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ABSTRACT 

Many business transactions on the Internet occur 
between strangers, that is, between entities with no prior 
relationship and no common security domain.  Traditional 
security approaches based on identity or capabilities do 
not solve the problem of establishing trust between 
strangers.  New approaches to trust establishment are 
required that are secure, scalable, and portable.  One new 
approach to mutual trust establishment is trust negotiation, 
the bilateral exchange of digital credentials to establish 
trust gradually.  This paper describes the Trust 
Negotiation in TLS (TNT) protocol, an extension to the 
TLS handshake protocol that incorporates recent advances 
in trust negotiation into TLS to provide advanced 
client/server authentication in TLS.  In this paper we 
describe the current limitations in TLS client/server 
authentication with respect to trust establishment, and 
show how the TNT protocol overcomes them.  We also 
describe our implementation of TNT, built using PureTLS, 
a Java TLS package that is freely available.  This 
implementation is the first to provide confidential trust 
negotiation, verification of private keys during trust 
negotiation, and a single trust negotiation protocol 
supporting interoperable trust negotiation strategies. 

 

1. Introduction 

Many interactions on the Internet occur between 
strangers, that is, between entities with no prior 
relationship and no common security domain.  Traditional 
security approaches based on identity or capabilities do not 
solve the problem of authentication between strangers, 
because strangers do not share a common security domain.  
New approaches are required that are secure, scalable, and 
portable. 

When a server conducts a secure on-line transaction 
with a stranger, two common security problems must be 
addressed: first, the details of the transaction must remain 
confidential; second, the server must authenticate the client 
according to a pre-existing policy that specifies who is to 
be considered trustworthy for the given transaction.  In our 
model, authentication of the client is not based on identity 
but rather on attribute values encoded in digital 
credentials—the online analogues of today’s paper 
credentials. 

Transport Layer Security (TLS) [4], the IETF 
adaptation of Netscape’s SSL V3.0 [5] protocol, can 
provide confidentiality.  TLS also provides client and 
server authentication.  However, TLS authentication is not 
suitable for strangers trying to conduct business 
transactions.  For example, a business may be interested in 
providing a service to residents of a given state.  The 
identity of the client accessing the service is irrelevant to 
this decision; the client only needs to establish proof of 
residency.   As discussed further in section 3, TLS does 
not provide this form of authentication. 

Clients may have their own criteria for trusting servers.  
For example, before the client discloses a credential he or 
she considers to be sensitive, such as a credit card number 
and expiration date, the client may first require a credential 
from the server stating that the server will handle the 
client’s private information properly. Without this 
assurance, customers who do not want their sensitive 
information disclosed to others will go elsewhere. 

An interesting case to consider occurs when the server 
must authenticate the client in order to provide a service, 
but the client considers those credentials sensitive. The 
client therefore wants to authenticate the server before 
disclosing them.  In such a case, a strictly one-way model 
of authentication will not suffice; mutual authentication is 
necessary. 



   

   

Our approach to mutual trust establishment is called 
trust negotiation, the bilateral exchange of digital 
credentials to establish trust gradually [10][13][14][15].  
Digital credentials contain digitally signed assertions by a 
credential issuer about a credential owner.  A credential 
uses name/value pairs to describe one or more attributes of 
the owner.  Each credential also contains the public key of 
the credential owner and is signed using the issuer's private 
key.  The owner can answer challenges and otherwise 
demonstrate ownership of the credentials.  Credentials are 
a more general name for certificates, such as X.509v3 
certificates [8]. 

As an example of trust negotiation, an on-line bookstore 
may offer discounts to students at accredited universities.  
When a first-time customer requests a student discount, he 
or she will not have prior knowledge of the bookstore’s 
requirements for proof of student status.  One approach is 
for the server to transmit a policy to the client. Such a 
policy could specify that the customer must submit a 
student ID and a credit card number in order to make an 
on-line purchase and receive a student discount. The 
customer (for example, a female student) is only willing to 
disclose her credit card number to a business that is a 
member of the Better Business Bureau (BBB).  In 
accordance with her policy, her trust negotiation agent 
discloses her student ID and requests that the server return 
a BBB member credential to the client.  The server then 
sends the client a BBB member credential.  Finally, the 
client submits a valid digital credit card number and 
receives the student discount. 

Since digital credentials can often contain sensitive 
information, associating an access control policy with each 
credential controls credential disclosure.  As in the 
example above, a credential is disclosed only when its 
access control policy has been met.  For a trust negotiation 
to be successful, some credentials must be freely available 
on at least one side of the negotiation. 

This paper describes the Trust Negotiation in TLS 
(TNT) protocol, an extension to the TLS handshake 
protocol that incorporates trust negotiation to provide 
advanced client/server authentication in TLS.  The TNT 
protocol is based on recent advances in trust negotiation 
and provides a solution for confidential trust negotiations 
and for verifying credential ownership.  The details of 
these issues have so far not been addressed in past trust 
negotiation protocol proposals.  This paper also describes 
our implementation of TNT, which extends PureTLS, a 
freely available Java implementation of SSL/TLS (See 
http://www.rtfm.com/puretls/ for more details).  Section 2 
discusses recent advances in the area of trust negotiation.  
Section 3 describes the TLS handshake protocol and 
identifies current limitations in TLS client/server 
authentication with regard to mutual authentication 
between strangers.  Section 4 contains the description of 
the TNT protocol that extends the TLS handshake 

protocol.  Section 5 describes an implementation of TNT, 
and Section 6 discusses related work.  Section 7 contains 
conclusions and future work plans.   

2. Trust negotiation 

In our approach to automated trust establishment, trust is 
established incrementally by exchanging credentials and 
requests for credentials, an iterative process known as trust 
negotiation [10][13][14][15].  While a trust negotiation 
protocol defines the ordering of messages and the type of 
information messages will contain, a trust negotiation 
strategy controls the exact content of the messages, i.e., 
which credentials to disclose, when to disclose them, and 
when to terminate a negotiation.   

Figure 1 introduces our TrustBuilder architecture for 
trust negotiation.  A security agent mediates access to local 
protected resources: services, access control policies, and 
credentials.  We say a credential or access control policy is 
disclosed if it has been sent to the other party in the 
negotiation, and that a service is disclosed if the other 
party is given access to it.  Disclosure of protected 
resources is governed by access control policies.   

The architecture in figure 1 supports a single protocol 
for establishing trust.  The architecture is designed to 
support customized negotiation strategies.  All trust 
negotiation strategies share the goal of building trust 
through an exchange of digital credentials.  The purpose of 
this exchange is obtaining access to a protected resource.  
Once the access control policy for a particular credential 
has been satisfied, a local negotiation strategy must 
determine whether the credential is relevant to the current 
stage of the negotiation.  If so, it will be disclosed.  
Different negotiation strategies will use different 
definitions of relevance, involving tradeoffs between 
computational costs, the length of the negotiation, and the 
number of disclosures.   

From the handful of trust negotiation strategies 
proposed so far in the literature [10][13][14][15], it is clear 
that there are endless variations in how to negotiate trust.  
It is unlikely that a single strategy will meet the needs of 
all users.  The TrustBuilder architecture is designed to 
support a strategy-independent, policy-language-
independent trust negotiation protocol that ensures 
interoperability within a family of negotiation strategies 
[15]. 

Access control policies for local resources specify 
credentials that the other negotiation participant must 
disclose in order to obtain access to those resources.  
During a negotiation, the security agent invokes a local 
compliance checker in two ways.  First, the security agent 
receives credentials from the other participant and checks 
to see if the relevant local access control policies are 
satisfied by the remote credentials before disclosing a local 
protected resource.  Second, the agent may also receive 



   

   

remote access control policies that serve as requests for 
local credentials.  The agent checks to see whether any 
local credentials satisfy the remote access control policy.  
If so, the agent uses the negotiation strategy to determine if 
and when those local credentials should be disclosed to the 
other party to advance negotiation toward the goal of 
granting access to the protected resource.   

When an access control policy P contains sensitive 
information, then P itself requires protection in the form of 
an access control policy for access to P.  Earlier work in 
trust negotiation introduced support for sensitive policies 
using policy graphs [10].  The presence of sensitive 
policies requires that trust be established gradually.  For 
example, suppose a client begins an interaction with an 
unfamiliar web server.  Before sending a sensitive request 
for credentials to the server that would reveal information 
regarding the nature of the client’s business, the client may 
request credentials attesting to how the server handles 
private information and whether or not the server conforms 
to certified security practices.  Once the client has 
established this initial level of trust, the client can continue 
by sending the sensitive request for further credentials 
from the server. 

The previous work in trust negotiation has focused on 
support for sensitive credentials and access control 
policies, the definition and interoperability of trust 
negotiation strategies, and a trust negotiation protocol.  In 
[15], a trust negotiation protocol was presented, along with 
the Disclosure Tree Strategy (DTS) family.  It was proved 
that if two participants each choose a strategy from the 
DTS family, they will be able to negotiate trust just as well 
as if they had both adopted the same strategy.  The issues 
of confidentiality and verifying ownership of submitted 

credentials during trust negotiation have not been 
addressed previously. To date, no implementation of the 
negotiation protocol or negotiation strategies exists.   

3. Transport Layer  Secur ity (TLS) 

TLS is a connection-oriented protocol that provides a 
secure channel between a client and a server.  TLS 
supports confidentiality, data integrity, and client/server 
authentication.  The TLS handshake protocol provides a 
means for authentication and the negotiation of security 
parameters, such as the encryption algorithms, encryption 
keys, MAC keys, etc., that are used to transmit data 
securely.  The TLS record protocol specifies how 
application data is actually transmitted between two 
communicating hosts so that confidentiality and data 
integrity are provided.   

The focus of the research described in this paper is 
authentication.  Client/server authentication in TLS is 
handled in the handshake protocol.  In this section, we 
describe the TLS handshake protocol for client/server 
authentication and identify the limitations in the protocol 
for authenticating strangers on the Internet.  

The general TLS handshake protocol is illustrated in 
Figure 2, with optional messages shaded.  The exact 
sequence of messages in a given handshake between a 
client and server will vary depending on the key exchange 
method selected by the client and server during the 
handshake.  The TLS handshake has four phases.  In the 
first phase, the client and server exchange hello messages 
that are used to establish security parameters used in the 
TLS session and settings used during the handshake, such 
as the key exchange algorithm.  During the second phase, 

Figure 1.  The TrustBuilder architecture for automated trust negotiation.  A security agent who 
manages local protected resources and their associated access control policies represents each 
negotiation participant.  TrustBuilder provides the necessary middleware support for security 
agents to enable negotiation strategy interoperability. 
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the server sends a Certificate message to the client 
that may include a server certificate when an RSA key 
exchange is used, or Diffie-Hellman parameters when a 
Diffie-Hellman key exchange is used.  The server may also 
request a certificate from the client using the 
CertificateRequest message.  During the third 
phase of the handshake, the client may send its certificate 
to the server in a Certificate message along with a 
CertificateVerify message so that the server can 
verify certificate ownership, if the server requested a client 
certificate during the second phase.  The client must send 
either a pre-master secret encrypted using the server’s 
public key, or public Diffie-Hellman parameters, in the 
ClientKeyExchange message so that the client and 
server can compute a shared master secret.  In the fourth 
phase of the handshake, the client and server finish the 
handshake so that they may begin exchanging application 
data. 

The full range of handshake variants is beyond the 
scope of this paper.  Interested readers are referred to 
[4][9][12] for a full treatment of the TLS handshake. 

3.1. TLS client/server  authentication 

This section describes the specific form of a TLS 
handshake that supports client and server authentication 
using the RSA key exchange method, shown in Figure 3.  
Using this method, the client and server exchange 
certificates with one another for mutual authentication.   

The client initiates the handshake by sending a 
ClientHello message to the server.  The server 
responds with a ServerHello message.  These 
messages contain the necessary information to establish 
the security parameters for the TLS session.  Although the 
messages contain the same parameter types, they have a 
slightly different meaning.  Table 1 lists the parameters of 
these two hello messages and describes their meaning.   

The cipher suite parameter is a 4-tuple specifying the 
cryptographic algorithms to use in the TLS session.  These 
include the server authentication algorithm, key exchange 
algorithm, bulk encryption algorithm, and digest algorithm 
for message integrity.   

Client Server 

ClientHello 

ServerHello 

Certificate 

Certificate 

ServerHelloDone 

ClientKeyExchange 

ChangeCipherSpec 

Finished 

ChangeCipherSpec 

Finished 

CertificateRequest 

CertificateVerify 

Figure 3.  The TLS handshake protocol for 
client and server authentication using the 
RSA key exchange method. 
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Figure 2.  The general TLS handshake 
protocol with optional messages shaded. 



   

   

The server continues the handshake by sending a 
Certificate message containing an X.509 certificate 
or certificate chain.  Next, the server sends a 
CertificateRequest message, communicating the 
following three items of information to the client: first, that 
the server requires a client certificate for authentication 
purposes; second, a list of certificate types the server is 
willing to accept; and third, a list of X.500 distinguished 
names of the certificate authorities that the server trusts.  
For the kind of handshake being described, the server 
specifies the certificate type as RSA.  The list of trusted 
certificate authorities assists the client in selecting a 
certificate or certificate chain to submit that is signed by a 
root CA that the server trusts.  Finally, the server sends a 
ServerHelloDone message indicating that it is now 
the client’s turn to continue the handshake.   

The third phase of the handshake protocol consists of 
messages sent from the client to the server.  First, the 
client sends a Certificate message to the server 
containing an X.509 certificate or certificate chain.   

Next, a ClientKeyExchange message is sent 
containing a client-generated, pre-master secret to be used 
for key generation.  The client encrypts the pre-master 
secret using the public key contained in the server’s 
certificate that was received earlier in the handshake.  The 
only way for the server to decrypt the message 
successfully and obtain the pre-master secret is if the 
server possesses the private key associated with the 
certificate the server previously sent to the client.  Thus, 
the ClientKeyExchange serves as an implicit 
challenge for the server to prove ownership of the private 
key.  If the server successfully decrypts the pre-master 
secret, the server can generate the correct keys to be used 
during the TLS session.   

The third phase of the handshake concludes when the 
client sends a CertificateVerify message to prove 
ownership of the private key associated with the certificate 
the client just disclosed to the server.  The message 
consists of a signed hash of all previous messages 
exchanged during the handshake.  The server decrypts the 

message using the public key contained in the client 
certificate and compares the result to a hash of all the 
previous messages exchanged during the handshake.  This 
message serves as an implicit challenge for the client to 
prove ownership of the private key associated with the 
client certificate. 

The handshake now enters the final phase.  The client 
sends a ChangeCipherSpec message, indicating that 
the client will now begin encrypting its communications 
using the new cryptographic keys that were just computed.  
Then the client sends a Finished message to the server 
containing a hash of all the preceding messages exchanged 
during the handshake.  The server follows suit by sending 
its own ChangeCipherSpec and Finished messages 
to the client.  Upon completion of the handshake, 
application data begins to flow through the secure channel.  
Note that no application data, such as an HTTP request, 
flows from the client to the server until after the encrypted 
session is established.   

3.2. L imitations in TLS authentication 

The following are limitations to authenticating strangers 
on the Internet using TLS client/server authentication:  
1. Certificates are exchanged in plain text during the 

initial TLS handshake.  This does not present a danger 
that an eavesdropper can intercept the certificate and 
misuse it.  An attacker who intercepts a certificate is 
unable to pose as the owner of the certificate without 
obtaining possession of the associated private key, 
assuming due diligence on the part of authentication 
services to challenge for possession of the associated 
private key appropriately whenever a certificate is 
presented.  However, exchanging certificates in the 
clear does introduce privacy risks whenever certificate 
contents are sufficiently sensitive that disclosing the 
certificate to anyone unauthorized to receive it is 
undesirable.   

2. The client and the server are limited to disclosing a 
single certificate chain to each other.  In certain 

Parameters ClientHello ServerHello 
Version Highest SSL/TLS version supported by client Lower of the client-suggested version and 

highest server-supported version 
Random Client-generated random structure, used as a nonce Server-generated random structure 
SessionID Variable-length session identifier.  A zero value 

indicates a new session.  A non-zero value refers to an 
earlier session the client wishes to resume. 

If client sends a zero value, server returns 
a new session ID, otherwise returns the 
old session ID supplied by the client. 

CipherSuite List of cryptographic algorithm combinations the client 
supports, in decreasing order of preference. 

Single cipher suite selected from the list 
supplied by the client. 

Compression 
Method 

List of the compression methods supported by the 
client 

Compression method selected by the 
server. 

 
Table 1.  A description of the parameters contained in the TLS ClientHello and ServerHello messages. 



   

   

circumstances, disclosing multiple certificate chains 
provides a greater level of trust compared to a single 
certificate chain, especially when several attributes are 
of interest in determining trust and different 
certification authorities are trusted to issue certificates 
containing those attributes.  Requiring multiple 
certificate chains for authentication may also mean that 
multiple private keys must be compromised in order for 
an imposter to successfully breach the system.  

3. The server specifies a list of distinguished names of 
certifying authorities that the server trusts when it 
requests a client certificate.  In contrast, the client has 
no such opportunity.   

4. The server discloses its certificate before the client 
discloses a certificate, forcing the server to always 
make the disclosure to a complete stranger. 

5. The client always receives a certificate from the server 
before it is required to disclose its own certificate to the 
server.  Although the client is able to verify the validity 
of the certificate contents, at the moment the client 
discloses a certificate to the server, the client has no 
proof that the server owns the certificate that it 
disclosed.  Thus, the client cannot rely on the server 
certificate to determine conclusively whether or not to 
trust the server enough to disclose a sensitive client 
certificate.   

6. If the certificate chain received by either the client or 
the server does not completely satisfy their 
authentication requirements, there is no facility in the 
protocol for requesting additional certificates to meet 
all the authentication requirements.  The typical 
approach is for the client to authenticate the server if a 
trusted root CA known to the client signs the root 
certificate in the chain.  Web clients typically 
authenticate the server if the distinguished name in the 
certificate matches the DNS name for the web server 
host machine.  Most often, if servers authenticate 
clients at all, they simply verify that the client possesses 
the private key associated with the public key presented 
certificate.  

4. Trust negotiation in TLS 

The Trust Negotiation in TLS (TNT) protocol is an 
extension to the TLS handshake protocol that is designed 
to use trust negotiation to establish trust between strangers.  
TNT provides advanced client/server authentication in 
TLS by overcoming the limitations of TLS client/server 
authentication presented in the previous section.  This 
section describes the TLS rehandshake and session 
resumption procedures and details how TNT leverages 
those procedures to support confidential trust negotiations.  
This section also describes the TNT protocol for 
conducting trust negotiation between a TLS client and 
server during a rehandshake.  Finally, the definition of new 

messages added to TNT that are not already included in 
TLS is given using the syntax from the TLS protocol 
specification.   

4.1. TLS rehandshake 

Once a TLS connection is established using the 
handshake protocol described in the previous section, it is 
possible to conduct a TLS rehandshake.  The rehandshake 
is simply the TLS handshake performed over an existing, 
and likely encrypted, TLS connection.  (Although not 
common, it is possible for a TLS session to provide 
message integrity, but not encryption.)  Either the client or 
server can initiate a rehandshake.   

A client initiates a rehandshake by sending a new 
ClientHello message to the server after a previous 
handshake has finished.  A server can initiate a 
rehandshake by sending a ServerHelloRequest 
message to a client.  The client responds with a 
ClientHello message, and the handshake continues as 
usual.  Either party has the option of ignoring a request for 
a rehandshake, but that is rarely done. 

The three purposes of a rehandshake in SSL/TLS are: 
1) client authentication, 2) cipher suite upgrading, and 3) 
replenishment of keying material.  Suppose a server is 
configured to enforce different security requirements 
according to the specific data or service being accessed.  
Until the server receives the client’s request, there is no 
basis for client authentication.  In this case, it is not 
possible to authenticate the client during the initial TLS 
handshake at the beginning of a connection, because the 
server has not yet received any application data from the 
client.  Only after receiving application data, such as an 
HTTP request, can the server authenticate the client based 
on the access control policy of the requested service. 

The rehandshake is used to upgrade the strength of the 
cipher suite in Netscape's Step-Up methodology—similar 
to Microsoft's Server Gated Cryptography, or SGC [9].  
Before the United States’  export regulations were relaxed, 
an exception was granted for the use of strong encryption 
during certain financial transactions.  For example, a client 
using only 40-bit encryption could automatically switch to 
stronger encryption when the client determined it had 
connected to a web server that was granted an exception to 
use strong cryptography, such as a financial institution 
outside the United States.  For example, suppose a client 
connects to a bank in Paraguay and indicates that it is an 
exportable client who is only able to support 40-bit 
encryption.  The bank's server can send back a special 
certificate in the TLS handshake indicating that it is 
allowed to use strong cryptography with exportable clients.  
After receiving this certificate, the client can initiate a 
rehandshake to negotiate a TLS session with stronger 
encryption.   



   

   

Using Netscape’s Step-Up methodology, a web browser 
initiates a re-handshake at the conclusion of the 
handshake.  Microsoft’s SGC methodology is 
implemented to allow the browser to interrupt the current 
handshake and begin a rehandshake.  Although this is 
arguably more efficient, it does violate the SSL/TLS 
specification, which does not allow for a rehandshake to 
begin in the middle of a handshake. 

A rehandshake is also used to replenish keying 
material.  This is done to prevent cryptographic attacks on 
long-lived sessions.  In TLS, the keying material can 
consist of up to six different values, depending on the 
cipher suite being used.  This includes an encryption key, 
MAC key, and an initialization vector (IV) for both the 
client and server.  Keys may also need to be replenished to 
prevent CBC rollover when large amounts of data are 
being transmitted using a block cipher in CBC mode.  
When two data blocks i and j encrypt to the same value c, 
if blocks i+1 and j+1 are equal, they will also encrypt to 
the same value, revealing patterns in the data to a 
cryptanalyst.   

Since trust negotiations involve sensitive certificates, 
negotiations must be confidential.  During TLS 
client/server authentication, certificates are exchanged in 
plain text in an initial TLS handshake.  To overcome this 
limitation, TNT is intended for use only during a 
rehandshake initiated during an encrypted TLS session, to 
keep the trust negotiation confidential.   

This paper assumes the server initiates the rehandshake, 
to establish trust in a client according to the access control 
policy associated with the sensitive resource that the client 
has requested to access.  In the future, TNT will also 
permit a client to establish trust in a server prior to any 
application data being passed through the secure channel, 
known as client-initiated trust establishment [1].   

Single-round trust negotiations do not involve sensitive 
certificates, and therefore do not require confidentiality.  
Although not addressed in this paper, this simple case 
could be supported in the normal TLS handshake.  A 
simple negotiation occurs, for example, when a server 
requests a certificate from the client and the client 
immediately discloses the certificate.  TNT is designed to 
protect sensitive certificates in more complex negotiations.   

4.2. TLS session resumption 

The performance bottleneck in TLS handshakes is the 
public key cryptographic operations [9].  In particular, the 
encryption and decryption required to confidentially 
exchange a pre-master secret is expensive.  One of the 
reasons the client must verify the server’s certificate is to 
use the server’s public key to encrypt the pre-master secret 
in the key exchange.   

TLS supports session resumption in order to avoid the 
overhead of a full TLS handshake.  With session 

resumption, an abbreviated handshake occurs as follows.  
The client sends a ClientHello message to a server 
and includes the sessionID from a previous session 
with the server.  If the server is willing to resume the 
session, the server replies by returning the same 
sessionID in the ServerHello message.  In order to 
resume a session, the client and server reuse the master 
secret from the prior session to compute new keying 
material, thus avoiding the expensive public-key 
operations of a normal handshake.  After the 
ServerHello message they simply exchange 
ChangeCipherSpec and Finished messages, with 
the server proceeding first. 

The TNT protocol presented in the next section 
leverages TLS session resumption in order to avoid the 
overhead of needlessly generating a new master secret.  
Once the client and server successfully negotiate trust, an 
abbreviated handshake takes place, similar to session 
resumption.  Instead of completing the full handshake, the 
client and server compute new keying material by reusing 
the master secret from the current TLS session and 
conclude by sending ChangeCipherSpec and 
Finished messages to one another, with the server 
proceeding first. 

4.3. TNT protocol 

The TNT protocol, shown in figure 4, is designed to 
support trust negotiation between a TLS client and server 
whenever a TLS client has requested access to a sensitive 
service and the access control policy associated with the 
service is not satisfied.  A TLS server desiring to negotiate 
trust with a client initiates a rehandshake by sending a 
HelloNegotiationRequest message to the client.  
The client responds with a ClientHello message, 
followed by the server sending a ServerHello 
message.  The sessionID included in the hello 
messages is the sessionID associated with the current 
session, to allow for streamlined session resumption 
following a successful trust negotiation.   

In order to conduct a successful trust negotiation, the 
negotiation participants must first agree on a trust 
negotiation strategy family.  Once they agree on a strategy 
family, each party is free to independently select a 
negotiation strategy from that strategy family, with the 
guarantee that trust will be successfully negotiated 
whenever possible [15].  Two design choices for adding 
information on the negotiation strategy family into TLS 
are: 1) include the strategy family in the hello messages, or 
2) incorporate the strategy family into the TLS cipher 
suite.    A current IETF Internet draft specifies extensions 
to the ClientHello and ServerHello messages that 
can be used to communicate support for new capabilities 



   

   

in a TLS client or server [2].  The draft is work in 
progress.   

Anticipating that extensibility in the hello messages 
will be available in TLS in the future, TNT extends the 
Cl i ent Hel l o and Ser ver Hel l o messages to include 
the Tr ust Negot i at i onSt r at egyFami l y  field.  
Using that field in the Cl i ent Hel l o message, a TNT 
client includes a list of the negotiation strategy families 
that the client supports.  The server selects a strategy 
family from the list presented by the client and returns it in 
the Ser ver Hel l o message. 

Following the exchange of hello messages, the TNT 
protocol enters the negotiation phase, in which the server 
and client take turns disclosing policies and certificates 

until the negotiation succeeds or is terminated.  During the 
server’s turn, the server first discloses zero or more 
certificates using a combination of TLS Cer t i f i cat e 
and Cer t i f i cat eVer i f y  messages.  Immediately 
following each Cer t i f i cat e message, the server 
demonstrates ownership of a private key using the 
Cer t i f i cat eVer i f y  message, unless the server has 
previously demonstrated possession of the private key 
earlier in the negotiation.  The Cer t i f i cat eVer i f y  
message is encrypted using the server’s private key 
associated with the certificate the server just disclosed.  It 
is sent to prove to the client that the server is the owner of 
the certificate.  Next, the server discloses zero or more 
Pol i cy  messages.  Policies are disclosed to provide hints 
to the client regarding the certificates the client can 
disclose to advance the negotiation.  Finally, the server 
sends a Ser ver Tur nDone message indicating that the 
server has nothing further to disclose during this round of 
the negotiation. 

Next, the client takes a turn disclosing information to 
advance the negotiation, following the same general 
pattern as the server.  The client first discloses zero or 
more certificates using a combination of Cer t i f i cat e 
and Cer t i f i cat eVer i f y  messages.  Immediately 
following each Cer t i f i cat e message, the client 
demonstrates ownership of a private key using the 
Cer t i f i cat eVer i f y  message, unless the client has 
previously demonstrated possession of the private key 
earlier in the negotiation.  Next, the client discloses zero or 
more policies to provide hints to the server regarding the 
certificates the server can disclose to advance the 
negotiation.  The client concludes its turn during the 
current round of negotiation by sending a 
Cl i ent Tur nDone message.   

The negotiation continues for a number of rounds until 
the server’s policy governing the resource is satisfied or 
the negotiation is terminated.  The server checks to see 
whether the policy is satisfied after each round of the 
negotiation.  Once the policy is satisfied, the server 
successfully concludes the negotiation by sending the 
Negot i at i onDone message.   

Either party may terminate the negotiation at any time 
using the facilities for terminating any other TLS 
handshake.  The decision to terminate is dependent on the 
negotiation strategy.  Previous work on trust negotiation 
characterizes important properties of negotiation strategies, 
including termination [10][13][14][15].  A production 
implementation of TNT could use these previous results to 
place practical limits on the number of rounds of 
negotiation to insure a negotiation does not continue 
indefinitely. 

The final phase of the TNT protocol is very similar to 
the conclusion of the abbreviated TLS handshake.  The 
server sends a ChangeCi pher Spec  message and a 
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Figure 4.  The TNT handshake protocol for 
negotiating trust during an encrypted TLS 
rehandshake, with optional messages shaded. 



   

   

Fi ni shed message.  Once the client replies with the 
same two types of messages, the rehandshake is complete.   

The following is an example trust negotiation between a 
client and server using TNT.  Suppose a web browser and 
server support TNT.  The user is a student purchasing a 
book from an online bookstore that offers discounts to 
students at accredited universities.  Suppose the user 
requests a student discount while purchasing a book in the 
context of a TLS session.  For this example, assume the 
client and server are initially unfamiliar with one another.   

The server initiates a TLS rehandshake in order to 
authenticate the client as a valid student by sending a 
Hel l oNegot i at i onRequest  message to the client.  
The client responds with a Cl i ent Hel l o message, 
followed by a Ser ver Hel l o message from the server.  
These messages permit the client and server to select a 
trust negotiation strategy family and the RSA key 
exchange method.   

Next, the server sends a Pol i cy  message to the client 
that describes the certificates the client must submit in 
order to receive the discount service.  In this case, the 
server requires a valid student ID certificate and a credit 
card certificate.  For this example, we ignore the details of 
the valid certificate chains that are required in practice.  
The server then sends a Ser ver Tur nDone message.  
Suppose the client has the necessary certificates to obtain a 
discount, but considers them to be sensitive.  In order to 
establish trust in the server, the client sends a Pol i cy  
message requesting certificates from the server that 
demonstrate the server is a member of the Better Business 
Bureau and is certified by TRUSTe to follow its privacy 
practices to not share private information with any outside 
party.  The client then sends a Cl i ent Tur nDone 
message, indicating it is done with this stage of the 
negotiation. 

Next, assume the server possesses the certificates that 
satisfy the client’s request.  The server sends a 
Cer t i f i cat e message and a Cer t i f i cat eVer i f y  
message for each of the certificate chains associated with 
its BBB and TRUSTe certificates, followed by a 
Ser ver Tur nDone message.  Now that the server is 
authorized to receive the client’s certificates, the client 
continues the negotiation by sending a Cer t i f i cat e 
message and a Cer t i f i cat eVer i f y  message for the 
two certificates requested earlier by the server, the student 
ID and credit card.  The client then sends a 
Cl i ent Tur nDone message.   

Once the client has satisfied the server’s requirements 
for the discount service, the server sends a 
Negot i at i onDone message.  Finally, the handshake 
completes according to the abbreviated approach used 
during session resumption, with the server and client 
sending a ChangeCi pher Spec  message and a 
Fi ni shed message to one another. 

4.4. Overcoming TLS authentication limitations 

The TNT protocol overcomes the limitations of TLS 
client/server authentication described in section 3.2, as 
described in the following list corresponding to each of the 
limitations given previously.   
1. The TNT protocol is conducted within the scope of a 

rehandshake during an encrypted TLS session.  
Sensitive certificates are not exchanged in plain text.   

2. The client and the server can exchange multiple 
certificates during each round of a negotiation.  
Requiring multiple certificates from different certifying 
authorities can reduce the risk associated with a single 
private key compromise.  This is the electronic 
equivalent of requiring multiple forms of ID. 

3. The TNT protocol allows the server to go first.  
However, the server is not obligated to disclose all of 
its certificates before the client discloses any.  The 
server can save more sensitive certificates for 
disclosure during later rounds of the negotiation.  
Another approach that could be explored is to have the 
participants negotiate who goes first.  The decision of 
who proceeds first is related to the negotiation strategy; 
so further work in this area is warranted. 

4. The client and server have equal opportunity to disclose 
policies to one another to specify their trust 
requirements. 

5. The client and server both send verification messages to 
one another after disclosing a certificate that they own.  
This verifies ownership of associated private keys.  It is 
necessary to prove this immediately in TNT so that the 
certificate can be reliably used to gain access to 
sensitive certificates of a negotiation counterpart. 

6. The TNT protocol permits clients and servers who are 
strangers to inform each other regarding their 
requirements for establishing trust through the use of 
Policy messages.  Even a negotiation strategy that does 
not make use of pol i cy  messages could allow a client 
or server the ability to begin disclosing less sensitive 
certificates and only disclose more sensitive certificates 
when absolutely necessary.  TNT is more flexible than 
the one-time disclosure currently available in TLS.   

4.5. TNT message syntax 

The majority of the message types in the TNT protocol 
are standard TLS message types.  The semantics of these 
messages remain the same in TNT as they are in TLS.  The 
TNT protocol introduces five new message types.  The 
following syntax describes four new message types in 
TNT that are simply for control flow purposes.  

St r uct  { }  Hel l oNegot i at i onRequest  
St r uct  { }  Ser ver Tur nDone 
St r uct  { }  Cl i ent Tur nDone 
St r uct  { }  Negot i at i onDone 



   

   

The following syntax describes the TNT Policy message. 
St r uct  { Pol i cy pol i cy; }   
opaque Pol i cy<2^ 24- 1> 

The syntax and semantics of the Pol i cy  message is 
not specified in the TNT protocol.  It is dependent on the 
TNT implementation.  Section 5 discusses the policy 
representation in our implementation of TNT. 

5. Implementation 

There are two approaches to supporting confidential 
trust negotiation using TLS: build an application level 
protocol above TLS, or integrate trust negotiation into TLS 
client/server authentication.  The TNT protocol is an 
example of the latter approach.  In our research, we are 
exploring both approaches through the design and 
development of TrustBuilder, trust negotiation middleware 
consisting of reusable trust negotiation components.   

An advantage of integrating trust negotiation into TLS is 
the opportunity to leverage capabilities already available in 
a TLS implementation, including verifying certificate 
contents and both verifying and proving certificate 
ownership.  An application-level protocol for trust 
negotiation requires a custom solution providing similar 
capabilities. 

We have implemented a research prototype supporting 
the TNT protocol described earlier.  The implementation 
architecture is illustrated in Figure 5.  Our implementation 
extends PureTLS, a free Java-only implementation of the 
SSL V3.0 and TLS V1.0 protocols.  PureTLS was 
developed by Eric Rescorla and is distributed by RFTM at 
http://www.rtfm.com/puretls/. 

In our implementation, the client and server each rely 
on a TrustBuilder component to manage certificates, 
policies, and services.  TrustBuilder implements the 
negotiation strategy and handles all decision-making 
aspects of a negotiation.  Once the client and server 
receive remote certificates and policies during a 
negotiation, they submit them to TrustBuilder for 
evaluation.  TrustBuilder determines which local 
certificates and policies to disclose, and when to disclose 
them. 

In our research, we utilize the IBM Trust Establishment 
(TE) system [6] to create X.509v3 certificates and XML 
role-based access control policies that govern access to 
sensitive services and certificates.  Additionally, the TE 
runtime system has a compliance checker that 
TrustBuilder uses to verify whether a set of certificates 
satisfies an access control policy.  Note that the TLS client 
and server each rely on the compliance checker during 
trust negotiation to verify 1) whether the remote 
certificates received during the negotiation satisfy the local 
policies governing access to local services or certificates, 
and 2) whether local certificates satisfy remote policies 
received during the negotiation.   

The typical usage model for a compliance checker in 
trust management systems is to input a set of certificates 
and a policy to a Boolean decision function.  Our trust 
negotiation prototype requires an extended usage model 
whenever policies are disclosed during trust negotiation.  
For example, when a TLS client receives a policy from the 
TLS server, the client is able to search for local certificates 
that satisfy the server’s policy, so it can submit those 
certificates to the server.  This allows the negotiation to 
focus on only those certificates that can advance the 
negotiation to a successful conclusion.  However, this 
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requires that the compliance checker accept a set of local 
certificates and a remote policy and return not only a 
Boolean result indicating whether or not the policy is 
satisfied, but also the set of certificates that satisfy the 
policy so that they can be disclosed to the other party.  The 
TE system developers provided an API to their compliance 
checker that supports the extended usage model, prompted 
by our requirements for trust negotiation.   

In our implementation, the TrustBuilder trust 
negotiation manager and compliance checker run in a 
separate process, providing a flexible architecture for TLS 
clients and servers.  For instance, multiple TLS servers 
operating in a high-performance web server environment 
can share the compliance checker, permitting all private 
key operations to be encapsulated within a separate 
process that can be isolated on a secure server with a 
cryptographic coprocessor.  

Our experience demonstrates that the protocol 
extensions to TLS outlined in this paper can be readily 
incorporated into existing TLS implementations while still 
providing backward compatibility with existing TLS 
implementations.  The TNT implementation provides a 
trust negotiation protocol supporting interoperable trust 
negotiation strategies [15] and provides the first 
implementation of confidential trust negotiation.  A 
research prototype implementation of TNT is available 
from BYU’s Internet Security Research Lab 
(http://isrl.cs.byu.edu/). 

6. Related work 

Yu et al. [15] introduce the notion of a family of trust 
negotiation strategies guaranteed to interoperate.  They 
also introduce the idea of a trust negotiation protocol 
supporting a variety of negotiation strategies.  Our work 
represents the design and implementation of those ideas in 
TNT, an extension of the TLS handshake protocol.  
Previous trust negotiation prototypes [13] [11] focused on 
languages for trust negotiation and negotiation strategies.  
The trust negotiation protocols were implemented at the 
application layer.  Our work extends these earlier efforts 
by providing confidential trust negotiation and the 
verification of private keys associated with certificates 
disclosed during a trust negotiation.  The TNT protocol is 
designed to support negotiation strategy interoperability. 

Persiano et al. [7] introduce the SPSL protocol to 
extend TLS so that a portion of a disclosed certificate 
remains private from the party to which the certificate was 
disclosed.  This is desirable when an attribute certificate 
contains some sensitive attributes that need not be 
disclosed in order to establish trust.  Our work on trust 
negotiation focuses on establishing trust in another party in 
order to disclose a certificate to them.  The two approaches 
complement one another and could be combined in order 
to authenticate another party prior to certificate disclosure 

as well as keep some private certificate contents 
completely confidential. 

A recent IETF Internet draft from the TLS Working 
Group [2] discusses work in progress to define extensible 
hello messages in the TLS handshake protocol.  
Extensibility will allow a TLS client and server to 
negotiate additional features.  One example taken from the 
draft document illustrating the use of extensions is to allow 
TLS clients to indicate to TLS servers which CA root keys 
they possess in the hello message.  This example is one 
way to overcome a limitation to TLS authentication 
presented earlier in the paper in which a TLS client cannot 
inform a TLS server regarding the CAs they trust.  The 
negotiation strategy family field added to the hello 
messages in TNT is another example of an item that could 
be included in an extensible hello message. 

Dean et al. [3] describe an extension to TLS that uses 
client puzzles to prevent denial of service attacks on TLS 
servers.  An imbalance in the computational requirements 
of TLS places an undue burden on the server.  An attacker 
can exploit this to launch a successful denial of service 
attack.  The use of client puzzles places additional 
computational demands on the client that tends to balance 
the load enough to discourage and prevent successful 
denial of service attacks.  This paper introduces trust 
negotiation into TLS, potentially increasing the 
requirements on TLS servers.  Adopting the use of client 
puzzles into our work has the potential to prevent denial of 
service attacks against TNT. 

7. Conclusions and future work 

This paper presents TNT, an extension to the TLS 
handshake protocol supporting advanced client/server 
authentication in TLS.  TNT incorporates recent advances 
in trust negotiation from TrustBuilder [15] into TLS 
client/server authentication.  This integration overcomes 
the existing limitations in TLS client/server authentication 
for establishing trust between strangers.   

By integrating trust negotiation into TLS, the strengths 
of the TLS protocol are leveraged to provide confidential 
trust negotiation and the verification of private keys 
associated with certificates disclosed during a trust 
negotiation.  TNT exploits the rehandshake facility of TLS 
to enable a TLS server to “pull”  certificates from the client 
as needed, according to the access control policies of a 
sensitive resource accessed by a TLS client.   

An implementation of TNT has been built that extends 
PureTLS, a Java TLS package that is freely available.  
This implementation is the first to provide confidential 
trust negotiation, the verification of private keys during 
trust negotiation, and a trust negotiation protocol designed 
to support interoperable trust negotiation strategies [15]. 

In the future, we will explore alternative trust 
negotiation strategies to insure that the current protocol is 



   

   

sufficiently general to support all useful negotiation 
strategy families.  Also, policy languages for trust 
negotiation is an active area of research, and requirements 
for a trust negotiation policy language are emerging.  We 
believe it unlikely that a single policy language will be 
universally adopted.  We intend to examine current policy 
languages in terms of ease of use, expressiveness, and 
efficiency for use during trust negotiation.  This 
exploration will help identify any needed extensions to 
TNT to support policy language interoperability, including 
additional negotiation parameters TLS handshake hello 
messages, such as certificate format and policy language. 

Trust negotiation places greater computational demands 
on TLS servers, requiring further study of performance 
optimizations and scalable security architectures for TNT.  
Our research to date has not addressed performance.  The 
current TNT prototype consists of non-optimized Java 
code.   

At times, a client may want to authenticate a server 
prior to sending a sensitive service request, known as 
client-initiated trust establishment [1].  To illustrate when 
this might occur, suppose a client refuses to send personal 
information gathered by the service until the server 
discloses a TRUSTe certificate declaring that the server 
handles private information appropriately, such as not 
disclosing it to a third party unless the client provides 
explicit authorization.  Since TLS allows a client to initiate 
a rehandshake, the client could establish trust in the server 
before any sensitive application data is transmitted, using a 
similar approach to the server-initiated rehandshake 
approach adopted by TNT in this paper. 

This paper considered trust negotiations involving 
sensitive certificates, requiring that trust negotiations be 
confidential.  This made it necessary that a trust 
negotiation always occur in the context of an encrypted 
TLS rehandshake.  In the future, we will consider 
extending TLS to support the simplest negotiations not 
involving sensitive certificates.  Simple negotiations could 
occur frequently in practice, for example, during client-
initiated trust establishment when the client verifies that a 
TLS server satisfies a general, well-known security 
requirement that need not be kept confidential.  These trust 
negotiations could be conducted during the initial TLS 
handshake, since they do not require confidentiality. 
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