In proceedings of 10th annual IEEE symposium on Logic in Computer Science, IEEE Computer Society Press, June 1995.

Games and Full Abstraction for the Lazy A-calculus

Samson Abramsky

Guy McCusker *

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate
London SW7 2BZ
United Kingdom

Abstract

We define a category of games G, and s extensional
quotient £. A model of the lazy A-calculus, a type-free
functional language based on evaluation to weak head
normal form, is given in G, yielding an extensional
model in €. This model is shown to be fully abstract
with respect to applicative simulation. This is, so far
as we know, the first purely semantic construction of
a fully abstract model for a reflexively-typed sequential
language.

1 Introduction

Full Abstraction is a key concept in programming lan-
guage semantics [9,12,23,26]. The ingredients are as
follows. We are given a language £, with an ‘obser-
vational preorder’ < on terms in £ such that P =< @
means that every observable property of P is also satis-
fied by @; and a denotational model M[-]. The model
M is then said to be fully abstract with respect to 3 if

P3Q = MIP|EM[Q]

for all P, @ in £. (The right-to-left implication is
known as soundness, the converse as completeness.)
Thus a fully abstract semantics will reflect all and only
the observable properties of programs. Constructing
fully abstract models in a semantic fashion—rather
than by term model constructions or other syntactic
means—yields deep structural information about the
computational concepts embodied in the programming

*This research was partially supported by the UK EPSRC
grant “Foundational Structures for Computing Science”, and the
ESPRIT Basic Research Action CLICS II. The second author is
supported by an EPSRC Research Studentship.

language. When certain features are present in the lan-
guage, most notably higher-order functions and recur-
sion, the problem of achieving such a construction has
proved to be very subtle and difficult; the most ba-
sic case 1s the well-known Full Abstraction problem for
PCF, which has been studied intensively for some 20
years [9,18,23,25].

In a previous paper, game semantics was used as
the basis for a solution to this problem [4]; namely,
a description of the fully abstract model given com-
pletely independently of the syntax of PCF. This se-
mantics can be seen as offering an analysis—in the light
of the results obtained in [1,4], perhaps even a defini-
tive analysis—of sequential, functional computation at
higher types.!

Given this success; it is important to see how broad
the scope of the approach initiated in [1,4] actually
is. In this paper, we consider the lazy A-calculus [2,6].
This calculus, and certain associated notions such as
applicative simulation, have been quite widely influ-
ential [8,11,13,14,17,19,22]. In [6], a syntactic con-
struction of a fully abstract model for the basic sequen-
tial language was given, and the canonical denotational
model was shown to be fully abstract for a certain par-
allel extension of the language. However, the problem
of giving a direct, syntax-free, purely semantic con-
struction of a fully abstract model for the sequential
language remained open.

In this paper, we present a solution to this prob-
lem. We use the theory of game semantics for recursive
types as developed in [5] to give a game semantics for
the lazy A-calculus, and we show that this semantics

1Similar results, based on a somewhat different version of
game semantics, were obtained independently by Hyland and
Ong [15], and also by Nickau [20]. A quite different construc-
tion of the fully abstract model was subsequently obtained by
O’Hearn and Riecke [21].

is fully abstract with respect to applicative simulation.
This 18, to our knowledge, the first such full abstrac-
tion result for a reflexively-typed sequential language.
The techniques required to achieve these results signif-
icantly extend those of [1,4], while being firmly based
on the work done there. It should be the case that the
methods developed in the present paper will apply to a
richer, typed metalanguage with recursive types, such
as that described in [12]; but this remains to be seen.

2 Lazy A-calculus

We define here the language Alc [6]. The syntax is that
of the type-free A-calculus with a single constant C.

M=z |XeM|MM|C.

Following Barendregt [7], we refer to the terms of the
language as A(C), and the closed terms as A(C)°. The
operational semantics is based on a ‘big-step’ reduction
relation M| N evaluating terms to weak head normal
form; if a term M evaluates to some N it is said to
converge and we write M{}. Cis a constant which tests
a term for convergence.

Az MUAz. M cuc

MiXe.P P[Q/z]UN MUC Ny
MQUN MNYI

where | denotes the identity combinator Az.z. We
shall also use €2 to denote the canonical divergent term
(Az.zx)(Av.xx).

The contextual preorder C¢ on A(C)? is defined by:

M CC N Eve[-] € AQ)°.C[M] = C[N]I
where C[—] € A(C)® denotes a closed context. In [6],
this is shown to be equivalent to the relation C°F, de-
fined as the largest applicative simulation. A binary
relation R on A(C)? is an applicative simulation if and
only if for all M and N such that (M, N) € R, and all
P e A(Q)Y,

MUP = 3Q.(NJQ AVT.(PT, QT) € R).

3 A games model

We now describe a category of games and (equivalence
classes of) history-free strategies which is almost identi-
cal to that used in [4], and interpret the linear logic con-
nectives ® (tensor), —o (linear implication) and ! (the
‘of course’ exponential) in G. The co-Kleisli category
for the comonad ! is then a Cartesian closed category.
We also define a ‘lifting’ operation (—), analogous to
the usual domain-theoretic lift [27].

3.1 Games

A game has two participants, Player (P) and Opponent
(0). A play of the game consists of a finite or infinite
sequence of moves, alternately by O and P. In the games
we consider, O always moves first.

Before defining games, we need some notation for
sequences and operations on sequences. We shall use
s,t,... to range over sequences and a,b,... to range
over the elements of these sequences. We shall write as
to mean the sequence whose first element is a and whose
tail 1s s; and st for the concatenation of sequences s and
t. |s| denotes the length of s, and s; is the ith element
of s. We use C for the prefix ordering on sequences. If
S i1s a set, s[.S is the restriction of s to elements of 5,
i.e. the sequence s with all elements not in S deleted.
Finally, if S 1s a set of sequences, then 5" is the
subset of all even length sequences in S.

A game 1s specified by a structure
(MA,/\A,PA,%A), where

4 =

— M, is a set (the set of moves).

—Aa My —A{P,0} x{Q, A} is the labelling func-
tion.
The labelling function indicates whether a move is
by P or by O, and whether a move is a question

(Q) or an answer (A).

We write
1P,0r x{Q,A} = {PQ,PA0Q,04}
M= (A0
and define o o
P=0, O=P,

MO (a) = MiO(a), X = (MO, A%Y).

— Let ME? be the set of all finite sequences s of moves
satisfying:

pl s=at = A%a) = 0.

p2 (Vi:1<i<|s|]) [M{9(si41) = ALO(s0)].

p3 (Vt C s)[A(t) < Q(¢)] where Q(?) is the num-
ber of question moves (i.e. moves a such that

A94(a) = @) in t and A(t) is the number of

answer moves in t.

Then P4, the set of valid positions of the game, is
a non-empty prefix-closed subset of ME?.

The conditions above can be thought of as global
rules applying to all games. (pl) says that O al-
ways moves first, while (p2) says that O and P
make moves alternately. (p3) is called the brack-
eting condition: it ensures that when an answer

is given, there is at least one unanswered question
in the position. Questions and answers nest like
a well-formed string of brackets—we associate an-
swers to questions in the same way that ‘)’s are
associated to ‘(’s. A consequence of this is that a
question asked by Opponent must be answered by
Player and vice versa. The set P4 can be thought
of as defining rules specific to the game A.

— =34 18 an equivalence relation on P4 satisfying:

el s &y s = M(s) = Ay (s'). Here X% denotes
the extension of A4 to act on sequences; no-
tice that this condition implies that if s az4 s’
then |s| = |&'].

e2 strig SUN|s|= || = sma .

e3 smy 8’ ANsa € Py = (Fa')[sa =y s'd].

Games are to represent types. For example, a game
for Bool has one possible opening move #*, which
is a request for data, and Aoo1 (¥*) = OQ); there
are then two possible responses for Player, ttand ff,
with ABool (tt) = ABool (ff) = PA. The equivalence
relation is just the identity relation on the four possi-
ble positions of the game, namely €, *, *tt and *«ff. A
game for Nat can be defined similarly.

The equivalence relation plays a crucial role in the
definition of the exponential. We will define !4 as ‘in-
finitely many copies’ of the game A, and the equivalence
relation factors out ‘coding tricks’ based on the tagging
of the different copies.

3.2 Strategies

A strategy for Player in a game A can be thought of
as a rule telling Player which move to make in a given
position. Since a position in which Player is about to
move is always an odd-length sequence of moves, we
can define a strategy as a set of even-length positions
as follows.

A strategy for Player in a game A is a non-empty

set ¢ C P§'*" such that @ LAY dom(o) is prefix-

closed, where
dom(c) = {sa € P3| (3b)[sab € o]}.

We are interested only in history-free strategies,
i.e. those strategies whose responses depend only on
the last move made, rather than on the whole position.
A strategy o is history-free if it satisfies

— sab,jtac€E o =>b=r¢c

— sab,t € o,ta € P4y = tab € 0.

If o is history-free, it can also be seen a partial function
from O-moves to P-moves—we write o(a) = b if there
is some sab € ¢.

We extend =24 to a partial equivalence relation (i.e. a
symmetric, transitive relation), which we write as &, on
strategies for A thus:

i

— sab € o,5'd'b € T,5a x4 s'd = sabmy s'a’b

—s€a,s €T,507, s'd = sa € dom(o)iff s'a’ €

dom(r).

From now on we are only interested in those history-
free strategies ¢ such that o & ¢; since the equivalence
relation is intended to factor out ‘coding tricks’ in the
definition of the exponential !, this condition says that
o 1s ‘independent of coding’. If o is a history-free strat-
egy for a game A and o & o, we shall write ¢ : A.

3.3 Multiplicatives

Given games A and B, the game A — B is defined as
follows:

- Msp = Ma + Mp (where 4+ denotes disjoint
union).

— A—p = [Aa, 5]
— Py_.p is the set of all s € ME?%B satisfying

1. Projection condition: s[My4 € P4 and

S[MB € Pg.
2. Stack discipline: Every answer is in the same
component as the corresponding question.

— X A-0B s iff

S[MA ~A S/[MA,S[MB ~pB Sl[MB and
(Vi 1< < |5|)[52 eEMy <— 5;» EMA].

An immediate consequence of the projection condition
described above together with the general rules (p1)
and (p2) is the switching condition: if two successive
moves are in different components, 1.e. one is in A and
the other is in B, it 1s the Player who has switched
components, i.e. the second of the two moves is a P-
move.

The definition of A ® B is the same that of A — B,
except that the labelling is different: Aagp = [Aa, Ag].
A consequence of this is that the switching condition
for A ® B is the opposite of that for A — B; this time
only Opponent can switch. The unit for tensor is the
empty game:

1 (2,0, {e}, {(c.0)}).

3.4 The category of games

First, some notation: if ¢ i1s a history-free strategy for
a game A with o &~ o write [0] = {7 | T & 0}. Let A
be the set of all such equivalence classes.

Define a category G:

Objects
Morphisms

Games
[c]: A — B is a partial

equivalence class [o] € A B.

In what follows we will frequently write o : A — B to
mean a strategy representing a morphism from A to B;
no confusion will arise because all of the constructions
we use are compatible with & and so lift to construc-
tions on morphisms.

Identity For any game A, the identity morphism
[ida] is the equivalence class of the ‘copycat’ strategy,
idy on the game A; —o A, defined by

idy = {s € PP, | 5141 = 514z},

We use subscripts on the ‘A’s to distinguish the two
occurrences.

Composition We first define the composition of
strategies ¢ : A — B and 7 : B — (. This con-
struction 1s then lifted to equivalence classes, to give a
definition of composition of morphisms.

Given ¢ : A — B and 7 : B — (), define their
composite ;7 : A — C by

o7 ={s[A,C| s€(Mas+ Mp+ Mc)* A

s|A, B e, s|B,C €T}ever,

This can be shown to be well-defined and associative.

Proposition 1 Composition is compatible with =s:
forall 0,0’ : A — B, and 7,7’ : B — C' we have

/ / / /
CRONTRT =0, TR0 ,;T.

In the light of the above Proposition, we can now
define composition of morphisms via composition of
strategies: [o];[7] = [o; 7] assuming the strategies o
and 7 are of suitable types.

G as an autonomous category As in [3,4], tensor
and linear implication extend to functors. For example,
ifoc:A— Band 7: A" — B then we define ¢ ® 7 :
A® A" — B® B’ by

{s € P% opep | sIA,B€a,s|A' B €7}

If ¢ : A® B — C, there is a strategy A(c) : A —
(B — () defined simply by relabelling moves in o.
(These constructions are compatible with a so lift to
constructions on morphisms). G is now an autonomous
(symmetric monoidal closed) category. This also means
that we can think of a strategy for A indifferently as
having the type I — A.

3.5 Exponential

The game !A is defined as the “infinite tensor power”

of A.

- Mya = wx My =)., My, the disjoint union
of countably many copies of M 4. So moves in 1A
have the form (¢,m), where 4 is a natural number
and m i1s a move of A.

— Labelling is by source tupling:
/\yA(i, Cl) = /\A(a).

— Writing s|z for the restriction of s to moves with
index ¢, P4 1s the set of all s € M% such that:

1. Vi[s]i € Pa]
2. Every answer in s has the same index as the
corresponding question.

— Let S(w) be the set of permutations on w, and
w1 and wy the first and second projections on the
moves of 'A. Then s =4 s’ if and only if for some

a € S(w)
73 (s) = a* (7} (s")) A
(Vi € w)lms(slali) ~

There are history-free strategies weak : !4 —o [wit-
nessing weakening, der : !A —o A witnessing dereliction
and con : !4 — !4 ® !A witnessing contraction. Pre-
cise definitions can be found in [4]; briefly, weak is the
empty strategy, der copies moves between A and one
index of !4, and con uses a bijection between w + w
and w to copy moves from the two ‘!A’s on the right
into !4 on the left. There is also an operation taking
a strategy o : 'A — B to of : 'A — !B. Roughly, of
works by playing w-many versions of ¢, using a bijec-
tion {(—, —) : w X w — w to decide which index of 14 to
use: if o(b) = (j, a) then o¥(i,b) = ((i,;),a). The oper-
ations der and (—)! give ! the structure of a comonad;
accordingly, ! is a functor, with action on ¢ : A — B
given by lo Lef (der; o)t

It is also possible to define the product (&) of linear
logic; the co-Kleisli category for the comonad ! is then
a Cartesian closed category, with [A = B] defined as
1A — B.

3.6 Lifting

We shall also make use of a lifting construction on
games. Given a game A = (M4, 4, Pa,m4), define
AL =(Ma,,2a,,Pa,,~a,) as follows:

My, = Ho,e}+ My
/\AJ_ = [{OHOQa.HPA}aAA]
Py, = {eo}U{oes|s€ Ps}

SIS/IE or

/

s § =0 or

s=oetand s’ =oet’ and t a4 t'.

The idea is that there is an initial protocol oe deter-
mining whether or not a strategy for A, is properly
in A: if it can answer the initial question o (by the
only available answer o) then it is. After the first two
moves, play continues as a play of A, so there is exactly
one more strategy for A; than for A, the ‘everywhere
undefined’ strategy {c}, which we write as —.

Lifting can be made into a functor as follows. If
oc:A— Btheno, : Al — By 1s defined to be

{E;OBOA} U{OBOA.A.BS | s € O'}.

If we define G| to be the category whose objects are
games with a unique first move and whose morphisms
A — B are (equivalence classes of) those strategies
which respond to the initial move in B with the initial
move in A, then (=), is left adjoint to the forgetful
functor U : G, — G. The unit and co-unit of this
adjunction yield, for any game A, mapsup, : A — AL
and dng @ Ay — A such that upy;dng = id4. This
will be important for us later.

3.7 Recursive types

Games admit a treatment of recursive types very sim-
ilar to that of information systems [27]. We define an
ordering < on games as follows. Given two games A

and B, A < B iff

- My C Mg
- Aa =AMy
-~ Py=PgnM§

—smq 8 M s~p s ands € Py.

This is a (large) dcpo with least element I and least up-
per bounds of directed sets given by taking the union
of each component, just as for information systems.
If a type constructor F' is continuous with respect to
<, then we can construct a fixed point D = F(D)

as | |q F™(I). In fact we can generalise this to ob-
tain minimal invariants [10] for a large class of functors
F : G% x G — G, including all the type constructors
described in this paper, so we obtain canonical solu-
tions of recursive type equations. Details of this are
presented in [5].

Another useful fact about <1 is that if A < B then
a strategy o : A can be considered as a strategy for B,
and a strategy 7 : B can be projected onto A by simply
throwing away the moves of B which aren’t moves of

A.

3.8 A model of A¢

For the remainder of this paper we will be concerned
with the game which is the canonical solution of the
equation D = (1D — D), . In the co-Kleisli category,
we have maps up : [D = D] — D and dn : D —
[D = D] such that up;dn = idjp=p;. Given this,
it is standard that we can obtain a A-algebra [7] and
hence a model of the (untyped) A-calculus. A term
M with n free variables will be interpreted as a mor-
phism [M] : D® — D; in G, this will be a map
'D®...®!D — D, where there are n occurrences of
!D. Note that in this model, substitution corresponds
to co-Kleisli composition, so that if M has one free
variable z, and N is closed, [M[N/z]] = [N]'; [M].
To extend this to a model of Alc we just need to inter-
pret the constant C; this interpretation should clearly
be a map which, when applied to — returns —, and
when applied to a non-bottom morphism returns the
identity. Currying the identity morphism gives a map
A(idp) : I — [D = D], which we can consider as hav-
ing type [D = D] — [D = D] (by our comments on
<) to give a map «. Then o) : D — D is such that

—ay = —1—=D
oy = A(dd)up:I—Difo#—.

So we can interpret C as [(C] def Alag)yup : I — D.
This gives a model of Al¢:

Proposition 2 For any M and N € A(C)°,
MUN = [M] = [N] £— .

In [24], Pitts develops a theory of ‘invariant relations’
for minimal invariant solutions of recursive equations in
the category of decpos and strict functions, and shows
how to use it to prove computational adequacy of a de-
notational semantics. These techniques can be adapted
to G without difficulty, and yield:

Theorem 3 (Adequacy) If M € A(C)? is such that
[M] #— then M.

3.9 The extensional category

We now describe the extensional quotient & of the cate-
gory G. We make extensive use of the game I, , so some
observations will be useful at this point. There are only
two strategies for I, : the empty strategy, which we
denote by —, and the strategy which can answer the
initial question, which we denote by T. If a«: A — I
immediately answers the initial question with its cor-
responding answer, rather than switching to A, we also
denote o by T. Given a game A, we define the intrin-
sic preorder <4 on the strategies for A (considered as
having type I — A) by

caTe Vo A= [o;a=T=ra=T]).

The morphism « : A — I can be thought of as a test
of o and 7; when ¢ <4 7, 7 will pass any test that o
passes. If o;0 = T we write ;). We denote by ~4
the equivalence relation associated with the preorder
Sa

Proposition4 ¢ <s_.p 7
Va:I—ApB:B—Ifa;0;8] = a;1;5]].

As a consequence of this proposition we can define a
new category £ whose morphisms from A — B are
equivalence classes of strategies for A — B under ~.
Notice that if ¢ &~ 7 then ¢ ~ 7, so we could just
as well have taken equivalence classes of morphisms
of G. Identity and composition are defined from the
constructions on strategies, and of course < gives rise
to a partial order < on each hom-set of £. It is also the
case that minimal invariant solutions of recursive type
equations in G transfer to minimal invariants in &£, and
we have a computationally adequate model of Al¢ in &
just as before. In this category, however, we have the
following stronger result.

Theorem 5 (Soundness) Let M, N € A(C). Then
[M] < [N] = M CP .

The (routine) proof consists of showing that the rela-
tion [M] < [N] between terms M, N € A(C)? is an ap-
plicative simulation; then since TP is the largest such
relation, the result holds.

To illustrate the sequential nature of our model D,
consider the “parallel convergence” combinator defined
as in [2,6] by the rules

Ml Ny
PMNYl PMNJUI

Thus if M is a canonical term, PM Q| and PQAM],
but PQQ{. It is easy to see that no strategy for D

can implement P, since any strategy must begin by ex-
ploring one of its arguments, and will then diverge if
that argument diverges. By contrast, solving the equa-
tion D = (D = D), over a category of domains, as
in [2,6], will yield a model in which the parallel conver-
gence combinator does live. Indeed, it is proved in [2]
that if C is replaced by P in Al¢, all compact elements
of the domain-theoretic model are definable, and 1t is
therefore fully abstract. All this of course parallels the
situation for PCF with respect to the parallel or.

4 Definability

4.1 Decomposition

We describe a decomposition of the morphisms o : [—
D which reveals the structure of the terms they repre-
sent. The idea is that each o unfolds into a tree of
substrategies; each substrategy has a type of the form
Di®...@'D, 24, @ ...% A,, — D where each
A =1D51©®...@'D; 1, —o D forsome L;. The!D; com-
ponents correspond to free variables of the term, while
the A; components correspond to instances of these
free variables on which which some computation has
been performed ‘further up’ the decomposition tree. As
such, each A; is associated with one of the 'D;. We ab-
breviate the components !1D1®...®'D, @A ®...QA,
by T,,, and always assume that an association of A; to
'D; is specified.

Given o : T, — D, we decompose by cases accord-
ing to ¢’s response to the initial question in D, and in
each case obtain substrategies with types of this form,
so that they too can be decomposed. We omit the ver-
ification that the substrategies are well-defined, which
is simple. There are four possibilities:

— o has no response. Then ¢ = {¢}; no further de-
composition is possible, and we write ¢ =—p,_ _.p.

— o(o) = e; so the strategy ‘converges’ immediately,
corresponding to a A-abstraction. In this case, let
o/ = {s| oes € o}. Uncurrying gives this strategy
the type T, ® 'D — D, which is of the correct
form. We write 0 = Ao’.

— o(o) = (4,0) in some !D;. This corresponds to
interrogating an argument, i.e. testing it for con-
vergence. We can relabel the ¢th index of 'D; to
be a separate D, so the typeis T, @ D — D. Then
letting o/ = {e} U {os | ooes € o} gives a substrat-
egy o' : T, @ (1D — D) — D. We associate the
new ‘A’ component (namely !D — D) with !D; in

this new type, and write o = (C;)o’.

— o(o) = o in some A;. This corresponds to further
testing of a variable which has already been inter-
rogated; it 1s a test of convergence of a variable ap-
plied to some arguments, so the substrategies will
represent the arguments and the ‘branch’ or ‘con-
tinuation’ term. The branch substrategy is easy
to extract: let oy = {e} U {os | oces € o}. If
we think of T,, as T/, @ A;, then the type of oy, is
T, @ Al — D, where A, =1D;1@...0 D1, ®
!D — D. The argument strategies require a little
more manipulation. First, it can be shown that
{5 | cos € 0,8 & s} (i.e. the possible play after
the convergence test has started but before it ‘suc-
ceeds’) is a strategy for 7}, — !D;1 @ ...® !'D; 1,.
Applying derelictions to the A; components gives
a strategy which can be shown to be equivalent to
one of the form

con;a{@...@a}:T/l/—>!Di71®...®!DiyLl

where T} is the same as T but has each A; re-
placed by !4;, and each o; : T} — D. But at
most one index of each A; component is used in
any given play, so we can recover the type T), — D.
We write 0 = (C;01...0L)0pr.

On the basis of this decomposition, a strategy can be
thought of as representing an ‘infinite term’ of Al¢; this
is the reason for our suggestive notation.

It 1s worth noting two points about the last case
above. First, because 1t is clearly possible for oy, to ‘re-
use’ A; (in the form of A%), it is not in general possible
to combine strategies o1,..., 0, 0p of suitable types
to form (C;o1 ...0L)opy: history freeness requires that
the strategies be in some way compatible. This prob-
lem will be addressed by the combinators we introduce
shortly. There i1s also the possibility that the argu-
ment strategies make use of some of the A; components
which oy, also uses, again leading to compatibility is-
sues. However, this can be overcome by the (somewhat
surprising) observation that if an argument strategy oy
passes a test (8, o,) then it makes no use of the A;
in doing so. The proof of this hinges on the fact that
0';2 uses at most one index of 'A; in any given play;
we omit the details. The important point is that any
moves o might make in A; have no effect on its exten-
sional behaviour and can therefore be ignored without
consequernce.

It should also be pointed out that although the de-
composition described here is compatible with &, and
so well-defined on morphisms in G, it is not compatible
with ~: it 1s perfectly possible for some 7 ~ ¢ to be-
gin a new convergence test rather than re-using an old
one, and so fall under the third case above rather than

the fourth. (In this case the decomposition tree for
would look something like (C)(Coy)...(Coy...00)00r
instead). Therefore, although we seek a definability re-
sult for the model in £, we study the model in G, only
passing to £ at the last moment.

4.2 Tests

It is clear that because the A; are so closely related
to the 'D;, when applying test strategies to the sub-
strategies in our decomposition we need to constrain
their behaviour so that each A; is treated as an index
of its associated 'D;. Using repeated applications of dn
and uncurrying, we can define strategies

dnLZD—>(!D1®...®!DL—OD).
From these we can easily build, for each type T,,, a map
unf:!'D1®...9!D, - 41®..9 4,

which ‘unfolds’” each A; out of the corresponding 'D;.
Then a suitable test of a strategy o : T, — D consists
of 3:1 — (ID)" and o : D — I, ; we apply the test
using unf, saying that the test succeeds if and only if
(8 ® Bsunf);o;a #—: I — I;. In this case we write
(B,0,a)]. Otherwise, (3,0,).

We can now state the definability result we wish to
prove:

Theorem 6 (Definability) If o : 7T,, — D and 3 :
I — (ID)", o : D — I, are test strategies such that
(8,0, a)] then there is some M € A(C) such that [M]:
(IDY* — D satisfies:

= (8, [M], @)l

- VG, o (of suitable types)
(B, 0,a)].

Notice that in the case when 7}, contains no 4; compo-
nents, the second condition above reduces to [M] < o.

We now describe the various lemmas necessary for
the proof of this Theorem. First, we characterise the
successful tests of a strategy. As a preliminary, note
that any #: I — (1D)" can be written as ﬁ{ ®...08
where each 8; : [— D. Also,if — #«: D — I, then
a =dn;(a; — as) forsomeay : I — 1D, ay: D —1;.
We use these notations in the following lemma.

(@', [M], 0N =

Lemma 7 (Success Lemma) Suppose 5 : I — (I1D)?
and oo D — I, #—T.

1' (Ba R O[)T
2. (B, A0,0)] © (B® ay,0,a2)].

3. (8,(Cioy...o0)00r,)] = (B, ovr,)] A
3; con; (O'I Q... ® U});A“(ﬁj;dnL) #— where
'D; is associated with A;, and con denotes the
L-fold contraction map !D — (!D)f

The proofs of these facts are by considering the play
witnessing the success of a test; the last case is the
only non-trivial one. Note also that we leave the case
of (C)o as a special case of the last one.

This lemma shows that the success of a test,
immediate (i.e. if &« # T), depends on the success of
tests of the substrategies; furthermore, the plays wit-
nessing the success of these sub-tests are shorter than
that of the main test, so a successful test can only
search a strategy to finite depth. Armed with this intu-
ition, we seek a method for truncating a strategy which
passes a test, so that it still passes that test but its de-
composition terminates i.e. it denotes a (finite) term of

Alc.

if not

4.3 Combinators

Here we attempt to perform the opposite of the decom-
The
cases of the undefined strategy and abstraction are sim-
ple: we can simply undo the decomposition, and for

position: we build strategies from substrategies.

this reason we use the same notation. However, as re-
marked previously, the case of a convergence test is not
so simple, because the branch strategy may re-use the
component in which the convergence test was carried
out. The idea here is that any such re-use of A; which
o might make is forced to occur instead in a fresh index
of 1D; (which has no effect on extensional behaviour),
thus overcoming the first problem of the decomposition.

1. Undefined strategy For each type T,,, define

—r _p™ {e}: T, — D.

2. Abstraction Given o : 1}, @ 'D — D where no A;
is associated to !D, we can form

Ao A(o)yup: T, — D.

3. Convergence test Given o : T, ® A; — D with
A =(D;1®...0'D; L @D — D) associated
to 1Dy, and o1,...,0p : (1D)* — D, define first
unf : T, — T, ® A; which ‘unfolds’ A; out of
'D;. Now let o = unf;0 1 T — D. Let 05z =

con; O'I ®R...® 02 : (!D)* — (ID)L. Now we can
define
(Cjor...or)o = {e,00}U{00s |5 € Trest }

U {cosel | s € Trest, ol € Opr}-

Motivated by our earlier comments, we extend this
combinator to operate on o; : 1, — D by sim-
ply taking the projections of the o; onto the type
D)y — D.

It is clear that all the combinators are monotone with
respect to C (at the level of strategies).

Of course, all of this would be no help if the combi-
nators and decomposition did not correspond closely to
each other. In fact they do, as demonstrated by the fol-
lowing result, which follows from the Success Lemma.

Lemma 8 (Correspondence Lemma) Suppose 7 :
T, — D is such that 7 = (Cjo1...01)0, and let f and
« be suitable test strategies. Then

(Ba T, O[)l = (Ba (Cio-la .. 'aUL)Ua O[)l

Similar results are true for the other cases, for trivial
reasons.

We have seen that a successful test interrogates the
tree of substrategies to some finite depth, until the ‘o’
part of the test is reduced to T; the test then suc-
ceeds and no further information is asked of the strat-
egy. This motivates the following definition.

Definition (Truncations) Given o : T,, — D, de-
fine a sequence of strategies ¢ (o) : T, — D as follows:

do(o) = -
Srpr(—) E -
bre1i(Ae) = Agw(0)
ore1((Cior . .o)o) E (Cidplor) .. x(01))ér(0)

Note that while ¢1(0) C ¢ry1(o) for any o and k,
it is not the case that ¢5(c) C 0. However, we can
find an strategy which passes the same test as o and
contains o, as follows:

Definition (Normalisations) Given ¢ : T,, — D,
define a sequence of strategies 0;(o) : T, — D as fol-
lows:
dolo) = o
fii(-) = -
Orir(Ao) = Ni(0)
Opr (Cior . .op)o) T (Cib(on) .. Ox(op))0k(0)

It is clear that ¢p(c) € 60;(0), and the Success
Lemma and Correspondence Lemma show that 0 (o)
passes the same tests as ¢ does, for each k.

We can now prove a vital result.

Proposition 9 (Truncation Lemma) Let o : T,, —
D and let 8 and « be suitable test strategies such that

(B,0,a)]. Then 3k € w[(B, ¢r(0),)]

The proof of this is by induction on the number of
moves taken for the test to succeed. Once more 1t in-
volves simultaneously proving a similar result for tests
of the form (4; O'I Q... f; U});’yfthis part makes
essential use of the normalisation of strategies defined
above.

Proof of Definability Theorem In the light of
the Truncation Lemma, since it 1s also clear that
(B, or(0), ')l = (8',0,a")], we just need to show
that the ¢5(c) are definable. We can define a term
(o) corresponding to ¢1(o) by induction on k. First
we need to decorate the type T, with some vari-
able names: each !'D; has a unique variable associ-
ated with it, and correspondingly the A; are associ-
ated with variables. Then we define ®;(c) by in-

Do(0) ' Q and Ppi(—) T Q.

For Ao’, pick a fresh variable name z not associ-

ated with any of the !D;, and associate this to the

new !D in the type of ¢’. Then ®pq1(Ao’) def

Az.®y(0'). For (C;)o’, suppose x is the variable as-

sociated with 1D;. Then ®541((C;)o’) def (Cx)Ppo’.

Finally, for (Cioy1...0L0)0wr, suppose A; is associated
with the variable . Then ®341((Cio1...0L)00r) def
(Cax®p(o1)...Px(0L))Pr(00r). It just remains to show
that the terms @y (o) indeed realise the ¢ (o), i.e. that
for any test strategies § and «,

(B, [®x(a)],)| & (B, ¢x(0),)]

duction on k.

This is quite routine, using the definition of [—], the
Success Lemma and the Correspondence Lemma. B

5 Full abstraction

With the Definability Theorem in place, we can prove
the following completeness result.

Theorem 10 (Completeness) For M, N € A(C)°,
MCB N = [M] <[N].

Proof In fact we prove the contrapositive of the
above. Suppose for some M, N € A(C)°, [M] £ [N].
Let m = [M] and n = [N], so that for some « :
D — I, mja #— and n;a =—. Then we also have
m';der;a #— and n';der; o =—. Consider the strat-
egy 5 : D — D defined by treating der; o : 1D — [as
having this type. By the Definability Theorem, there
is a term P € A(C) with one free variable such that

mt;[P] #— and n';[P] =—. Suppose the one free
variable of P is . Then by the definition of [—],

mb [Pl # -
nt[P] = -—.

[PIM/x]] =
[PIN/=]]

So by computational adequacy, P[M/«]{} and P[N/z]{,
so M ZP N. [|
Finally, putting the Soundness Theorem and Complete-
ness Theorem together gives:

Theorem 11 (Full abstraction) For all M and N €
AQ)°,
MC? N o [M]<[N].

References

[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full
abstraction for PCF, 1995. To appear.

[2] S. Abramsky. The lazy A-calculus. In D. A. Turner,
editor, Research Topics in Functional Programming,
chapter 4, pages 65-117. Addison Wesley, 1990.

[3] S. Abramsky and R. Jagadeesan. Games and full com-
pleteness for multiplicative linear logic. Journal of
Symbolic Logic, 59(2):543 — 574, June 1994. Also ap-
peared as Technical Report 92/24 of the Department
of Computing, Imperial College of Science, Technology
and Medicine.

[4] S. Abramsky, R. Jagadeesan, and P. Malacaria.
Full abstraction for PCF (extended abstract). In
M. Hagiya and J. C. Mitchell, editors, Theoretical
Aspects of Computer Software. International Sympo-
stum TACS’94, number 789 in Lecture Notes in Com-
puter Science, pages 1-15, Sendai, Japan, April 1994.
Springer-Verlag.

[5] S. Abramsky and G. McCusker. Games for recursive
types. In C. L. Hankin, I. C. Mackie, and R. Na-
garajan, editors, Theory and Formal Methods of Com-
puting 1994: Proceedings of the Second Imperial Col-
lege Department of Computing Workshop on Theory
and Formal Methods. Imperial College Press; Octo-
ber 1995. Also available by anonymous ftp from
theory.doc.ic.ac.ukin directory papers/McCusker.

[6] S. Abramsky and C.-H. L. Ong. Full abstraction in the
lazy lambda calculus. Information and Computation,
105(2):159-267, August 1993.

[7] H. P. Barendregt. The Lambda Calculus: Its Syntaz
and Semantics. North-Holland, revised edition, 1984.

[8] G. Boudol. A lambda calculus for (strict) parallel
functions. Information and Computation, 108:51-127,
1994.

[9] P.-L. Curien. Categorical Combinators, Sequential Al-
gorithms and Functional Programming. Progress in
Theoretical Computer Science. Birkhauser, 1993.

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. J. Freyd. Algebraically complete categories. In
A. Carboni et al., editors, Proc. 1990 Como Cate-
gory Theory Conference, pages 95-104, Berlin, 1991.
Springer-Verlag. Lecture Notes in Mathematics Vol.
1488.

A. D. Gordon. Functional programming and In-
put/Output. Distinguished Dissertations in Computer
Science. Cambridge University Press, 1994.

C. A. Gunter. Semantics of Programming Languages:
Structures and Techniques. Foundations of Comput-
ing. MIT Press, 1992.

M. Hennessy. A fully abstract denotational model for
higher-order processes. In Proceedings, Fighth Annual
IEEE Symposium on Logic in Computer Science [16],
pages 397-408.

D. J. Howe. Equality in lazy computation systems.
In Proceedings, Fourth Annual Symposium on Logic
in Computer Science, pages 198-203. IEEE Computer
Society Press, 1989.

J. M. E. Hyland and C.-H. L. Ong. On full abstrac-
tion for PCF: I, 1T and III. 130 pages, ftp-able at
theory.doc.ic.ac.uk in directory papers/0Ong, 1994.

IEEE Computer Society Press. Proceedings, FEighth
Annual IFEFE Symposium on Logic in Computer Sci-
ence, 1993.

A. Jeffrey. A fully abstract semantics for concurrent
graph reduction. In Proceedings, Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 82—
91. IEEE Computer Society Press, 1994.

R. Milner. Fully abstract models of typed lambda-
calculi. Theoretical Computer Science, 4:1-22, 1977.

R. Milner. Functions as processes. In Proceedings of
ICALP 90, volume 443 of Lecture Notes in Computer
Science, pages 167-180. Springer-Verlag, 1990.

H. Nickau. Hereditarily sequential functionals. In Pro-
ceedings of the Symposium on Logical Foundations of
Computer Science: Logic at St. Petersburg, Lecture
notes in Computer Science. Springer, 1994.

P. W. O’Hearn and J. G. Riecke.
relations and PCF.
120(1):1077116, 1995.

Kripke logical
Information and Computation,

C. H. L. Ong. Non-determinism in a functional setting.
In Proceedings, Fighth Annual IFEE Symposium on
Logic in Computer Science [16], pages 275-286.

C.-H. L. Ong. Correspondence between operational
and denotational semantics. In S. Abramsky, D. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic
in Computer Science, Vol 4, pages 269-356. Oxford
University Press, 1995.

A. M. Pitts. Relational properties of domains. Tech-
nical Report 321, Cambridge Univ. Computer Labo-
ratory, December 1993. 37 pages.

[25] G. Plotkin. LCF considered as a programming lan-

guage. Theoretical Computer Science, 5:223-255, 1977.

[26] A. Stoughton. Fully abstract models of programming

languages. Pitman, 1988.

[27] G. Winskel. The Formal Semantics of Programming

Languages. Foundations of Computing. The MIT
Press, Cambridge, Massachusetts, 1993.

