disclosure during later rounds of the negotiation.
Another approach that could be explored is to have the
participants negotiate who goes first. The decision of
who proceeds first is related to the negotiation strategy;
so further work in this area is warranted.

4. The client and server have equal opportunity to disclose
policies to one another to specify their trust
requirements.

5. The client and server both send verification messages to
one another after disclosing a certificate that they own.
This verifies ownership of associated private keys. It is
necessary to prove this immediately in TNT so that the
certificate can be reliably used to gain access to
sensitive certificates of a negotiation counterpart.

6. The TNT protocol permits clients and servers who are
strangers to inform each other regarding their
requirements for establishing trust through the use of
Policy messages. Even a negotiation strategy that does
not make use of pol i cy messages could allow a client
or server the ability to begin disclosing less sensitive
certificates and only disclose more sensitive certificates
when absolutely necessary. TNT is more flexible than
the one-time disclosure currently available in TLS.

4.5. TNT message syntax

The majority of the message types in the TNT protocol
are standard TLS message types. The semantics of these
messages remain the same in TNT as they are in TLS. The
TNT protocol introduces five new message types. The
following syntax describes four new message types in
TNT that are simply for control flow purposes.

St r uct { } Hel l oNegot i at i onRequest
St r uct { } Ser ver Tur nDone
St r uct { } Cl i ent Tur nDone
St r uct { } Negot i at i onDone

The following syntax describes the TNT Policy message.
St r uct { Pol i cy pol i cy; }
opaque Pol i cy<2^ 24- 1>

The syntax and semantics of the Pol i cy message is
not specified in the TNT protocol. It is dependent on the
TNT implementation. Section 5 discusses the policy
representation in our implementation of TNT.

5. Implementation

There are two approaches to supporting confidential
trust negotiation using TLS: build an application level
protocol above TLS, or integrate trust negotiation into TLS
client/server authentication. The TNT protocol is an
example of the latter approach. In our research, we are
exploring both approaches through the design and
development of TrustBuilder, trust negotiation middleware
consisting of reusable trust negotiation components.

An advantage of integrating trust negotiation into TLS is
the opportunity to leverage capabilities already available in
a TLS implementation, including verifying certificate
contents and both verifying and proving certificate
ownership. An application-level protocol for trust
negotiation requires a custom solution providing similar
capabilities.

We have implemented a research prototype supporting
the TNT protocol described earlier. The implementation
architecture is illustrated in Figure 5. Our implementation
extends PureTLS, a free Java-only implementation of the
SSL V3.0 and TLS V1.0 protocols. PureTLS was
developed by Eric Rescorla and is distributed by RFTM at
http://www.rtfm.com/puretls/.

In our implementation, the client and server each rely
on a TrustBuilder component to manage certificates,
policies, and services. TrustBuilder implements the
negotiation strategy and handles all decision-making
aspects of a negotiation. Once the client and server
receive remote certificates and policies during a
negotiation, they submit them to TrustBuilder for
evaluation. TrustBuilder determines which local
certificates and policies to disclose, and when to disclose
them.

In our research, we utilize the IBM Trust Establishment
(TE) system [6] to create X.509v3 certificates and XML
role-based access control policies that govern access to
sensitive services and certificates. Additionally, the TE
runtime system has a compliance checker that
TrustBuilder uses to verify whether a set of certificates
satisfies an access control policy. Note that the TLS client
and server each rely on the compliance checker during
trust negotiation to verify 1) whether the remote
certificates received during the negotiation satisfy the local
policies governing access to local services or certificates,
and 2) whether local certificates satisfy remote policies
received during the negotiation.

The typical usage model for a compliance checker in
trust management systems is to input a set of certificates
and a policy to a Boolean decision function. Our trust
negotiation prototype requires an extended usage model
whenever policies are disclosed during trust negotiation.
For example, when a TLS client receives a policy from the
TLS server, the client is able to search for local certificates
that satisfy the server’s policy, so it can submit those
certificates to the server. This allows the negotiation to
focus on only those certificates that can advance the
negotiation to a successful conclusion. However, this

d,e

TNT

TrustBuilder

b,c

R
M

I

Certificates Policies Services

PureTLS
Client

IBM Trust
Establishment

Module

a

d

d

TrustBuilder

b,c

R
M

I

PureTLS
Server

IBM Trust
Establishment

Module

a

d,e

Key
(a) Remote Certificates / Policies
(b) Remote Certificates / Local Policies
(c) Local Certificates / Remote Policies
(d) Unlocked Local Certificates / Policies
(e) Authorization Decision

Figure 5. The implementation architecture for a trust negotiation prototype supporting the TNT
protocol, an extension to the TLS handshake protocol. The implementation extends PureTLS, a
freely available Java implementation of TLS. The architecture includes XML role-based access
control policies and a compliance checker from the IBM Trust Establishment system.

requires that the compliance checker accept a set of local
certificates and a remote policy and return not only a
Boolean result indicating whether or not the policy is
satisfied, but also the set of certificates that satisfy the
policy so that they can be disclosed to the other party. The
TE system developers provided an API to their compliance
checker that supports the extended usage model, prompted
by our requirements for trust negotiation.

In our implementation, the TrustBuilder trust
negotiation manager and compliance checker run in a
separate process, providing a flexible architecture for TLS
clients and servers. For instance, multiple TLS servers
operating in a high-performance web server environment
can share the compliance checker, permitting all private
key operations to be encapsulated within a separate
process that can be isolated on a secure server with a
cryptographic coprocessor.

Our experience demonstrates that the protocol
extensions to TLS outlined in this paper can be readily
incorporated into existing TLS implementations while still
providing backward compatibility with existing TLS
implementations. The TNT implementation provides a
trust negotiation protocol supporting interoperable trust
negotiation strategies [15] and provides the first
implementation of confidential trust negotiation. A
research prototype implementation of TNT is available
from BYU’s Internet Security Research Lab
(http://isrl.cs.byu.edu/).

6. Related work

Yu et al. [15] introduce the notion of a family of trust
negotiation strategies guaranteed to interoperate. They
also introduce the idea of a trust negotiation protocol
supporting a variety of negotiation strategies. Our work
represents the design and implementation of those ideas in
TNT, an extension of the TLS handshake protocol.
Previous trust negotiation prototypes [13] [11] focused on
languages for trust negotiation and negotiation strategies.
The trust negotiation protocols were implemented at the
application layer. Our work extends these earlier efforts
by providing confidential trust negotiation and the
verification of private keys associated with certificates
disclosed during a trust negotiation. The TNT protocol is
designed to support negotiation strategy interoperability.

Persiano et al. [7] introduce the SPSL protocol to
extend TLS so that a portion of a disclosed certificate
remains private from the party to which the certificate was
disclosed. This is desirable when an attribute certificate
contains some sensitive attributes that need not be
disclosed in order to establish trust. Our work on trust
negotiation focuses on establishing trust in another party in
order to disclose a certificate to them. The two approaches
complement one another and could be combined in order
to authenticate another party prior to certificate disclosure

as well as keep some private certificate contents
completely confidential.

A recent IETF Internet draft from the TLS Working
Group [2] discusses work in progress to define extensible
hello messages in the TLS handshake protocol.
Extensibility will allow a TLS client and server to
negotiate additional features. One example taken from the
draft document illustrating the use of extensions is to allow
TLS clients to indicate to TLS servers which CA root keys
they possess in the hello message. This example is one
way to overcome a limitation to TLS authentication
presented earlier in the paper in which a TLS client cannot
inform a TLS server regarding the CAs they trust. The
negotiation strategy family field added to the hello
messages in TNT is another example of an item that could
be included in an extensible hello message.

Dean et al. [3] describe an extension to TLS that uses
client puzzles to prevent denial of service attacks on TLS
servers. An imbalance in the computational requirements
of TLS places an undue burden on the server. An attacker
can exploit this to launch a successful denial of service
attack. The use of client puzzles places additional
computational demands on the client that tends to balance
the load enough to discourage and prevent successful
denial of service attacks. This paper introduces trust
negotiation into TLS, potentially increasing the
requirements on TLS servers. Adopting the use of client
puzzles into our work has the potential to prevent denial of
service attacks against TNT.

7. Conclusions and future work

This paper presents TNT, an extension to the TLS
handshake protocol supporting advanced client/server
authentication in TLS. TNT incorporates recent advances
in trust negotiation from TrustBuilder [15] into TLS
client/server authentication. This integration overcomes
the existing limitations in TLS client/server authentication
for establishing trust between strangers.

By integrating trust negotiation into TLS, the strengths
of the TLS protocol are leveraged to provide confidential
trust negotiation and the verification of private keys
associated with certificates disclosed during a trust
negotiation. TNT exploits the rehandshake facility of TLS
to enable a TLS server to “pull” certificates from the client
as needed, according to the access control policies of a
sensitive resource accessed by a TLS client.

An implementation of TNT has been built that extends
PureTLS, a Java TLS package that is freely available.
This implementation is the first to provide confidential
trust negotiation, the verification of private keys during
trust negotiation, and a trust negotiation protocol designed
to support interoperable trust negotiation strategies [15].

In the future, we will explore alternative trust
negotiation strategies to insure that the current protocol is

sufficiently general to support all useful negotiation
strategy families. Also, policy languages for trust
negotiation is an active area of research, and requirements
for a trust negotiation policy language are emerging. We
believe it unlikely that a single policy language will be
universally adopted. We intend to examine current policy
languages in terms of ease of use, expressiveness, and
efficiency for use during trust negotiation. This
exploration will help identify any needed extensions to
TNT to support policy language interoperability, including
additional negotiation parameters TLS handshake hello
messages, such as certificate format and policy language.

Trust negotiation places greater computational demands
on TLS servers, requiring further study of performance
optimizations and scalable security architectures for TNT.
Our research to date has not addressed performance. The
current TNT prototype consists of non-optimized Java
code.

At times, a client may want to authenticate a server
prior to sending a sensitive service request, known as
client-initiated trust establishment [1]. To illustrate when
this might occur, suppose a client refuses to send personal
information gathered by the service until the server
discloses a TRUSTe certificate declaring that the server
handles private information appropriately, such as not
disclosing it to a third party unless the client provides
explicit authorization. Since TLS allows a client to initiate
a rehandshake, the client could establish trust in the server
before any sensitive application data is transmitted, using a
similar approach to the server-initiated rehandshake
approach adopted by TNT in this paper.

This paper considered trust negotiations involving
sensitive certificates, requiring that trust negotiations be
confidential. This made it necessary that a trust
negotiation always occur in the context of an encrypted
TLS rehandshake. In the future, we will consider
extending TLS to support the simplest negotiations not
involving sensitive certificates. Simple negotiations could
occur frequently in practice, for example, during client-
initiated trust establishment when the client verifies that a
TLS server satisfies a general, well-known security
requirement that need not be kept confidential. These trust
negotiations could be conducted during the initial TLS
handshake, since they do not require confidentiality.

8. Acknowledgements

This research was supported by DARPA through AFRL
contract number F33615-01-C-0336 and the Space and
Naval Warfare Systems Center San Diego grant number
N66001-01-18908. The authors express thanks to
Marianne Winslett for her helpful feedback and
discussions on an earlier version of this paper and to Ryan
Jarvis for his help preparing the final submission. They
also thank the anonymous reviewers for their comments.

9. References

[1] T. Barlow, A. Hess, and K. E. Seamons. Trust Negotiation
in Electronic Markets. Eighth Research Symposium on
Emerging Electronic Markets, Maastricht, Netherlands,
September 2001.

[2] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen,
and T. Wright. TLS Extensions. Internet Draft, TLS
Working Group, June 20, 2001. Work in progress available
at http://www.ietf.org/internet-drafts/draft-ietf-tls-extensions-00.txt.

[3] D. Dean and A. Stubblefield. Using Client Puzzles to
Protect TLS. Proceedings of the 10th USENIX Security
Symposium, Washington D.C., August 2001.

[4] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC
2246, January 1999.

[5] A. Frier, P. Karlton, and P. C. Kocher. The SSL 3.0
Protocol. Netscape Communications Corp., Nov. 18, 1996.

[6] A. Herzberg, J. Mihaeli, Y. Mass, D. Naor, and Y. Ravid.
Access Control Meets Public Key Infrastructure, Or:
Assigning Roles to Strangers. IEEE Symposium on Security
and Privacy, Oakland, May 2000.

[7] P. Persiano and I Visconti. User Privacy Issues Regarding
Certificates and the TLS Protocol. 7th ACM Conference of
Computer and Communications Security, Athens, Greece,
November 2000.

[8] Recommendation X.509--Information Technology—Open
Systems Interconnection--The Directory: Authentication
Framework. International Telecommunication Union, Aug.
1997.

[9] E. Rescorla. SSL and TLS: Designing and Building Secure
Systems. Addison-Wesley, 2001.

[10] K. E. Seamons, M. Winslett, and T. Yu. Limiting the
Disclosure of Access Control Policies During Automated
Trust Negotiation. Symposium on Network and Distributed
System Security, San Diego, Feb. 2001.

[11] K. E. Seamons, W. Winsborough, and M. Winslett. Internet
Credential Acceptance Policies. Proceedings of the
Workshop on Logic Programming for Internet Applications,
Leuven, Belgium, July 1997

[12] S. Thomas. SSL and TLS essentials: Securing the Web.
Wiley Computer Publishing, 2000.

[13] W. Winsborough, K. E. Seamons, and V. Jones. Automated
Trust Negotiation. DARPA Information Survivability
Conference and Exposition, Hilton Head, SC, Jan. 2000.

[14] T. Yu, X. Ma, and M. Winslett. PRUNES: An Efficient and
Complete Strategy for Automated Trust Negotiation over
the Internet. 7th ACM Conference on Computer and
Communications Security, Athens, Greece, November 2000.

[15] T. Yu, M. Winslett, and K. E. Seamons. Interoperable
Strategies in Automated Trust Negotiation. 8th ACM
Conference on Computer and Communications Security,
Philadelphia, Pennsylvania, November 2001.

