
In proceedings of 10th annual IEEE symposiumon Logic in Computer Science, IEEE Computer Society Press, June 1995.Games and Full Abstraction for the Lazy �-calculusSamson Abramsky Guy McCusker �Department of ComputingImperial College of Science, Technology and Medicine180 Queen's GateLondon SW7 2BZUnited KingdomAbstractWe de�ne a category of games G, and its extensionalquotient E . A model of the lazy �-calculus, a type-freefunctional language based on evaluation to weak headnormal form, is given in G, yielding an extensionalmodel in E . This model is shown to be fully abstractwith respect to applicative simulation. This is, so faras we know, the �rst purely semantic construction ofa fully abstract model for a re
exively-typed sequentiallanguage.1 IntroductionFull Abstraction is a key concept in programming lan-guage semantics [9, 12, 23, 26]. The ingredients are asfollows. We are given a language L, with an `obser-vational preorder' - on terms in L such that P - Qmeans that every observable property of P is also satis-�ed by Q; and a denotational modelMJ�K. The modelM is then said to be fully abstract with respect to - ifP - Q () MJP K vMJQKfor all P , Q in L. (The right-to-left implication isknown as soundness, the converse as completeness.)Thus a fully abstract semantics will re
ect all and onlythe observable properties of programs. Constructingfully abstract models in a semantic fashion|ratherthan by term model constructions or other syntacticmeans|yields deep structural information about thecomputational concepts embodied in the programming�This research was partially supported by the UK EPSRCgrant \Foundational Structures for Computing Science", and theESPRIT Basic Research Action CLICS II. The second author issupported by an EPSRC Research Studentship.

language. When certain features are present in the lan-guage, most notably higher-order functions and recur-sion, the problem of achieving such a construction hasproved to be very subtle and di�cult; the most ba-sic case is the well-known Full Abstraction problem forPCF, which has been studied intensively for some 20years [9,18,23,25].In a previous paper, game semantics was used asthe basis for a solution to this problem [4]; namely,a description of the fully abstract model given com-pletely independently of the syntax of PCF. This se-mantics can be seen as o�ering an analysis|in the lightof the results obtained in [1, 4], perhaps even a de�ni-tive analysis|of sequential, functional computation athigher types.1Given this success, it is important to see how broadthe scope of the approach initiated in [1, 4] actuallyis. In this paper, we consider the lazy �-calculus [2,6].This calculus, and certain associated notions such asapplicative simulation, have been quite widely in
u-ential [8, 11, 13, 14, 17, 19, 22]. In [6], a syntactic con-struction of a fully abstract model for the basic sequen-tial language was given, and the canonical denotationalmodel was shown to be fully abstract for a certain par-allel extension of the language. However, the problemof giving a direct, syntax-free, purely semantic con-struction of a fully abstract model for the sequentiallanguage remained open.In this paper, we present a solution to this prob-lem. We use the theory of game semantics for recursivetypes as developed in [5] to give a game semantics forthe lazy �-calculus, and we show that this semantics1Similar results, based on a somewhat di�erent version ofgame semantics, were obtained independently by Hyland andOng [15], and also by Nickau [20]. A quite di�erent construc-tion of the fully abstract model was subsequently obtained byO'Hearn and Riecke [21].



is fully abstract with respect to applicative simulation.This is, to our knowledge, the �rst such full abstrac-tion result for a re
exively-typed sequential language.The techniques required to achieve these results signif-icantly extend those of [1, 4], while being �rmly basedon the work done there. It should be the case that themethods developed in the present paper will apply to aricher, typed metalanguage with recursive types, suchas that described in [12]; but this remains to be seen.2 Lazy �-calculusWe de�ne here the language �lC [6]. The syntax is thatof the type-free �-calculus with a single constant C.M ::= x j �x:M jMM j C:Following Barendregt [7], we refer to the terms of thelanguage as �(C), and the closed terms as �(C)0. Theoperational semantics is based on a `big-step' reductionrelation M+N evaluating terms to weak head normalform; if a term M evaluates to some N it is said toconverge and we write M+. C is a constant which testsa term for convergence.�x:M+�x:M C+CM+�x:P P [Q=x]+NMQ+N M+C N+MN+Iwhere I denotes the identity combinator �x:x. Weshall also use 
 to denote the canonical divergent term(�x:xx)(�x:xx).The contextual preorder vC on �(C)0 is de�ned by:M vC N def= 8C[�] 2 �(C)0:C[M ]+) C[N ]+where C[�] 2 �(C)0 denotes a closed context. In [6],this is shown to be equivalent to the relation vB , de-�ned as the largest applicative simulation. A binaryrelation R on �(C)0 is an applicative simulation if andonly if for all M and N such that (M;N ) 2 R, and allP 2 �(C)0,M+P ) 9Q:(N+Q ^ 8T:(PT;QT ) 2 R):3 A games modelWe now describe a category of games and (equivalenceclasses of) history-free strategies which is almost identi-cal to that used in [4], and interpret the linear logic con-nectives 
 (tensor), ( (linear implication) and ! (the`of course' exponential) in G. The co-Kleisli categoryfor the comonad ! is then a Cartesian closed category.We also de�ne a `lifting' operation (�)? analogous tothe usual domain-theoretic lift [27].

3.1 GamesA game has two participants, Player (P) and Opponent(O). A play of the game consists of a �nite or in�nitesequence of moves, alternately by O and P. In the gameswe consider, O always moves �rst.Before de�ning games, we need some notation forsequences and operations on sequences. We shall uses; t; : : : to range over sequences and a; b; : : : to rangeover the elements of these sequences. We shall write asto mean the sequence whose �rst element is a and whosetail is s; and st for the concatenation of sequences s andt. jsj denotes the length of s, and si is the ith elementof s. We use v for the pre�x ordering on sequences. IfS is a set, s�S is the restriction of s to elements of S,i.e. the sequence s with all elements not in S deleted.Finally, if S is a set of sequences, then Seven is thesubset of all even length sequences in S.A game is speci�ed by a structure A =(MA; �A; PA;�A), where{ MA is a set (the set of moves).{ �A : MA ! fP;Og � fQ;Ag is the labelling func-tion.The labelling function indicates whether a move isby P or by O, and whether a move is a question(Q) or an answer (A).We writefP;Og � fQ;Ag = fPQ;PA;OQ;OAg�A = h�POA ; �QAA iand de�ne P = O; O = P;�POA (a) = �POA (a); �A = h�POA ; �QAA i:{ LetM~A be the set of all �nite sequences s of movessatisfying:p1 s = at) �POA (a) = O.p2 (8i : 1 � i < jsj) [�POA (si+1) = �POA (si)].p3 (8t v s)[A(t) � Q(t)] where Q(t) is the num-ber of question moves (i.e. moves a such that�QA(a) = Q) in t and A(t) is the number ofanswer moves in t.Then PA, the set of valid positions of the game, isa non-empty pre�x-closed subset of M~A .The conditions above can be thought of as globalrules applying to all games. (p1) says that O al-ways moves �rst, while (p2) says that O and Pmake moves alternately. (p3) is called the brack-eting condition: it ensures that when an answer



is given, there is at least one unanswered questionin the position. Questions and answers nest likea well-formed string of brackets|we associate an-swers to questions in the same way that `)'s areassociated to `('s. A consequence of this is that aquestion asked by Opponent must be answered byPlayer and vice versa. The set PA can be thoughtof as de�ning rules speci�c to the game A.{ �A is an equivalence relation on PA satisfying:e1 s �A s0 ) ��A(s) = ��A(s0). Here ��A denotesthe extension of �A to act on sequences; no-tice that this condition implies that if s �A s0then jsj = js0j.e2 st �A s0t0 ^ jsj = js0j ) s �A s0.e3 s �A s0 ^ sa 2 PA ) (9a0)[sa �A s0a0].Games are to represent types. For example, a gamefor Bool has one possible opening move �, whichis a request for data, and �Bool (�) = OQ; thereare then two possible responses for Player, ttand ff ,with �Bool (tt ) = �Bool (ff ) = PA: The equivalencerelation is just the identity relation on the four possi-ble positions of the game, namely �, �, �tt and �ff . Agame for Nat can be de�ned similarly.The equivalence relation plays a crucial role in thede�nition of the exponential. We will de�ne !A as `in-�nitely many copies' of the gameA, and the equivalencerelation factors out `coding tricks' based on the taggingof the di�erent copies.3.2 StrategiesA strategy for Player in a game A can be thought ofas a rule telling Player which move to make in a givenposition. Since a position in which Player is about tomove is always an odd-length sequence of moves, wecan de�ne a strategy as a set of even-length positionsas follows.A strategy for Player in a game A is a non-emptyset � � P evenA such that � def= � [ dom(�) is pre�x-closed, wheredom(�) def= fsa 2 P oddA j (9b)[sab 2 �]g:We are interested only in history-free strategies,i.e. those strategies whose responses depend only onthe last move made, rather than on the whole position.A strategy � is history-free if it satis�es{ sab; tac 2 � ) b = c{ sab; t 2 �; ta 2 PA ) tab 2 �.

If � is history-free, it can also be seen a partial functionfrom O-moves to P-moves|we write �(a) = b if thereis some sab 2 �.We extend �A to a partial equivalence relation (i.e. asymmetric, transitive relation), which we write as �, onstrategies for A thus:� � � i�{ sab 2 �; s0a0b0 2 �; sa �A s0a0 ) sab �A s0a0b0{ s 2 �; s0 2 �; sa �A s0a0 ) sa 2 dom(�) i� s0a0 2dom(� ).From now on we are only interested in those history-free strategies � such that � � �; since the equivalencerelation is intended to factor out `coding tricks' in thede�nition of the exponential !, this condition says that� is `independent of coding'. If � is a history-free strat-egy for a game A and � � �, we shall write � : A.3.3 MultiplicativesGiven games A and B, the game A( B is de�ned asfollows:{ MA(B = MA + MB (where + denotes disjointunion).{ �A(B = [�A; �B].{ PA(B is the set of all s 2M~A(B satisfying1. Projection condition: s�MA 2 PA ands�MB 2 PB.2. Stack discipline: Every answer is in the samecomponent as the corresponding question.{ s �A(B s0 i�s�MA �A s0�MA; s�MB �B s0�MB and(8i : 1 � i � jsj)[si 2MA () s0i 2MA]:An immediate consequence of the projection conditiondescribed above together with the general rules (p1)and (p2) is the switching condition: if two successivemoves are in di�erent components, i.e. one is in A andthe other is in B, it is the Player who has switchedcomponents, i.e. the second of the two moves is a P-move.The de�nition of A
B is the same that of A( B,except that the labelling is di�erent: �A
B = [�A; �B ].A consequence of this is that the switching conditionfor A
B is the opposite of that for A( B; this timeonly Opponent can switch. The unit for tensor is theempty game: I def= (?;?; f�g; f(�; �)g):



3.4 The category of gamesFirst, some notation: if � is a history-free strategy fora game A with � � � write [�] = f� j � � �g. Let Âbe the set of all such equivalence classes.De�ne a category G:Objects : GamesMorphisms : [�] : A! B is a partialequivalence class [�] 2 \A( B:In what follows we will frequently write � : A ! B tomean a strategy representing a morphism from A to B;no confusion will arise because all of the constructionswe use are compatible with � and so lift to construc-tions on morphisms.Identity For any game A, the identity morphism[idA] is the equivalence class of the `copycat' strategy,idA on the game A1 ( A2, de�ned byidA = fs 2 P evenA1(A2 j s�A1 = s�A2g:We use subscripts on the `A's to distinguish the twooccurrences.Composition We �rst de�ne the composition ofstrategies � : A ! B and � : B ! C. This con-struction is then lifted to equivalence classes, to give ade�nition of composition of morphisms.Given � : A ! B and � : B ! C, de�ne theircomposite �; � : A! C by�; � = fs�A;C j s 2 (MA +MB +MC)� ^s�A;B 2 �; s�B;C 2 �geven :This can be shown to be well-de�ned and associative.Proposition 1 Composition is compatible with �:for all �; �0 : A( B; and �; � 0 : B ( C we have� � �0 ^ � � � 0 ) �; � � �0; � 0:In the light of the above Proposition, we can nowde�ne composition of morphisms via composition ofstrategies: [�]; [� ] def= [�; � ] assuming the strategies �and � are of suitable types.G as an autonomous category As in [3, 4], tensorand linear implication extend to functors. For example,if � : A ! B and � : A0 ! B0 then we de�ne � 
 � :A
 A0 ! B 
B0 byfs 2 P evenA
A0(B
B0 j s�A;B 2 �; s�A0; B0 2 �g:

If � : A 
 B ! C, there is a strategy �(�) : A !(B ( C) de�ned simply by relabelling moves in �.(These constructions are compatible with � so lift toconstructions on morphisms). G is now an autonomous(symmetric monoidal closed) category. This also meansthat we can think of a strategy for A indi�erently ashaving the type I ! A.3.5 ExponentialThe game !A is de�ned as the \in�nite tensor power"of A.{ M!A = ! �MA = Pi2!MA, the disjoint unionof countably many copies of MA. So moves in !Ahave the form (i;m), where i is a natural numberand m is a move of A.{ Labelling is by source tupling:�!A(i; a) = �A(a):{ Writing s�i for the restriction of s to moves withindex i, P!A is the set of all s 2M~!A such that:1. 8i[s�i 2 PA]2. Every answer in s has the same index as thecorresponding question.{ Let S(!) be the set of permutations on !, and�1 and �2 the �rst and second projections on themoves of !A. Then s �!A s0 if and only if for some� 2 S(!)��1(s) = ��(��1(s0)) ^(8i 2 !)[��2(s��(i)) � ��2(s0�i)]:There are history-free strategies weak : !A( I wit-nessing weakening, der : !A( A witnessing derelictionand con : !A ( !A 
 !A witnessing contraction. Pre-cise de�nitions can be found in [4]; brie
y, weak is theempty strategy, der copies moves between A and oneindex of !A, and con uses a bijection between ! + !and ! to copy moves from the two `!A's on the rightinto !A on the left. There is also an operation takinga strategy � : !A ! B to �y : !A ! !B. Roughly, �yworks by playing !-many versions of �, using a bijec-tion h�;�i : !� ! ! ! to decide which index of !A touse: if �(b) = (j; a) then �y(i; b) = (hi; ji; a). The oper-ations der and (�)y give ! the structure of a comonad;accordingly, ! is a functor, with action on � : A ( Bgiven by !� def= (der;�)y.It is also possible to de�ne the product (N) of linearlogic; the co-Kleisli category for the comonad ! is thena Cartesian closed category, with [A ) B] de�ned as!A( B.



3.6 LiftingWe shall also make use of a lifting construction ongames. Given a game A = (MA; �A; PA;�A), de�neA? = (MA? ; �A? ; PA?;�A?) as follows:MA? = f�; �g+MA�A? = [f� 7! OQ; � 7! PAg; �A]PA? = f�; �g [ f��s j s 2 PAgs �A? s0 i� s = s0 = � ors = s0 = � ors = ��t and s0 = ��t0 and t �A t0:The idea is that there is an initial protocol �� deter-mining whether or not a strategy for A? is properlyin A: if it can answer the initial question � (by theonly available answer �) then it is. After the �rst twomoves, play continues as a play of A, so there is exactlyone more strategy for A? than for A, the `everywhereunde�ned' strategy f"g, which we write as ?.Lifting can be made into a functor as follows. If� : A! B then �? : A? ! B? is de�ned to bef"; �B�Ag [ f�B�A�A�Bs j s 2 �g:If we de�ne G? to be the category whose objects aregames with a unique �rst move and whose morphismsA ! B are (equivalence classes of) those strategieswhich respond to the initial move in B with the initialmove in A, then (�)? is left adjoint to the forgetfulfunctor U : G? ! G. The unit and co-unit of thisadjunction yield, for any game A, maps upA : A! A?and dnA : A? ! A such that upA; dnA = idA. Thiswill be important for us later.3.7 Recursive typesGames admit a treatment of recursive types very sim-ilar to that of information systems [27]. We de�ne anordering E on games as follows. Given two games Aand B, A E B i�{ MA �MB{ �A = �B�MA{ PA = PB \M~A{ s �A s0 i� s �B s0 and s 2 PA.This is a (large) dcpo with least element I and least up-per bounds of directed sets given by taking the unionof each component, just as for information systems.If a type constructor F is continuous with respect toE, then we can construct a �xed point D = F (D)

as FE Fn(I). In fact we can generalise this to ob-tain minimal invariants [10] for a large class of functorsF : Gop � G ! G, including all the type constructorsdescribed in this paper, so we obtain canonical solu-tions of recursive type equations. Details of this arepresented in [5].Another useful fact about E is that if A E B thena strategy � : A can be considered as a strategy for B,and a strategy � : B can be projected onto A by simplythrowing away the moves of B which aren't moves ofA.3.8 A model of �lCFor the remainder of this paper we will be concernedwith the game which is the canonical solution of theequation D = (!D( D)?. In the co-Kleisli category,we have maps up : [D ) D] ! D and dn : D ![D ) D] such that up; dn = id[D)D]. Given this,it is standard that we can obtain a �-algebra [7] andhence a model of the (untyped) �-calculus. A termM with n free variables will be interpreted as a mor-phism [[M ]] : Dn ! D; in G, this will be a map!D 
 : : :
 !D ! D, where there are n occurrences of!D. Note that in this model, substitution correspondsto co-Kleisli composition, so that if M has one freevariable x, and N is closed, [[M [N=x]]] = [[N ]]y; [[M ]].To extend this to a model of �lC we just need to inter-pret the constant C; this interpretation should clearlybe a map which, when applied to ? returns ?, andwhen applied to a non-bottom morphism returns theidentity. Currying the identity morphism gives a map�(idD) : I ! [D ) D], which we can consider as hav-ing type [D ) D] ! [D ) D] (by our comments onE) to give a map �. Then �? : D ! D is such that?;�? = ?: I ! D�;�? = �(id); up : I ! D if � 6=? :So we can interpret C as [[C]] def= �(�?); up : I ! D.This gives a model of �lC:Proposition 2 For any M and N 2 �(C)0,M+N ) [[M ]] = [[N ]] 6=? :In [24], Pitts develops a theory of `invariant relations'for minimal invariant solutions of recursive equations inthe category of dcpos and strict functions, and showshow to use it to prove computational adequacy of a de-notational semantics. These techniques can be adaptedto G without di�culty, and yield:Theorem 3 (Adequacy) If M 2 �(C)0 is such that[[M ]] 6=? then M+.



3.9 The extensional categoryWe now describe the extensional quotient E of the cate-gory G. We make extensive use of the game I?, so someobservations will be useful at this point. There are onlytwo strategies for I?: the empty strategy, which wedenote by ?, and the strategy which can answer theinitial question, which we denote by >. If � : A ! I?immediately answers the initial question with its cor-responding answer, rather than switching to A, we alsodenote � by >. Given a game A, we de�ne the intrin-sic preorder .A on the strategies for A (considered ashaving type I ! A) by� .A � , (8� : A! I?[�;� = >) � ;� = >]):The morphism � : A! I? can be thought of as a testof � and � ; when � .A � , � will pass any test that �passes. If �;� = > we write �;�#. We denote by 'Athe equivalence relation associated with the preorder.A.Proposition 4 � .A(B � ,8� : I ! A; � : B ! I?[�;�; �# ) �; � ; �#]:As a consequence of this proposition we can de�ne anew category E whose morphisms from A ! B areequivalence classes of strategies for A ( B under '.Notice that if � � � then � ' � , so we could justas well have taken equivalence classes of morphismsof G. Identity and composition are de�ned from theconstructions on strategies, and of course . gives riseto a partial order 6 on each hom-set of E . It is also thecase that minimal invariant solutions of recursive typeequations in G transfer to minimal invariants in E , andwe have a computationally adequate model of �lC in Ejust as before. In this category, however, we have thefollowing stronger result.Theorem 5 (Soundness) Let M;N 2 �(C). Then[[M ]] 6 [[N ]])M vB N:The (routine) proof consists of showing that the rela-tion [[M ]]6 [[N ]] between termsM;N 2 �(C)0 is an ap-plicative simulation; then since vB is the largest suchrelation, the result holds.To illustrate the sequential nature of our model D,consider the \parallel convergence" combinator de�nedas in [2,6] by the rulesM+PMN+I N+PMN+IThus if M is a canonical term, PM
+ and P
M+,but P

*. It is easy to see that no strategy for D

can implement P, since any strategy must begin by ex-ploring one of its arguments, and will then diverge ifthat argument diverges. By contrast, solving the equa-tion D = (D ) D)? over a category of domains, asin [2,6], will yield a model in which the parallel conver-gence combinator does live. Indeed, it is proved in [2]that if C is replaced by P in �lC, all compact elementsof the domain-theoretic model are de�nable, and it istherefore fully abstract. All this of course parallels thesituation for PCF with respect to the parallel or.4 De�nability4.1 DecompositionWe describe a decomposition of the morphisms � : I !D which reveals the structure of the terms they repre-sent. The idea is that each � unfolds into a tree ofsubstrategies; each substrategy has a type of the form!D1 
 : : : 
 !Dn 
 A1 
 : : : 
 Am ! D where eachAi = !Di;1
: : :
!Di;Li ( D for some Li. The !Di com-ponents correspond to free variables of the term, whilethe Ai components correspond to instances of thesefree variables on which which some computation hasbeen performed `further up' the decomposition tree. Assuch, each Ai is associated with one of the !Dj. We ab-breviate the components !D1
: : :
!Dn
A1
: : :
Amby Tn, and always assume that an association of Ai to!Dj is speci�ed.Given � : Tn ! D, we decompose by cases accord-ing to �'s response to the initial question in D, and ineach case obtain substrategies with types of this form,so that they too can be decomposed. We omit the ver-i�cation that the substrategies are well-de�ned, whichis simple. There are four possibilities:{ � has no response. Then � = f"g; no further de-composition is possible, and we write � =?Tn!D.{ �(�) = �; so the strategy `converges' immediately,corresponding to a �-abstraction. In this case, let�0 = fs j ��s 2 �g. Uncurrying gives this strategythe type Tn 
 !D ! D, which is of the correctform. We write � = ��0.{ �(�) = (i; �) in some !Dj . This corresponds tointerrogating an argument, i.e. testing it for con-vergence. We can relabel the ith index of !Dj tobe a separate D, so the type is Tn
D ! D. Thenletting �0 = f"g[f�s j ���s 2 �g gives a substrat-egy �0 : Tn 
 (!D ( D) ! D. We associate thenew `A' component (namely !D( D) with !Dj inthis new type, and write � = (Cj)�0.



{ �(�) = � in some Ai. This corresponds to furthertesting of a variable which has already been inter-rogated; it is a test of convergence of a variable ap-plied to some arguments, so the substrategies willrepresent the arguments and the `branch' or `con-tinuation' term. The branch substrategy is easyto extract: let �br = f"g [ f�s j ���s 2 �g. Ifwe think of Tn as T 0n 
 Ai, then the type of �br isT 0n 
 A0i ! D, where A0i = !Di;1 
 : : :
 !Di;Li 
!D ( D. The argument strategies require a littlemore manipulation. First, it can be shown thatfs j ��s 2 �; � 62 sg (i.e. the possible play afterthe convergence test has started but before it `suc-ceeds') is a strategy for T 0n ! !Di;1 
 : : :
 !Di;Li .Applying derelictions to the Aj components givesa strategy which can be shown to be equivalent toone of the formcon;�y1 
 : : :
 �yL : T 00n ! !Di;1 
 : : :
 !Di;Liwhere T 00n is the same as T 0n but has each Aj re-placed by !Aj, and each �i : T 00n ! D. But atmost one index of each Aj component is used inany given play, so we can recover the type T 0n ! D.We write � = (Ci�1 : : :�L)�br.On the basis of this decomposition, a strategy can bethought of as representing an `in�nite term' of �lC; thisis the reason for our suggestive notation.It is worth noting two points about the last caseabove. First, because it is clearly possible for �br to `re-use' Ai (in the form of A0i), it is not in general possibleto combine strategies �1; : : : ; �L; �br of suitable typesto form (Ci�1 : : :�L)�br: history freeness requires thatthe strategies be in some way compatible. This prob-lem will be addressed by the combinators we introduceshortly. There is also the possibility that the argu-ment strategies make use of some of the Aj componentswhich �br also uses, again leading to compatibility is-sues. However, this can be overcome by the (somewhatsurprising) observation that if an argument strategy �kpasses a test (�; �k; �) then it makes no use of the Ajin doing so. The proof of this hinges on the fact that�yk uses at most one index of !Aj in any given play;we omit the details. The important point is that anymoves �k might make in Aj have no e�ect on its exten-sional behaviour and can therefore be ignored withoutconsequence.It should also be pointed out that although the de-composition described here is compatible with �, andso well-de�ned on morphisms in G, it is not compatiblewith ': it is perfectly possible for some � ' � to be-gin a new convergence test rather than re-using an oldone, and so fall under the third case above rather than

the fourth. (In this case the decomposition tree for �would look something like (C)(C�1) : : : (C�1 : : :�L)�brinstead). Therefore, although we seek a de�nability re-sult for the model in E , we study the model in G, onlypassing to E at the last moment.4.2 TestsIt is clear that because the Ai are so closely relatedto the !Dj , when applying test strategies to the sub-strategies in our decomposition we need to constraintheir behaviour so that each Ai is treated as an indexof its associated !Dj . Using repeated applications of dnand uncurrying, we can de�ne strategiesdnL : D ! (!D1 
 : : :
 !DL( D):From these we can easily build, for each type Tn, a mapunf : !D1 
 : : :
 !Dn ! A1 
 : : :
 Amwhich `unfolds' each Ai out of the corresponding !Dj .Then a suitable test of a strategy � : Tn ! D consistsof � : I ! (!D)n and � : D ! I?; we apply the testusing unf , saying that the test succeeds if and only if(� 
 �; unf);�;� 6=?: I ! I?. In this case we write(�; �; �)#. Otherwise, (�; �; �)".We can now state the de�nability result we wish toprove:Theorem 6 (De�nability) If � : Tn ! D and � :I ! (!D)n, � : D ! I? are test strategies such that(�; �; �)# then there is someM 2 �(C) such that [[M ]] :(!D)n ! D satis�es:{ (�; [[M ]]; �)#.{ 8�0; �0 (of suitable types) (�0; [[M ]]; �0)# )(�0; �; �0)#.Notice that in the case when Tn contains no Aj compo-nents, the second condition above reduces to [[M ]]. �.We now describe the various lemmas necessary forthe proof of this Theorem. First, we characterise thesuccessful tests of a strategy. As a preliminary, notethat any � : I ! (!D)n can be written as �y1 
 : : :
 �ynwhere each �i : I ! D. Also, if ? 6= � : D ! I? then� = dn; (�1 ( �2) for some �1 : I ! !D, �2 : D ! I?.We use these notations in the following lemma.Lemma 7 (Success Lemma) Suppose � : I ! (!D)nand � : D ! I? 6=?;>.1. (�;?; �)".2. (�; ��; �)# , (� 
 �1; �; �2)#.



3. (�; (Ci�1 : : : �L)�br; �)# , (�; �br; �)# ^�; con; (�y1 
 : : : 
 �yL); ��1(�j ; dnL) 6=? where!Dj is associated with Ai, and con denotes theL-fold contraction map !D ! (!D)L.The proofs of these facts are by considering the playwitnessing the success of a test; the last case is theonly non-trivial one. Note also that we leave the caseof (C)� as a special case of the last one.This lemma shows that the success of a test, if notimmediate (i.e. if � 6= >), depends on the success oftests of the substrategies; furthermore, the plays wit-nessing the success of these sub-tests are shorter thanthat of the main test, so a successful test can onlysearch a strategy to �nite depth. Armed with this intu-ition, we seek a method for truncating a strategy whichpasses a test, so that it still passes that test but its de-composition terminates i.e. it denotes a (�nite) term of�lC.4.3 CombinatorsHere we attempt to perform the opposite of the decom-position: we build strategies from substrategies. Thecases of the unde�ned strategy and abstraction are sim-ple: we can simply undo the decomposition, and forthis reason we use the same notation. However, as re-marked previously, the case of a convergence test is notso simple, because the branch strategy may re-use thecomponent in which the convergence test was carriedout. The idea here is that any such re-use of Aj which� might make is forced to occur instead in a fresh indexof !Di (which has no e�ect on extensional behaviour),thus overcoming the �rst problem of the decomposition.1. Unde�ned strategy For each type Tn, de�ne?Tn!Ddef= f"g : Tn ! D.2. AbstractionGiven � : Tn
 !D ! D where no Ajis associated to !D, we can form�� def= �(�); up : Tn ! D:3. Convergence test Given � : Tn 
 Aj ! D withAj = (!Dj;1 
 : : : 
 !Dj;L 
 !D ( D) associatedto !Di, and �1; : : : ; �L : (!D)n ! D, de�ne �rstunf : Tn ! Tn 
 Aj which `unfolds' Aj out of!Di. Now let �br = unf ;� : T ! D. Let �test =con;�y1 
 : : :
 �yL : (!D)n ! (!D)L. Now we cande�ne(Cj�1 : : :�L)� = f"; ��g [ f��s j s 2 �testg[ f��s�t j s 2 �test ; �t 2 �brg:

Motivated by our earlier comments, we extend thiscombinator to operate on �i : Tn ! D by sim-ply taking the projections of the �i onto the type(!D)n ! D.It is clear that all the combinators are monotone withrespect to � (at the level of strategies).Of course, all of this would be no help if the combi-nators and decomposition did not correspond closely toeach other. In fact they do, as demonstrated by the fol-lowing result, which follows from the Success Lemma.Lemma 8 (Correspondence Lemma) Suppose � :Tn ! D is such that � = (Ci�1 : : :�L)�, and let � and� be suitable test strategies. Then(�; �; �)# , (�; (Ci�1; : : : ; �L)�; �)#:Similar results are true for the other cases, for trivialreasons.We have seen that a successful test interrogates thetree of substrategies to some �nite depth, until the `�'part of the test is reduced to >; the test then suc-ceeds and no further information is asked of the strat-egy. This motivates the following de�nition.De�nition (Truncations) Given � : Tn ! D, de-�ne a sequence of strategies �k(�) : Tn ! D as follows:�0(�) def= ?�k+1(?) def= ?�k+1(��) def= ��k(�)�k+1((Ci�1 : : :�L)�) def= (Ci�k(�1) : : :�k(�L))�k(�)Note that while �k(�) � �k+1(�) for any � and k,it is not the case that �k(�) � �. However, we can�nd an strategy which passes the same test as � andcontains �, as follows:De�nition (Normalisations) Given � : Tn ! D,de�ne a sequence of strategies �k(�) : Tn ! D as fol-lows: �0(�) def= ��k+1(?) def= ?�k+1(��) def= ��k(�)�k+1((Ci�1 : : :�L)�) def= (Ci�k(�1) : : : �k(�L))�k(�)It is clear that �k(�) � �k(�), and the SuccessLemma and Correspondence Lemma show that �k(�)passes the same tests as � does, for each k.We can now prove a vital result.



Proposition 9 (Truncation Lemma) Let � : Tn !D and let � and � be suitable test strategies such that(�; �; �)#. Then 9k 2 ![(�; �k(�); �)#].The proof of this is by induction on the number ofmoves taken for the test to succeed. Once more it in-volves simultaneously proving a similar result for testsof the form (�;�y1 
 : : : 
 �;�yL); 
|this part makesessential use of the normalisation of strategies de�nedabove.Proof of De�nability Theorem In the light ofthe Truncation Lemma, since it is also clear that(�0; �k(�); �0)# ) (�0; �; �0)#, we just need to showthat the �k(�) are de�nable. We can de�ne a term�k(�) corresponding to �k(�) by induction on k. Firstwe need to decorate the type Tn with some vari-able names: each !Di has a unique variable associ-ated with it, and correspondingly the Ai are associ-ated with variables. Then we de�ne �k(�) by in-duction on k. �0(�) def= 
 and �k+1(?) def= 
.For ��0, pick a fresh variable name x not associ-ated with any of the !Di, and associate this to thenew !D in the type of �0. Then �k+1(��0) def=�x:�k(�0). For (Ci)�0, suppose x is the variable as-sociated with !Di. Then �k+1((Ci)�0) def= (Cx)�k�0.Finally, for (Ci�1 : : : �L)�br, suppose Ai is associatedwith the variable x. Then �k+1((Ci�1 : : :�L)�br) def=(Cx�k(�1) : : :�k(�L))�k(�br). It just remains to showthat the terms �k(�) indeed realise the �k(�), i.e. thatfor any test strategies � and �,(�; [[�k(�)]]; �)# , (�; �k(�); �)#:This is quite routine, using the de�nition of [[�]], theSuccess Lemma and the Correspondence Lemma. �5 Full abstractionWith the De�nability Theorem in place, we can provethe following completeness result.Theorem 10 (Completeness) For M;N 2 �(C)0,M vB N ) [[M ]] 6 [[N ]].Proof In fact we prove the contrapositive of theabove. Suppose for some M;N 2 �(C)0, [[M ]] 66 [[N ]].Let m = [[M ]] and n = [[N ]], so that for some � :D ! I?, m;� 6=? and n;� =?. Then we also havemy; der;� 6=? and ny; der;� =?. Consider the strat-egy � : !D ! D de�ned by treating der;� : !D ! I? ashaving this type. By the De�nability Theorem, thereis a term P 2 �(C) with one free variable such that

my; [[P ]] 6=? and ny; [[P ]] =?. Suppose the one freevariable of P is x. Then by the de�nition of [[�]],[[P [M=x]]] = my; [[P ]] 6= ?[[P [N=x]]] = ny; [[P ]] = ? :So by computational adequacy, P [M=x]+ and P [N=x]*,so M 6vB N . �Finally, putting the Soundness Theorem and Complete-ness Theorem together gives:Theorem 11 (Full abstraction) For all M and N 2�(C)0, M vB N , [[M ]]6 [[N ]]:References[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Fullabstraction for PCF, 1995. To appear.[2] S. Abramsky. The lazy �-calculus. In D. A. Turner,editor, Research Topics in Functional Programming,chapter 4, pages 65{117. Addison Wesley, 1990.[3] S. Abramsky and R. Jagadeesan. Games and full com-pleteness for multiplicative linear logic. Journal ofSymbolic Logic, 59(2):543 { 574, June 1994. Also ap-peared as Technical Report 92/24 of the Departmentof Computing, Imperial College of Science, Technologyand Medicine.[4] S. Abramsky, R. Jagadeesan, and P. Malacaria.Full abstraction for PCF (extended abstract). InM. Hagiya and J. C. Mitchell, editors, TheoreticalAspects of Computer Software. International Sympo-sium TACS'94, number 789 in Lecture Notes in Com-puter Science, pages 1{15, Sendai, Japan, April 1994.Springer-Verlag.[5] S. Abramsky and G. McCusker. Games for recursivetypes. In C. L. Hankin, I. C. Mackie, and R. Na-garajan, editors, Theory and Formal Methods of Com-puting 1994: Proceedings of the Second Imperial Col-lege Department of Computing Workshop on Theoryand Formal Methods. Imperial College Press, Octo-ber 1995. Also available by anonymous ftp fromtheory.doc.ic.ac.uk in directory papers/McCusker.[6] S. Abramsky and C.-H. L. Ong. Full abstraction in thelazy lambda calculus. Information and Computation,105(2):159{267, August 1993.[7] H. P. Barendregt. The Lambda Calculus: Its Syntaxand Semantics. North-Holland, revised edition, 1984.[8] G. Boudol. A lambda calculus for (strict) parallelfunctions. Information and Computation, 108:51{127,1994.[9] P.-L. Curien. Categorical Combinators, Sequential Al-gorithms and Functional Programming. Progress inTheoretical Computer Science. Birkhauser, 1993.



[10] P. J. Freyd. Algebraically complete categories. InA. Carboni et al., editors, Proc. 1990 Como Cate-gory Theory Conference, pages 95{104, Berlin, 1991.Springer-Verlag. Lecture Notes in Mathematics Vol.1488.[11] A. D. Gordon. Functional programming and In-put/Output. Distinguished Dissertations in ComputerScience. Cambridge University Press, 1994.[12] C. A. Gunter. Semantics of Programming Languages:Structures and Techniques. Foundations of Comput-ing. MIT Press, 1992.[13] M. Hennessy. A fully abstract denotational model forhigher-order processes. In Proceedings, Eighth AnnualIEEE Symposium on Logic in Computer Science [16],pages 397{408.[14] D. J. Howe. Equality in lazy computation systems.In Proceedings, Fourth Annual Symposium on Logicin Computer Science, pages 198{203. IEEE ComputerSociety Press, 1989.[15] J. M. E. Hyland and C.-H. L. Ong. On full abstrac-tion for PCF: I, II and III. 130 pages, ftp-able attheory.doc.ic.ac.uk in directory papers/Ong, 1994.[16] IEEE Computer Society Press. Proceedings, EighthAnnual IEEE Symposium on Logic in Computer Sci-ence, 1993.[17] A. Je�rey. A fully abstract semantics for concurrentgraph reduction. In Proceedings, Ninth Annual IEEESymposium on Logic in Computer Science, pages 82{91. IEEE Computer Society Press, 1994.[18] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science, 4:1{22, 1977.[19] R. Milner. Functions as processes. In Proceedings ofICALP 90, volume 443 of Lecture Notes in ComputerScience, pages 167{180. Springer-Verlag, 1990.[20] H. Nickau. Hereditarily sequential functionals. In Pro-ceedings of the Symposium on Logical Foundations ofComputer Science: Logic at St. Petersburg, Lecturenotes in Computer Science. Springer, 1994.[21] P. W. O'Hearn and J. G. Riecke. Kripke logicalrelations and PCF. Information and Computation,120(1):107{116, 1995.[22] C. H. L. Ong. Non-determinism in a functional setting.In Proceedings, Eighth Annual IEEE Symposium onLogic in Computer Science [16], pages 275{286.[23] C.-H. L. Ong. Correspondence between operationaland denotational semantics. In S. Abramsky, D. Gab-bay, and T. S. E. Maibaum, editors, Handbook of Logicin Computer Science, Vol 4, pages 269{356. OxfordUniversity Press, 1995.[24] A. M. Pitts. Relational properties of domains. Tech-nical Report 321, Cambridge Univ. Computer Labo-ratory, December 1993. 37 pages.

[25] G. Plotkin. LCF considered as a programming lan-guage. Theoretical Computer Science, 5:223{255, 1977.[26] A. Stoughton. Fully abstract models of programminglanguages. Pitman, 1988.[27] G. Winskel. The Formal Semantics of ProgrammingLanguages. Foundations of Computing. The MITPress, Cambridge, Massachusetts, 1993.


