
Lectures on the

Curry-Ho w ard Isomorphism

Morten Heine B. S�rensen

University of Cop enhagen

P a w e l Urzyczyn

University of Warsaw

Preface

The Curry-Ho w ard isomorphism states an amazing corresp ondence b et w een

systems of formal logic as encoun tered in pr o of the ory and computational

calculi as found in typ e the ory . F or instance, minimal prop ositional logic

corresp onds to simply t yp ed � -calculus, �rst-order logic corresp onds to de-

p enden t t yp es, second-order logic corresp onds to p olymorphic t yp es, etc.

The isomorphism has man y asp ects, ev en at the syn tactic lev el: form ulas

corresp ond to t yp es, pro ofs corresp ond to terms, pro v abilit y corresp onds to

inhabitation, pro of normalization corresp onds to term reduction, etc.

But there is m uc h more to the isomorphism than this. F or instance,

it is an old idea|due to Brou w er, Kolmogoro v, and Heyting, and later

formalized b y Kleene's realizabilit y in terpretation|that a constructiv e pro of

of an implication is a pro cedure that transforms pro ofs of the an teceden t

in to pro ofs of the succeden t; the Curry-Ho w ard isomorphism giv es syn tactic

represen tations of suc h pro cedures.

These notes giv e an in tro duction to parts of pro of theory and related

asp ects of t yp e theory relev an t for the Curry-Ho w ard isomorphism.

Outline

Since most calculi found in t yp e theory build on � -calculus, the notes b e-

gin, in Chapter 1, with an in tro duction to typ e-fr e e � -c alculus. The in tro-

duction deriv es the most rudimen tary prop erties of � -reduction including

the Ch urc h-Rosser theorem. It also presen ts Kleene's theorem stating that

all recursiv e functions are � -de�nable and Ch urc h's theorem stating that

� -equalit y is undecidable.

As explained ab o v e, an imp ortan t part of the Curry-Ho w ard isomor-

phism is the idea that a constructiv e pro of of an implication is a certain

pro cedure. This calls for some elab oration of what is mean t b y constructiv e

pro ofs, and Chapter 2 therefore presen ts intuitionistic pr op ositional lo gic.

The c hapter presen ts a natural deduction form ulation of minimal and in tu-

itionistic prop ositional logic. The usual seman tics in terms of Heyting alge-

bras and in terms of Kripk e mo dels are in tro duced|the former explained

i

ii Preface

on the basis of Bo olean algebras|and the soundness and completeness re-

sults are then pro v ed. An informal pro of seman tics, the so-called BHK-

in terpretation, is also presen ted.

Chapter 3 presen ts the simply typ e d � -c alculus and its most fundamen-

tal prop erties up to the sub ject reduction prop ert y and the Ch urc h-Rosser

prop ert y . The distinction b et w een simply t yp ed � -calculus �a la Ch urc h and

�a la Curry is in tro duced, and the uniqueness of t yp es prop ert y|whic h fails

for the Curry system|is pro v ed for the Ch urc h system. The equiv alence

b et w een the t w o systems, in a certain sense, is also established. The c hapter

also pro v es the w eak normalization prop ert y b y the T uring-Pra witz metho d,

and ends with Sc h wic h ten b erg's theorem stating that the n umeric functions

represen table in simply t yp ed � -calculus are exactly the extended p olyno-

mials.

This pro vides enough bac kground material for our �rst presen tation of

the Curry-Howar d isomorphism in Chapter 4, as it app ears in the con-

text of natural deduction for minimal prop ositional logic and simp y t yp ed

� -calculus. The c hapter presen ts another form ulation of natural deduction,

whic h is often used in the pro of theory literature, and whic h facilitates a �ner

distinction b et w een similar pro ofs. The exact corresp ondence b et w een nat-

ural deduction for minimal prop ositional logic and simply t yp ed � -calculus

is then presen ted. The extension to pro duct and sum t yp es is also discussed.

After a brief part on pro of-theoretical applications of the w eak normaliza-

tion prop ert y , the c hapter ends with a pro of of strong normalization using

the T ait-Girard metho d, here phrased in terms of saturated sets.

Chapter 5 presen ts the v ariation of the Curry-Ho w ard isomorphism in

whic h one replaces natural deduction b y Hilb ert style pr o ofs and simply

t yp ed � -calculus b y simply t yp ed c ombinatory lo gic. After t yp e-free com-

binators and w eak reduction|and the Ch urc h-Rosser prop ert y|the usual

translations from � -calculus to com binators, and vice v ersa, are in tro duced

and sho wn to preserv e some of the desired prop erties p ertaining to w eak

reduction and � -reduction. Then com binators with t yp es are in tro duced,

and the translations studied in this setting. Finally Hilb ert-st yle pro ofs

are in tro duced, and the connection to com binators with t yp es pro v ed. The

c hapter ends with a part on subsystems of com binators in whic h relev ance

and linearit y pla y a role.

Ha ving seen t w o logics or, equiv alen tly , t w o calculi with t yp es, Chapter 6

then studies de cision pr oblems in these calculi, mainly the t yp e c hec king,

the t yp e reconstruction, and the t yp e inhabitation problem. The t yp e re-

construction problem is sho wn to b e P-complete b y reduction to and from

uni�cation (only the reduction to uni�cation is giv en in detail). The t yp e

inhabitation problem is sho wn to b e PSP A CE-complete b y a reduction from

the satis�abilit y problem for classical second-order prop ositional form ulas.

The c hapter ends with Statman's theorem stating that equalit y on t yp ed

terms is non-elemen tary .

Outline iii

After in tro ducing natural deduction systems and Hilb ert-st yle systems,

the notes in tro duce in Chapter 7 Gen tzen's sequen t calculus systems for

prop ositional logic. Both classical and in tuitionistic v arian ts are in tro duced.

In b oth cases a somewhat rare presen tation|tak en from Pra witz|with as-

sumptions as sets, not sequences, is adopted. F or the in tuitionistic system

the cut-elimination theorem is men tioned, and from this the subform ula

prop ert y and decidabilit y of the logic are inferred. Tw o aproac hes to term

assignmen t for sequen t calculus pro ofs are studied. In the �rst approac h,

the terms are those of the simply t yp ed � -calculus. F or this approac h, the

connection b et w een normal forms and cut-free pro ofs is studied in some de-

tail. In the second approac h, the terms are in tended to mimic exactly the

rules of the calculus, and this assignmen t is used to pro v e the cut-elimination

theorem in a compact w a y .

The remaining c hapters study v ariations of the Curry-Ho w ard isomor-

phism for more expressiv e t yp e systems and logics.

In Chapter 8 w e consider the most elemen tary connections b et w een nat-

ural deduction for classic al pr op ositional lo gic and simply t yp ed � -calculus

with c ontr ol op er ators, in particular, the corresp ondence b et w een classical

pro of normalization and reduction of con trol op erators. Kolmogoro v's em-

b edding of classical logic in to in tuitionistic logic is sho wn to induce a con-

tin uation passing st yle translation whic h eliminates con trol op erators.

Chapter 9 is ab out �rst-or der lo gic. After a presen tation of the syn tax

for quan ti�ers, the pro of systems and in terpretations seen in earlier c hapters

are generalized to the �rst-order case.

Chapter 10 presen ts dep endent typ es, as manifest in the calculus � P .

The strong normalization prop ert y is pro v ed b y a translation to simply t yp ed

� -calculus . A v arian t of � P �a la Curry is in tro duced. By another translation

it is sho wn that a term is t ypable in � P �a la Curry i� it is t ypable in simply

t yp ed � -calculus. While this sho ws that t yp e reconstruction is no harder

than in simply t yp ed � -calculus, the t yp e c hec king problem in � P �a la Curry

turns out to b e undecidable. The last result of the c hapter sho ws that �rst-

order logic can b e enco ded in � P .

In Chapter 11 w e study arithmetic. The c hapter in tro duces P eano Arith-

metic (P A) and brie
y recalls G• odel's theorems and the usual result stating

that exactly the recursiv e functions can b e represen ted in P eano Arithmetic.

The notion of a pro v ably total recursiv e function is also in tro duced. Heyt-

ing arithmetic (HA) is then in tro duced and Kreisel's theorem stating that

pro v able totalit y in HA and P A coincide is presen ted. Then Kleene's real-

izabilit y in terpretation is in tro duced|as a w a y of formalizing the BHK-

in terpretation|and used to pro v e consistency of HA. G• odel's system T

is then in tro duced and pro v ed to b e strongly normalizing. The failure of

arithmetization of pro ofs of this prop ert y is men tioned. The result stating

that the functions de�nable in T are the functions pro v ably total in P eano

Arithmetic is also presen ted. Finally , G• odel's Diale ctic a in terpretation is

iv Preface

presen ted and used to pro v e consistency of HA and to pro v e that all func-

tions pro v ably total in P eano Arithmetic are de�nable in T .

Chapter 12 is ab out se c ond-or der lo gic and p olymorphism. F or the sak e

of simplicit y , only second-order prop ositional systems are considered. Natu-

ral deduction, Heyting algebras, and Kripk e mo dels are extended to the new

setting. The p olymorphic � -calculus is then presen ted, and the corresp on-

dence with second-order logic dev elop ed. After a part ab out de�nabilit y

of data t yp es, a Curry v ersion of the p olymorphic � -calculus is in tro duced,

and W ells' theorem stating that t yp e reconstruction and t yp e c hec king are

undecidable is men tioned. The strong normalization prop ert y is also pro v ed.

The last c hapter, Chapter 13, presen ts the � -cub e and pur e typ e systems.

First Barendregt's cub e is presen ted, and its systems sho wn equiv alen t to

previous form ulations b y means of a classi�cation result. Then the cub e is

geneneralized to pure t yp e systems whic h are then dev elop ed in some detail.

Ab out the notes

Eac h c hapter is pro vided with a n um b er of exercises. W e recommend that

the reader try as man y of these as p ossible. A t the end of the notes, answ ers

and hin ts are pro vided to some of the exercises.

1

The notes co v er material from the follo wing sources:

� Girard, Lafon t, T a ylor: Pr o ofs and T yp es, Cam bridge T racts in Theo-

retical Computer Science 7, 1989.

� T ro elstra, Sc h wic h ten b erg: Basic Pr o of The ory, Cam bridge T racts in

Theoretical Computer Science 43, 1996.

� Hindley: Basic Simple T yp e The ory, Cam bridge T racts in Theoretical

Computer Science 42, 1997.

� Barendregt: Lam b da Calculi with T yp es, pages 117{309 of A br am-

sky, S. and D.M. Gabb ay and T.S.E. Maib aum , editors, Handb o ok of

L o gic in Computer Scienc e , V olume I I, Oxford Univ ersit y Press, 1992.

Either of these sources mak e excellen t supplemen tary reading.

The notes are largely self-con tained, although a greater appreciation of

some parts can probably b e obtained b y readers familiar with mathemat-

ical logic, recursion theory and complexit y . W e recommend the follo wing

textb o oks as basic references for these areas:

� Mendelson: Intr o duction to Mathematic al L o gic , fourth edition, Chap-

man & Hall, London, 1997.

1

This part is quite incomplete due to the \w ork-in-progress" c haracter of the notes.

Ab out the notes v

� Jones: Computability and Complexity F r om a Pr o gr amming Persp e c-

tive, MIT Press, 1997.

The notes ha v e b een used for a one-semester graduate/Ph.D. course

at the Departmen t of Computer Science at the Univ ersit y of Cop enhagen

(DIKU). Roughly one c hapter w as presen ted at eac h lecture, sometimes

lea ving material out.

The notes are still in progress and should not b e conceiv ed as ha ving

b een pro of read carefully to the last detail. Nev ertheless, w e are grateful

to the studen ts attending the course for p oin ting out n umerous t yp os, for

sp otting actual mistak es, and for suggesting impro v emen ts to the exp osition.

This join t w ork w as made p ossible thanks to the visiting p osition funded

b y the Univ ersit y of Cop enhagen, and held b y the second author at DIKU

in the win ter and summer semesters of the academic y ear 1997-8.

M.H.B.S. & P .U., Ma y 1998

vi

Con ten ts

Preface i

Outline . i

Ab out the notes . iv

1 T yp e-free � -calculus 1

1.1 � -terms . 1

1.2 Reduction . 6

1.3 Informal in terpretation . 7

1.4 The Ch urc h-Rosser Theorem 8

1.5 Expressibilit y and undecidabilit y 11

1.6 Historical remarks . 19

1.7 Exercises . 19

2 In tuitionistic logic 23

2.1 In tuitiv e seman tics . 24

2.2 Natural deduction . 25

2.3 Algebraic seman tics of classical logic 28

2.4 Heyting algebras . 30

2.5 Kripk e seman tics . 34

2.6 The implicational fragmen t 36

2.7 Exercises . 37

3 Simply t yp ed � -calculus 41

3.1 Simply t yp ed � -calculus �a la Curry 41

3.2 Simply t yp ed � -calculus �a la Ch urc h 45

3.3 Ch urc h v ersus Curry t yping 49

3.4 Normalization . 51

3.5 Expressibilit y . 52

3.6 Exercises . 54

vii

viii Con ten ts

4 The Curry-Ho w ard isomorphism 57

4.1 Natural deduction without con texts 57

4.2 The Curry-Ho w ard isomorphism 63

4.3 Consistency from normalization 68

4.4 Strong normalization . 68

4.5 Historical remarks . 71

4.6 Exercises . 72

5 Pro ofs as com binators 75

5.1 Com binatory logic . 75

5.2 T yp ed com binators . 79

5.3 Hilb ert-st yle pro ofs . 81

5.4 Relev ance and linearit y . 83

5.5 Historical remarks . 87

5.6 Exercises . 87

6 T yp e-c hec king and related problems 89

6.1 Hard and complete . 90

6.2 The 12 v arian ts . 91

6.3 (First-order) uni�cation . 92

6.4 T yp e reconstruction algorithm 95

6.5 Eta-reductions . 97

6.6 T yp e inhabitation . 99

6.7 Equalit y of t yp ed terms . 101

6.8 Exercises . 101

7 Sequen t calculus 105

7.1 Classical sequen t calculus . 106

7.2 In tuitionistic sequen t calculus 109

7.3 Cut elimination . 113

7.4 T erm assignmen t for sequen t calculus 115

7.5 The general case . 118

7.6 Alternativ e term assignmen t 121

7.7 Exercises . 125

8 Classical logic and con trol op erators 127

8.1 Classical prop ositional logic, implicational fragmen t 127

8.2 The full system . 131

8.3 T erms for classical pro ofs . 132

8.4 Classical pro of normalization 133

8.5 De�nabilit y of pairs and sums 135

8.6 Em b edding in to in tuitionistic prop ositional logic 136

8.7 Con trol op erators and CPS translations 138

8.8 Historical remarks . 140

Con ten ts ix

8.9 Exercises . 141

9 First-order logic 143

9.1 Syn tax of �rst-order logic . 143

9.2 In tuitiv e seman tics . 145

9.3 Pro of systems . 146

9.4 Seman tics . 150

9.5 Exercises . 153

10 Dep enden t t yp es 155

10.1 System � P . 156

10.2 Rules of � P . 158

10.3 Prop erties of � P . 159

10.4 Dep enden t t yp es �a la Curry 161

10.5 Existen tial quan ti�cation . 162

10.6 Corresp ondence with �rst-order logic 163

10.7 Exercises . 165

11 First-order arithmetic and G• odel's T 169

11.1 The language of arithmetic 169

11.2 P eano Arithmetic . 170

11.3 Represen table and pro v ably recursiv e functions 172

11.4 Heyting Arithmetic . 174

11.5 Kleene's realizabilit y in terpretation 176

11.6 G• odel's System T . 179

11.7 G• odel's Diale ctic a in terpretation 183

11.8 Exercises . 187

12 Second-order logic and p olymorphism 191

12.1 Prop ositional second-order form ulas 191

12.2 Seman tics . 193

12.3 P olymorphic lam b da-calculus (System F) 196

12.4 Expressiv e p o w er . 199

12.5 Curry-st yle p olymorphism . 203

12.6 Strong normalization of second-order t yp ed � -calculus 205

12.7 Exercises . 207

13 The � -cub e and pure t yp e systems 209

13.1 In tro duction . 209

13.2 Barendregt's � -cub e . 211

13.3 Example deriv ations . 214

13.4 Classi�cation and equiv alence with previous form ulations . . 217

13.5 Pure t yp e systems . 219

13.6 Examples of pure t yp e systems 221

x Con ten ts

13.7 Prop erties of pure t yp e systems 222

13.8 The Barendregt-Geuv ers-Klop conjecture 225

14 Solutions and hin ts to selected exercises 227

CHAPTER 1

T yp e-free � -calculus

The � -c alculus is a collection of formal theories of in terest in, e.g., computer

science and logic. The � -calculus and the related systems of c ombinatory

lo gic w ere originally prop osed as a foundation of mathematics around 1930

b y Ch urc h and Curry , but the prop osed systems w ere subsequen tly sho wn

to b e inconsisten t b y Ch urc h's studen ts Kleene and Rosser in 1935.

Ho w ev er, a certain subsystem consisting of the � -terms equipp ed with

so-called � -r e duction turned out to b e useful for formalizing the in tuitiv e

notion of e�ectiv e computabilit y and led to Chur ch's thesis stating that

� -de�nability is an appropriate formalization of the in tuitiv e notion of e�ec-

tiv e computabilit y . The study of this subsystem|whic h w as pro v ed to b e

consisten t b y Ch urc h and Rosser in 1936|w as a main inspiration for the

dev elopmen t of r e cursion the ory.

With the in v en tion of ph ysical computers came also programming lan-

guages, and � -calculus has pro v ed to b e a useful to ol in the design, imple-

men tation, and theory of programming languages. F or instance, � -calculus

ma y b e considered an idealized sublanguage of some programming languages

lik e LISP. Also, � -calculus is useful for expressing seman tics of program-

ming languages as done in denotational semantics . According to Hindley

and Seldin [55 , p.43], \ � -calculus and com binatory logic are regarded as

`test-b eds' in the study of higher-order programming languages: tec hniques

are tried out on these t w o simple languages, dev elop ed, and then applied to

other more `practical' languages."

The � -calculus is sometimes called typ e-fr e e or untyp e d to distinguish it

from v arian ts in whic h typ es pla y a role; these v arian ts will b e in tro duced

in the next c hapter.

1.1. � -terms

The ob jects of study in � -calculus are � -terms. In order to in tro duce these,

it is con v enien t to in tro duce the notion of a pr e-term.

1

2 Chapter 1. T yp e-free � -calculus

1.1.1. Definition . Let

V = f v

0

; v

1

; : : : g

denote an in�nite alphab et. The set �

�

of pr e-terms is the set of strings

de�ned b y the grammar:

�

�

::= V j (�

�

�

�

) j (�V �

�

)

1.1.2. Example . The follo wing are pre-terms.

(i) ((v

0

v

1

) v

2

) 2 �

�

;

(ii) (�v

0

(v

0

v

1

)) 2 �

�

;

(iii) ((�v

0

v

0

) v

1

) 2 �

�

;

(iv) ((�v

0

(v

0

v

0

)) (�v

1

(v

1

v

1

))) 2 �

�

.

1.1.3. Not a tion . W e use upp ercase letters, e.g., K ; L; M ; N ; P ; Q; R with or

without subscripts to denote arbitrary elemen ts of �

�

and lo w ercase letters,

e.g., x; y ; z with or without subscripts to denote arbitrary elemen ts of V .

1.1.4. Terminology .

(i) A pre-term of form x (i.e., an elemen t of V) is called a variable ;

(ii) A pre-term of form (�x M) is called an abstr action (o v er x);

(iii) A pre-term of form (M N) is called an applic ation (of M to N).

The hea vy use of paren theses is rather cum b ersome. W e therefore in tro-

duce the follo wing, standard con v en tions for omitting paren theses without

in tro ducing am biguit y . W e shall mak e use of these con v en tions under a

no-compulsion/no-prohibition agreemen t|see Remark 1.1.10.

1.1.5. Not a tion . W e use the shorthands

(i) (K L M) for ((K L) M);

(ii) (�x �y M) for (�x (�y M));

(iii) (�x M N) for (�x (M N));

(iv) (M �x N) for (M (�x N)).

W e also omit outermost paren theses.

1.1.6. Remark . The t w o �rst shorthands concern nested applications and

abstractions, resp ectiv ely . The t w o next ones concern applications nested

inside abstractions and vice v ersa, resp ectiv ely .

T o remem b er the shorthands, think of application as asso ciating to the

left, and think of abstractions as extending as far to the righ t as p ossible.

1.1. � -terms 3

When abstracting o v er a n um b er of v ariables, eac h v ariable m ust b e

accompanied b y an abstraction. It is therefore con v enien t to in tro duce the

follo wing shorthand.

1.1.7. Not a tion . W e write �x

1

: : : x

n

:M for �x

1

: : : �x

n

M . As a sp ecial

case, w e write �x:M for �x M .

1.1.8. Remark . Whereas abstractions are written with a � , there is no cor-

resp onding sym b ol for applications; these are written simply b y juxtap osi-

tion. Hence, there is no corresp onding shorthand for applications.

1.1.9. Example . The pre-terms in Example 1.1.2 can b e written as follo ws,

resp ectiv ely:

(i) v

0

v

1

v

2

;

(ii) �v

0

:v

0

v

1

;

(iii) (�v

0

:v

0

) v

1

;

(iv) (�v

0

:v

0

v

0

) �v

1

:v

1

v

1

.

1.1.10. Remark . The con v en tions men tioned ab o v e are used in the remain-

der of these notes. Ho w ev er, w e refrain from using them|wholly or partly|

when w e �nd this more con v enien t. F or instance, w e migh t prefer to write

(�v

0

:v

0

v

0

) (�v

1

:v

1

v

1

) for the last term in the ab o v e example.

1.1.11. Definition . F or M 2 �

�

de�ne the set FV (M) � V of fr e e variables

of M as follo ws.

FV (x) = f x g ;

FV (�x:P) = FV (P) nf x g ;

FV (P Q) = FV (P) [FV (Q) :

If FV (M) = fg then M is called close d.

1.1.12. Example . Let x; y ; z denote distinct v ariables. Then

(i) FV (x y z) = f x; y ; z g ;

(ii) FV (�x:x y) = f y g ;

(iii) FV ((�x:x x) �y :y y) = fg .

1.1.13. Definition . F or M ; N 2 �

�

and x 2 V , the substitution of N for x

in M , written M [x := N] 2 �

�

, is de�ned as follo ws, where x 6= y :

x [x := N] = N ;

y [x := N] = y ;

(P Q)[x := N] = P [x := N] Q [x := N];

(�x:P)[x := N] = �x:P ;

(�y :P)[x := N] = �y :P [x := N] ; if y 62 FV (N) or x 62 FV (P) ;

(�y :P)[x := N] = �z :P [y := z][x := N] ; if y 2 FV (N) and x 2 FV (P).

4 Chapter 1. T yp e-free � -calculus

where z is c hosen as the v

i

2 V with minimal i suc h that v

i

62 FV (P) [FV (N)

in the last clause.

1.1.14. Example . If x; y ; z are distinct v ariables, then for a certain v ari-

able u :

((�x:x y z) (�y :x y z) (�z :x y z))[x := y] = (�x:x y z) (�u:y u z) (�z :y y z)

1.1.15. Definition . Let � -e quivalenc e, written =

�

, b e the smallest relation

on �

�

, suc h that

P =

�

P for all P ;

�x:P =

�

�y :P [x := y] if y 62 FV (P),

and closed under the rules:

P =

�

P

0

) 8 x 2 V : �x:P =

�

�x:P

0

;

P =

�

P

0

) 8 Z 2 �

�

: P Z =

�

P

0

Z ;

P =

�

P

0

) 8 Z 2 �

�

: Z P =

�

Z P

0

;

P =

�

P

0

) P

0

=

�

P ;

P =

�

P

0

& P

0

=

�

P

00

) P =

�

P

0 0

:

1.1.16. Example . Let x; y ; z denote di�eren t v ariables. Then

(i) �x:x =

�

�y :y ;

(ii) �x:x z =

�

�y :y z ;

(iii) �x:�y :x y =

�

�y :�x:y x ;

(iv) �x:x y 6=

�

�x:x z .

1.1.17. Definition . De�ne for an y M 2 �

�

, the e quivalenc e class [M]

�

b y:

[M]

�

= f N 2 �

�

j M =

�

N g

Then de�ne the set � of � -terms b y:

� = �

�

= =

�

= f [M]

�

j M 2 �

�

g

1.1.18. W arning . The notion of a pre-term and the asso ciated explicit dis-

tinction b et w een pre-terms and � -terms in tro duced ab o v e are not standard

in the literature. Rather, it is customary to call our pre-terms � -terms, and

then informally remark that � -equiv alen t � -terms are \iden ti�ed."

In the remainder of these notes w e shall b e almost exclusiv ely concerned

with � -terms, not pre-terms. Therefore, it is con v enien t to in tro duce the

follo wing.

1.1. � -terms 5

1.1.19. Not a tion . W e write M instead of [M]

�

in the remainder. This

leads to am biguit y: is M a pre-term or a � -term? In the remainder of these

notes, M should alw a ys b e construed as [M]

�

2 �, exc ept when explicitly

state d otherwise.

W e end this section with t w o de�nitions in tro ducing the notions of free

v ariables and substitution on � -terms (recall that, so far, these notions ha v e

b een in tro duced only for pre-terms). These t w o de�nitions pro vide the �rst

example of ho w to rigorously understand de�nitions in v olving � -terms.

1.1.20. Definition . F or M 2 � de�ne the set FV (M) � V of fr e e variables

of M as follo ws.

FV (x) = f x g ;

FV (�x:P) = FV (P) nf x g ;

FV (P Q) = FV (P) [FV (Q) :

If FV (M) = fg then M is called close d.

1.1.21. Remark . According to Notation 1.1.19, what w e really mean b y this

is that w e de�ne FV as the map from � to subsets of V satisfying the rules:

FV ([x]

�

) = f x g ;

FV ([�x:P]

�

) = FV ([P]

�

) nf x g ;

FV ([P Q]

�

) = FV ([P]

�

) [FV ([Q]

�

) :

Strictly sp eaking w e then ha v e to demonstrate there there is at most one suc h

function (uniqueness) and that there is at least one suc h function (existence).

Uniqueness can b e established b y sho wing for an y t w o functions FV

1

and

FV

2

satisfying the ab o v e equations, and an y � -term, that the results of FV

1

and FV

2

on the � -term are the same. The pro of pro ceeds b y induction on

the n um b er of sym b ols in an y mem b er of the equiv alence class.

T o demonstrate existence, consider the map that, giv en an equiv alence

class, pic ks a mem b er, and tak es the free v ariables of that. Since an y c hoice

of mem b er yields the same set of v ariables, this latter map is w ell-de�ned,

and can easily b e seen to satisfy the ab o v e rules.

In the rest of these notes suc h considerations will b e left implicit.

1.1.22. Definition . F or M ; N 2 � and x 2 V , the substitution of N for x

in M , written M f x := N g , is de�ned as follo ws:

x [x := N] = N ;

y [x := N] = y ; if x 6= y ;

(P Q)[x := N] = P [x := N] Q [x := N];

(�y :P)[x := N] = �y :P [x := N] ; if x 6= y , where y 62 FV (N).

1.1.23. Example .

(i) (�x:x y)[x := �z :z] = �x:x y ;

(ii) (�x:x y)[y := �z :z] = �x:x �z :z .

6 Chapter 1. T yp e-free � -calculus

1.2. Reduction

Next w e in tro duce reduction on � -terms.

1.2.1. Definition . Let !

�

b e the smallest relation on � suc h that

(�x:P) Q !

�

P [x := Q] ;

and closed under the rules:

P !

�

P

0

) 8 x 2 V : �x:P !

�

�x:P

0

P !

�

P

0

) 8 Z 2 � : P Z !

�

P

0

Z

P !

�

P

0

) 8 Z 2 � : Z P !

�

Z P

0

A term of form (�x:P) Q is called a � -r e dex, and P [x := Q] is called its

� -c ontr actum . A term M is a � -normal form if there is no term N with

M !

�

N .

There are other notions of reduction than � -reduction, but these will not

b e considered in the presen t c hapter. Therefore, w e sometimes omit \ � -"

from the notions � -r e dex, � -r e duction, etc.

1.2.2. Definition .

(i) The relation !!

�

(multi-step � -r e duction) is the transitiv e-re
exiv e clo-

sure of !

�

; that is, !!

�

is the smallest relation closed under the rules:

P !

�

P

0

) P !!

�

P

0

;

P !!

�

P

0

& P

0

!!

�

P

00

) P !!

�

P

00

;

P !!

�

P :

(ii) The relation =

�

(� -e quality) is the transitiv e-re
exiv e-symmetric clo-

sure of !

�

; that is, =

�

is the smallest relation closed under the rules:

P !

�

P

0

) P =

�

P

0

;

P =

�

P

0

& P

0

=

�

P

00

) P =

�

P

00

;

P =

�

P ;

P =

�

P

0

) P

0

=

�

P :

1.2.3. W arning . In these notes, the sym b ol = without an y quali�cation is

used to express the fact that t w o ob jects, e.g., pre-terms or � -terms are

iden tical. This sym b ol is v ery often used in the literature for � -equalit y .

1.2.4. Example .

(i) (�x:x x) �z :z !

�

(x x)[x := �z :z] = (�z :z) �y :y ;

(ii) (�z :z) �y :y !

�

z [z := �y :y] = �y :y ;

(iii) (�x:x x) �z :z !!

�

�y :y ;

(iv) (�x:x) y z =

�

y ((�x:x) z).

1.3. Informal in terpretation 7

1.3. Informal in terpretation

Informally , � -terms express functions and applications of functions in a pure

form. F or instance, the � -term

I = �x:x

in tuitiv ely denotes the function that maps an y argumen t to itself, i.e., the

iden tit y function. This is similar to the notation n 7! n emplo y ed in math-

ematics. Ho w ev er, �x:x is a string o v er an alphab et with sym b ols � , x , etc.

(or rather an equiv alence class of suc h ob jects), whereas n 7! n is a function,

i.e., a certain set of pairs. The di�erence is the same as that b et w een a pr o-

gr am written in some language and the mathematical function it computes,

e.g., addition.

As in the notation n 7! n , the name of the abstracted v ariable x in �x:x

is not signi�can t, and this is wh y w e iden tify �x:x with, e.g., �y :y .

Another � -term is

K

�

= �y :�x:x

whic h, in tuitiv ely , denotes the function that maps an y argumen t to a func-

tion, namely the one that maps an y argumen t to itself, i.e., the iden tit y

function. This is similar to programming languages where a function ma y

return a function as a result. A related � -term is

K = �y :�x:y

whic h, in tuitiv ely , denotes the function that maps an y argumen t to the

function that, for an y argumen t, returns the former argumen t.

Since � -terms in tuitiv ely denote functions, there is a w a y to in v ok e one

� -term on another; this is expressed b y application. Th us, the � -term

I K

expresses application of I to K . Since K in tuitiv ely denotes a function to o,

I denotes a function whic h ma y ha v e another function as argumen t. This is

similar to programming languages where a pro cedure ma y receiv e another

pro cedure as argumen t.

In mathematics w e usually write application of a function, sa y f (n) = n

2

,

to an argumen t, sa y 4, with the argumen t in paren theses: f (4). In the

� -calculus w e w ould rather write this as (f 4), or just f 4, k eeping Nota-

tion 1.1.5 in mind. Not all paren theses can b e omitted, though; for instance,

(�x:x) I �x:x I

are not the same � -term; the �rst is I applied to I , whereas the second

exp ects an argumen t x whic h is applied to I .

8 Chapter 1. T yp e-free � -calculus

In tuitiv ely , if �x:M denotes a function, and N denotes an argumen t,

then the the v alue of the function on the argumen t is denoted b y the � -term

that arises b y substituting N for x in M . This latter � -term is exactly the

term

M [x := N]

This is similar to common practice in mathematics; if f is as ab o v e, then

f (4) = 4

2

, and w e get from the application f (4) to the v alue 4

2

b y substi-

tuting 4 for n in the b o dy of the de�nition of f .

The pro cess of calculating v alues is formalized b y � -reduction. Indeed,

M !

�

N if N arises from M b y replacing a � -redex, i.e., a part of form

(�x:P) Q

b y its � -con tractum.

P [x := Q]

F or instance,

I K = (�x:x) K !

�

x [x := K] = K

Then the relation !!

�

formalizes the pro cess of computing the o v erall result.

Also, =

�

iden ti�es � -terms that, in tuitiv ely , denote the same function.

Note that � -calculus is a typ e-fr e e formalism. Unlik e common mathe-

matical practice, w e do not insist that � -terms denote functions from cer-

tain domains, e.g., the natural n um b ers, and that argumen ts b e dra wn from

these domains. In particular, w e ma y ha v e self-application as in the � -term

! = �x:x x

and w e ma y apply this � -term to itself as in the � -term

 = ! !

The t yp e-free nature of � -calculus leads to some in teresting phenomena;

for instance, a � -term ma y reduce to itself as in

 = (�x:x x) ! !

�

! ! =

Therefore, there are also � -terms with in�nite reduction sequences, lik e

 !

�

 !

�

: : :

1.4. The Ch urc h-Rosser Theorem

Since a � -term M ma y con tain sev eral � -redexes, i.e., sev eral parts of form

(�x:P) Q , there ma y b e sev eral N suc h that M !

�

N . F or instance,

K (I I) !

�

�x: (I I)

1.4. The Ch urc h-Rosser Theorem 9

and also

K (I I) !

�

K I

Ho w ev er, the Chur ch-R osser the or em, pro v ed b elo w, states that if

M !!

�

M

1

and

M !!

�

M

2

then a single � -term M

3

can b e found with

M

1

!!

�

M

3

and

M

2

!!

�

M

3

In particular, if M

1

and M

2

are � -normal forms, i.e., � -terms that admit

no further � -reductions, then they m ust b e the same � -term, since the � -

reductions from M

1

and M

2

to M

3

m ust b e in zero steps. This is similar to

the fact that when w e calculate the v alue of an arithmetical expression, e.g.,

(4 + 2) � (3 + 7) � 11

the end result is indep enden t of the order in whic h w e do the calculations.

1.4.1. Definition . A relation > on � satis�es the diamond pr op erty if, for

all M

1

; M

2

; M

3

2 �, if M

1

> M

2

and M

1

> M

3

, then there exists an M

4

2 �

suc h that M

2

> M

4

and M

3

> M

4

.

1.4.2. Lemma . L et > b e a r elation on � and supp ose that its tr ansitive clo-

sur e

1

is !!

�

. If > satis�es the diamond pr op erty, then so do es !!

�

.

Pr oof. First sho w b y induction on n that M

1

> N

1

and M

1

> : : : > M

n

implies that there are N

2

; : : : ; N

n

suc h that N

1

> N

2

> : : : > N

n

and

M

n

> N

n

.

Using this prop ert y , sho w b y induction on m that if N

1

> : : : > N

m

and

N

1

>

�

M

1

then there are M

2

; : : : ; M

m

suc h that M

1

> M

2

> : : : > M

m

and

N

m

>

�

M

m

.

1

Let R b e a relation on �. The tr ansitive closur e of R is the least relation R

�

satisfying:

P R P

0

) P R

�

P

0

P R

�

P

0

& P

0

R

�

P

0 0

) P R

�

P

00

The r e
exive closur e of R is the least relation R

=

satisfying:

P R P

0

) P R

=

P

0

P R

=

P

10 Chapter 1. T yp e-free � -calculus

No w assume M

1

!!

�

M

2

and M

1

!!

�

M

3

. Since !!

�

is the transitiv e

closure of > w e ha v e M

1

> : : : > M

2

and M

1

> : : : > M

3

. By what w as

sho wn ab o v e, w e can �nd M

4

suc h that M

2

> : : : > M

4

and M

3

> : : : > M

4

.

Since !!

�

is the transitiv e closure of > , also M

2

!!

�

M

4

and M

3

!!

�

M

4

. ut

1.4.3. Definition . Let !!

l

b e the relation on � de�ned b y:

P !!

l

P

P !!

l

P

0

) �x:P !!

l

�x:P

0

P !!

l

P

0

& Q !!

l

Q

0

) P Q !!

l

P

0

Q

0

P !!

l

P

0

& Q !!

l

Q

0

) (�x:P) Q !!

l

P

0

[x := Q

0

]

1.4.4. Lemma . M !!

l

M

0

& N !!

l

N

0

) M [x := N] !!

l

M

0

[x := N

0

] .

Pr oof. By induction on the de�nition of M !!

l

M

0

. In case M

0

is M ,

pro ceed b y induction on M . ut

1.4.5. Lemma . !!

l

satis�es the diamond pr op erty, i.e., for al l M

1

; M

2

; M

3

2 � ,

if M

1

!!

l

M

2

and M

1

!!

l

M

3

, then ther e exists an M

4

2 � such that

M

2

!!

l

M

4

and M

3

!!

l

M

4

.

Pr oof. By induction on the de�nition of M

1

!!

l

M

2

, using the ab o v e

lemma. ut

1.4.6. Lemma . !!

�

is the tr ansitive closur e of !!

l

.

Pr oof. Clearly

2

(!

�

)

=

� !!

l

� !!

�

Then

!!

�

= ((!

�

)

=

)

�

� !!

�

l

� (!!

�

)

�

= !!

�

In particular, !!

�

l

= !!

�

. ut

1.4.7. Theorem (Ch urc h and Rosser, 1936). F or every M

1

; M

2

; M

3

2 � , if

M

1

!!

�

M

2

and M

1

!!

�

M

3

, then ther e exists an M

4

2 � such that M

2

!!

�

M

4

and M

3

!!

�

M

4

.

Pr oof (T ait & Martin-L• of). By the ab o v e three lemmas. ut

1.4.8. Cor ollar y . F or al l M ; N 2 � , if M =

�

N , then ther e exists an

L 2 � such that M !!

�

L and N !!

�

L .

1.4.9. Cor ollar y . F or al l M ; N

1

; N

2

2 � , if M !!

�

N

1

and M !!

�

N

2

and

b oth N

1

and N

2

ar e in � -normal form, then N

1

= N

2

.

2

Recall the relations R

�

and R

=

de�ned earlier.

1.5. Expressibilit y and undecidabilit y 11

1.4.10. Cor ollar y . F or al l M ; N 2 � , if ther e ar e � -normal forms L

1

and

L

2

such that M !!

�

L

1

, N !!

�

L

2

, and L

1

6= L

2

, then M 6=

�

N .

1.4.11. Example . �x:x 6=

�

�x:�y :x .

1.4.12. Remark . One can consider the lam b da calculus as an equational

theory , i.e., a formal theory with form ulas of the form M =

�

N . The

preceding example establishes c onsistency of this theory , in the follo wing

sense: there exists a form ula P whic h cannot b e pro v ed.

This ma y seem to b e a v ery w eak prop ert y , compared to \one cannot

pro v e a con tradiction" (where a suitable notion of \con tradiction" in ordi-

nary logic is e.g., P ^ : P). But note that in most formal theories, where a

notion of con tradiction can b e expressed, its pro v abilit y implies pro v abilit y

of all form ulas. Th us, consistency can b e equally w ell de�ned as \one cannot

pro v e ev erything".

1.5. Expressibilit y and undecidabilit y

Although w e ha v e giv en an informal explanation of the meaning of � -terms

it remains to explain in what sense � -reduction more precisely can express

computation. In this section w e sho w that � -calculus can b e seen as an

alternativ e form ulation of recursion theory .

The follo wing giv es a w a y of represen ting n um b ers as � -terms.

1.5.1. Definition .

(i) F or an y n 2 N and F ; A 2 � de�ne F

n

(A) (n -times iter ate d applic ation

of F to A) b y:

F

0

(A) = A

F

n +1

(A) = F (F

n

(A))

(ii) F or an y n 2 N , the Chur ch numer al c

n

is the � -term

c

n

= �s:�z :s

n

(z)

1.5.2. Example .

(i) c

0

= �s:�z :z ;

(ii) c

1

= �s:�z :s z ;

(iii) c

2

= �s:�z :s (s z);

(iv) c

3

= �s:�z :s (s (s z)).

1.5.3. Remark . c

n

is the n um b er n represen ted inside the � -calculus.

The follo wing sho ws ho w to do arithmetic on Ch urc h n umerals.

12 Chapter 1. T yp e-free � -calculus

1.5.4. Pr oposition (Rosser). L et

A

+

= �x:�y :�s:�z :x s (y s z);

A

�

= �x:�y :�s:x (y s);

A

e

= �x:�y :y x:

Then

A

+

c

n

c

m

= c

n + m

;

A

�

c

n

c

m

= c

n � m

;

A

e

c

n

c

m

= c

n

m

if m > 0 :

Pr oof. F or an y n 2 N ,

c

n

s z = (�f :�x:f

n

(x)) s z

=

�

(�x:s

n

(x)) z

=

�

s

n

(z)

Th us

A

+

c

n

c

m

= (�x:�y :�s:�z :x s (y s z)) c

n

c

m

=

�

�s:�z :c

n

s (c

m

s z)

=

�

�s:�z :c

n

s (s

m

(z))

=

�

�s:�z :s

n

(s

m

(z))

= �s:�z :s

n + m

(z)

= c

n + m

The similar prop erties for m ultiplication and exp onen tiation are left as ex-

ercises. ut

1.5.5. Remark . Recall that M =

�

N when, in tuitiv ely , M and N denote

the same ob ject. F or instance I I =

�

I since b oth terms, in tuitiv ely , denote

the iden tit y function.

No w consider the t w o terms

A

s

= �x:�s:�z :s (x s z)

A

0

s

= �x:�s:�z :x s (s z)

It is easy to calculate that

A

s

c

n

=

�

c

n +1

A

0

s

c

n

=

�

c

n +1

So b oth terms denote, informally , the successor function on Ch urc h n umer-

als, but the t w o terms are not � -equal (wh y not?)

The follo wing sho ws ho w to de�ne b o oleans and conditionals inside � -

calculus.

1.5. Expressibilit y and undecidabilit y 13

1.5.6. Pr oposition . De�ne

true = �x:�y :x ;

false = �x:�y :y ;

if B then P else Q = B P Q:

Then

if true then P else Q =

�

P ;

if false then P else Q =

�

Q:

Pr oof. W e ha v e:

if true then P else Q = (�x:�y :x) P Q

=

�

(�y :P) Q

=

�

P :

The pro of that if false then P else Q =

�

Q is similar. ut

W e can also de�ne pairs in � -calculus.

1.5.7. Pr oposition . De�ne

[P ; Q] = �x:x P Q ;

�

1

= �x:�y :x ;

�

2

= �x:�y :y :

Then

[P ; Q] �

1

=

�

P ;

[P ; Q] �

2

=

�

Q:

Pr oof. W e ha v e:

[P ; Q] �

1

= (�x:x P Q) �x:�y :x

=

�

(�x:�y :x) P Q

=

�

(�y :P) Q

=

�

P :

The pro of that [P ; Q] �

2

=

�

Q is similar. ut

1.5.8. Remark . Note that w e do not ha v e [M �

1

; M �

2

] =

�

M for all

M 2 �; that is, our pairing op erator is not surje ctive.

1.5.9. Remark . The construction is easily generalized to tuples [M

1

; : : : ; M

n

]

with pro jections �

i

where i 2 f 1 ; : : : ; n g .

The follo wing giv es one w a y of expressing recursion in � -calculus.

14 Chapter 1. T yp e-free � -calculus

1.5.10. Theorem (Fixed p oin t theorem). F or al l F ther e is an X such that

F X =

�

X

In fact, ther e is a � -term Y such that, for al l F :

F (Y F) =

�

Y F

Pr oof. Put

Y = �f : (�x:f (x x)) �x:f (x x)

Then

Y F = (�f : (�x:f (x x)) �x:f (x x)) F

=

�

(�x:F (x x)) �x:F (x x)

=

�

F ((�x:F (x x)) �x:F (x x))

=

�

F ((�f : (�x:f (x x)) �x:f (x x)) F)

= F (Y F)

as required. ut

1.5.11. Cor ollar y . Given M 2 � ther e is F 2 � such that:

F =

�

M [f := F]

Pr oof. Put

F = Y �f :M

Then

F = Y �f :M

=

�

(�f :M) (Y �f :M)

= (�f :M) F

=

�

M [f := F]

as required. ut

Corollary 1.5.11 allo ws us to write r e cursive de�nitions of � -terms; that

is, w e ma y de�ne F as a � -term satisfying a �xe d p oint e quation F =

�

�x:M

where the term F o ccurs somewhere inside M . Ho w ev er, there ma y b e

sev eral terms F satisfying this equation (will these b e � -equal?).

1.5.12. Example . Let C b e some � -term whic h expresses a condition, i.e.,

let C c

n

=

�

true or C c

n

=

�

false , for all n 2 N . Let S de�ne the successor

function (see Remark 1.5.5). Supp ose w e w an t to compute in � -calculus, for

an y n um b er, the smallest n um b er greater than the giv en one that satis�es

the condition. This is expressed b y the � -term F :

H = �f :�x: if (C x) then x else f (S x)

F = Y H

1.5. Expressibilit y and undecidabilit y 15

Indeed, for example

F c

4

= (Y H) c

4

=

�

H (Y H) c

4

= (�f :�x: if (C x) then x else f (S x)) (Y H) c

4

=

�

if (C c

4

) then c

4

else (Y H) (S c

4

)

= if (C c

4

) then c

4

else F (S c

4

)

So far w e ha v e b een informal as to ho w � -terms \express" certain func-

tions. This notion is made precise as follo ws.

1.5.13. Definition .

(i) A numeric function is a map

f : N

m

! N :

(ii) A n umeric function f : N

m

! N is � -de�nable if there is an F 2 � suc h

that

F c

n

1

: : : c

n

m

=

�

c

f (n

1

;::: ;n

m

)

for all n

1

; : : : ; n

m

2 N .

1.5.14. Remark . By the Ch urc h-Rosser prop ert y , (ii) implies that, in fact,

F c

n

1

: : : c

n

m

!!

�

c

f (n

1

;::: ;n

m

)

There are similar notions for partial functions|see [7].

W e shall sho w that all recursiv e functions are � -de�nable.

1.5.15. Definition . The class of r e cursive functions is the smallest class of

n umeric functions con taining the initial functions

(i) pr oje ctions: U

m

i

(n

1

; : : : ; n

m

) = n

i

for all 1 � i � m ;

(ii) suc c essor: S

+

(n) = n + 1;

(iii) zer o: Z (n) = 0.

and closed under c omp osition, primitive r e cursion, and minimization :

(i) c omp osition: if g : N

k

! N and h

1

; : : : ; h

k

: N

m

! N are recursiv e,

then so is f : N

m

! N de�ned b y

f (n

1

; : : : ; n

m

) = g (h

1

(n

1

; : : : ; n

m

) ; : : : ; h

k

(n

1

; : : : ; n

m

)) :

(ii) primitive r e cursion: if g : N

m

! N and h : N

m +2

! N are recursiv e,

then so is f : N

m +1

! N de�ned b y

f (0 ; n

1

; : : : ; n

m

) = g (n

1

; : : : ; n

m

);

f (n + 1 ; n

1

; : : : ; n

m

) = h (f (n; n

1

; : : : ; n

m

) ; n; n

1

; : : : ; n

m

) :

16 Chapter 1. T yp e-free � -calculus

(iii) minimization: if g : N

m +1

! N is recursiv e and for all n

1

; : : : ; n

m

there

is an n suc h that g (n; n

1

; : : : ; n

m

) = 0 , then f : N

m

! N de�ned as

follo ws is also recursiv e

3

f (n

1

; : : : ; n

m

) = �n:g (n; n

1

; : : : ; n

m

) = 0

1.5.16. Lemma . The initial functions ar e � -de�nable.

Pr oof. With

U

m

i

= �x

1

: : : : �x

m

:x

i

S

+

= �x:�s:�z :s (x s z)

Z = �x:c

0

the necessary prop erties hold. ut

1.5.17. Lemma . The � -de�nable functions ar e close d under c omp osition.

Pr oof. If g : N

k

! N is � -de�nable b y G 2 � and h

1

; : : : ; h

k

: N

m

! N

are � -de�nable b y some H

1

; : : : ; H

k

2 �, then f : N

m

! N de�ned b y

f (n

1

; : : : ; n

m

) = g (h

1

(n

1

; : : : ; n

m

) ; : : : ; h

k

(n

1

; : : : ; n

m

))

is � -de�nable b y

F = �x

1

: : : : �x

m

:G (H

1

x

1

: : : x

m

) : : : (H

k

x

1

: : : x

m

) ;

as is easy to v erify . ut

1.5.18. Lemma . The � -de�nable functions ar e close d under primitive r e cur-

sion.

Pr oof. If g : N

m

! N is � -de�nable b y some G 2 � and h : N

m +2

! N is

� -de�nable b y some H 2 �, then f : N

m +1

! N de�ned b y

f (0 ; n

1

; : : : ; n

m

) = g (n

1

; : : : ; n

m

);

f (n + 1 ; n

1

; : : : ; n

m

) = h (f (n; n

1

; : : : ; n

m

) ; n; n

1

; : : : ; n

m

) ;

is � -de�nable b y F 2 � where

F = �x:�x

1

: : : : �x

m

:x T [c

0

; G x

1

: : : x

n

] �

2

;

T = �p: [S

+

(p �

1

) ; H (p �

2

) (p �

1

) x

1

: : : x

m

] :

Indeed, w e ha v e

F c

n

c

n

1

: : : c

n

m

=

�

c

n

T [c

0

; G c

n

1

: : : c

n

m

] �

2

=

�

T

n

([c

0

; G c

n

1

: : : c

n

m

]) �

2

3

�n:g (n; n

1

; : : : ; n

m

) = 0 denotes the smallest n um b er n satisfying the equation

g (n; n

1

; : : : ; n

m

) = 0 .

1.5. Expressibilit y and undecidabilit y 17

Also,

T [c

n

; c

f (n;n

1

;::: ;n

m

)

] =

�

[S

+

(c

n

) ; H c

f (n;n

1

;::: ;n

m

)

c

n

c

n

1

: : : c

n

m

]

=

�

[c

n +1

; c

h (f (n;n

1

;::: ;n

m

) ;n;n

1

;::: ;n

m

)

]

=

�

[c

n +1

; c

f (n +1 ;n

1

;::: ;n

m

)

]

So

T

n

([c

0

; G c

n

1

: : : c

n

m

]) =

�

[c

n

; c

f (n;n

1

;::: ;n

m

)

]

F rom this the required prop ert y follo ws. ut

1.5.19. Lemma . The � -de�nable functions ar e close d under minimization.

Pr oof. If g : N

m +1

! N is � -de�nable b y G 2 � and for all n

1

; : : : ; n

m

there is an n , suc h that g (n; n

1

; : : : ; n

m

) = 0, then f : N

m

! N de�ned b y

f (n

1

; : : : ; n

m

) = �m:g (n; n

1

; : : : ; n

m

) = 0

is � -de�nable b y F 2 �, where

F = �x

1

: : : : �x

m

:H c

0

and where H 2 � is suc h that

H =

�

�y : if (zero? (G x

1

: : : x

m

y)) then y else H (S

+

y) :

Here,

zero? = �x:x (�y : false) true

W e lea v e it as an exercise to v erify that the required prop erties hold. ut

The follo wing can b e seen as a form of c ompleteness of the � -calculus.

1.5.20. Theorem (Kleene). A l l r e cursive functions ar e � -de�nable.

Pr oof. By the ab o v e lemmas. ut

The con v erse also holds, as one can sho w b y a routine argumen t. Similar

results hold for partial functions as w ell|see [7].

1.5.21. Definition . Let h� ; �i : N

2

! N b e a bijectiv e, recursiv e function.

The map # : �

�

! N is de�ned b y:

#(v

i

) = h 0 ; i i

#(�x:M) = h 2 ; h #(x) ; #(M) ii

#(M N) = h 3 ; h #(M) ; #(N) ii

F or M 2 �, w e tak e #(M) to b e the least p ossible n um b er #(M

0

) where M

0

is an alpha-represen tativ e of M . Also, for M 2 �, w e de�ne d M e = c

#(M)

.

18 Chapter 1. T yp e-free � -calculus

1.5.22. Definition . Let A � �.

(i) A is close d under =

�

if

M 2 A & M =

�

N) N 2 A

(ii) A is non-trival if

A 6= ; & A 6= �

(iii) A is r e cursive if

A = f #(M) j M 2 A g

is recursiv e.

1.5.23. Theorem (Curry , Scott). L et A b e non-trivial and close d under =

�

.

Then A is not r e cursive.

Pr oof (J. T erlou w). Supp ose A is recursiv e. De�ne

B = f M j M d M e 2 A g

There exists an F 2 � with

M 2 B , F d M e =

�

c

0

;

M 62 B , F d M e =

�

c

1

:

Let M

0

2 A , M

1

2 � n A , and let

G = �x: if (zero? (F x)) then M

1

else M

0

Then

M 2 B , G d M e =

�

M

1

M 62 B , G d M e =

�

M

0

so

G 2 B , G d G e =

�

M

1

) G d G e 62 A) G 62 B

G 62 B , G d G e =

�

M

0

) G d G e 2 A) G 2 B

a con tradiction. ut

1.5.24. Remark . The ab o v e theorem is analogous to R ic e's the or em kno wn

in recursion theory .

The follo wing is a v arian t of the halting problem. Informally it states that

the formal theory of � -equalit y men tioned in Remark 1.4.12 is undecidable.

1.5.25. Cor ollar y (Ch urc h). f M 2 � j M =

�

true g is not r e cursive.

1.5.26. Cor ollar y . The fol lowing set is not r e cursive:

f M 2 � j 9 N 2 � : M !!

�

N & N is a � -normal form g :

One can also infer from these results the w ell-kno wn theorem due to

Ch urc h stating that �rst-order predicate calculus is undecidable.

1.6. Historical remarks 19

1.6. Historical remarks

F or more on the history of � -calculus, see e.g., [55] or [7]. First hand in-

formation ma y b e obtained from Rosser and Kleene's ey e witness state-

men ts [94 , 62], and from Curry and F eys' b o ok [24] whic h con tains a w ealth

of historical information. Curry and Ch urc h's original aims ha v e recen tly

b ecome the sub ject of renew ed atten tion|see, e.g., [9 , 10] and [50].

1.7. Exercises

1.7.1. Exer cise . Sho w, step b y step, ho w application of the con v en tions in

Notation 1.1.5 allo ws us to express the pre-terms in Example 1.1.2 as done

in Example 1.1.9.

1.7.2. Exer cise . Whic h of the follo wing abbreviations are correct?

1. �x:x y = (�x:x) y ;

2. �x:x y = �x: (x y);

3. �x:�y :�z :x y z = (�x:�y :�z :x) (y z);

4. �x:�y :�z :x y z = ((�x:�y :�z :x) y) z ;

5. �x:�y :�z :x y z = �x:�y :�z : ((x y) z).

1.7.3. Exer cise . Whic h of the follo wing iden ti�cations are correct?

1. �x:�y :x = �y :�x:y ;

2. (�x:x) z = (�z :z) x .

1.7.4. Exer cise . Do the follo wing terms ha v e normal forms?

1. I , where �x:x ;

2.
, i.e., ! ! , where ! = �x:x x ;

3. K I
 where K = �x:�y :x ;

4. (�x: K I (x x)) �y : K I (y y);

5. (�x:z (x x)) �y :z (y y).

1.7.5. Exer cise . A r e duction p ath from a � -term M is a �nite or in�nite

sequence

M !

�

M

1

!

�

M

2

!

�

: : :

20 Chapter 1. T yp e-free � -calculus

A term that has a normal form is also called we akly normalizing (or just

normalizing), since at least one of its reduction paths terminate in a nor-

mal form. A term is str ongly normalizing if al l its reduction paths ev en-

tually terminate in normal forms, i.e., if the term has no in�nite reduction

paths. Whic h of the �v e terms in the preceding exercise are w eakly/strongly

normalizing? In whic h cases do di�eren t reduction paths lead to di�eren t

normal forms?

1.7.6. Exer cise . Whic h of the follo wing are true?

1. (�x:�y :�z : (x z) (y z)) �u:u =

�

(�v :v �y :�z :�u:u) �x:x ;

2. (�x:�y :x �z :z) �a:a =

�

(�y :y) �b:�z :z ;

3. �x:
 =

�

.

1.7.7. Exer cise . Pro v e (without using the Ch urc h-Rosser Theorem) that

for all M

1

; M

2

; M

3

2 �, if M

1

!

�

M

2

and M

1

!

�

M

3

, then there exists an

M

4

2 � suc h that M

2

!!

�

M

4

and M

3

!!

�

M

4

.

Can y ou extend y our pro of tec hnique to yield a pro of of the Ch urc h-

Rosser theorem?

1.7.8. Exer cise . Fill in the details of the pro of Lemma 1.4.4.

1.7.9. Exer cise . Fill in the details of the pro of Lemma 1.4.5.

1.7.10. Exer cise . Whic h of the follo wing are true?

1. (I I) (I I) !!

l

I I ;

2. (I I) (I I) !!

l

I ;

3. I I I I !!

l

I I I ;

4. I I I I !!

l

I ;

1.7.11. Exer cise . Sho w that the fourth clause in De�nition 1.4.3 cannot b e

replaced b y

(�x:P) Q !!

l

P [x := Q] :

That is, sho w that, if this is done, then !!

l

do es not satisfy the diamond

prop ert y .

1.7.12. Exer cise . Pro v e Corollary 1.4.8{1.4.10.

1.7.13. Exer cise . W rite � -terms (without using the notation s

n

(z)) whose

� -normal forms are the Ch urc h n umerals c

5

and c

100

.

1.7. Exercises 21

1.7.14. Exer cise . Pro v e that A

�

and A

e

satisfy the equations stated in

Prop osition 1.5.4.

1.7.15. Exer cise . F or eac h n 2 N , write a � -term B

n

suc h that

B

n

c

i

Q

1

: : : Q

n

=

�

Q

i

;

for all Q

1

; : : : Q

n

2 �.

1.7.16. Exer cise . F or eac h n 2 N , write � -terms P

n

; �

1

; : : : ; �

n

, suc h that

for all Q

1

; : : : ; Q

n

2 �:

(P

n

Q

1

: : : Q

n

) �

i

=

�

Q

i

:

1.7.17. Exer cise (Klop, tak en from [7]). Let �x

1

x

2

: : : x

n

:M b e an abbre-

viation for �x

1

:�x

2

: : : : �x

n

:M . Let

? = �abcdef g hij k l mnopq stuv w xy z r :r (thisisaf ixedpointcombinator);

$ = ?????????????????????????? :

Sho w that $ is a �xe d p oint c ombinator, i.e., that $ F =

�

F ($ F), holds for

all F 2 �.

1.7.18. Exer cise . De�ne a � -term neg suc h that

neg true =

�

false ;

neg false =

�

true :

1.7.19. Exer cise . De�ne � -terms O and E suc h that, for all n 2 N :

O c

m

=

�

�

true if m is o dd;

false otherwise,

and

E c

m

=

�

�

true if m is ev en;

false otherwise.

1.7.20. Exer cise . De�ne a � -term P suc h that

P c

n +1

=

�

c

n

Hint: use the same tric k as in the pro of that the � -de�nable functions are

closed under primitiv e recursion. (Kleene got this idea during a visit at his

den tist.)

22 Chapter 1. T yp e-free � -calculus

1.7.21. Exer cise . De�ne a � -term eq? suc h that, for all n; m 2 N :

eq? c

n

c

m

=

�

�

true if m = n ;

false otherwise.

Hint: use the �xed p oin t theorem to construct a � -term H suc h that

H c

n

c

m

=

�

if (zero? c

n

)

then (if (zero? c

m

) then true else false)

else (if (zero? c

m

) then false else (H (P c

n

) (P c

m

)))

where P is as in the preceding exercise.

Can y ou pro v e the result using instead the construction in Lemma 1.5.18?

1.7.22. Exer cise . De�ne a � -term H suc h that for all n 2 N :

H c

2 n

=

�

c

n

1.7.23. Exer cise . De�ne a � -term F suc h that for all n 2 N :

H c

n

2
=

�

c

n

1.7.24. Exer cise . Pro v e Corollary 1.5.25.

CHAPTER 2

In tuitionistic logic

The classical understanding of logic is based on the notion of truth . The

truth of a statemen t is \absolute" and indep enden t of an y reasoning, un-

derstanding, or action. Statemen ts are either true or false with no regard

to an y \observ er". Here \false" means the same as \not true", and this is

expressed b y the tertium non datur principle that \ p _ : p " m ust hold no

matter what the meaning of p is.

Needless to sa y , the information con tained in the claim p _ : p is quite

limited. T ak e the follo wing sen tence as an example:

Ther e is seven 7's in a r ow somewher e in the de cimal r epr esen-

tation of the numb er � .

Note that it ma y v ery w ell happ en that nob o dy ev er will b e able to determine

the truth of the ab o v e sen tence. Y et w e are forced to accept that one of the

cases m ust necessarily hold. Another w ell-kno wn example is as follo ws:

Ther e ar e two irr ational numb ers x and y , such that x

y

is r atio-

nal.

The pro of of this fact is v ery simple: if

p

2

p

2

is a rational n um b er then w e

can tak e x = y =

p

2 ; otherwise tak e x =

p

2

p

2

and y =

p

2.

The problem with this pro of is that w e do not kno w whic h of the t w o

p ossibilities is the righ t one. Again, there is v ery little information in this

pro of, b ecause it is not c onstructive .

These examples demonstrate some of the dra wbac ks of classical logic,

and giv e hin ts on wh y in tuitionistic (or constructiv e) logic is of in terest.

Although the ro ots of constructivism in mathematics reac h deeply in to the

XIXth Cen tury , the principles of in tuitionistic logic are usually attributed

to the w orks of the Dutc h mathematician and philosopher Luitzen Egb er-

tus Jan Brou w er from the b eginning of XXth Cen tury . Brou w er is also the

in v en tor of the term \in tuitionism", whic h w as originally mean t to denote a

23

24 Chapter 2. In tuitionistic logic

philosophical approac h to the foundations of mathematics, b eing in opp osi-

tion to Hilb ert's \formalism".

In tuitionistic logic as a branc h of formal logic w as dev elop ed later around

the y ear 1930. The names to b e quoted here are Heyting, Gliv enk o, Kol-

mogoro v and Gen tzen. T o learn more ab out the history and motiv ations

see [26] and Chapter 1 of [107].

2.1. In tuitiv e seman tics

In order to understand in tuitionism, one should forget the classical, Platonic

notion of \truth". No w our judgemen ts ab out statemen ts are no longer based

on an y prede�ned v alue of that statemen t, but on the existence of a pro of

or \construction" of that statemen t.

The follo wing rules explain the informal constructiv e seman tics of prop o-

sitional connectiv es. These rules are sometimes called the BHK-interpr etation

for Brou w er, Heyting and Kolmogoro v. The algorithmic
a v or of this de�-

nition will later lead us to the Curry-Ho w ard isomorphism.

� A c onstruction of '

1

^ '

2

c onsists of a c onstruction of '

1

and a c on-

struction of '

2

;

� A c onstruction of '

1

_ '

2

c onsists of a numb er i 2 f 1 ; 2 g and a c on-

struction of of '

i

;

� A c onstruction of '

1

! '

2

is a metho d (function) tr ansforming every

c onstruction of '

1

into a c onstruction of '

2

;

� Ther e is no p ossible c onstruction of ? (wher e ? denotes falsity).

Negation : ' is b est understo o d as an abbreviation of an implication ' ! ? .

That is, w e assert : ' when the assumption of ' leads to an absurd. It follo ws

that

� A c onstruction of : ' is a metho d that turns every c onstruction of '

into a non-existent obje ct.

Note that the equiv alence b et w een : ' and ' ! ? holds also in classical

logic. But note also that the in tuitionistic statemen t : ' is m uc h stronger

than just \there is no construction for ' ".

2.1.1. Example . Consider the follo wing form ulas:

1. ? ! p ;

2. ((p ! q) ! p) ! p ;

3. p ! :: p ;

2.2. Natural deduction 25

4. :: p ! p ;

5. ::: p ! : p ;

6. (: q ! : p) ! (p ! q);

7. (p ! q) ! (: q ! : p);

8. : (p ^ q) ! (: p _ : q);

9. (: p _ : q) ! : (p ^ q);

10. ((p $ q) $ r) $ (p $ (q $ r));

11. ((p ^ q) ! r) $ (p ! (q ! r));

12. (p ! q) $ (: p _ q);

13. :: (p _ : p).

These form ulas are all classical tautologies. Some of them can b e easily

giv en a BHK-in terpretation, but some of them cannot. F or instance, a con-

struction for form ula 3, whic h should b e written as \ p ! ((p ! ?) ! ?)",

is as follo ws:

Giv en a pro of of p , here is a pro of of (p ! ?) ! ? : T ak e a pro of

of p ! ? . It is a metho d to translate pro ofs of p in to pro ofs

of ? . Since w e ha v e a pro of of p , w e can use this metho d to

obtain a pro of of ? .

On the other hand, form ula 4 do es not seem to ha v e suc h a construction.

(The classical symmetry b et w een form ula 3 and 4 disapp ears!)

2.2. Natural deduction

The language of in tuitionistic prop ositional logic is the same as the language

of classical prop ositional logic. W e assume an in�nite set P V of pr op ositional

variables and w e de�ne the set � of formulas b y induction, represen ted b y

the follo wing grammar:

� ::= ? j P V j (� ! �) j (� _ �) j (� ^ �) :

That is, our basic connectiv es are: implication ! , disjunction _ , conjunc-

tion ^ , and the constan t ? (false).

2.2.1. Convention . The connectiv es : and $ are abbreviations. That is,

� : ' abbreviates ' ! ? ;

26 Chapter 2. In tuitionistic logic

� ' $ abbreviates (' !) ^ (! ').

2.2.2. Convention .

1. W e sometimes use the con v en tion that implication is righ t asso ciativ e,

i.e., w e write e.g. ' ! ! # instead of ' ! (! #).

2. W e assume that negation has the highest, and implication the lo w est

priorit y , with no preference b et w een _ and ^ . That is, : p ^ q ! r

means ((: p) ^ q) ! r .

3. And of course w e forget ab out outermost paren theses.

In order to formalize the in tuitionistic prop ositional calculus, w e de�ne a

pro of system, called natur al de duction , whic h is motiv ated b y the informal

seman tics of 2.1.

2.2.3. W arning . What follo ws is a quite simpli�ed presen tation of natural

deduction, whic h is often con v enien t for tec hnical reasons, but whic h is not

alw a ys adequate. T o describ e the relationship b et w een v arious pro ofs in

�ner detail, w e shall consider a v arian t of the system in Chapter 4.

2.2.4. Definition .

(i) A c ontext is a �nite subset of �. W e use � ; �, etc. to range o v er

con texts.

(ii) The relation � ` ' is de�ned b y the rules in Figure 2.1. W e also write

`

N

for ` .

(iii) W e write � ; � instead of � [�, and � ; ' instead of � ; f ' g . W e also

write ` ' instead of fg ` ' .

(iv) A formal pr o of of � ` ' is a �nite tree, whose no des are lab elled b y

pairs of form (�

0

; '

0

), whic h will also b e written �

0

` '

0

, satisfying the

follo wing conditions:

� The ro ot lab el is � ` ' ;

� All the lea v es are lab elled b y axioms;

� The lab el of eac h father no de is obtained from the lab els of the

sons using one of the rules.

(v) F or in�nite � w e de�ne � ` ' to mean that �

0

` ' , for some �nite

subset �

0

of �.

(vi) If ` ' then w e sa y that ' is a the or em of the in tuitionistic prop ositional

calculus.

2.2. Natural deduction 27

� ; ' ` ' (Ax)

� ` ' � `

� ` ' ^

(^ I)

� ` ' ^

� ` '

(^ E)

� ` ' ^

� `

� ` '

� ` ' _

(_ I)

� `

� ` ' _

� ; ' ` � � ; ` � � ` ' _

� ` �

(_ E)

� ; ' `

� ` ' !

(! I)

� ` ' ! � ` '

� `

(! E)

� ` ?

� ` '

(? E)

Figure 2.1: Intuitionistic pr opositional calculus

The pro of system consists of an axiom sc heme, and rules. F or eac h logical

connectiv e (except ?) w e ha v e one or t w o intr o duction rules and one or t w o

elimination rules. An in tro duction rule for a connectiv e � tells us ho w a

conclusion of the form ' � can b e deriv ed. An elimination rule describ es

the w a y in whic h ' � can b e used to deriv e other form ulas. The in tuitiv e

meaning of � ` ' is that ' is a consequence of the assumptions in �.

W e giv e example pro ofs of our three fa v ourite form ulas:

2.2.5. Example . Let � abbreviate f ' ! (! #) ; ' ! ; ' g .

(i)

' ` '

` ' ! '

(! I)

(ii)

'; ` '

' ` ! '

(! I)

` ' ! (! ')

(! I)

(iii)

(! E)

� ` ' ! (! #) � ` '

� ` ! #

� ` ' ! � ` '

� `

(! E)

� ` #

' ! (! #) ; ' ! ` ' ! #

(! I)

' ! (! #) ` (' !) ! (' ! #)

(! I)

` (' ! (! #)) ! (' !) ! (' ! #)

(! I)

(! E)

28 Chapter 2. In tuitionistic logic

2.2.6. Remark . Note the distinction b et w een the r elation ` , and a formal

pr o of of � ` ' .

The follo wing prop erties will b e useful.

2.2.7. Lemma . Intuitionistic pr op ositional lo gic is close d under we akening

and substitution, that is, � ` ' implies � ; ` ' and �[p :=] ` ' [p :=] ,

wher e [p :=] denotes a substitution of for al l o c curr enc es of a pr op osi-

tional variable p .

Pr oof. Easy induction with resp ect to the size of pro ofs. ut

2.3. Algebraic seman tics of classical logic

T o understand b etter the algebraic seman tics for in tuitionistic logic let us

b egin with classical logic. Usually , seman tics of classical prop ositional for-

m ulas is de�ned in terms of the t w o truth v alues, 0 and 1 as follo ws.

2.3.1. Definition . Let B = f 0 ; 1 g .

(i) A valuation in B is a map v : P V ! B ; suc h a map will also b e called

a 0- 1 valuation.

(ii) Giv en a 0-1 v aluation v , de�ne the map [[�]]

v

: � ! B b y:

[[p]]

v

= v (p) ; for p 2 P V ;

[[?]]

v

= 0;

[[' _]]

v

= max f [[']]

v

; [[]]

v

g ;

[[' ^]]

v

= min f [[']]

v

; [[]]

v

g ;

[[' !]]

v

= max f 1 � [[']]

v

; [[]]

v

g :

W e also write v (') for [[']]

v

.

(iii) A form ula ' 2 � is a tautolo gy if v (') = 1 for all v aluations in B .

Let us consider an alternativ e seman tics, based on the analogy b et w een

classical connectiv es and set-theoretic op erations.

2.3.2. Definition . A �eld of sets (over X) is a nonempt y family R of sub-

sets of X , closed under unions, in tersections and complemen t (to X).

It follo ws immediately that fg ; X 2 R , for eac h �eld of sets R o v er X .

Examples of �elds of sets are:

(i) P (X);

(ii) ffg ; X g ;

(iii) f A � X : A �nite or � A �nite g (� A is the complemen t of A).

2.3. Algebraic seman tics of classical logic 29

2.3.3. Definition . Let R b e a �eld of sets o v er X .

(i) A valuation in R is a map v : P V ! R .

(ii) Giv en a v aluation v in R , de�ne the map [[�]]

v

: � ! X b y:

[[p]]

v

= v (p) for p 2 P V

[[?]]

v

= fg

[[' _]]

v

= [[']]

v

[[[]]

v

[[' ^]]

v

= [[']]

v

\ [[]]

v

[[' !]]

v

= (X � [[']]

v

) [[[]]

v

W e also write v (') for [[']]

v

.

2.3.4. Pr oposition . The ab ove two appr o aches to semantics ar e e quivalent,

i.e., the fol lowing c onditions ar e e quivalent for e ach �eld of subsets R over

a nonempty set X :

1. ' is a tautolo gy;

2. v (') = X , for al l valuations v in R .

Pr oof. (1)) (2): Supp ose that v (') 6= X . There is an elemen t a 2 X

suc h that a 62 v ('). De�ne a 0-1 v aluation w so that w (p) = 1 i� a 2 v (p).

Pro v e b y induction that for all form ulas

w () = 1 i� a 2 v () :

Then w (') 6= 1.

(2)) (1): A 0-1 v aluation can b e seen as a v aluation in R that assigns only

X and fg to prop ositional v ariables. ut

2.3.5. Definition . A Bo ole an algebr a is an algebraic system of the form

B = h B ; [; \ ; � ; 0 ; 1 i , where:

� [; \ are asso ciativ e and comm utativ e;

� (a [b) \ c = (a \ c) [(b \ c) and (a \ b) [c = (a [c) \ (b [c);

� a [0 = a and a \ 1 = a ;

� � a [a = 1 and � a \ a = 0.

The relation � de�ned b y a � b i� a [b = b is a partial order

1

in ev ery

Bo olean algebra, and the op erations \ ; [are the glb and lub op erations

w.r.t. this order.

1

A transitiv e, re
exiv e and an ti-symmetric relation.

30 Chapter 2. In tuitionistic logic

The notion of a Bo olean algebra is a straigh tforw ard generalization of

the notion of a �eld of sets. Another example of a Bo olean algebra is the

algebra of truth v alues h B ; max ; min ; � ; 0 ; 1 i , where � x is 1 � x .

W e can generalize the ab o v e set seman tics to arbitrary Bo olean algebras

b y replacing v aluations in a �eld of sets b y v aluations in a Bo olean algebra

in the ob vious w a y . But in fact, ev ery Bo olean algebra is isomorphic to a

�eld of sets, so this generalization do es not c hange our seman tics.

2.4. Heyting algebras

W e will no w dev elop a seman tics for in tuitionistic prop ositional logic.

Let � b e the set of all prop ositional form ulas, let � � � (in particular �

ma y b e empt y) and let � b e the follo wing equiv alence relation:

' � i� � ` ' ! and � ` ! ':

Let L

�

= � =

�

= f [']

�

: ' 2 � g , and de�ne a partial order � o v er L

�

b y:

[']

�

� []

�

i� � ` ' ! :

That � is an equiv alence relation and that � is a w ell-de�ned partial order

is a consequence of the follo wing form ulas b eing pro v able:

� ' ! ' ;

� (' !) ! ((! #) ! (' ! #));

In addition, w e can de�ne the follo wing op erations o v er L

�

:

[�]

�

[[�]

�

= [� _ �]

�

;

[�]

�

\ [�]

�

= [� ^ �]

�

;

� [�]

�

= [: �]

�

:

These op erations are w ell-de�ned, b ecause the follo wing form ulas are pro v-

able:

� (' ! '

0

) ! (: '

0

! : ');

� (' ! '

0

) ! ((!

0

) ! ((' _) ! ('

0

_

0

)));

� (' ! '

0

) ! ((!

0

) ! ((' ^) ! ('

0

^

0

))).

W e can go on and sho w that op erations \ and [are the glb and lub op era-

tions w.r.t. the relation � , and that the distributivit y la ws

(a [b) \ c = (a \ c) [(b \ c) and (a \ b) [c = (a [c) \ (b [c)

2.4. Heyting algebras 31

are satis�ed.

2

The class [?]

�

is the least elemen t 0 of L

�

, b ecause ? ! '

is pro v able, and [>]

�

, where > = ? ! ? , is the top elemen t 1. W e ha v e

[>]

�

= f ' : � ` ' g . Ho w ev er, there are (not unexp ected) di�culties with

the complemen t op eration: W e ha v e � a \ a = [?]

�

but not necessarily

� a [a = [>]

�

.

The b est w e can assert ab out � a is that it is the gr e atest element such

that � a \ a = 0, and w e can call it a pseudo-c omplement . Since negation

is a sp ecial kind of implication, the ab o v e calls for a generalization. An

elemen t c is called a r elative pseudo-c omplement of a with resp ect to b , i� c

is the greatest elemen t suc h that a \ c � b . The relativ e pseudo-complemen t,

if it exists, is denoted a) b .

It is not di�cult to �nd out that in our algebra L

�

, often called a Lin-

denb aum algebr a , w e ha v e [']

�

) []

�

= [' !]

�

.

W e ha v e just disco v ered a new t yp e of algebra, called Heyting algebr a or

pseudo-Bo ole an algebr a .

2.4.1. Definition . A Heyting algebr a is an algebraic system of the form

H = h H ; [; \ ;) ; � ; 0 ; 1 i , that satis�es the follo wing conditions:

� [; \ are asso ciativ e and comm utativ e;

� (a [b) \ c = (a \ c) [(b \ c) and (a \ b) [c = (a [c) \ (b [c);

� a [0 = a and a \ 1 = a ;

� a [a = a ;

� a \ c � b is equiv alen t to c � a) b (where a � b stands for a [b = b);

� � a = a) 0.

The ab o v e conditions amoun t to as m uc h as sa ying that H is a distributiv e

lattice with zero and relativ e pseudo-complemen t de�ned for eac h pair of

elemen ts. In particular, eac h Bo olean algebra is a Heyting algebra with

a) b de�ned as � a [b . The most prominen t example of a Heyting algebra

whic h is not a Bo olean algebra is the algebra of op en sets of a top ological

space, for instance the algebra of op en subsets of the Euclidean plane R

2

.

2.4.2. Definition .

� The sym b ol % (a; b) denotes the distance b et w een p oin ts a; b 2 R

2

;

� A subset A of R

2

is op en i� for ev ery a 2 A there is an r > 0 with

f b 2 R

2

: % (a; b) < r g � A ;

� If A is a subset of R

2

then In t(A) denotes the interior of A, i.e., the

union of all op en subsets of A .

2

That is, L

�

is a distributive lattic e .

32 Chapter 2. In tuitionistic logic

2.4.3. Pr oposition . L et H = hO (R

2

) ; [; \ ;) ; � ; 0 ; 1 i , wher e

� O (R

2

) is the family of al l op en subsets of R

2

;

� the op er ations \ , [ar e set-the or etic;

� A) B := In t(� A [B) , for arbitr ary op en sets A and B ;

� 0 = fg and 1 = R

2

.

� � A = In t(� A) , wher e � is the set-the or etic c omplement.

Then H is a Heyting algebr a.

Pr oof. Exercise 2.7.6. ut

In fact, ev ery Heyting algebra is isomorphic to a subalgebra of the algebra

of op en sets of a top ological space. A comprehensiv e study of the algebraic

seman tics for in tuitionistic (and classical) logic is the b o ok of Rasio w a and

Sik orski [88]. See also Chapter 13 of [108].

The seman tics of in tuitionistic prop ositional form ulas is no w de�ned as

follo ws.

2.4.4. Definition . Let H = h H ; [; \ ;) ; � ; 0 ; 1 i b e a Heyting algebra.

(i) A valuation v in a H is a map v : P V ! H .

(ii) Giv en a v aluation v in H , de�ne the map [[�]]

v

: � ! H b y:

[[p]]

v

= v (p) for p 2 P V

[[?]]

v

= 0

[[' _]]

v

= [[']]

v

[[[]]

v

[[' ^]]

v

= [[']]

v

\ [[]]

v

[[' !]]

v

= [[']]

v

) [[]]

v

As usual, w e write v (') for [[']]

v

.

2.4.5. Not a tion . Let H = h H ; [; \ ;) ; � ; 0 ; 1 i b e a Heyting algebra. W e

write:

� H ; v j = ' , whenev er v (') = 1;

� H j = ' , whenev er H ; v j = ' , for all v ;

� H ; v j = �, whenev er H ; v j = ' , for all ' 2 �;

� H j = �, whenev er H ; v j = �, for all v ;

� j = ' , whenev er H ; v j = ' , for all H ; v ;

� � j = ' , whenev er H ; v j = � implies H ; v j = ' , for all H and v .

2.4. Heyting algebras 33

W e sa y that a form ula ' suc h that j = ' is intuitionistic al ly valid or is an

intuitionistic tautolo gy. It follo ws from the follo wing completeness theorem

that the notions of a theorem and a tautology coincide for in tuitionistic

prop ositional calculus.

2.4.6. Theorem (Soundness and Completeness). The fol lowing c onditions

ar e e quivalent

1. � ` ' ;

2. � j = ' .

Pr oof. (1)) (2): V erify that all pro v able form ulas are v alid in all Heyting

algebras (induction w.r.t. pro ofs).

(2)) (1): This follo ws from our construction of the Linden baum algebra.

Indeed, supp ose that � j = ' , but � 6` ' . Then ' 6� > , i.e., [']

�

6= 1 in L

�

.

De�ne a v aluation v b y v (p) = [p]

�

in L

�

and pro v e b y induction that

v () = []

�

, for all form ulas . It follo ws that v (') 6= 1, a con tradiction.

ut

2.4.7. Example . T o see that P eirce's la w ((p ! q) ! p) ! p is not in tu-

itionistically v alid, consider the algebra of op en subsets of R

2

. T ak e v (p) to

b e the whole space without one p oin t, and v (q) = fg . (Note that a) b = 1

in a Heyting algebra i� a � b .)

In tuitionistic logic is not �nite-v alued: There is no single �nite Heyting

algebra H suc h that ` ' is equiv alen t to H j = ' . Indeed, consider the

form ula

W

f p

i

$ p

j

: i; j = 0 ; : : : ; n and i 6= j g . (Here the sym b ol

W

abbreviates the disjunction of all mem b ers of the set.) This form ula is not

v alid in general (Exercise 2.7.10), although it is v alid in all Heyting algebras

of cardinalit y at most n .

But �nite Heyting algebras are su�cien t for the seman tics, as w ell as

one su�cien tly \ric h" in�nite algebra.

2.4.8. Theorem .

1. A formula ' of length n is valid i� it is valid in al l Heyting algebr as

of c ar dinality at most 2

2

n

;

2. L et H b e the algebr a of al l op en subsets of a dense-in-itself

3

metric

sp ac e V (for instanc e the algebr a of al l op en subsets of R

2

). Then

H j = ' i� ' is valid.

3

Ev ery p oin t x is a limit of a sequence f x

n

g

n

, where x

n

6= x , for all n .

34 Chapter 2. In tuitionistic logic

W e giv e only a sk etc h of the main ideas of the pro of, for the most curious

reader. See [88] for details.

F or (1), supp ose H ; v 6j = ' , and let '

1

; : : : '

m

b e all subform ulas of ' .

W e construct a small mo del H

0

as a distributiv e sublattice of H , with 0

and 1, generated b y the elemen ts v ('

1

) ; : : : ; v ('

m

). This lattice is a Heyting

algebra (w arning: this is not a Heyting subalgebra of H), and H

0

; v

0

6j = ' ,

for a suitable v

0

.

As for (2), ev ery �nite algebra can b e em b edded in to the algebra of op en

subsets of some op en subset of V , and this algebra is a homomorphic image

of H . Th us, ev ery v aluation in a �nite algebra can b e translated in to a

v aluation in H .

F rom part (1) of the ab o v e theorem, it follo ws that in tuitionistic prop o-

sitional logic is decidable. But the upp er b ound obtained this w a y (double

exp onen tial space) can b e impro v ed do wn to p olynomial space, with help of

other metho ds, see [103].

2.5. Kripk e seman tics

W e no w in tro duce another seman tics of in tuitionistic prop ositional logic.

2.5.1. Definition . A Kripke mo del is de�ned as a tuple of the form C =

h C ; � ;
 i , where C is a non-empt y set, � is a partial order in C and
 is a

binary relation b et w een elemen ts of C (called states or p ossible worlds) and

prop ositional v ariables, that satis�es the follo wing monotonicit y condition:

If c � c

0

and c
 p then c

0

 p:

The in tuition is that elemen ts of the mo del represen t states of kno wledge.

The relation � represen ts extending states b y gaining more kno wledge, and

the relation
 tells whic h atomic form ulas are kno wn to b e true in a giv en

state. W e extend this relation to pro vide meaning for prop ositional form ulas

as follo ws.

2.5.2. Definition . If C = h C ; � ;
 i is a Kripk e mo del, then

� c
 ' _ i� c
 ' or c
 ;

� c
 ' ^ i� c
 ' and c
 ;

� c
 ' ! i� c

0

 , for all c

0

suc h that c � c

0

and c

0

 ' ;

� c
 ? nev er happ ens.

W e use C
 ' to mean that c
 ' , for all c 2 C .

Note that the ab o v e de�nition implies the follo wing rule for negation:

2.5. Kripk e seman tics 35

� c
 : ' i� c

0

1 ' , for all c

0

� c .

and the follo wing generalized monotonicit y (pro of b y easy induction):

If c � c

0

and c
 ' then c

0

 ':

W e no w w an t to sho w completeness of Kripk e seman tics. F or this, w e trans-

form ev ery Heyting algebra in to a Kripk e mo del.

2.5.3. Definition . A �lter in a Heyting algebra H = h H ; [; \ ;) ; � ; 0 ; 1 i is

a nonempt y subset F of H , suc h that

� a; b 2 F implies a \ b 2 F ;

� a 2 F and a � b implies b 2 F .

A �lter F is pr op er i� F 6= H . A prop er �lter F is prime i� a [b 2 F

implies that either a or b b elongs to F .

2.5.4. Lemma . L et F b e a pr op er �lter in H and let a 62 F . Ther e exists a

prime �lter G such that F � G and a 62 G .

W e only giv e a hin t for the pro of that can b e found e.g., in [88]. Consider

the family of all �lters G con taining F and suc h that a 62 G , ordered b y

inclusion. Apply Kurato wski-Zorn Lemma to sho w that this family has a

maximal elemen t. This is a prime �lter (Exercise 2.7.12) although it is not

necessarily a maximal prop er �lter.

2.5.5. Lemma . L et v b e a valuation in a Heyting algebr a H . Ther e is a

Kripke mo del C = h C ; � ;
 i , such that H ; v j = ' i� C
 ' , for al l formu-

las ' .

Pr oof. W e tak e C to b e the set of all prime �lters in H . The relation �

is inclusion, and w e de�ne F
 p i� v (p) 2 F . By induction, w e pro v e that,

for all form ulas ,

F
 i� v () 2 F : (2.1)

The only non trivial case of this induction is when =

0

!

0 0

. Assume

F

0

!

00

, and supp ose that v (

0

!

00

) = v (

0

)) v (

0 0

) 62 F . T ak e

the least �lter G

0

con taining F [f v (

0

) g . Then

G

0

= f b : b � f \ v (

0

) for some f 2 F g ;

and w e ha v e v (

0 0

) 62 G

0

, in particular G

0

is prop er. Indeed, otherwise

v (

0 0

) � f \ v (

0

), for some f 2 F , and th us f � v (

0

)) v (

0 0

) 2 F |

a con tradiction.

36 Chapter 2. In tuitionistic logic

W e extend G

0

to a prime �lter G , not con taining v (

0 0

). By the induction

h yp othesis, G

0

. Since F

0

!

0 0

, it follo ws that G

0 0

. That is,

v (

0 0

) 2 G | a con tradiction.

F or the con v erse, assume that v (

0

!

0 0

) 2 F � G

0

. F rom the

induction h yp othesis w e ha v e v (

0

) 2 G and since F � G w e obtain v (

0

))

v (

0 0

) 2 G . Th us v (

0 0

) � v (

0

) \ (v (

0

)) v (

0 0

)) 2 G , and from the

induction h yp othesis w e conclude G

00

as desired.

The other cases are easy . Note that primalit y is essen tial for disjunction.

Ha ving sho wn (2.1), assume that C
 ' and H ; v 6j = ' . Then v (') 6= 1

and there exist a prop er �lter not con taining v ('). This �lter extends to a

prime �lter G suc h that v (') 62 G and th us G 1 ' . On the other hand, if

H ; v j = ' , then v (') = 1 and 1 b elongs to all �lters in H . ut

2.5.6. Theorem . The se quent � ` ' is pr ovable i� for al l Kripke mo dels C ,

the c ondition C
 � implies C
 ' .

Pr oof. The left-to-righ t part is sho wn b y induction (Exercise 2.7.13). F or

the other direction assume � 6` ' . Then H ; v j = � but H ; v 6j = ' , for some

H ; v . F rom the previous lemma w e ha v e a Kripk e mo del C with C
 � and

C 1 ' . ut

Here is a nice application of Kripk e seman tics.

2.5.7. Pr oposition . If ` ' _ then either ` ' or ` .

Pr oof. Assume 6` ' and 6` . There are Kripk e mo dels C

1

= h C

1

; �

1

;

1

i

and C

2

= h C

2

; �

2

;

2

i and states c

1

2 C

1

and c

2

2 C

2

, suc h that c

1

1 '

and c

2

1 . Without loss of generalit y w e can assume that c

1

and c

2

are least elemen ts of C

1

and C

2

, resp ectiv ely , and that C

1

\ C

2

= fg . Let

C = h C

1

[C

2

[f c

0

g ; � ;
 i , where c

0

62 C

1

[C

2

, the order is the union of

�

1

and �

2

extended b y c

0

tak en as the least elemen t, and
 is the union

of

1

and

2

. That is,

c

0

1 p;

for all v ariables p . It is easy to see that this is a Kripk e mo del. In addition

w e ha v e C ; c

1

 # i� C

1

; c

1

 # , for all form ulas # , and a similar prop ert y

holds for c

2

.

No w supp ose that ` ' _ . By soundness, w e ha v e c

0

 ' _ , and th us

either c

0

 ' or c

0

 , b y de�nition of
 . Then either c

1

 ' or c

2

 ,

b ecause of monotonicit y . ut

2.6. The implicational fragmen t

The most imp ortan t logical conjectiv e is the implication. Th us, it is mean-

ingful to study the fragmen t of prop ositional calculus with only one connec-

tiv e: the implication. This is the true minimal lo gic . The natural deduction

2.7. Exercises 37

system for the implicational fragmen t consists of the rules (! E), (! I) and

the axiom sc heme.

2.6.1. Theorem . The implic ational fr agment of intuitionistic pr op ositional

c alculus is c omplete with r esp e ct to Kripke mo dels, i.e., � ` ' is pr ovable i�

for al l Kripke mo dels C , the c ondition C
 � implies C
 ' .

Pr oof. The implication from left to righ t follo ws from soundness of the full

natural deduction system, of whic h our minimal logic is a fragmen t. F or the

pro of in the other direction, let us assume that � 6` ' . W e de�ne a Kripk e

mo del C = h C ; � ;
 i , where

C = f � : � � � ; and � is closed under `g :

That is, � 2 C means that � ` implies 2 �.

The relation � is inclusion and
 is 2 , that is, �
 p holds i� p 2 �,

for all prop ositional v ariables p . By induction w e sho w the follo wing claim:

�
 i� 2 � ;

for all implicational form ulas and all states �. The case of a v ariable is

immediate from the de�nition. Let b e

1

!

2

and let �
 . T ak e �

0

=

f # : � ;

1

` # g . Then

1

2 �

0

and, b y the induction h yp othesis, �

0

1

.

Th us �

0

2

and w e get

2

2 �

0

, again b y the induction h yp othesis. Th us,

� ;

1

`

2

, and b y (! I) w e get what w e w an t.

No w assume 2 � (that is � `) and tak e �

0

� � with �

0

1

.

Then

1

2 �

0

, i.e., �

0

`

1

. But also �

0

`

1

!

2

, b ecause � � �

0

. By

(! E) w e can deriv e �

0

`

2

, whic h means, b y the induction h yp othesis,

that �

0

2

. ut

The completeness theorem has a v ery imp ortan t consequence: the con-

serv ativit y of the full in tuitionistic prop ositional calculus o v er its implica-

tional fragmen t.

2.6.2. Theorem . L et ' b e an implic ational formula, and let � b e a set of

implic ational formulas. If � ` ' c an b e derive d in the intuitionistic pr op osi-

tional c alculus then it c an b e derive d in the implic ational fr agment.

Pr oof. Easy . But note that w e use only one half from the t w o completeness

theorems 2.5.6 and 2.6.1: w e need only soundness of the full logic and only

the other direction for the fragmen t. ut

2.7. Exercises

2.7.1. Exer cise . Find constructions for form ulas (1), (3), (5), (7), (9), (11)

and (13) of Example 2.1.1, and do not �nd constructions for the other for-

m ulas.

38 Chapter 2. In tuitionistic logic

2.7.2. Exer cise . Pro v e Lemma 2.2.7.

2.7.3. Exer cise . Giv e natural deduction pro ofs for the form ulas of Exer-

cise 2.7.1.

2.7.4. Exer cise . Sho w that the relation � de�ned in a Bo olean algebra b y

the condition a � b i� a [b = b is a partial order and that

� a \ b � a ;

� the condition a � b is equiv alen t to a \ b = a ;

� the op erations [and \ are resp ectiv ely the upp er and lo w er b ound

wrt. � ;

� the constan ts 0 and 1 are resp ectiv ely the b ottom and top elemen t.

2.7.5. Exer cise . Sho w that the relation � de�ned in a Heyting algebra b y

the condition a � b i� a [b = b is a partial order and that

� � a \ a = 0;

� (a [b) \ a = a and a \ b � a ;

� the condition a � b is equiv alen t to a \ b = a , and to a) b = 1;

� the op erations [and \ are resp ectiv ely the upp er and lo w er b ound

wrt. � ;

� the constan ts 0 and 1 are resp ectiv ely the b ottom and top elemen t.

2.7.6. Exer cise . Pro v e Prop osition 2.4.3.

2.7.7. Exer cise . Fill in the details of the pro of that the Linden baum alge-

bra L

�

of 2.4 is indeed a Heyting algebra.

2.7.8. Exer cise . Complete the pro of of the completeness theorem 2.4.6.

2.7.9. Exer cise . Sho w that the form ulas (2), (4), (6), (8) and (10) are not

in tuitionistically v alid. (Use op en subsets of R

2

or construct Kripk e mo dels.)

2.7.10. Exer cise . Sho w that the form ula

W

f p

i

$ p

j

: i; j = 0 ; : : : ; n and

i 6= j g is not in tuitionistically v alid.

2.7.11. Exer cise . A �lter is maximal i� it is a maximal prop er �lter. Sho w

that eac h maximal �lter is prime. Sho w also that in a Bo olean algebra ev ery

prime �lter is maximal.

2.7.12. Exer cise . Complete the pro of of Lemma 2.5.4.

2.7. Exercises 39

2.7.13. Exer cise . Complete the pro of of Theorem 2.5.6, part) . (Hint:

c ho ose a prop er induction h yp othesis.)

2.7.14. Exer cise . Can the pro of of Theorem 2.6.1 b e generalized to the full

prop ositional calculus?

2.7.15. Exer cise . A state c in a Kripk e mo del C determines p i� either

c
 p or c
 : p . De�ne a 0-1 v aluation v

c

b y v

c

(p) = 1 i� c
 p . Sho w that

if c determines all prop ositional v ariables in ' then v

c

(') = 1 implies c
 ' .

2.7.16. Exer cise . Let ' b e a classical tautology suc h that all prop ositional

v ariables in ' are among p

1

; : : : ; p

n

. Sho w that the form ula (p

1

_ : p

1

) !

� � � ! (p

n

_ : p

n

) ! ' is in tuitionistically v alid.

2.7.17. Exer cise . Pro v e the Gliv enk o theorem: A form ula ' is a classical

tautology i� :: ' is an in tuitionistic tautology .

2.7.18. W arning . The Gliv enk o theorem do es not extend to �rst-order logic.

40 Chapter 2. In tuitionistic logic

CHAPTER 3

Simply t yp ed � -calculus

Recall from the �rst c hapter that a � -term, unlik e the functions usually

considered in mathematics, do es not ha v e a �xed domain and r ange . Th us,

whereas w e w ould consider the function n 7! n

2

as a function from natural

n um b ers to natural n um b ers (or from in tegers to natural n um b ers, etc.)

there is no corresp onding requiremen t in � -calculus. Or, to b e more precise,

there is no corresp onding requiremen t in typ e-fr e e � -calculus.

Curry [23] and Ch urc h [18] also in tro duced v ersions of their systems with

typ es. These systems form the topic of the presen t c hapter.

3.1. Simply t yp ed � -calculus � a la Curry

W e b egin with the simply t yp ed � -calculus �a la Curry .

3.1.1. Definition .

(i) Let U denote a den umerably in�nite alphab et whose mem b ers will b e

called typ e variables . The set � of simple typ es is the set of strings

de�ned b y the grammar:

� ::= U j (� ! �)

W e use �; � ; : : : to denote arbitrary t yp e v ariables, and � ; � ; : : : to de-

note arbitrary t yp es. W e omit outermost paren theses, and omit other

paren theses with the con v en tion that ! asso ciates to the righ t.

(ii) The set C of c ontexts is the set of all sets of pairs of the form

f x

1

: �

1

; : : : ; x

n

: �

n

g

with �

1

; : : : ; �

n

2 �, x

1

; : : : ; x

n

2 V (v ariables of �) and x

i

6= x

j

for i 6= j .

41

42 Chapter 3. Simply t yp ed � -calculus

(iii) The domain of a con text � = f x

1

: �

1

; : : : ; x

n

: �

n

g is de�ned b y:

dom (�) = f x

1

; : : : ; x

n

g

W e write x : � for f x : � g and � ; �

0

for � [�

0

if dom (�) \ dom (�

0

) = fg .

(iv) The r ange of a con text � = f x

1

: �

1

; : : : ; x

n

: �

n

g is de�ned b y:

j � j = f � 2 � j (x : �) 2 � ; for some x g :

(v) The typ ability relation ` on C � � � � is de�ned b y:

� ; x : � ` x : �

� ; x : � ` M : �

� ` �x:M : � ! �

� ` M : � ! � � ` N : �

� ` M N : �

where w e require that x 62 dom(�) in the �rst and second rule.

(vi) The simply t yp ed � -calculus � ! is the triple (� ; � ; `). T o distinguish

b et w een this system and v arian ts, the presen t one will also b e called

simply typ e d � -c alculus �a la Curry or just � ! �a la Curry .

3.1.2. Example . Let � ; � ; � b e arbitrary t yp es. Then:

(i) ` �x:x : � ! � ;

(ii) ` �x:�y :x : � ! � ! � ;

(iii) ` �x:�y :�z :x z (y z) : (� ! � ! �) ! (� ! �) ! � ! � .

3.1.3. Definition . If � ` M : � then w e sa y that M has typ e � in �. W e

sa y that M 2 � is typ able if there are � and � suc h that � ` M : � .

The set of t ypable terms is a subset|in fact, a prop er subset|of the set

of all � -terms. In this subset, restrictions are made regarding whic h � -terms

ma y b e applied to other � -terms.

V ery informally , the t yp e v ariables denote some unsp eci�ed sets, and

� ! � denotes the set of functions from � to � . Sa ying that M has t yp e

� ! � in � then in tuitiv ely means that this set of functions con tains the

particular function that M informally denotes. F or instance, ` �x:x : � ! �

informally states that the iden tit y function is a function from a certain set

to itself.

A con text is an assumption that some elemen ts x

1

; : : : ; x

n

ha v e certain

t yp es �

1

; : : : ; �

n

, resp ectiv ely . Moreo v er, if x has t yp e � and M has t yp e �

then �x:M has t yp e � ! � . This re
ects the in tuition that if M denotes

an elemen t of � for eac h x in � , then �x:M denotes a function from � to � .

In a similar v ein, if M has t yp e � ! � and N has t yp e � , then M N has

t yp e � .

3.1. Simply t yp ed � -calculus �a la Curry 43

3.1.4. W arning . The idea that t yp es denote sets should not b e tak en to o

literally . F or instance, if A and B are sets then the set of functions from

A to A is disjoin t from the set of functions from B to B . In con trast, if �

and � are di�eren t simple t yp es, then a single term ma y ha v e b oth t yp es,

at least in the v ersion of simply t yp ed � -calculus presen ted ab o v e.

Just lik e � -calculus pro vides a foundation of higher-order functional pro-

gramming languages lik e LISP and Sc heme, v arious t yp ed � -calculi pro vide

a foundation of programming languages with t yp es lik e P ascal, ML, and

Hask ell. T yp ed � -calculi are also of indep enden t in terest in pro of theory as

w e shall ha v e frequen t o ccasion to see in these notes.

W e conclude this section with a brief review of some of the most funda-

men tal prop erties of � ! . The surv ey follo ws [8].

The follo wing sho ws that only t yp es of free v ariables of a term matter

in the c hoice con texts.

3.1.5. Lemma (F ree v ariables lemma). Assume that � ` M : � . Then:

(i) � � �

0

implies �

0

` M : � ;

(ii) FV (M) � dom(�) ;

(iii) �

0

` M : � wher e dom (�

0

) = FV (M) and �

0

� � .

Pr oof. (i) b y induction on the deriv ation of � ` M : � . As in [8] w e

presen t the pro of in some detail and omit suc h details in the remainder.

1. The deriv ation is

� ; x : � ` x : �

where � = � ; x : � , x 62 dom (�) and M = x . Since � � �

0

and �

0

is a con text, �

0

= �

0

; x : � for some �

0

with x 62 dom(�

0

). Hence

�

0

; x : � ` x : � , as required.

2. The deriv ation ends in

� ; x : �

1

` P : �

2

� ` �x:P : �

1

! �

2

where x 62 dom(�), � = �

1

! �

2

, and M = �x:P . Without loss of

generalit y w e can assume that x 62 dom(�

0

). Then � ; x : �

1

� �

0

; x : �

1

so b y the induction h yp othesis �

0

; x : �

1

` P : �

2

. Then w e also ha v e

� ` �x:P : �

1

! �

2

, as required.

3. The deriv ation ends in

� ` P : � ! � � ` Q : �

� ` P Q : �

where M = P Q . By the induction h yp othesis (t wice) �

0

` P : � ! �

and �

0

` Q : � , and then �

0

` P Q : � , as required.

44 Chapter 3. Simply t yp ed � -calculus

(ii)-(iii) b y induction on the deriv ation of � ` M : � . ut

The follo wing sho ws ho w the t yp e of some term m ust ha v e b een obtained

dep ending on the form of the term.

3.1.6. Lemma (Generation lemma).

(i) � ` x : � implies x : � 2 � ;

(ii) � ` M N : � implies that ther e is a � such that � ` M : � ! � and

� ` N : � .

(iii) � ` �x:M : � implies that ther e ar e � and � such that � ; x : � ` M : �

and � = � ! � .

Pr oof. By induction on the length of the deriv ation. ut

3.1.7. Definition . The substitution of typ e � for typ e variable � in typ e � ,

written � [� := �], is de�ned b y:

� [� := �] = �

� [� := �] = � if � 6= �

(�

1

! �

2

)[� := �] = �

1

[� := �] ! �

2

[� := �]

The notation �[� := �] stands for the con text f (x : � [� := �]) j (x : �) 2 � g .

The follo wing sho ws that the t yp e v ariables range o v er all t yp es; this is a

limited form of p olymorphism [90]; w e will hear m uc h more ab out p olymor-

phism later. The prop osition also sho ws, similarly , that free term v ariables

range o v er arbitrary terms.

3.1.8. Pr oposition (Substitution lemma).

(i) If � ` M : � , then �[� := �] ` M : � [� := �] .

(ii) If � ; x : � ` M : � and � ` N : � then � ` M [x := N] : � .

Pr oof. By induction on the deriv ation of � ` M : � and generation of

� ; x : � ` M : � , resp ectiv ely . ut

The follo wing sho ws that reduction preserv es t yping.

3.1.9. Pr oposition (Sub ject reduction). If � ` M : � and M !

�

N , then

� ` N : � .

Pr oof. By induction on the deriv ation of M !

�

N using the substitution

lemma and the generation lemma. ut

3.2. Simply t yp ed � -calculus �a la Ch urc h 45

3.1.10. Remark . The similar prop ert y

� ` N : � & M !!

�

N) � ` M : �

is called subje ct exp ansion and do es not hold in � ! , see Exercise 3.6.2.

3.1.11. Cor ollar y . If � ` M : � and M !!

�

N , then � ` N : � .

3.1.12. Theorem (Ch urc h-Rosser prop ert y for t ypable terms). Supp ose that

� ` M : � . If M !!

�

N and M !!

�

N

0

, then ther e exists an L such that

N !!

�

L and N

0

!!

�

L and � ` L : � .

Pr oof. By the Ch urc h-Rosser prop ert y for � -terms and the sub ject reduc-

tion prop ert y . ut

3.2. Simply t yp ed � -calculus � a la Ch urc h

As men tioned earlier, simply t yp ed � -calculus w as in tro duced b y Curry [23]

and Ch urc h [18]. More precisely , Curry considered t yp es for c ombinatory

lo gic, but his form ulation w as later adapted to � -calculus [24].

There w ere sev eral other imp ortan t di�erences b et w een the systems in-

tro duced b y Ch urc h and Curry .

In Curry's system the terms are those of t yp e-free � -calculus and the

t yping relation selects among these the t ypable terms. F or instance, �x:x is

t ypable, whereas �x:x x is not.

In Ch urc h's original system, the t yping rules w ere built in to the term

formation rules, as follo ws. Let V

�

denote a den umerable set of v ariables for

eac h � 2 �. Then de�ne the set �

�

of simply t yp ed terms of t yp e � b y the

clauses:

x 2 V

�

) x 2 �

�

M 2 �

� ! �

& N 2 �

�

) M N 2 �

�

M 2 �

�

& x 2 �

�

) �x

�

:M 2 �

� ! �

The set of all simply t yp ed terms is then tak en as the union o v er all simple

t yp es � of the simply t yp ed terms of t yp e � .

Instead of assuming that the set of v ariables is partitioned in to disjoin t

sets indexed b y the set of simple t yp es, w e can use con texts to decide the

t yp es of v ariables as in the system �a la Curry . Also, as in the system �a

la Curry , w e can select the t ypable terms among a larger set. This yields

the follo wing, more common, form ulation of simply t yp ed � -calculus �a la

Ch urc h.

46 Chapter 3. Simply t yp ed � -calculus

3.2.1. Definition .

(i) The set �

�

of pseudo-terms is de�ned b y the follo wing grammar:

�

�

::= V j (�x : � �

�

) j (�

�

�

�

)

where V is the set of (� -term) v ariables and � is the set of simple

t yp es.

1

W e adopt the same terminology , notation, and con v en tions for

pseudo-terms as for � -terms, see 1.3{1.10, m utatis m utandis.

(ii) The typ ability relation
 on C � �

�

� � is de�ned b y:

2

� ; x : � `

�

x : �

� ; x : � `

�

M : �

� `

�

�x : � :M : � ! �

� `

�

M : � ! � � `

�

N : �

� `

�

M N : �

where w e require that x 62 dom(�) in the �rst and second rule.

(iii) The simply t yp ed � -calculus �a la Ch urc h (� ! �a la Chur ch, for short)

is the triple (�

�

; � ;
).

(iv) If � `

�

M : � then w e sa y that M has typ e � in �. W e sa y that M 2 �

�

is typ able if there are � and � suc h that � `

�

M : � .

3.2.2. Example . Let � ; � ; � b e arbitrary simple t yp es. Then:

(i) `

�

�x : � :x : � ! � ;

(ii) `

�

�x : � :�y : � :x : � ! � ! � ;

(iii) `

�

�x : � ! � ! �:�y : � ! � :�z : � : (x z) y z : (� ! � ! �) ! (� ! �) ! � ! � .

Ev en with the form ulation of � ! �a la Ch urc h in De�nition 3.2.1 an

imp ortan t di�erence with � ! �a la Curry remains: in Ch urc h's system ab-

stractions ha v e domains , i.e. are of the form �x : � :M , whereas in Curry's

system abstractions ha v e no domain, i.e. are of the form �x:M . Th us, in

Ch urc h's system one writes

�x : � :x : � ! � ;

whereas in Curry's system one writes

�x:x : � ! � :

1

Strictly sp eaking, w e should pro ceed as in the case of � -terms and de�ne a notion of

pre-pseudo-terms, then de�ne substitution and � -equiv alence on these, and �nally adopt

the con v en tion that b y M 2 �

�

w e alw a ys mean the � -equiv alence class, see 1.13{1.19.

W e omit the details.

2

In this c hapter it is useful to distinguish syn tactically b et w een t yping in the system �a

la Ch urc h and the system �a la Curry , and therefore w e use `

�

here. In later c hapters w e

shall also use ` for `

�

.

3.2. Simply t yp ed � -calculus �a la Ch urc h 47

The t w o di�eren t systems|Curry's and Ch urc h's|represen t t w o di�er-

en t paradigms in programming languages. In Ch urc h's system the program-

mer has to explicitly write the t yp es for all v ariables used in the program

as in, e.g., P ascal, whereas in Curry's approac h the programmer merely

writes functions, and it is then the job of the compiler or the programming

en vironmen t to infer the t yp es of v ariables, as e.g., in ML and Hask ell.

Ha ving in tro duced a new set of terms (pseudo-terms instead of � -terms)

w e are obliged to in tro duce the notions of substitution, reduction, etc., for

the new notion. This is carried out brie
y b elo w. W e reuse m uc h notation

and terminology .

3.2.3. Definition . F or M 2 �

�

de�ne the set FV (M) of fr e e variables of M

as follo ws.

FV (x) = f x g

FV (�x : � :P) = FV (P) nf x g

FV (P Q) = FV (P) [FV (Q)

If FV (M) = fg then M is called close d.

3.2.4. Definition . F or M ; N 2 �

�

and x 2 V , the substitution of N for x

in M , written M [x := N], is de�ned as follo ws:

x [x := N] = N

y [x := N] = y if x 6= y

(P Q)[x := N] = P [x := N] Q [x := N]

(�y : � :P)[x := N] = �y : � :P [x := N] where x 6= y and y 62 FV (N)

3.2.5. Definition . Let !

�

b e the smallest relation on �

�

closed under the

rules:

(�x : � : P) Q !

�

P [x := Q]

P !

�

P

0

) 8 x 2 V ; � 2 � : �x : � :P !

�

�x : � :P

0

P !

�

P

0

) 8 Z 2 � : P Z !

�

P

0

Z

P !

�

P

0

) 8 Z 2 � : Z P !

�

Z P

0

A term of form (�x : � : P) Q is called a � -r e dex, and P [x := Q] is called

its � -c ontr actum . A term M is a � -normal form if there is no term N with

M !

�

N .

3.2.6. Definition .

(i) The relation !!

�

(multi-step � -r e duction) is the transitiv e-re
exiv e clo-

sure of !

�

;

(ii) The relation =

�

(� -e quality) is the transitiv e-re
exiv e-symmetric clo-

sure of !

�

.

48 Chapter 3. Simply t yp ed � -calculus

W e end the section b y brie
y rep eating the dev elopmen t in the preceding

subsection for simply t yp ed � -calculus �a la Ch urc h.

3.2.7. Lemma (F ree v ariables lemma). L et � `

�

M : � . Then:

(i) � � �

0

implies �

0

`

�

M : � ;

(ii) FV (M) � dom (�) ;

(iii) �

0

`

�

M : � wher e dom(�

0

) = FV (M) and �

0

� � .

Pr oof. See the Exercises. ut

3.2.8. Lemma (Generation lemma).

(i) � `

�

x : � implies x : � 2 � ;

(ii) � `

�

M N : � implies that ther e is a � such that � `

�

M : � ! � and

� `

�

N : � .

(iii) � `

�

�x : � :M : � implies that ther e is a � such that � ; x : � `

�

M : �

and � = � ! � .

Pr oof. See the Exercises. ut

3.2.9. Pr oposition (Substitution lemma).

(i) If � `

�

M : � , then �[� := �] `

�

M : � [� := �] .

(ii) If � ; x : � `

�

M : � and � `

�

N : � then � `

�

M [x := N] : � .

Pr oof. See the Exercises. ut

3.2.10. Pr oposition (Sub ject reduction). If � `

�

M : � and M !

�

N ,

then � `

�

N : � .

Pr oof. See the Exercises. ut

3.2.11. Theorem (Ch urc h-Rosser prop ert y). Supp ose that � `

�

M : � . If

M !!

�

N and M !!

�

N

0

, then ther e exists an L such that N !!

�

L and

N

0

!!

�

L and � `

�

L : � .

Pr oof. One w a y to obtain this result is to rep eat for �

�

an argumen t

similar to that w e used for un t yp ed terms, and then use the sub ject reduction

prop ert y . Another metho d, based on so called lo gic al r elations can b e found

in [74]. ut

The follo wing t w o prop erties of simply t yp ed � -calculus �a la Ch urc h do

not hold for the Curry system. Note that (ii) implies the sub ject expansion

prop ert y|see Remark 3.1.10.

3.3. Ch urc h v ersus Curry t yping 49

3.2.12. Pr oposition (Uniqueness of t yp es).

(i) If � `

�

M : � and � `

�

M : � then � = � .

(ii) If � `

�

M : � and � `

�

N : � and M =

�

N , then � = � .

Pr oof.

(i) By induction on M .

(ii) If M =

�

N then b y the Ch urc h-Rosser prop ert y , M !!

�

L and N !!

�

L ,

for some L . By sub ject reduction, � `

�

L : � and � `

�

L : � . No w

use (i). ut

It is easy to see that these prop erties fail in � ! �a la Curry . F or instance,

` �x:x : � ! � and ` �x:x : (� ! �) ! (� ! �) b y the deriv ations:

x : � ` x : �

` �x:x : � ! �

and

x : � ! � ` x : � ! �

` �x:x : (� ! �) ! (� ! �)

Although these t w o deriv ations ha v e the same structure, their conclusions

are di�eren t due to di�eren t t yp e assumptions for x . In con trast, if the

Ch urc h term M has t yp e � in �, then there is exactly one deriv ation of this

fact, whic h is uniquely enco ded b y M .

This di�erence leads to some in teresting problems for the Curry system.

Giv en a term M whic h t yp es can b e assigned to M , if an y? Is there a single

b est t yp e in some sense? Suc h problems are studied in typ e infer enc e, whic h

w e return to later.

Because of the ab o v e di�erence, � ! �a la Curry and other similar systems

are often called typ e assignment systems, in con trast to � ! �a la Ch urc h and

similar systems whic h are called, e.g., typ e d systems.

3.3. Ch urc h v ersus Curry t yping

Although the simply t yp ed � -calculus �a la Curry and Ch urc h are di�eren t,

one has the feeling that essen tially the same thing is going on. T o some

exten t this in tuition is correct, as w e no w sho w.

Ev ery pseudo-term induces a t yp e-free � -term b y erasing the domains of

abstractions.

3.3.1. Definition . The er asur e map j � j : �

�

! � is de�ned as follo ws:

j x j = x ;

j M N j = j M j j N j ;

j �x : � :M j = �x: j M j :

50 Chapter 3. Simply t yp ed � -calculus

Erasure preserv es reduction and t yping:

3.3.2. Pr oposition (Erasing). L et M ; N 2 �

�

.

(i) If M !

�

N then j M j !

�

j N j ;

(ii) If � `

�

M : � then � ` j M j : � .

Pr oof. (i) pro v e b y induction on M that

j M [x := N] j = j M j [x := j N j] (�)

Then pro ceed b y induction on the deriv ation of M !

�

N using (�).

(ii) b y induction on the deriv ation of � `

�

M : � . ut

Con v ersely , one can \lift" ev ery Curry deriv ation to a Ch urc h one.

3.3.3. Pr oposition (Lifting). F or al l M ; N 2 � :

(i) If M !

�

N then for e ach M

0

2 �

�

with j M

0

j = M ther e is N

0

2 �

�

such that j N

0

j = N , and M

0

!

�

N

0

;

(ii) If � ` M : � then ther e is an M

0

2 �

�

with j M

0

j = M and � `

�

M

0

: � .

Pr oof. By induction on the deriv ation of M !

�

N and � ` M : � ,

resp ectiv ely . ut

3.3.4. W arning . The ab o v e t w o prop ositions allo w one to deriv e certain

prop erties of Curry-st yle t ypable lam b da-terms from analogous prop erties

of Ch urc h-st yle t yp ed lam b da-terms, or con v ersely . F or instance, strong

normalization for one v arian t of (� !) easily implies strong normalization

for the other (Exercise 3.6.4).

Ho w ev er, one has to b e v ery cautious with suc h pro of metho ds, some-

times they do not w ork. A common mistak e (cf. Exercise 3.6.5) is the

follo wing attempt to deriv e the Ch urc h-Rosser prop ert y for Ch urc h-st yle

(� !) from the Ch urc h-Rosser prop ert y for un t yp ed lam b da-terms:

Assume that M

0

! !

�

M

1

and M

0

! !

�

M

2

. Then, b y Prop o-

sition 3.3.2, w e ha v e j M

0

j ! !

�

j M

1

j and j M

0

j ! !

�

j M

2

j . By

Ch urc h-Rosser prop ert y for un t yp ed lam b da-terms, w e ha v e a

term P with j M

1

j ! !

�

P and j M

2

j ! !

�

P . In addition, b y the

sub ject reduction prop ert y , P is t ypable in to the desired t yp e. It

remains to apply Prop osition 3.3.3, to obtain a Ch urc h-st yle term

M

3

with j M

3

j = P , and suc h that M

2

! !

�

M

3

and M

1

! !

�

M

3

.

F or an explanation wh y the gap in this argumen t cannot b e easily �xed, and

ho w it c an b e �xed, see [74 , pp. 269, 559].

In the remainder, when stating prop erties of simply t yp ed � -calculus it

m ust alw a ys b e understo o d that the result applies to b oth � ! �a la Curry

and �a la Ch urc h, except when explicitly stated otherwise.

3.4. Normalization 51

3.4. Normalization

In this section w e are concerned with � ! �a la Ch urc h.

A simple t yp e can b e regarded as a �nite binary tree|this is where

the alternativ e name \�nite t yp e" comes from|where all in ternal no des are

lab eled b y arro ws and all lea v es are lab eled b y t yp e v ariables. W e shall

often refer to prop erties of t yp es expressing them as prop erties of this tree

represen tation. F or instance, the function h (�) de�ned b elo w is just the

heigh t of the corresp onding tree.

3.4.1. Definition . De�ne the function h : � ! N b y:

h (�) = 0

h (� ! �) = 1 + max(h (�) ; h (�))

It is often con v enien t to write Ch urc h st yle terms (t ypable pseudo-terms)

in suc h a w a y that t yp es of some or all subterms are displa y ed b y sup er-

scripts, as in e.g., (�x : � :P

�

)

� ! �

R

�

. Recall that a Ch urc h st yle term can b e

t yp ed in only one w a y , pro vided the con text of free v ariables is kno wn. Th us

our lab elling is alw a ys determined b y the term and the con text. But the

lab elling itself is not a part of syn tax, just a meta-notation.

The follo wing prop ert y is the �rst non-trivial prop ert y of � ! .

3.4.2. Theorem (W eak normalization). Supp ose � `

�

M : � . Then ther e

is a �nite r e duction M

1

!

�

M

2

!

�

: : : !

�

M

n

2 NF

�

.

Pr oof. W e use a pro of idea due indep enden tly to T uring and Pra witz.

De�ne the height of a redex (�x : � :P

�

) R to b e h (� ! �). F or M 2 �

�

with M 62 NF

�

de�ne

m (M) = (h (M) ; n)

where

h (M) = max f h (�) j � is a redex in M g

and n is the n um b er of redex o ccurrences in M of heigh t h (M). If M 2 NF

�

w e de�ne h (M) = (0 ; 0).

W e sho w b y induction on lexicographically ordered pairs m (M) that if

M is t ypable in � ! �a la Ch urc h, then M has a reduction to normal-form.

Let � ` M : � . If M 2 NF

�

the assertion is trivially true. If M 62 NF

�

,

let � b e the righ tmost redex in M of maximal heigh t h (w e determine the

p osition of a subterm b y the p osition of its leftmost sym b ol, i.e., the righ t-

most redex means the redex whic h b e gins as m uc h to the righ t as p ossible).

Let M

0

b e obtained from M b y reducing the redex �. The term M

0

ma y in general ha v e more redexes than M . But w e claim that the n um b er

of redexes of heigh t h in M

0

is smaller than in M . Indeed, the redex � has

disapp eared, and the reduction of � ma y only create new redexes of heigh t

52 Chapter 3. Simply t yp ed � -calculus

less than h . T o see this, note that the n um b er of redexes can increase b y

either cop ying existing redexes or b y creating new ones. No w observ e that

if a new redex is created then one of the follo wing cases m ust hold:

1. The redex � is of the form (�x : � : : : : xP

�

: : :)(�y

�

:Q

�

)

�

, where � =

� ! � , and reduces to : : : (�y

�

:Q

�

) P

�

: : : . There is a new redex

(�y

�

:Q

�

) P

�

of heigh t h (�) < h .

2. W e ha v e � = (�x : � :�y : �:R

�

) P

�

, o ccurring in the con text �

� ! �

Q

�

.

The reduction of � to �y : �:R

�

1

, for some R

1

, creates a new redex

(�y : �:R

�

1

) Q

�

of heigh t h (� ! �) < h (� ! � ! �) = h .

3. The last case is when � = (�x : � :x)(�y

�

:P

�

), with � = � ! � , and

it o ccurs in the con text �

�

Q

�

. The reduction creates the new redex

(�y

�

:P

�

) Q

�

of heigh t h (�) < h .

The other p ossibilit y of adding redexes is b y cop ying. If w e ha v e � =

(�x : � :P

�

) Q

�

, and P con tains more than one free o ccurrence of x , then all

redexes in Q are m ultiplied b y the reduction. But w e ha v e c hosen � to b e

the righ tmost redex of heigh t h , and th us all redexes in Q m ust b e of smaller

heigh ts, b ecause they are to the righ t of �.

Th us, in all cases m (M) > m (M

0

), so b y the induction h yp othesis M

0

has a normal-form, and then M also has a normal-form. ut

In fact, an ev en stronger prop ert y than w eak normalization holds: if

`

�

M : � , then no in�nite reduction M

1

!

�

M

2

!

�

: : : exists. This

prop ert y is called str ong normalization and will b e pro v ed later.

The sub ject reduction prop ert y together with the Ch urc h-Rosser prop-

ert y and strong normalization imply that reduction of an y t ypable � -term

terminates in a normal form of the same t yp e, where the normal form is

indep enden t of the particular order of reduction c hosen.

3.5. Expressibilit y

As w e sa w in the preceding section, ev ery simply t ypable � -term has a

normal-form. In fact, one can e�ectiv ely �nd this normal-form b y rep eated

reduction of the leftmost redex. (These results hold for b oth the �a la Curry

and �a la Ch urc h system.) Therefore one can easily �gure out whether t w o

simply t ypable terms are � -equal: just reduce the terms to their resp ectiv e

normal-forms and compare them.

These results should suggest that there will b e di�culties in represen t-

ing all the partial recursiv e functions and p ossibly also the total recursiv e

functions b y simply t ypable � -terms, as w e shall no w see. In the rest of this

section w e are concerned with simply t yp ed � -calculus �a la Curry .

3.5. Expressibilit y 53

3.5.1. Definition . Let

in t = (� ! �) ! (� ! �)

where � is an arbitrary t yp e v ariable. A n umeric function f : N

n

! N is

� ! -de�nable if there is an F 2 � with ` F : in t ! � � � ! in t ! in t

(n + 1 o ccurrences of in t) suc h that

F c

n

1

: : : c

n

m

=

�

c

f (n

1

;::: ;n

m

)

for all n

1

; : : : ; n

m

2 N .

It is natural to in v estigate whic h of the constructions from Chapter 1

carry o v er to the t yp ed setting. This is carried out b elo w.

3.5.2. Lemma . The c onstant and pr oje ction functions ar e � ! -de�nable.

Pr oof. See the Exercises. ut

3.5.3. Lemma . The function sg : N ! N de�ne d by sg (0) = 0 ; sg (m + 1) = 1

is � ! -de�nable.

Pr oof. See the Exercises. ut

3.5.4. Lemma . A ddition and multiplic ation ar e � ! -de�nable.

Pr oof. See the Exercises. ut

3.5.5. Definition . The class of extende d p olynomials is the smallest class

of n umeric functions con taining the

(i) pr oje ctions: U

m

i

(n

1

; : : : ; n

m

) = n

i

for all 1 � i � m ;

(ii) c onstant functions: k (n) = k ;

(iii) signum function: sg (0) = 0 and sg (m + 1) = 1.

and closed under addition and multiplic ation :

(i) addition: if f : N

k

! N and g : N

l

! N are extended p olynomials, then

so is (f + g) : N

k + l

! N

(f + g)(n

1

; : : : ; n

k

; m

1

; : : : ; m

l

) = f (n

1

; : : : ; n

k

) + g (m

1

; : : : ; m

l

)

(ii) multiplic ation: if f : N

k

! N and g : N

l

! N are extended p olynomials,

then so is (f � g) : N

k + l

! N

(f � g)(n

1

; : : : ; n

k

; m

1

; : : : ; m

l

) = f (n

1

; : : : ; n

k

) � g (m

1

; : : : ; m

l

)

3.5.6. Theorem (Sc h wic h ten b erg). The � ! -de�nable functions ar e exactly

the extende d p olynomials.

The pro of is omitted. One direction follo ws easily from what has b een

said already; the other direction is pro v ed in [97].

If one do es not insist that n um b ers b e uniformly represen ted as terms of

t yp e in t , more functions b ecome � ! -de�nable|see [35].

54 Chapter 3. Simply t yp ed � -calculus

3.6. Exercises

3.6.1. Exer cise . Sho w that the follo wing � -terms ha v e no t yp e in � ! �a la

Curry .

1. �x:x x ;

2.

3. K I
;

4. Y ;

5. c

2

K .

3.6.2. Exer cise . Find terms M and M

0

and t yp es � ; �

0

suc h that ` M : � ,

` M

0

: �

0

, M !!

�

M

0

, and not ` M : �

0

.

3.6.3. Exer cise . Is the follo wing true? If M !

�

N (where M ; N 2 �) and

M

0

; N

0

2 �

�

are suc h that j M

0

j = M , j N

0

j = N then M

0

!

�

N

0

.

3.6.4. Exer cise . Sho w that strong normalization for (� !) �a la Curry im-

plies strong normalization for (� !) �a la Ch urc h, and con v ersely .

3.6.5. Exer cise . Find the bug in the example argumen t in W arning 3.3.4.

3.6.6. Exer cise . Consider the pro of of w eak normalization. Assume that

a giv en term M is of length n including t yp e annotations. Giv e a (rough)

upp er b ound (in terms of a function in n) for the length of the normalizing

sequence of reductions for M , obtained under the strategy de�ned in that

pro of. Can y our function b e b ounded b y exp

k

(n), for some k ? Can this b e

done under the assumption that the heigh t of redexes in M is b ounded b y

a giv en constan t h ? (Here, exp

0

(n) = n and exp

k +1

(n) = 2

exp

k

(n)

.)

3.6.7. Exer cise . This exercise, and the next one, are based on [35]. De�ne

the r ank of a t yp e � , denoted rk (�), as follo ws:

rk (�) = 0

rk (� ! �) = max (h (�) + 1 ; h (�))

Alternativ ely , w e ha v e

rk (�

1

! � � � ! �

n

! �) = 1 + max(h (�

1

) ; : : : ; h (�

n

)) :

The rank of a redex (�x : � :P

�

) R is rk (� ! �). Then de�ne the depth of a

term M , denoted d (M), b y the conditions

d (x) = 0;

d (M N) = 1 + max (d (M) ; d (N));

d (�x : � :M) = 1 + d (M) :

3.6. Exercises 55

Let r b e the maxim um rank of a redex o ccurring in M , and let d (M) = d .

Sho w (b y induction w.r.t M) that M can b e reduced in at most 2

d

� 1 steps

to a term M

1

suc h that the maxim um rank of a redex o ccurring in M

1

is at

most r � 1, and d (M

1

) � 2

d

.

3.6.8. Exer cise . Let r b e the maxim um rank of a redex o ccurring in M ,

and let d (M) = d . Use the previous exercise to pro v e that the normal form

of M is of depth at most exp

r

(d), and can b e obtained in at most exp

r

(d)

reduction steps.

3.6.9. Exer cise . Sho w that the constan t functions and pro jection functions

are � ! -de�nable.

3.6.10. Exer cise . Sho w that sg is � ! -de�nable.

3.6.11. Exer cise . Sho w that addition and m ultiplication are � ! -de�nable.

56 Chapter 3. Simply t yp ed � -calculus

CHAPTER 4

The Curry-Ho w ard isomorphism

Ha ving met one formalism for expressing e�ectiv e functions| � -calculus|

and another formalism for expressing pro ofs|natural deduction for in tu-

itionistic logic|w e shall no w demonstrate an amazing analogy b et w een the

t w o formalisms, kno wn as the Curry-Howar d isomorphism.

W e ha v e already seen sev eral hin ts that e�ectiv e functions and pro ofs

should b e in timately related. F or instance, as men tioned in Chapter 2,

the BHK-in terpretation [17 , 53 , 63] states that a pro of of an implication

'

1

! '

2

is a \construction" whic h transforms an y pro of of '

1

in to a pro of

of '

2

. What is a construction? A p ossible answ er is that it is some kind

of e�ectiv e function. There are sev eral w a ys to mak e this answ er precise.

In this c hapter w e presen t one suc h w a y; another one is giv en b y Kleene's

realizabilit y in terpretation, whic h w e presen t later.

4.1. Natural deduction without con texts

Recall that Chapter 2 presen ted a so-called natur al de duction form ulation

of in tuitionistic prop ositional logic. Suc h systems w ere originally in tro duced

b y Gen tzen [39]. More precisely , Gen tzen in tro duced t w o kinds of systems,

no w ada ys called natur al de duction systems and se quent c alculus systems,

resp ectiv ely . In this c hapter w e are concerned with the former kind; sequen t

calculus systems will b e in tro duced in the next c hapter.

One of the most signi�can t studies of natural deduction systems after

Gen tzen's w ork in the 1930s app ears in Pra witz' classical b o ok [85], whic h

is still v ery readable.

There is an informal w a y of writing natural deduction pro ofs. Instead of

main taining explicitly in eac h no de of a deriv ation the set of assumptions on

whic h the conclusion dep ends (the c ontext), one writes all the assumptions

at the top of the deriv ation with a mark er on those assumptions that ha v e

b een disc harged b y the implication in tro duction rule.

57

58 Chapter 4. The Curry-Ho w ard isomorphism

Since this st yle is quite common in the pro of theory literature|at least

un til the Curry-Ho w ard isomorphism b ecame widely appreciated|w e also

brie
y review that notation informally here. Another reason for doing so, is

that the notation displa ys certain in teresting problems concerning assump-

tions that are hidden in our form ulation of Chapter 2.

Consider the pro of tree:

'

(' !) ^ (' ! �)

' !

'

(' !) ^ (' ! �)

' ! �

�

 ^ �

First note that, as alw a ys, the pro of tree is written upside-do wn. The lea v es

are the assumptions, and the ro ot is the conclusion, so the pro of tree demon-

strates that one can infer ^ � from ' and (' !) ^ (' ! �).

As usual there is an ! -in tro duction rule whic h disc harges assumptions.

Th us w e are able to infer ' ! ^ � from (' !) ^ (' ! �). Notationally

this is done b y putting brac k ets around the assumption in question whic h

is then called close d, as opp osed to the other assumptions whic h are called

op en:

[']

(' !) ^ (' ! �)

' !

[']

(' !) ^ (' ! �)

' ! �

�

 ^ �

' ! ^ �

Note that the ab o v e step disc harges b oth o ccurrences of ' . In general, in an

! -in tro duction step, w e ma y disc harge zero, one, or more o ccurrences of an

assumption.

T aking this one step further w e get

[']

[(' !) ^ (' ! �)]

' !

[']

[(' !) ^ (' ! �)]

' ! �

�

 ^ �

' ! ^ �

(' !) ^ (' ! �) ! ' ! ^ �

Since w e ma y decide to disc harge only some of the o ccurrences of an op en

assumption in an ! -in tro duction step, one sometimes adopts for readabilit y

the con v en tion of assigning n um b ers to assumptions, and one then indicates

in an ! -in tro duction step whic h of the o ccurrences where disc harged. In

the ab o v e example w e th us migh t ha v e the follo wing sequence of pro of trees.

4.1. Natural deduction without con texts 59

First:

'

(1)

(' !) ^ (' ! �)

(2)

' !

'

(1)

(' !) ^ (' ! �)

(2)

' ! �

�

 ^ �

Then b y closing b oth o ccurrences of ' :

[']

(1)

(' !) ^ (' ! �)

(2)

' !

[']

(1)

(' !) ^ (' ! �)

(2)

' ! �

�

 ^ �

' ! ^ �

(1)

And b y closing b oth o ccurrences of (' !) ^ (' ! �):

[']

(1)

[(' !) ^ (' ! �)]

(2)

' !

[']

(1)

[(' !) ^ (' ! �)]

(2)

' ! �

�

 ^ �

' ! ^ �

(1)

(' !) ^ (' ! �) ! ' ! ^ �

(2)

It is in teresting to note that the notation where w e indicate whic h as-

sumption is disc harged allo ws us to distinguish b et w een certain v ery similar

pro ofs. F or instance, in

[']

(1)

[(' !) ^ (' ! �)]

(2)

' !

[']

(1)

[(' !) ^ (' ! �)]

(3)

' ! �

�

 ^ �

' ! ^ �

(1)

(' !) ^ (' ! �) ! ' ! ^ �

(2)

(' !) ^ (' ! �) ! (' !) ^ (' ! �) ! ' ! ^ �

(3)

and

[']

(1)

[(' !) ^ (' ! �)]

(2)

' !

[']

(1)

[(' !) ^ (' ! �)]

(3)

' ! �

�

 ^ �

' ! ^ �

(1)

(' !) ^ (' ! �) ! ' ! ^ �

(3)

(' !) ^ (' ! �) ! (' !) ^ (' ! �) ! ' ! ^ �

(2)

60 Chapter 4. The Curry-Ho w ard isomorphism

w e disc harge the t w o o ccurrences of (' !) ^ (' ! �) separately , but in

di�eren t orders.

Similarly ,

[']

(1)

' ! '

(1)

' ! ' ! '

(2)

and

[']

(1)

' ! '

(2)

' ! ' ! '

(1)

are t w o di�eren t pro ofs of ' ! ' ! ' . In the �rst pro of there is �rst a

disc harge step in whic h the single o ccurrence of ' is disc harged, and then a

disc harge step in whic h zero o ccurrences of ' are disc harged. In the second

pro of the order is rev ersed.

In order to a v oid confusion with assumption n um b ers, w e require that if

t w o assumptions ' and ha v e the same n um b er, then ' and are the same

form ula. Also, when w e disc harge the assumptions with a giv en n um b er (i),

w e require that ev ery assumption with this n um b er actually o ccur on a

branc h from the no de where the disc harging o ccurs.

In general, the rules for constructing the ab o v e pro of trees lo ok as follo ws.

'

' ^

' ^

'

' ^

'

' _

' _

' _

[']

(i)

.

.

.

�

[]

(j)

.

.

.

�

�

(i;j)

[']

(i)

.

.

.

' !

(i)

' ! '

?

'

F or instance, the upp er left rule (^ -in tro duction) states that t w o pro of

trees ending in ro ots ' and , resp ectiv ely , ma y b e joined in to a single pro of

tree b y addition of a new ro ot ' ^ with the former ro ots as c hildren. The

! -in tro duction rule states that one ma y infer an implication b y disc harging

the assumptions with the lab el indicated b y the step.

4.1. Natural deduction without con texts 61

As w e shall see later in this c hapter, there is an in terest in pro ofs of a

certain simple form. One arriv es at suc h pro ofs from arbitrary pro ofs b y

means of pr o of normalization rules that eliminate detours in a pro of. More

concretely , consider the pro of tree:

[']

(1)

' ! '

(1)

[]

(2)

 !

(2)

(' ! ') ^ (!)

' ! '

The pro of tree demonstrates that ' ! ' is deriv able. Ho w ev er, it do es

so b y �rst sho wing ' ! ' , then inferring (' ! ') ^ (!), and then,

�nally , concluding ' ! ' . A more direct pro of tree, whic h do es not mak e

an excursion via (' ! ') ^ (!) is:

[']

(1)

' ! '

(1)

Note that the detour in the former pro of tree is signi�ed b y an in tro-

duction rule immediately follo w ed b y the corresp onding elimination rule,

for example ^ -in tro duction and ^ -elimination. In fact, the ab o v e st yle of

detour-elimination is p ossible whenev er an in tro duction rule is immediately

follo w ed b y the corresp onding elimination rule.

As another example, consider the pro of tree:

[']

(3)

' ! '

(3)

[' ! ']

(1)

 ! ' ! '

(2)

(' ! ') ! ! ' ! '

(1)

 ! ' ! '

Here w e infer ! ' ! ' from ' ! ' and (' ! ') ! ! ' ! ' .

The pro of of the latter form ula pro ceeds b y inferring ! ' ! ' from the

assumption ' ! ' . Since w e can pr ove this assumption, w e could simply

tak e this pro of and replace the assumption ' ! ' with the pro of of this

form ula:

[']

(3)

' ! '

(3)

 ! ' ! '

(2)

In general one considers the follo wing pro of normalization rules (sym-

62 Chapter 4. The Curry-Ho w ard isomorphism

metric cases omitted):

�

'

�

' ^

' !

�

'

�

[]

(i)

�

'

 ! '

(i)

' !

�

�

'

�

'

' _

[']

(i)

�

�

[]

(j)

�

�

�

(i;j)

!

�

'

�

�

The �rst rule states that if w e, somewhere in a pro of, infer ' and and then

use ^ -in tro duction to infer ' ^ follo w ed b y ^ -elimination to infer ' , w e

migh t as w ell a v oid the detour and replace this pro of simply b y the subpro of

of ' .

The second rule states that if w e ha v e a pro of of ' from assumption

and w e use this and ! -in tro duction to get a pro of of ! ' , and w e ha v e

a pro of of then, instead of inferring ' b y ! -elimination, w e migh t as w ell

replace this pro of b y the original pro of of ' where w e plug in the pro of of

in all the places where the assumption o ccurs.

The reading of the third rule is similar.

The pro cess of eliminating pro of detours of the ab o v e kind, is called

pr o of normalization, and a pro of tree with no detours is said to b e in normal

form. Another similar pro cess, called cut elimination, eliminates detours in

se quent c alculus pr o ofs whereas pro of normalization eliminates detours in

natural deduction pro ofs. Sequen t calculus systems are in tro duced in the

next c hapter.

Pro of normalization and cut elimination w ere studied in the 1930s b y

Gen tzen, and his studies w ere con tin ued b y sev eral researc hers, p erhaps most

imp ortan tly b y Pra witz in [85]. No w ada ys, pro of theory is an indep enden t

discipline of logic.

In these notes w e shall not consider natural deduction pro ofs in the ab o v e

st yle an y further.

4.2. The Curry-Ho w ard isomorphism 63

4.2. The Curry-Ho w ard isomorphism

W e could in tro duce reductions �a la those of the preceding section for the

natural deduction form ulation of Chapter 2, but w e shall not do so. The

rules for that form ulation are rather tedious (try the rule for ! !). It w ould

b e more con v enien t to ha v e eac h pro of tree denoted b y some 1-dimensional

expression and then state transformations on suc h expressions rather than

on pro of trees. It happ ens that the terms of the simply t yp ed � -calculus are

ideal for this purp ose, as w e shall see in this section.

W e sho w that an y deriv ation in in tuitionistic prop ositional logic corre-

sp onds to a t ypable � -term �a la Ch urc h, and vice v ersa. More precisely w e

sho w this for the implic ational fr agment of in tuitionistic prop ositional logic.

Recall from Section 2.6 that the implicational fragmen t is the subsystem

in whic h the only connectiv e is ! and in whic h the only rules are (! E)

and (! I). This fragmen t is denoted IPC (!). The whole system is denoted

IPC (! ; ^ ; _ ; ?) or plainly IPC .

If w e tak e P V (the set of prop ositional v ariables) equal to U (the set of

t yp e v ariables), then � (the set of prop ositional form ulas in the implicational

fragmen t of in tuitionistic prop ositional logic) and � (the set of simply t yp es)

are iden tical. This will b e used implicitly b elo w.

4.2.1. Pr oposition (Curry-Ho w ard isomorphism).

(i) If � ` M : ' then j � j ` ' .

1

(ii) If � ` ' then ther e exists M 2 �

�

such that � ` M : ' , wher e

� = f (x

'

: ') j ' 2 � g .

Pr oof. (i): b y induction on the deriv ation of � ` M : ' .

(ii): b y induction on the deriv ation of � ` ' . Let � = f x

'

: ' j ' 2 � g .

1. The deriv ation is

� ; ' ` '

W e consider t w o sub cases:

(a) ' 2 �. Then � ` x

'

: ' .

(b) ' 62 �. Then � ; x

'

: ' ` x

'

: ' .

2. The deriv ation ends in

� ` ' ! � ` '

� `

By the induction h yp othesis � ` M : ' ! and � ` N : ' , and

then also � ` M N : .

1

Recall that j � j denotes the range of �.

64 Chapter 4. The Curry-Ho w ard isomorphism

3. The deriv ation ends in

� ; ' `

� ` ' !

W e consider t w o sub cases:

(a) ' 2 �. Then b y the induction h yp othesis � ` M : . By

W eak ening (Lemma 3.19(i)) � ; x : ' ` M : , where x 62

dom(�). Then also � ` �x : ' : M : ' ! .

(b) ' 62 �. Then b y the induction h yp othesis � ; x

'

: ' ` M : and

then also � ` �x

'

: ' : M : ' ! . ut

4.2.2. Remark . The corresp ondence displa ys certain in teresting problems

with the natural deduction form ulation of Chapter 2. F or instance

x : '; y : ' ` x : '

x : ' ` �y : ' : x : ' ! '

` �x : ' : �y : ' : x : ' ! ' ! '

and

x : '; y : ' ` y : '

x : ' ` �y : ' : y : ' ! '

` �x : ' : �y : ' : y : ' ! ' ! '

are t w o di�eren t deriv ations in � ! sho wing that b oth �x : ' : �y : ' : x and

�x : ' : �y : ' : y ha v e t yp e ' ! ' ! ' .

Both of these deriv ations are pro jected to

' ` '

' ` ' ! '

` ' ! ' ! '

This re
ects the fact that, in the natural deduction system of Chapter 2, one

cannot distinguish pro ofs in whic h assumptions are disc harged in di�eren t

orders. Indeed, � ! can b e view ed as an extension of IPC(!) in whic h

certain asp ects suc h as this distinction are elab orated.

The corresp ondence b et w een deriv ations in IPC(!) and � ! can b e

extended to the whole system IPC b y extending the simply t yp ed � -calculus

with pairs and disjoin t sums. One extends the language �

�

with clauses:

�

�

::= : : : j < �

�

; �

�

> j �

1

(�

�

) j �

2

(�

�

)

j in

 _ '

1

(�

�

) j in

 _ '

2

(�

�

) j case (�

�

; V : �

�

; V : �

�

)

4.2. The Curry-Ho w ard isomorphism 65

and adds t yping rules:

� ` M : � ` N : '

� ` < M ; N > : ^ '

� ` M : ^ '

� ` �

1

(M) :

� ` M : ^ '

� ` �

2

(M) : '

� ` M :

� ` in

 _ '

1

(M) : _ '

� ` M : '

� ` in

 _ '

2

(M) : _ '

� ` L : _ ' � ; x : ` M : � � ; y : ' ` N : �

� ` case (L ; x:M ; y :N) : �

and reduction rules:

�

1

(< M

1

; M

2

>) ! M

1

�

2

(< M

1

; M

2

>) ! M

2

case (in

'

1

(N); x:K ; y :L) ! K f x := N g

case (in

'

2

(N); x:K ; y :L) ! L f y := N g

In tuitiv ely , � ^ is a pro duct t yp e, so < M

1

; M

2

> is a pair, and �

1

(M)

is the �rst pro jection. In t yp e-free � -calculus these could b e de�ned in terms

of pure � -terms (see Prop osition 1.46), but this is not p ossible in � ! . This

is related to the fact that one cannot de�ne conjunction in IPC in terms of

implication (con trary to the situation in classical logic, as w e shall see later).

In the same spirit, � _ is a sum (or \v arian t") t yp e. A sum t yp e is

a data t yp e with t w o unary constructors. Compare this to the data t yp e

\in teger list", whic h is usually de�ned as a data t yp e with t w o constructors:

the 0-ary constructor Nil and the 2-ary constructor Cons (� ; �) whic h tak es a

n um b er and a list of n um b ers. In a sum w e ha v e the t w o unary constructors

left and righ t injection.

Th us case (M ; x:K ; y :L) is a case-expression whic h tests whether M has

form in

'

1

(N) (and then returns K with N for x) or in

2

(N) (and then re-

turns L with N for y), just lik e in a functional programming language

w e could ha v e a case-expression testing whether an expression is Nil or

Cons (n; ns).

Th us, uses of the axiom of in tuitionistic prop ositional logic are re
ected

b y v ariables in the term, uses of the ! -elimination rule corresp ond to ap-

plications, and uses of the ! -in tro duction rule corresp ond to abstractions.

In fact, w e can view � ! as a more elab orate form ulation of IPC(!)

in whic h the terms \record" the rules it w as necessary to apply to pro v e

the t yp e of the term, when w e view that t yp e as a prop osition. F or in-

stance, �x : ' : x has t yp e ' ! ' , signifying the fact that w e can pro v e

' ! ' b y �rst using the axiom recorded b y the v ariable x and then using

! -in tro duction , recorded b y �x : ' . In short, in � ! view ed as a logic,

the terms serv e as a linear represen tation of pro of trees, and are usually

66 Chapter 4. The Curry-Ho w ard isomorphism

called c onstructions [58]. These are also constructions in the sense of the

BHK-in terpretation: a construction of ' ! is a � -term �x : ' : M of t yp e

' ! .

Tw o di�eren t prop ositions cannot ha v e the same construction, since w e

w ork with Ch urc h terms. In con trast, sev eral constructions ma y corresp ond

to the same prop osition. This is b ecause the same prop osition ma y b e pro v en

in di�eren t w a ys.

Th us � ! and IPC(!) ma y b e view ed as di�eren t names for essen tially

the same thing. This means that eac h of the concepts and prop erties con-

sidered in � ! mak es sense in IPC (!) and vice v ersa.

As men tioned, terms in � ! corresp ond to constructions in IPC (!).

T yp es corresp ond to form ulas, t yp e constructors (sum and pair) to connec-

tiv es. Asking whether there exists a term of a giv en t yp e (inhabitation),

corresp onds to asking whether there exist a construction for a giv en prop o-

sition (pr ovability .) Asking whether there exists a t yp e for a giv en term

(typ ability), corresp onds to asking whether the construction is a construc-

tion of some form ula.

What is a redex in a construction? W ell, eac h in tro duction rule in tro-

duces a c onstructor (a lam b da, a pair, or an injection) in the construction,

and eac h elimination rule in tro duces a destructor (an application, a pro jec-

tion, or a case-expression). No w, a redex consists of a constructor imme-

diately surrounded b y the corresp onding destructor. Therefore a redex in

the construction represen ts a pro of tree con taining an application of an in-

tro duction rule immediately follo w ed b y an application of the corresp onding

elimination rule; this w as what w e called a detour in a pro of tree. Therefore,

reduction on terms corresp onds to normalization of constructions. A term

in normal form corresp onds to a construction represen ting a pro of tree in

normal form. The sub ject reduction prop osition states that reducing a con-

struction of a form ula yields a construction for the same form ula. The

Ch urc h-Rosser Theorem states that the order of normalization is immate-

rial. Also, it states that w e managed to iden tify essen tially iden tical pro ofs

without iden tifying all pro ofs.

4.2. The Curry-Ho w ard isomorphism 67

In summary:

� ! IPC(!)

term v ariable assumption

term construction (pro of)

t yp e v ariable prop ositional v ariable

t yp e form ula

t yp e constructor connectiv e

inhabitation pro v abilit y

t ypable term construction for a prop osition

redex construction represen ting pro of tree with redundancy

reduction normalization

v alue normal construction

4.2.3. Example . Consider the follo wing example deduction con taining re-

dundancy . The original deriv ation with constructions is:

x : ' ` x : '

` �x : ' : x : ' ! '

The complicated pro of with constructions is:

y : ` y :

` �y : : y : !

x : ' ` x : '

` �x : ' : x : ' ! '

` < �x : ' : x; �y : : y > : (' ! ') ^ (!)

` �

1

(< �x : ' : x; �y : : y >) : ' ! '

The construction of the latter pro of tree in fact con tains a redex whic h up on

reduction yields the construction of the former pro of tree.

The p erfect corresp ondence b et w een reduction and normalization and

the related concepts, justi�es the name \isomorphism" rather than simply

\bijection." In fact, reduction has b een studied extensiv ely in the � -calculus

literature, while normalization has b een studied indep enden tly in pro of the-

ory .

Since the \disco v ery" of the isomorphism, the t w o w orlds ha v e merged,

and some authors feel that it is exactly in the corresp ondence b et w een reduc-

tion and normalization that the isomorphism is deep est and most fruitful.

This p oin t of view is supp orted b y the fact that some t yp ed � -calculi ha v e

b een in tro duced as means of studying normalization for logics, most notably

Girard's System F in tro duced in his w ork [44] from 1971. System F corre-

sp onds to second order minimal prop ositional logic and will b e discussed in

Chapter 12.

68 Chapter 4. The Curry-Ho w ard isomorphism

As an app ealing illustration of the isomorphism and an appropriate con-

clusion of this section, this system w as indep enden tly in v en ted at roughly

the same time in computer science b y Reynolds [90] in his study of p oly-

morphism in t yp ed functional programming languages.

In the remainder of these notes the concepts corresp onding to one an-

other under the isomorphism are used in terc hangeably . In particular, an y

system as that of the preceding subsection will b e called b oth a logic and a

� -calculus dep ending on the asp ects b eing emphasized.

4.3. Consistency from normalization

A n um b er of prop erties regarding unpro v abilit y can b e di�cult to establish

directly , but more easy to establish b y seman tical metho ds as w e sa w in

Chapter 2. Often these seman tical metho ds can b e replaced b y metho ds

in v olving the w eak normalization prop ert y .

The follo wing sho ws that IPC (!) is consisten t.

4.3.1. Pr oposition . 6` ? .

Pr oof. Assume that ` ? . Then ` M : ? for some M 2 �

�

. By the w eak

normalization theorem and the sub ject reduction theorem there is then an

N 2 NF

�

suc h that ` N : ? .

No w, � -terms in normal form ha v e form x N

1

: : : N

m

(where N

1

; : : : ; N

n

are normal-forms) and �x : � : N

0

(where N

0

is in normal form). W e cannot

ha v e N of the �rst form (then x 2 FV (N), but since ` N : ? , FV (N) = fg).

W e also cannot ha v e N of the second form (then ? = � ! � for some � ; �

whic h is paten tly false). ut

4.4. Strong normalization

As suggested b y the application in the preceding section, the w eak normal-

ization prop ert y of � ! is a v ery useful to ol in pro of theory . In this section

w e pro v e the str ong normalization prop ert y of � ! whic h is sometimes ev en

more useful.

The standard metho d of pro ving strong normalization of t yp ed � -calculi

w as in v en ted b y T ait [104] for simply t yp ed � -calculus, generalized to second-

order t yp ed � -calculus b y Girard [44], and subsequen tly simpli�ed b y T ait [105].

Our presen tation follo ws [8]; w e consider in this section terms �a la Curry .

4.4.1. Definition .

(i) SN

�

= f M 2 � j M is strongly normalizing g .

(ii) F or A; B � �, de�ne A ! B = f F 2 � j 8 a 2 A : F a 2 B g .

4.4. Strong normalization 69

(iii) F or ev ery simple t yp e � , de�ne [[�]] � � b y:

[[�]] = SN

�

[[� ! �]] = [[�]] ! [[�]]

4.4.2. Definition .

(i) A set X � SN

�

is satur ate d if

1. F or all n � 0 and M

1

; : : : M

n

2 SN

�

:

x M

1

: : : M

n

2 X

2. F or all n � 1 and M

1

; : : : ; M

n

2 SN

�

:

M

0

f x := M

1

g M

2

: : : M

n

2 X) (�x:M

0

) M

1

M

2

: : : M

n

2 X

(ii) S = f X � � j X is saturated g .

4.4.3. Lemma .

(i) SN

�

2 S ;

(ii) A; B 2 S) A ! B 2 S ;

(iii) � 2 �) [[�]] 2 S .

Pr oof. Exercise 4.6.3. ut

4.4.4. Definition .

(i) a valuation is a map � : V ! �, where V is the set of term v ariables.

The v aluation � (x := N) is de�ned b y

� (x := N)(y) =

�

N if x � y

� (y) otherwise

(ii) Let � b e a v aluation. Then [[M]]

�

= M f x

1

:= � (x

1

) ; : : : ; x

n

:= � (x

n

) g ,

where FV (M) = f x

1

; : : : ; x

n

g .

(iii) Let � b e a v aluation. Then � j = M : � i� [[M]]

�

2 [[�]]. Also, � j = � i�

� (x) 2 [[�]] for all x : � 2 �.

(iv) � j = M : � i� 8 � : � j = �) � j = M : � .

4.4.5. Pr oposition (Soundness). � ` M : �) � j = M : � .

Pr oof. By induction on the deriv ation of � ` M : � .

1. The deriv ation is

� ` x : � x : � 2 �

If � j = �, then [[x]]

�

= � (x) 2 [[�]].

70 Chapter 4. The Curry-Ho w ard isomorphism

2. The deriv ation ends in

� ` M : � ! � � ` N : �

� ` M N : �

Supp ose � j = �. By the induction h yp othesis � j = M : � ! � and

� j = N : � , so � j = M : � ! � and � j = N : � , i.e., [[M]]

�

2 [[�]] ! [[�]]

and [[N]]

�

2 [[�]]. Then [[M N]]

�

= [[M]]

�

[[N]]

�

2 [[�]], as required.

3. The deriv ation ends in

� ; x : � ` M : �

� ` �x:M : � ! �

Supp ose � j = �. Also, supp ose N 2 [[�]]. Then � (x := N) j = � ; x : � .

By the induction h yp othesis � ; x : � j = M : � , so � (x := N) j = M : � ,

i.e., [[M]]

� (x := N)

2 [[�]]. No w,

[[�x:M]]

�

N � (�x:M) f y

1

:= � (y

1

) ; : : : ; y

n

:= � (y

n

) g N

!

�

M f y

1

:= � (y

1

) ; : : : ; y

n

:= � (y

n

) ; x := N g

� [[M]]

� (x := N)

Since N 2 [[�]] � SN

�

and [[M]]

� (x := N)

2 [[�]] 2 S , it follo ws that

[[�x:M]]

�

N 2 [[�]]. Hence [[�x:M]]

�

2 [[� ! �]]. ut

4.4.6. Theorem . � ` M : �) M 2 SN

�

.

Pr oof. If � ` M : � , then � j = M : � . F or eac h x : � 2 �, let

� (x) = x . Then x 2 [[�]] holds since [[�]] 2 S . Then � j = �, and w e ha v e

M = [[M]]

�

2 [[�]] � SN

�

. ut

The reader ma y think that the ab o v e pro of is more complicated than the

w eak normalization pro of of the preceding c hapter; in fact, this feeling can

b e made in to a tec hnical prop ert y b y noting that the latter pro of in v olv es

quan tifying o v er sets, whereas the former do es not.

The fact that the strong normalization prop ert y seems more di�cult to

pro v e has led to some tec hniques that aim at inferring strong normalization

from w eak normalization|see [102].

There are man y applications of strong normalization, but man y of these

applications can b e obtained already b y using the w eak normalization theo-

rem. The follo wing is a true application of strong normalization where w eak

normalization do es not su�ce.

4.4.7. Definition . Let ! b e a binary relation on some set L , and write

M !! M

0

if M = M

1

! : : : ! M

n

= M

0

, where n � 1. Then

1. ! satis�es CR i� for all M

1

; M

2

; M

3

2 L , M

1

!! M

2

and M

1

!! M

3

implies that there is an M

4

2 L suc h that M

2

!! M

4

and M

3

!! M

4

.

4.5. Historical remarks 71

2. ! satis�es W CR i� for all M

1

; M

2

; M

3

2 L , M

1

! M

2

and M

1

! M

3

implies that there is an M

4

2 L suc h that M

2

!! M

4

and M

3

!! M

4

.

3. ! satis�es SN i� for all M 2 L , there is no in�nite reduction sequence

M ! M

0

! : : : .

4. ! satis�es WN i� for all M 2 L , there is a �nite reduction sequence

M ! M

0

! : : : ! M

00

suc h that M

00

is a normal form (i.e., for all

N 2 L : M

00

6! N).

4.4.8. Pr oposition (Newman's lemma). L et ! b e a binary r elation satis-

fying SN . If ! satis�es W CR , then ! satis�es CR .

Pr oof. See the exercises. ut

The follo wing sho ws that the assumption ab out strong normalization

cannot b e replaced b y w eak normalization.

4.4.9. Pr oposition . Ther e is a binary r elation ! satisfying WN and W CR ,

but not CR .

Pr oof. See the exercises. ut

4.4.10. Cor ollar y . L et M

1

2 � b e typ able in � ! �a la Chur ch and assume

that M

1

!!

�

M

2

and M

1

!!

�

M

3

. Then ther e is an M

4

such that M

2

!!

�

M

4

and M

3

!!

�

M

4

.

Pr oof. See the exercises. ut

4.5. Historical remarks

The informal notion of a \construction" men tioned in the BHK-in terpretation

w as �rst formalized in Kleene's r e cursive r e alizability in terpretation [60 , 61]

in whic h pro ofs in intuitionistic numb er the ory are in terpreted as n um b ers,

as w e will see later in the notes. A pro of of '

1

! '

2

is in terpreted as the

G• odel numb er of a partial recursiv e function mapping the in terpretation of

an y pro of of '

1

to the in terpretation of a pro of of '

2

.

One can see the Curry-Ho w ard isomorphism|the corresp ondence b e-

t w een systems of formal logic and functional calculi with t yp es, men tioned

ab o v e|as a syn tactic re
ection of this in terpretation. It sho ws that a cer-

tain notation system for denoting certain recursiv e functions coincides with

a system for expressing pro ofs.

Curry [24] disco v ered that the pro v able form ulas in a so-called Hilb ert

formulation of IPC (!) coincide with the inhabited t yp es of c ombinatory

lo gic, when one iden ti�es function t yp e with implication. Moreo v er, ev ery

pro of in the logic corresp onds to a term in the functional calculus, and

72 Chapter 4. The Curry-Ho w ard isomorphism

vice v ersa. Curry also noted a similar corresp ondence b et w een a natural

deduction form ulation of IPC(!) and simply t yp ed � -calculus, and b et w een

a se quent c alculus form ulation of IPC(!) and a sequen t calculus v ersion of

simply t yp ed � -calculus.

Gen tzen's Hauptsatz [39] sho ws ho w one can transform a sequen t cal-

culus pro of in to another pro of with no applications of the cut rule . Curry

no w pro v ed a corresp onding result for the sequen t calculus v ersion of simply

t yp ed � -calculus. He then form ulated corresp ondences b et w een sequen t cal-

culus systems, natural deduction systems, and Hilb ert systems (in terms of

the corresp onding functional calculi) and used these to infer w eak normal-

ization for � -reduction in simply t yp ed � -calculus and for so-called str ong

r e duction in com binatory logic.

A more direct relation b et w een reduction on terms and normalization

of pro ofs w as giv en b y Ho w ard in a pap er from 1968, published as [58].

Pra witz had studied reduction of natural deduction pro ofs extensiv ely [85]|

sev en y ears after Curry's b o ok|and had pro v ed w eak normalization of this

notion of reduction. Ho w ard no w sho w ed that reduction of a pro of in the

natural deduction system for minimal implicational logic corresp onds to � -

reduction on the corresp onding term in the simply t yp ed � -calculus. He also

extended this corresp ondence to �rst order in tuitionistic arithmetic and a

related t yp ed � -calculus.

Ho w ard's corresp ondence and the w eak normalization theorem giv e a

syn tactic v ersion of Kleene's in terpretation, where one replaces recursiv e

functions b y � -terms in normal form. F or instance, an y pro of of '

1

! '

2

reduces to a � -abstraction whic h, when applied to a pro of of '

1

, yields a

pro of of '

2

.

Constable [19 , 20] suggested that a t yp e or prop osition ' b e view ed as a

sp eci�cation, and an y pro of M of ' as a program satisfying the sp eci�cation.

F or instance, sorting can b e sp eci�ed b y the form ula

8 x 9 y : o rdered (y) ^ p ermutation (x; y)

in pr e dic ate lo gic, and a pro of of the form ula will b e a sorting algorithm.

There is a literature dev oted to metho ds for �nding e�cien t programs in

this w a y .

The Curry-Ho w ard isomorphism has ev olv ed with the in v en tion of n u-

merous t yp ed � -calculi and corresp onding natural deduction logics, see [87 ,

55 , 8, 41]. Other names for the isomorphism include pr op ositions-as-typ es,

formula-as-typ es, and pr o ofs-as-pr o gr ams .

4.6. Exercises

4.6.1. Exer cise . Giv e deriv ations of the form ulas (1),(3),(5),(7),(9),(11) from

Section 2.2 using the natural deduction st yle of Section 4.1.

4.6. Exercises 73

4.6.2. Exer cise . Giv e � -terms corresp onding to the deriv ations from Exer-

cise 4.6.1. Use the follo wing rule for � -terms corresp onding to the ex-falso

rule:

� ` M : ?

� ` "

'

(M) : ' :

4.6.3. Exer cise . Pro v e Lemma 4.4.3.

4.6.4. Exer cise .

1. Pro v e Newman's Lemma.

Hint: Pro v e b y induction on the length of the longest reduction se-

quence from M that M !! M

1

and M !! M

2

implies that there is

an M

3

suc h that M

1

!! M

3

and M

2

!! M

3

.

2. Pro v e Prop osition 4.4.9.

3. Infer from Newman's Lemma Corollary 4.4.10.

4.6.5. Exer cise . Pro v e Prop osition 4.2.1(i) in detail.

4.6.6. Exer cise . A � -r e duction str ate gy is a map F : � ! � suc h that

M !

�

F (M) if M 62 NF

�

, and F (M) = M otherwise. Informally , a reduc-

tion strategy selects from an y term not in normal form a redex and reduces

that. F or example, F

l

is the reduction strategy that alw a ys reduces the

left-most redex.

A reduction strategy F is normalizing if, for an y w eakly normalizing

term M , there is an i suc h that

2

M !

�

F (M) !

�

: : : !

�

F

i

(M) 2 NF

�

That is, if the term has a normal form, then rep eated application of F

ev en tually ends in the normal form. A classical result due to Curry and

F eys states that F

l

is normalizing.

A reduction strategy F is p erp etual if, for an y term M whic h is not

strongly normalizing, there is no i suc h that

M !

�

F (M) !

�

: : : !

�

F

i

(M) 2 NF

�

That is, if the term has an in�nite reduction, then rep eated application of F

yields an in�nite reduction sequence.

De�ne F

1

: � ! � as follo ws. If M 2 NF

�

then F

1

(M) = M ; other-

wise

3

F

1

(x

~

P Q

~

R) = x

~

P F

1

(Q)

~

R If

~

P 2 NF

�

; Q 62 NF

�

F

1

(�x:P) = �x:F

1

(P)

F

1

((�x:P) Q

~

R) = P f x := Q g

~

R If x 2 FV (P) or Q 2 NF

�

F

1

((�x:P) Q

~

R) = (�x:P) F

1

(Q)

~

R If x 62 FV (P) and Q 62 NF

�

2

As usual, F

0

(M) = M and F

i +1

(M) = F (F

i

(M)).

3

By

~

P w e denote a �nite, p ossibly empt y , sequence of terms.

74 Chapter 4. The Curry-Ho w ard isomorphism

Sho w that F

1

is p erp etual.

Let �

I

b e the set of all � -terms M suc h that an y part �x:P of M satis�es

x 2 FV (P). F or instance, I 2 �

I

and
 2 �

I

but K = �x:�y :x 62 �

I

. Sho w

that for an y M 2 �

I

: M 2 WN

�

i� M 2 SN

�

.

Hint: Compare b eing w eakly normalizing with F

l

leading to a normal

form, and compare b egin strongly normalizing with F

1

leading to a normal

form. What is the relation b et w een F

l

and F

1

on M 2 �

I

?

Since �

I

is a subset of �, the elemen ts of �

I

that ha v e a t yp e in � !

(� a la Curry) m ust corresp ond to a subset of all pro ofs in IPC(!). Whic h

pro ofs are these?

CHAPTER 5

Pro ofs as com binators

In the preceding c hapters w e ha v e considered v arious systems of � -calculi.

One rather disturbing asp ect of these systems is the role pla y ed b y b ound

v ariables, esp ecially in connection with substitution. In this c hapter w e

consider a system, c ombinatory lo gic, whic h is equiv alen t to � -calculus in a

certain sense, and in whic h there are no b ound v ariables.

The �rst section in tro duces a v ersion of com binatory logic analogous to

t yp e-free � -calculus. The second section presen ts simply typ e d c ombinatory

lo gic, analogous to simply t yp ed � -calculus.

Since simply t yp ed � -calculus corresp onds to the natural deduction for-

m ulation of in tuitionistic prop ositional logic via the Curry-Ho w ard isomor-

phism, and com binatory logic is a v arian t of � -calculus, it is natural to ex-

p ect that simply t yp ed com binatory logic also corresp onds to some v arian t of

in tuitionistic prop ositional logic. This v arian t, traditionally called Hilb ert-

style as opp osed to natural deduction st yle, is in tro duced in the third section,

and the fourth section presen ts the Curry-Ho w ard isomorphism b et w een the

Hilb ert-st yle in tuitionistic prop ositional logic and com binatory logic.

The �fth section studies sp ecial cases of the Curry-Ho w ard isomorphism

b y in v estigating ho w certain restrictions in the logic are re
ected b y restric-

tions in the functional calculus.

5.1. Com binatory logic

Combinatory lo gic w as in v en ted b y Sc h• on�nk el and Curry in the 1920's

shortly b efore Ch urc h in tro duced the lam b da-calculus. The idea w as to

build the foundations of logic on a formal system in whic h logical form ulas

could b e handled in a variable-fr e e manner.

As men tioned in Chapter 1, the systems of com binatory logic and � -

calculus that aimed at pro viding a foundations of mathematics and logic

turned out to b e inconsisten t, due to the presence of arbitrary �xed-p oin ts|

see [7 , App. B] or [55 , Chap. 17]. Nev ertheless, one ma y distinguish a useful

75

76 Chapter 5. Pro ofs as com binators

subsystem of the original system of com binators dealing only with pure

functions, and this system will b e called c ombinatory lo gic b elo w.

The ob jects of study in com binatory logic are the c ombinatory terms.

5.1.1. Definition . The set C of c ombinatory terms is de�ned b y the gram-

mar:

C ::= V j K j S j (C C)

where V is the same set of v ariables as used in �. The notational con v en tions

concerning paren theses are the same as for lam b da-terms.

5.1.2. Definition . The reduction relation !

w

on com binatory terms, called

we ak r e duction is de�ned b y the follo wing rules:

� K F G !

w

F ;

� S F GH !

w

F H (GH);

� If F !

w

F

0

then F G !

w

F

0

G and GF !

w

GF

0

.

The sym b ol ! !

w

denotes the smallest re
exiv e and transitiv e relation con-

taining !

w

, and =

w

denotes the least equiv alence relation con taining !

w

.

A w -normal form is a com binatory term F suc h that F 6!

w

G , for all

com binatory terms G .

5.1.3. Example .

� Let I = SKK . Then, for all F , w e ha v e I F !

w

K F (K F) !

w

F .

� The term SI I (SI I) reduces to itself.

� Let W = SS (KI). Then, for all F ; G , w e ha v e W F G ! !

w

F GG .

� Let B = S (KS) K . Then, for all F ; G; H , w e ha v e B F GH ! !

w

F (GH).

� Let C = S (BBS)(KK). Then C F GH ! !

w

F H G , for all F ; G; H .

� K , S , K S , S K , and S KK are w -normal forms.

The follo wing giv es the �rst hin t that com binatory logic is essen tially

simpler than � -calculus in some resp ects.

5.1.4. Definition . F or F 2 C de�ne the set FV (F) of fr e e variables of F

b y:

FV (x) = f x g ;

FV (H G) = FV (H) [FV (G);

FV (S) = fg ;

FV (K) = fg :

5.1. Com binatory logic 77

F or F ; G 2 C and x 2 V de�ne substitution of G for x in F b y:

x f x := G g = G ;

y f x := G g = y if x 6= y ;

(H E) f x := G g = H f x := G g E f x := G g ;

S f x := G g = S ;

K f x := G g = K :

Note that there are no b ound v ariables, and no need for renaming in

substitutions.

The follo wing is similar to the the Ch urc h-Rosser prop ert y for � -calculus.

5.1.5. Theorem (Ch urc h-Rosser prop ert y). If F ! !

w

F

1

and F ! !

w

F

2

then F

1

! !

w

G and F

2

! !

w

G , for some G .

Pr oof. See the exercises. ut

One can then infer Corollaries similar to 1.35{37 in Chapter 1.

There is an ob vious similarit y b et w een terms of lam b da-calculus and

com binatory terms. A translation

()

�

: C ! �

is easy to de�ne. W e just iden tify K and S with the corresp onding lam b da-

terms:

5.1.6. Definition .

� (x)

�

= x , for x 2 V ;

� (K)

�

= �xy :x ;

� (S)

�

= �xy z :xz (y z);

� (F G)

�

= (F)

�

(G)

�

.

5.1.7. Pr oposition . If F ! !

w

G then (F)

�

! !

�

(G)

�

.

Pr oof. By induction on the deriv ation of F ! !

w

G . ut

5.1.8. Remark . It is not in general the case that (F)

�

! !

�

(G)

�

implies

F ! !

w

G . Coun ter-example: (S (K I) K)

�

!

�

(K)

�

but S (K I) K 6!

w

K .

It is less ob vious ho w to mak e a translation bac kw ard, b ecause w e ha v e

to de�ne lam b da abstraction without b ound v ariables. One of the p ossible

metho ds is as follo ws.

5.1.9. Definition . F or eac h F 2 C and eac h x 2 V w e de�ne the term

�

�

x:F 2 C .

78 Chapter 5. Pro ofs as com binators

� �

�

x:x = I ;

� �

�

x:F = K F , if x 62 FV (F);

� �

�

x:F G = S (�

�

x:F)(�

�

x:G), otherwise.

The follo wing sho ws that the de�nition of abstraction b eha v es (partly)

as exp ected.

5.1.10. Pr oposition . (�

�

x:F) G ! !

w

F f x := G g

Pr oof. Exercise 5.6.3. ut

Using the op erator �

�

x , w e can de�ne a translation

()

C

: � ! C

as follo ws.

5.1.11. Definition .

� (x)

C

= x , for x 2 V ;

� (M N)

C

= (M)

C

(N)

C

;

� (�x:M)

C

= �

�

x: (M)

C

.

5.1.12. Remark . It is natural to exp ect, dually to Prop osition 5.1.7, that

one could use Prop osition 5.1.10 to pro v e that

M !!

�

N) (M)

C

!!

w

(N)

C

(�)

Ho w ev er, this prop ert y do es not hold. F or instance �x: I I !

�

�x: I , but

(�x: I I)

C

= S (K I) (K I) 6!!

w

K I = (�x: I)

C

.

If one attempts to pro v e (�) b y induction on the deriv ation of M !!

�

N ,

one runs in to di�culties in the case M !

�

N) �x:M !

�

�x:N . The

problem is that the corresp onding principle

F !

w

G) �

�

x:F !

w

�

�

x:G (�)

fails. The references at the end of the c hapter con tain more information

ab out this problem.

The follo wing sho ws that the translations b et w een � and C are in v erses in

a w eak sense.

5.1.13. Pr oposition . F or al l M 2 � , we have ((M)

C

)

�

=

�

M .

Pr oof. Exercise 5.6.4. ut

5.2. T yp ed com binators 79

Because of Prop ositions 5.1.7 and 5.1.13, w e can think of ()

�

as of a

homomorphic em b edding of the com binatory logic in to the lam b da-calculus.

In what follo ws, w e often abuse the notation b y using the names S ; K , etc. for

the � -terms (K)

�

, (S)

�

, etc.

The follo wing prop ert y is sometimes expressed b y sa ying that K and S

mak e a b asis for un t yp ed � -calculus.

5.1.14. Cor ollar y . Every close d lamb da term M is b eta-e qual to a term

obtaine d fr om K and S solely by applic ation.

Pr oof. The desired term is ((M)

C

)

�

. ut

Unfortunately , the em b edding ()

�

: C ! � is not an isomorphism. Put

di�eren tly , the left in v erse op erator ()

C

is only a pro jection (retraction).

Indeed, w e ha v e already seen that the statemen t dual to Prop osition 5.1.7

fails, and the same holds for the statemen t dual to Prop osition 5.1.13.

5.1.15. Example . ((K)

�

)

C

= S (KK) I 6=

w

K .

It follo ws that \w eak" equalit y is actually a str ong prop ert y!

5.2. T yp ed com binators

Since com binatory terms can b e seen as a subset of lam b da-terms, they can

also inherit the structure of simply-t yp ed lam b da-calculus. Of course, there

are t w o w a ys to do this.

5.2.1. Definition . De�ne the t ypabilit y relation ` on C � C � � b y:

� ; x : � ` x : �

� ` K : � ! � ! �

� ` S : (� ! � ! �) ! (� ! �) ! � ! �

� ` M : � ! � � ` N : �

� ` M N : �

for all t yp es � ; � and � and arbitrary con text �.

The other form ulation of simply t yp ed com binatory logic uses com bina-

tory terms �a la Ch urc h.

80 Chapter 5. Pro ofs as com binators

5.2.2. Definition . De�ne the set C

�

of c ombinatory terms �a la Chur ch b y

the grammar:

C

�

::= V j K

� ;�

j S

� ;� ;�

j (C

�

C

�

)

De�ne the t ypabilit y relation ` on C � C

�

� � b y:

� ; x : � ` x : �

� ` K

� ;�

� ! � ! �

� ` S

� ;� ;�

: (� ! � ! �) ! (� ! �) ! � ! �

� ` M : � ! � � ` N : �

� ` M N : �

F ollo wing the path of Chapter 3 w e could deriv e the usual prop erties,

e.g., the free v ariables lemma, a v ersion of the generation lemma, and so

on, for eac h of the t w o com binatory logics with t yp es. In some cases, e.g.

the pro of of sub ject reduction, the pro of is simpler since reduction do es not

en tail an y substitutions, in con trast to the case of � -reduction. Moreo v er, w e

migh t also pro v e an equiv alence result analogous to Prop ositions 3.3.2{3.3.3.

Ho w ev er, for the sak e of brevit y , w e shall not do so.

T o distinguish b et w een the t yping relation for simply t yp ed com binatory

logic and the one for simply t yp ed � -calculus, w e shall use `

C

and `

�

for the

t w o, resp ectiv ely . In the remainder of the notes it will b e clear from con text

whether the t yping relations refer to �a la Curry or �a la Ch urc h systems, b oth

in connection with com binatory logic and � -calculus.

It is not di�cult to see that our em b edding ()

�

preserv es t yp es. In

addition, the same is true for the translation ()

C

, but this requires the

follo wing lemma:

5.2.3. Lemma . L et � ; x : � `

C

F : � . Then � `

C

�

�

x:F : � ! � .

Pr oof. By induction on F . ut

5.2.4. Pr oposition .

1. If � `

C

F : � then � `

�

(F)

�

: � .

2. If � `

�

M : � then � `

C

(M)

C

: � .

Pr oof. (i): By induction on the deriv ation of � `

C

F : � . (ii): By induction

on the deriv ation of � `

�

M : � , using Lemma 5.2.3 ut

5.2.5. Cor ollar y . The simply-typ e d version of the c alculus of c ombinators

has the str ong normalization pr op erty.

Pr oof. By strong normalization of simply t yp ed � -calculus and Prop osi-

tion 5.1.7. ut

5.3. Hilb ert-st yle pro ofs 81

5.3. Hilb ert-st yle pro ofs

Recall from Chapter 2 and 4 that, so far, our formal pro ofs ha v e b een of the

natur al de duction st yle. Apart from the sequen t calculus st yle of presen ta-

tion, whic h will b e in tro duced later, there is y et another st yle of presen tation

of logics, kno wn as the Hilb ert-style. In fact, this is the traditional approac h

to the de�nition of a formal pro of. A Hilb ert-st yle pro of system consists of

a set of axioms and only a few pro of rules.

Belo w w e describ e suc h a system for the implicational fragmen t of prop o-

sitional in tuitionistic logic. This system has only one pro of rule, called mo dus

p onens , whic h is sometimes translated to English as \detachment rule" :

'; ' !

There will b e t w o axiom sc hemes. That is, all form ulas that �t the patterns

b elo w are considered axioms:

(A1) ' ! ! ' ;

(A2) (' ! ! #) ! (' !) ! ' ! # .

Note that there are in fact in�nitely man y axioms. But this do es not b other

us as long as they can b e e�ectiv ely describ ed. F ormal pro ofs in Hilb ert-st yle

systems are traditionally de�ned as sequences of form ulas.

5.3.1. Definition . A formal pr o of of a form ula ' from a set � of assump-

tions is a a �nite sequence of form ulas

1

;

2

; : : : ;

n

, suc h that

n

= ' ,

and for all i = 1 ; : : : ; n , one of the follo wing cases tak es place:

�

i

is an axiom, or

�

i

is an elemen t of �, or

� there are j; ` < i suc h that

j

=

`

!

i

(i.e.,

i

is obtained from

j

,

`

using mo dus p onens).

W e write � `

H

' if suc h a pro of exists. The notation `

H

ob eys the usual

con v en tions.

5.3.2. Example . Here is a pro of of ' ! ' from the empt y set.

1. (' ! (! ') ! ') ! ((' ! (! ')) ! (' ! ')) (axiom A2);

2. ' ! (! ') ! ' (axiom A1);

3. (' ! (! ')) ! (' ! ') (mo dus p onens : detac h 2 from 1);

4. ' ! (! ') (axiom A1);

82 Chapter 5. Pro ofs as com binators

5. ' ! ' (mo dus p onens : detac h 4 from 3);

5.3.3. Example . And here is a pro of of # from f ' ! ; ! #; ' g :

1. ' ! (assumption);

2. ' (assumption);

3. (mo dus p onens : detac h 2 from 1);

4. ! # (assumption);

5. # (mo dus p onens : detac h 3 from 4).

The follo wing imp ortan t prop ert y of Hilb ert-st yle pro of systems is called

the De duction The or em .

5.3.4. Pr oposition (Herbrand, 1930). � ; ' `

H

 i� � `

H

' ! .

Pr oof. The pro of from righ t to left requires one application of mo dus p o-

nens and w eak ening. F or the other direction, pro ceed b y induction on the

size of the pro of. ut

Note ho w easy the pro of of ' ! ' b ecomes with the a v ailabilit y of the

deduction theorem, as compared to ha ving to do the direct pro of explicitly .

5.3.5. Pr oposition . F or every � and ' : � `

N

' i� � `

H

' .

Pr oof. The righ t to left part is an easy induction. The con v erse is also

easy , using the Deduction Theorem. ut

W e conclude that our Hilb ert-st yle system is complete in the sense of

b oth Heyting algebras and Kripk e mo dels.

5.3.6. Theorem . � j = ' i� � `

H

' .

Pr oof. Immediate from the completeness for natural deduction and the

previous prop osition. ut

5.3.7. Remark . By adding axioms to handle the other connectiv es, one can

obtain complete Hilb ert-st yle pro of systems for full prop ositional in tuition-

istic logic and for classical prop ositional logic. It is p erhaps in teresting that

a complete pro of systems for classical prop ositional calculus is obtained b y

adding only the axiom sc hemes

� ? ! ' ;

� ((' !) ! ') ! ' .

5.4. Relev ance and linearit y 83

(Recall that _ and ^ can b e de�ned in classical logic b y ! and ? .)

The follo wing is a v ersion of the Curry-Ho w ard Isomorphism for Hilb ert-

st yle pro of systems and com binatory logics. W e w ork with com binatory

terms �a la Ch urc h.

5.3.8. Pr oposition .

(i) If � `

C

F : ' then j � j `

H

' .

(ii) If � `

H

' then ther e exists F 2 C such that � `

C

F : ' , wher e

� = f (x

'

: ') j ' 2 � g .

Pr oof. (i): b y induction on the deriv ation of � `

C

M : ' .

(ii): b y induction on the deriv ation of � `

H

' . ut

The Curry-Ho w ard isomorphism in the case of Hilb ert-st yle pro ofs and

com binatory terms is realized b y a corresp ondence b et w een pro ofs and and

Ch urc h-st yle com binatory terms. Here w e ha v e the follo wing pairs of equiv-

alen t notions:

application mo dus p onens

v ariable assumption

constan ts K and S axioms

5.4. Relev ance and linearit y

Neither in tuitionistic nor classical logic ha v e an y ob jections against the ax-

iom sc heme ' ! ! ' , whic h expresses the follo wing rule of reasoning:

\an unnecessary assumption can b e forgotten". This rule is ho w ev er du-

bious when w e are in terested in the r elevanc e of assumptions with resp ect

to the conclusion. Logicians and philosophers ha v e studied v arious v arian ts

of in tuitionistic logic in whic h restrictions are made concerning the manip-

ulation of assumptions. The classical references here are [1] and [2], but

the idea of relev an t logics dates bac k to early 50's. Hindley [54] attributes

the idea to Moh and Ch urc h. Just lik e no use of an assumptions ma y b e

regarded as a dubious phenomenon, multiple use of an assumption ma y also

raise imp ortan t doubts. The most ancien t reference to a logic in whic h this

w as tak en in to accoun t, giv en b y Hindley [54], is a w ork of Fitc h from 1936.

With the Curry-Ho w ard isomorphism at hand, w e can easily iden tify

the corresp onding fragmen ts of (the implicational fragmen t of) in tuitionis-

tic prop ositional logic, b y c haracterizing lam b da-terms with resp ect to the

n um b er of o ccurrences of b ound v ariables within their scop es.

84 Chapter 5. Pro ofs as com binators

5.4.1. Definition .

1. The set of � I -terms is de�ned b y the follo wing induction:

� Ev ery v ariable is a � I -term;

� An application M N is a � I -term i� b oth M and N are � I -terms;

� An abstraction �x:M is a � I -term i� M is a � I -term and x 2 FV (M) .

2. The set of BCK -terms is de�ned as follo ws:

� Ev ery v ariable is a BCK -term;

� An application M N is a BCK -term i� b oth M and N are BCK -

terms, and F V (M) \ FV (N) = fg ;

� An abstraction �x:M is a BCK -term i� M is a BCK -term.

3. A term is called line ar i� it is b oth a � I -term and a BCK -term.

Of course, � I -terms corresp ond to reasoning where eac h assumption is used

at le ast onc e , but all assumptions are reusable. The BCK -terms represen t

the idea of disp osable assumptions that are thro wn a w a y after a use, so they

cannot b e reused. A strict con trol o v er all assumptions, with eac h one b eing

used exactly once, is main tained in pro ofs corresp onding to linear terms.

The three classes of lam b da-terms determine three fragmen ts of IPC(!):

Relev an t logic � I -terms

BCK -logic BCK -terms

BCI -logic linear terms

The ab o v e table can b e tak en as a formal de�nition of these three logics,

in that the � -calculi simply ar e the logics. Belo w w e giv e more traditional

Hilb ert-st yle form ulations of the logics.

5.4.2. Definition .

1. The r elevant prop ositional calculus is a Hilb ert-st yle pro of system with

the mo dus p onens as the only rule, and the follo wing axiom sc hemes:

A

S

) (' ! ! #) ! (' !) ! ' ! # ;

A

B

) (! #) ! (' !) ! ' ! # ;

A

C

) (' ! ! #) ! ! ' ! # ;

A

I

) ' ! ' .

5.4. Relev ance and linearit y 85

2. The BCK prop ositional calculus is a Hilb ert-st yle pro of system with

the mo dus p onens as the only rule, and the axiom sc hemes (A

B

) and

(A

C

) and

A

K

) ' ! ! ' .

3. The BCI prop ositional calculus is a Hilb ert-st yle pro of system with

the mo dus p onens as the only rule, and the axiom sc hemes (A

B

) and

(A

C

) and (A

I

).

5.4.3. W arning . The expression \linear logic" denotes a system whic h is a

strict extension of the BCI -logic. (But linear logic is based on the same

principle as BCI -logic: ev ery assumption is used exactly once.)

Of course the axioms (A

K

) and (A

S

) are exactly our axioms (A1) and (A2)

of the full IPC(!). The other axioms can also b e seen as t yp es of com bina-

tors (see Example 5.1.3). W e ha v e:

� B = �xy z :x (y z) : (! #) ! (' !) ! ' ! # ;

� C = �xy z :xz y : (' ! ! #) ! ! ' ! # .

Clearly , our three logics corresp ond to fragmen ts of C generated b y the

appropriate c hoices of com binators. This explains the abbreviations � I ,

BCK and BCI . The full un t yp ed lam b da-calculus is sometimes called � K -

calculus.

W e ha v e still to justify that the ab o v e de�nitions are equiv alen t to those

obtained b y appropriately restricting o ccurrences of v ariables in lam b da-

terms. First w e ha v e the ob vious part (remem b er that w e iden tify com bina-

tory terms with their translations via ()

�

).

5.4.4. Lemma .

1. The c ombinators S , B , C , I ar e � I -terms, and so ar e al l terms obtaine d

fr om S , B , C , I by applic ations;

2. The c ombinators B , C , K ar e BCK -terms, and so ar e al l terms ob-

taine d fr om B , C , K by applic ations;

3. The c ombinators B , C , I ar e BCI -terms, and so ar e al l terms obtaine d

fr om B , C , I by applic ations.

Th us, the em b edding ()

�

translates the appropriate fragmen ts of C in to

the appropriate fragmen ts of �. But the in v erse translation ()

C

cannot b e

used an ymore, as it requires S , and K to b e a v ailable. W e need �rst to

rede�ne the com binatory abstraction �

�

.

86 Chapter 5. Pro ofs as com binators

5.4.5. Definition .

1. F or eac h term in C and eac h x 2 V w e de�ne the term �

�

x:M 2 C .

� �

�

x:x = I ;

� �

�

x:F = K F , whenev er x 62 FV (F);

� �

�

x:F G = S (�

�

x:F)(�

�

x:G), if x 2 FV (F) \ FV (G);

� �

�

x:F G = C (�

�

x:F) G , if x 2 FV (F) and x 62 FV (G);

� �

�

x:F G = B F (�

�

x:G), if x 62 FV (F) and x 2 FV (G).

2. No w de�ne a translation []

C

: � ! C , as follo ws:

� [x]

C

= x , for x 2 V ;

� [M N]

C

= [M]

C

[N]

C

;

� [�x:M]

C

= �

�

x: [M]

C

.

The translation []

C

: � ! C has all the go o d prop erties of ()

C

. That is,

Prop ositions 5.1.10, 5.1.13 and 5.2.4 remain true. (F or the pro of note �rst

that (�

�

x:F)

�

=

�

(�

�

x:F)

�

.) In addition w e ha v e:

5.4.6. Pr oposition .

1. If M is a � I -term, then [M]

C

is built solely fr om the c ombinators S ,

B , C and I .

2. If M is a BCK -term then [M]

C

is built solely fr om the c ombinators

B , C and K .

3. If M is a line ar term then [M]

C

is built solely fr om the c ombinators

B , C and I .

Pr oof. Easy . Uses the follo wing prop ert y: F V ([M]

C

) = FV (M). ut

It follo ws that the translation []

C

can b e seen as an em b edding of eac h

of the appropriate fragmen ts of C in to the corresp onding fragmen t of simply

t yp ed lam b da calculus. W e can conclude with the follo wing summary:

5.4.7. Theorem .

� A formula ' is a the or em of r elevant lo gic if and only if it is a typ e of

a � I -term;

� A formula ' is a the or em of BCK -lo gic if and only if it is a typ e of a

BCK -term.

� A formula ' is a the or em of BCI -lo gic if and only if it is a typ e of a

line ar term.

Pr oof. Immediate from Prop osition 5.4.6, and the appropriate mo di�ca-

tions of Prop ositions 5.1.13 and 5.2.4. ut

5.5. Historical remarks 87

5.5. Historical remarks

Com binatory logic w as in tro duced b y Curry in some early pap ers [21 , 22 , 23]

and is also studied at length in some new er b o oks [24 , 25], whic h are still

v ery readable.

Hilb ert-st yle pro ofs are often used in text b o oks on logic that are not

concerned with pro of normalization in particular, or pro of theory in gen-

eral. It is in teresting to note that the deduction theorem, whic h pro vides

a translation from natural deduction pro ofs to Hilb ert-st yle pro ofs, and the

abstraction op erator, whic h pro vides a translation from t yp ed com binatory

terms to t yp ed � -terms, w ere disco v ered indep enden tly in w ork on Hilb ert

systems and w ork on com binatory logic, although they are essen tially the

same result. This is just one example of a n um b er of results that ha v e b een

disco v ered indep enden tly in w ork on logical systems and functional calculi.

Inciden tally , the corresp ondence b et w een � -equalit y and w eak equalit y

is not as tigh t as one migh t hop e for. Ho w ev er, if one adds a certain|

somewhat in v olv ed|set of rules, called A

�

, to the rules for w eak equalit y ,

the resulting relation is equiv alen t to � -equalit y in the sense that the ab o v e

translations b et w een � and C preserv e equalit y and are eac h other's in v erses.

In particular, the extended equalit y on com binators is closed under rule (�).

The corresp ondence b et w een � -equalit y and w eak equalit y is more ele-

gan t in the extensional v ersions of these calculi. More precisely , if one adds

the principle of extensionalit y

P x =

�

P

0

x & x 62 FV (P P

0

)) P =

�

P

0

(ext)

�

to =

�

and the similar principle (ext)

w

to w eak equalit y , then the resulting

calculi are equiv alen t in the ab o v e sense.

Adding rule (ext) to =

�

is equiv alen t to adding so-called � -e quality (see

Chapter 6), and adding rule (ext) to =

w

is equiv alen t to adding a certain

set of equational axioms, called A

� �

. More ab out all this can b e found, e.g.,

in [7].

5.6. Exercises

5.6.1. Exer cise . Find a com binator 2 2 C suc h that 2 F A ! !

w

F (F A), for

all F and A in C .

5.6.2. Exer cise . Pro v e the Ch urc h-Rosser prop ert y for w eak reduction us-

ing the T ait & Martin-L• of metho d from Chapter 1. Note that the pro of for

com binatory logic is somewhat simpler due to the fact that non-overlapping

r e dexes remain non-o v erlapping during reduction of other redexes.

5.6.3. Exer cise . Pro v e Prop osition 5.1.10.

88 Chapter 5. Pro ofs as com binators

5.6.4. Exer cise . Pro v e Prop osition 5.1.13.

5.6.5. Exer cise . Giv e a Hilb ert-st yle pro of of the form ula

(' !) ! (! #) ! ' ! # .

5.6.6. Exer cise . Giv e a detailed pro of of the Deduction Theorem. Use y our

pro of to giv e an abstraction op erator, lik e �

�

.

5.6.7. Exer cise . Describ e a notion of reduction for Hilb ert-st yle pro ofs,

corresp onding to w eak reduction on com binatory terms.

5.6.8. Exer cise . Consider the follo wing v arian t of the calculus of com bina-

tors: there are t yp ed constan ts K

� ;�

, and S

� ;� ;�

, with t yping and reduction

rules as usual, and in addition, there are additional constan ts I

�

: � ! �

with the reduction rule I

�

F ! F . (The iden tit y com binator cannot no w b e

de�ned as SKK b ecause not all t yp ed forms of S are a v ailable.) By em-

b edding in to Ch urc h-st yle com binatory logic, sho w that this v arian t satis�es

sub ject reduction and strong normalization prop erties.

5.6.9. Exer cise . (Based on [16]) Consider the terms : K = �xy :x , S

�

=

�ixy z :i (i ((x (iz))(i (y (iz))))) and I = �x:x . Sho w that these terms form a

basis for lam b da-calculus in the sense of Corollary 5.1.14, but their t yp es

(whatev er c hoice is tak en) do not mak e a complete Hilb ert-st yle axiom sys-

tem for IPC(!).

Hint: One cannot deriv e the form ula (p ! p ! q) ! p ! q .

5.6.10. Exer cise . Adopt y our solutions of Exercises 5.6.1 and 5.6.3 to the

case of the translation []

C

of Section 5.4.

CHAPTER 6

T yp e-c hec king and related problems

In this c hapter w e discuss some decision problems related to simply-t yp ed

lam b da calculus and in tuitionistic prop ositional logic. W e are mostly in ter-

ested in decision problems arising from the analysis of the ternary predicate

\� ` M : � " in the Curry-st yle v ersion of simply-t yp ed lam b da calculus.

But the follo wing de�nition mak es sense for ev ery t yp e-assignmen t system

deriving judgemen ts of this form (including Ch urc h-st yle systems).

6.0.11. Definition .

1. The typ e che cking problem is to decide whether � ` M : � holds, for

a giv en con text �, a term M and a t yp e � .

2. The typ e r e c onstruction problem, also called typ ability problem, is to

decide, for a giv en term M , whether there exist a con text � and a

t yp e � , suc h that � ` M : � holds, i.e., whether M is t ypable.

3. The typ e inhabitation problem, also called typ e emptiness problem, is

to decide, for a giv en t yp e � , whether there exists a closed term M ,

suc h that ` M : � holds. (Then w e sa y that � is non-empty and has

an inhabitant M).

An ob vious motiv ation to consider t yp e-c hec king and t yp e reconstruction

problems comes of course from programming language design, esp ecially

related to the language ML, see [72 , 27]. But there w ere earlier results

concerning this problem, due to Curry , Morris and Hindley . See [54 , pp.

33{34], for historical notes.

If w e lo ok at the t yp e reconstruction problem from the p oin t of view

of the Curry-Ho w ard isomorphism, it b ecomes a problem of determining

whether a giv en \pro of sk eleton" can b e actually turned in to a correct pro of

b y inserting the missing form ulas. It ma y b e surprising that this kind of

questions are sometimes motiv ated b y pro of-theoretic researc h. As noted

89

90 Chapter 6. T yp e-c hec king and related problems

in [54 , pp. 103{104], the main ideas of a t yp e-reconstruction algorithm can

b e traced as far as the 20's.

1

See [114], for a fresh w ork, where the \sk eleton

instan tiation" problem is discussed, without an y relation to t yp es.

F or the t yp e inhabitation problem, the Curry-Ho w ard isomorphism giv es

an immediate translation in to the language of logic:

6.0.12. Pr oposition . The typ e inhabitation pr oblem for the simply-typ e d

lamb da c alculus is r e cursively e quivalent to the validity pr oblem in the im-

plic ational fr agment of intuitionistic pr op ositional lo gic.

Pr oof. Ob vious. ut

The ab o v e prop osition remains true for other t yp ed languages, for whic h the

Curry-Ho w ard isomorphism mak es sense.

F rom a programmer's p oin t of view, the t yp e inhabitation problem can

b e seen as follo ws: An empt y t yp e (a t yp e whic h cannot b e assigned to an y

term) means a sp eci�cation that cannot b e ful�lled b y an y program phrase.

Solving t yp e inhabitation means (in the con texts of mo dular programming)

the abilit y to rule out suc h sp eci�cations at compile time.

6.1. Hard and complete

This short section is to recall a few basic notions from complexit y theory .

The reader is referred to standard textb o oks, lik e [57], for a more compre-

hensiv e discussion.

6.1.1. Definition . The notation LOGSP A CE, PSP A CE and P , refers re-

sp ectiv ely to the classes of languages (decision problems) solv able b y de-

terministic T uring Mac hines in logarithmic space, p olynomial space, and

p olynomial time (measured w.r.t. the input size).

6.1.2. Definition . W e sa y that a language L

1

is r e ducible to a language L

2

in lo garithmic sp ac e (or LOGSP A CE- r e ducible) i� there is a T uring Mac hine,

that w orks in logarithmic space (w e coun t only the w ork tap es, not the input

or output tap es) and computes a total function f , suc h that

w 2 L

1

i� f (w) 2 L

2

;

for all inputs w . Tw o languages are LOGSP A CE- e quivalent i� there are

LOGSP A CE-reductions eac h w a y .

That is, to decide if w 2 L

1

one can ask if f (w) 2 L

2

, and the cost of the

translation is only shipping and handling. Note that a logarithmic space

reduction tak es at most p olynomial time, so this notion is sligh tly more

general than that of a p olynomial time reduction.

1

The go o d old P olish sc ho ol again : : :

6.2. The 12 v arian ts 91

6.1.3. Definition . W e sa y that a language L is har d for a complexit y class

C , i� ev ery language L

0

2 C is reducible to L in logarithmic space. If w e

ha v e L 2 C in addition, then w e sa y that L is c omplete in the class C , or

simply C - c omplete .

6.2. The 12 v arian ts

The t yp e reconstruction problem is often abbreviated b y \? ` M : ?", and

the t yp e inhabitation problem is written as \ ` M : ?". This notation nat-

urally suggests other related problems, as one can c ho ose to replace v arious

parts of our ternary predicate b y question marks, and c ho ose the con text

to b e empt y or not. A little com binatorics sho ws that w e ha v e actually 12

problems. Out of these 12 problems, four are completely trivial, since the

answ er is alw a ys \y es":

� ? ` ? : ?;

� � ` ? : ?;

� ` ? : ?;

� ? ` ? : � .

Th us w e end up with eigh t non-trivial problems, as follo ws:

1) � ` M : � (t yp e c hec king);

2) ` M : � (t yp e c hec king for closed terms);

3) ? ` M : � (t yp e c hec king without con text);

4) ? ` M : ? (t yp e reconstruction);

5) ` M : ? (t yp e reconstruction for closed terms);

6) � ` M : ? (t yp e reconstruction in a con text);

7) ` ? : � (inhabitation);

8) � ` ? : � (inhabitation in a con text).

Most of these problems can easily b e sho wn LOGSP A CE-equiv alen t to one

of our three main problems: (1), (4) or (7). Some of these LOGSP A CE

reductions are just inclusions. Indeed, problem (2) is a sp ecial case of (1)

and of (3), problem (5) is a sp ecial case of (4) and (6), and problem (7) is

a sp ecial case of (8). Others are the sub ject of Exercises 6.8.1 and 6.8.3.

An exception is problem (3). Problems (1), (2) and (4){(6) reduce to (3) in

logarithmic space, but w e do not kno w of an y simple LOGSP A CE reduction

92 Chapter 6. T yp e-c hec king and related problems

the other w a y .

2

Ho w ev er, suc h reductions exists b et w een all problems (1){

(6), b ecause all they turn out to b e P-complete.

Let us mak e one more remark here: On a �rst lo ok it migh t seem that

determining whether a giv en term has a giv en t yp e in a giv en en vironmen t

could b e easier than determining whether it has an y t yp e at all. This impres-

sion ho w ev er is generally wrong, as t yp e reconstruction is easily reducible to

t yp e c hec king, see Exercise 6.8.1. This reduction is \generic", i.e., it w orks

for all reasonable t yp ed calculi.

It is quite unlik ely to ha v e a reduction from (7) or (8) to an y of (1){(6),

b ecause the inhabitation problems are PSP A CE-complete, and that w ould

imply P = PSP A CE. W e do not kno w ab out a simple reduction the other

w a y .

6.3. (First-order) uni�cation

The follo wing is a general de�nition of (�rst-order) uni�cation. In what

follo ws w e will need only a sp ecial case, where the �rst-order signature is

�xed to consist of only one sym b ol: the binary function sym b ol \ ! ".

6.3.1. Definition .

1. A �rst-or der signatur e is a �nite family of function, relation and con-

stan t sym b ols. Eac h function and relation sym b ol comes with a des-

ignated non-zero arit y . (Constan ts are sometimes treated as zero-ary

functions.) In this section w e consider only algebr aic signatur es , i.e.,

signatures without relation sym b ols.

2. An algebr aic term o v er a signature �, or just term is either a v ariable

or a constan t in �, or an expression of the form (f t

1

: : : t

n

), where f is

an n -ary function sym b ol, and t

1

; : : : ; t

n

are algebraic terms o v er �.

3

W e usually omit outermost paren theses.

The formal de�nition of an algebraic term in v olv es a pre�x application of

function sym b ols. Of course, there is a tradition to write some binary func-

tion sym b ols in the in�x st yle, and w e normally do it this w a y . Our most

b elo v ed signature is one that has the (in�x) arro w as the only sym b ol. It is

not di�cult to see that algebraic terms o v er this signature can b e iden ti�ed

with simple t yp es, or with implicational form ulas if y ou prefer.

In general, algebraic terms o v er � can b e iden ti�ed with �nite lab elled

trees satisfying the follo wing conditions:

� Lea v es are lab elled b y v ariables and constan t sym b ols;

2

A solution w as giv en b y Henning Makholm, see Chapter 14, Exercise 6.8.3.

3

Do not confuse algebraic terms with lam b da-terms.

6.3. (First-order) uni�cation 93

� In ternal no des with n daugh ters are lab elled b y n -ary function sym-

b ols.

6.3.2. Definition .

1. An e quation is a pair of terms, written \ t = u ". A system of e quations

is a �nite set of equations. V ariables o ccurring in a system of equations

are called unknowns .

2. A substitution is a function from v ariables to terms whic h is the iden-

tit y almost ev erywhere. Suc h a function S is extended to a function

from terms to terms b y S (f t

1

: : : t

n

) = f S (t

1

) � � � S (t

n

) and S (c) = c .

4

3. A substitution S is a solution of an equation \ t = u " i� S (t) = S (u)

(meaning that S (t) and S (u) is the same term). It is a solution of a

system E of equations i� it is a solution of all equations in E .

Th us, for instance, the equation f (g xy) x = f z (f y y) has a solution S with

S (x) = f y y , S (y) = y and S (z) = g (f y y) y (and man y other solutions

to o), while the equation f (g xy) c = f z (f y y), where c is a constan t, has no

solution. This is b ecause no substitution can turn f y y in to c . Another

example with no solution is f (g xy) x = f x (f y y), but this time the reason is

di�eren t: if S w ere a solution then S (x) w ould b e a prop er subterm of itself.

The problem of determining whether a giv en system of equations has a

solution is called the uni�c ation pr oblem . It is not di�cult to see that there

is no loss of generalit y in considering single equations rather than systems of

equations (Exercise 6.8.5). The uni�cation algorithm (w e sa y \the", b ecause

all these algorithms are actually based on similar ideas, and di�er only in

details) is due to J.A. Robinson [93], and w as motiv ated b y the �rst-order

resolution rule. But, as p oin ted out b y Hindley [54 , pp. 43{44], there w ere

also earlier w orks. Discussions of uni�cation algorithms can b e found in

v arious textb o oks, for instance in [74].

W e c ho ose to sk etc h a v ersion of the algorithm that is \algebraic" in

st yle. F or this, w e need the folllo wing de�nition.

6.3.3. Definition .

1. A system of equations is in a solve d form i� it has the follo wing prop-

erties:

� All equations are of the form \ x = t ", where x is a v ariable;

� A v ariable that o ccurs at a left-hand side of an equation do es not

o ccur at the righ t-hand side of an y equation;

� A v ariable ma y o ccur in only one left-hand side.

4

Th us, a substitution is a v aluation in the algebra of all terms o v er �.

94 Chapter 6. T yp e-c hec king and related problems

A v ariable not o ccurring as a left-hand side of an y equation is called

unde�ne d .

2. A system of equations is inc onsistent i� it con tains an equation of

either of the forms:

� \ g u

1

: : : u

p

= f t

1

: : : t

q

", where f and g are t w o di�eren t function

sym b ols;

� \ c = f t

1

: : : t

q

", or \ f t

1

: : : t

q

= c ", where c is a constan t sym b ol

and f is an n -ary function sym b ol;

� \ c = d ", where c and d are t w o di�eren t constan t sym b ols;

� \ x = f t

1

: : : t

q

", where x is a v ariable, f is an n -ary function

sym b ol, and x o ccurs in one of t

1

; : : : ; t

q

.

3. Tw o systems of equations are e quivalent i� they ha v e the same solu-

tions.

It is easy to see that an inconsisten t system has no solutions and that a

solv ed system E has a solution S

0

de�ned as follo ws:

� If a v ariable x is unde�ned then S

0

(x) = x ;

� If \ x = t " is in E , then S

0

(x) = t .

The core of Robinson's algorithm can b e seen as follo ws:

6.3.4. Lemma . F or every system E of e quations, ther e is an e quivalent sys-

tem E

0

which is either inc onsistent or in a solve d form. In addition, the

system E

0

c an b e obtaine d by p erforming a �nite numb er of the fol lowing

op er ations:

a) R eplac e \ x = t " and \ x = s " (wher e t is not a variable) by \ x = t "

and \ t = s ";

b) R eplac e \ t = x " by \ x = t ";

c) R eplac e \ f t

1

: : : t

n

= f u

1

: : : u

n

" by \ t

1

= u

1

", : : : , \ t

n

= u

n

";

d) R eplac e \ x = t " and \ r = s " by \ x = t " and \ r [x := t] = s [x := t] ";

e) R emove an e quation of the form \ t = t ".

Pr oof. As long as our system is not solv ed, and not inconsisten t, w e can

alw a ys apply one of the op erations (a){(d). W e lea v e it as Exercise 6.8.8

to sho w that this pro cess terminates (unless (b) or (d) is used in a silly

w a y). ut

6.4. T yp e reconstruction algorithm 95

6.3.5. Cor ollar y . The uni�c ation pr oblem is de cidable. ut

In fact, the ab o v e algorithm can b e optimized to w ork in p olynomial time

(Exercise 6.8.10), pro vided w e only need to c hec k whether a solution exists,

and w e do not need to write it down explicitly , cf. Exercise 6.8.6. The

follo wing result is from Dw ork et al [33].

6.3.6. Theorem . The uni�c ation pr oblem is P-c omplete with r esp e ct to L o g-

sp ac e r e ductions. ut

Supp ose that w e ha v e a system of equations E , whic h is transformed to an

equiv alen t solv ed system E

0

. The solution S

0

of E

0

de�ned as ab o v e, is a

most general solution of E

0

and E , b ecause ev ery other solution m ust b e a

sp ecialization of S

0

. F ormally w e ha v e the follo wing de�nition.

6.3.7. Definition .

� If P and R are substitutions then P � R is a substitution de�ned b y

(P � R)(x) = P (R (x)).

� W e sa y that a substitution S is an instanc e of another substitution R

(written R � S) i� S = P � R , for some substitution P .

� A solution R of a system E is princip al i� the follo wing equiv alence

holds for all substitutions S :

S is a solution of E i� R � S:

6.3.8. Pr oposition . If a system of e quations has a solution then it has a

princip al one.

Pr oof. F or a giv en system of equations E , let E

0

b e an equiv alen t system

in a solv ed form, and let S

0

b e as describ ed ab o v e. Then S

0

is a principal

solution of E . ut

6.4. T yp e reconstruction algorithm

W e no w sho w ho w t yp e-reconstruction can b e reduced to uni�cation. This

is a LOGSP A CE-reduction, and it can easily b e mo di�ed to w ork for all the

problems (1){(6) of Section 6.2. Since there is also a LOGSP A CE-reduction

the other w a y , the main result of this section ma y b e stated as:

6.4.1. Theorem . T yp e-r e c onstruction in simply-typ e d lamb da c alculus is P-

c omplete.

96 Chapter 6. T yp e-c hec king and related problems

The �rst w ork where this result w as explicitly stated w as probably the M.Sc.

Thesis of Jurek T yszkiewicz [110]. Our pro of of the theorem consists of t w o

reductions. The �rst one is from t yp e-reconstruction to uni�cation.

Let M b e a lam b da-term. Cho ose a represen tativ e of M so that no

b ound v ariable o ccurs free in M and no b ound v ariable is b ound t wice. In

what follo ws w e w ork with this represen tativ e rather than with M as an

equiv alence class. By induction on the construction of M , w e de�ne:

� a system of equations E

M

(o v er the signature consisting only of the

binary function sym b ol !);

� a t yp e �

M

.

Of course, the idea is as follo ws: E

M

will ha v e a solution i� M is t ypable,

and �

M

is (informally) a pattern of a t yp e for M .

6.4.2. Definition .

� If M is a v ariable x , then E

M

= fg and �

M

= �

x

, where �

x

is a fresh

t yp e v ariable.

� If M is an application P Q then �

M

= � , where � is a fresh t yp e

v ariable, and E

M

= E

P

[E

Q

[f �

P

= �

Q

! � g .

� If M is an abstraction �x:P , then E

M

= E

P

and �

M

= �

x

! �

P

.

It is not di�cult to see that the ab o v e construction can b e done in logarith-

mic space. The main prop ert y of our translation is as follo ws.

6.4.3. Lemma .

1. If � ` M : � , then ther e exists a solution S of E

M

, such that � =

S (�

M

) and S (�

x

) = �(x) , for al l variables x 2 F V (M) .

2. L et S b e a solution of E

M

, and let � b e such that �(x) = S (�

x

) , for

al l x 2 F V (M) . Then � ` M : S (�

M

) .

Pr oof. Induction with resp ect to M . ut

It follo ws that M is t ypable i� E

M

has a solution. But E

M

has then a

principal solution, and this has the folllo wing consequence. (Here, S (�) is a

con text suc h that S (�)(x) = S (�(x)).)

6.4.4. Definition . A pair (� ; �), consisting of a con text (suc h that the do-

main of � is F V (M)) and a t yp e, is called the princip al p air for a term M

i� the follo wing holds:

6.5. Eta-reductions 97

� � ` M : � ;

� If �

0

` M : �

0

then �

0

� S (�) and �

0

= S (�), for some substitution S .

(Note that the �rst condition implies S (�) ` M : S (�), for all S .) If M is

closed (in whic h case � is empt y), w e sa y that � is the princip al typ e of M .

6.4.5. Cor ollar y . If a term M is typ able, then ther e exists a princip al p air

for M . This princip al p air is unique up to r enaming of typ e variables.

Pr oof. Immediate from Prop osition 6.3.8. ut

6.4.6. Example .

� The principal t yp e of S is (� ! � !
) ! (� ! �) ! � !
 . The

t yp e (� ! � ! �) ! (� ! �) ! � ! � can also b e assigned to S ,

but it is not principal.

� The principal t yp e of all the Ch urc h n umerals is (� ! �) ! � ! � .

But the t yp e ((� ! �) ! � ! �) ! (� ! �) ! � ! � can also b e

assigned to eac h n umeral.

T o complete the pro of of Theorem 6.4.1, w e should also giv e the other re-

duction. W e only giv e a brief hin t of ho w this should b e done. First w e

reduce the general case of uni�cation to our sp ecial arro w-only case (Exer-

cise 6.8.7) and one equation only (Exercise 6.8.5). Then, for a giv en equation

\ � = � ", w e consider the term �xy :x (y t

�

)(y t

�

), where x; y are new v ariables

and terms t

�

and t

�

are as in Exercise 6.8.2.

6.5. Eta-reductions

W e cannot hide this from the reader an y more|w e �nally ha v e to con-

fess that other notions of reduction than b eta-reduction are considered in

lam b da-calculi. In particular, w e ha v e eta-r e duction , based on the follo wing

principle:

�x:M x !

�

M ; whenev er x 62 F V (M) :

F ormally , w e ha v e the follo wing de�nition:

6.5.1. Definition . W e de�ne the relation !

�

as the least relation satisfying

� If x 62 F V (M) then �x:M x !

�

M ;

� If P !

�

P

0

then �x:P !

�

�x:P

0

;

� If P !

�

P

0

then P Q !

�

P

0

Q and QP !

�

QP

0

.

The notation ! !

�

and =

�

has the exp ected meaning. W e also use the sym b ols

!

� �

, ! !

� �

, =

� �

to refer to reductions com bining � - and � -reductions.

98 Chapter 6. T yp e-c hec king and related problems

The motiv ation for this notion of reduction (and equalit y) is as follo ws: Tw o

functions should b e considered equal if and only if they return equal results

for equal argumen ts. Indeed, w e ha v e

6.5.2. Pr oposition . L et =

ext

b e the le ast e quivalenc e r elation such that:

� If M =

�

N then M =

ext

N ;

� If M x =

ext

N x , and x 62 F V (M) [F V (M) then M =

ext

N ;

� If P =

ext

P

0

then P Q =

ext

P

0

Q and QP =

ext

QP

0

.

Then =

ext

is identic al to =

� �

.

Pr oof. Exercise 6.8.15. Note that the ab o v e de�nition do es not con tain

the condition \If P =

ext

P

0

then �x:P =

ext

�x:P

0

". This is not a mistak e,

b ecause this prop ert y (called \rule � ") follo ws from the others. ut

W e do not tak e !

�

as our standard notion of reduction, b ecause w e do

not w an t our calculus of functions to b e extensional. After all, w e w an t to

b e able to distinguish b et w een t w o algorithms, ev en if their input-output

b eha viour is the same.

The notions of eta- and b eta-eta-reduction and equalit y ha v e most of the

go o d prop erties of b eta-reduction and equalit y . In particular, the Ch urc h-

Rosser theorem remains true, leftmost reductions are normalizing,

5

and on

the t yp ed lev el w e still ha v e b oth sub ject reduction and strong normalization

prop erties. (Note that strong normalization for eta alone is immediate,

as eac h eta-reduction step reduces the length of a term.) Of course, eta-

reduction mak es sense also for the Ch urc h-st yle t yp ed terms.

6.5.3. Definition . W e no w de�ne the notion of a Ch urc h-st yle term in an

� - long normal form (or just long normal form). Recall that w e write M

�

as an informal w a y of sa ying that the Ch urc h-st yle term M has t yp e � in

some �xed con text. The de�nition is b y induction:

� If x is a v ariable of t yp e �

1

! � � � ! �

n

! � , and M

�

1

1

; : : : ; M

�

n

n

are

in � -long normal form, then (xM

1

: : : M

n

)

�

is in � -long normal form.

� If M

�

is in � -long normal form then (�x : � :M)

� ! �

is in � -long normal

form.

Th us a term in a long normal form is a term in normal form where all

function v ariables are \fully applied" to argumen ts.

6.5.4. Lemma . F or every Chur ch-style term M

�

in b eta normal form ther e

exists a term M

�

1

in � -long normal form, such that M

�

1

! !

�

M .

Pr oof. Easy . ut

5

But the pro of is somewhat more in v olv ed than for b eta-reduction.

6.6. T yp e inhabitation 99

6.6. T yp e inhabitation

In this section w e pro v e a result of Statman [103], that the inhabitation

problem for the �nitely-t yp ed lam b da calculus is PSP A CE-complete. In

particular it is decidable. An immediate consequence is that pro v abilit y

in IPC(!) is also decidable and PSP A CE-complete. The decidabilit y w as

already kno wn to to Gen tzen in 1935, and w e will discuss his (syn tactic)

pro of in the next c hapter. There are also seman tic metho ds based on the

existence of �nite mo dels.

First observ e that a t yp e is inhabited if and only if there exists a closed

Ch urc h-st yle term of that t yp e. Th us it su�ces to consider Ch urc h-st yle

terms. First w e pro v e that our problem is in PSP A CE.

6.6.1. Lemma . Ther e is an alternating p olynomial time algorithm (and thus

also a deterministic p olynomial sp ac e algorithm) to determine whether a

given typ e � is inhabite d in a given c ontext � .

Pr oof. If a t yp e is inhabited then, b y Lemma 6.5.4, it is inhabited b y a

term in a long normal form. T o determine whether there exists a term M

in a long normal form, satisfying � ` M : � , w e pro ceed as follo ws:

� If � = �

1

! �

2

, then M m ust b e an abstraction, M = �x : �

1

:M

0

. Th us,

w e lo ok for an M

0

satisfying � ; x : �

1

` M

0

: �

2

.

� If � is a t yp e v ariable, then M is an application of a v ariable to a

sequence of terms. W e nondeterministically c ho ose a v ariable z , de-

clared in � to b e of t yp e �

1

! � � � ! �

n

! � . (If there is no suc h

v ariable, w e reject.) If n = 0 then w e accept. If n > 0, w e answ er in

parallel the questions if �

i

are inhabited in �.

This alternating (or recursiv e) pro cedure is rep eated as long as there are

new questions of the form � ` ? : � . Note that if there are t w o v ariables

in �, sa y x and y , declared to b e of the same t yp e � , then eac h term M

can b e replaced with M [x=y] with no c hange of t yp e. This means that a

t yp e � is inhabited in � i� it is inhabited in � � f y : � g , and it su�ces to

consider con texts with all declared t yp es b eing di�eren t. A t eac h step of

our pro cedure, the con text � either sta ys the same or it expands. Th us the

n um b er of steps (depth of recursion) do es not exceed the squared n um b er of

subform ulas of t yp es in � ; � , where � ` ? : � is the initially p osed question.

ut

T o sho w PSP A CE-hardness, w e de�ne a reduction from the satis�abilit y

problem for classical second-order prop ositional form ulas (QBF). W e refer

the reader to [57] for details ab out this problem. (But do not use the P olish

translation.)

100 Chapter 6. T yp e-c hec king and related problems

Assume that a second-order prop ositional form ula � is giv en. Without

loss of generalit y w e ma y assume that the negation sym b ol : do es not o ccur

in �, except in the con text : p , where p is a prop ositional v ariable.

Assume that all b ound v ariables of � are di�eren t and that no v ariable

o ccurs b oth free and b ound. F or eac h prop ositional v ariable p , o ccurring

in � (free or b ound), let �

p

and �

: p

b e fresh t yp e v ariables. Also, for eac h

subform ula ' of �, let �

'

b e a fresh t yp e v ariable. W e construct a basis �

�

from the follo wing t yp es:

� (�

p

! �

) ! (�

: p

! �

) ! �

'

, for eac h subform ula ' of the

form 8 p ;

� (�

p

! �

) ! �

'

and (�

: p

! �

) ! �

'

, for eac h subform ula ' of the

form 9 p ;

� �

! �

#

! �

'

, for eac h subform ula ' of the form ^ # ;

� �

! �

'

and �

#

! �

'

, for eac h subform ula ' of the form _ # .

If v is a zero-one v aluation of prop ositional v ariables, then �

v

is � extended

with the t yp e v ariables

� �

p

, when v (p) = 1;

� �

: p

, when v (p) = 0.

The follo wing lemma is pro v en b y a routine induction w.r.t. the length of

form ulas. Details are left to the reader.

6.6.2. Lemma . F or every subformula ' of � , and every valuation v , de�ne d

on the fr e e variables of ' , the typ e �

'

is inhabite d in �

v

i� v (') = 1 .

Pr oof. Exercise 6.8.18. ut

F rom Lemma 6.6.2 w e obtain PSP A CE-hardness, since the reduction can b e

p erformed in logarithmic space. This, together with Lemma 6.6.1 implies

the main result of this section.

6.6.3. Theorem . The inhabitation pr oblem for simply-typ e d lamb da-c alculus

is c omplete for p olynomial sp ac e. ut

6.7. Equalit y of t yp ed terms 101

6.7. Equalit y of t yp ed terms

As w e ha v e already observ ed, to v erify whether t w o t ypable lam b da-terms

are b eta-equal or not, it su�ces to reduce them to normal form. One thing

that often is o v erlo ok ed here is that the complexit y of this decision pro cedure

dep ends on the size of particular t yp e deriv ations (or Ch urc h-st yle terms)

and not directly on the size of the pure lam b da-terms to b e v eri�ed. In the

case of simply-t yp ed lam b da calculus, the cost of t yp e-reconstruction is is a

minor fraction of the total cost, ev en if w e insist on the p ossibly exp onen tial

t yp es to b e written do wn. Indeed, w e ha v e the follo wing theorem of Statman:

6.7.1. Theorem (R. Statman). The pr oblem to de cide whether two given

Chur ch-style terms M and N of a given typ e � ar e b eta-e qual is of non-

elementary c omplexity. That is, for e ach r , the de cision pr o c e dur e takes

mor e than exp

r

(n) steps on inputs of size n . (R e c al l that exp

0

(n) = n and

exp

k +1

(n) = 2

exp

k

(n)

:)

The simplest kno wn pro of of this result is b y H. Mairson [68]. This pro of,

lik e the original pro of of Statman, uses v alidit y for a simple higher-order

logic as an in termediate step. It migh t b e in teresting to ha v e a direct co ding

of T uring Mac hines in to lam b da-terms.

6.8. Exercises

6.8.1. Exer cise . Sho w that:

a) problem (4) reduces to problem (5);

b) problem (5) reduces to problem (1);

c) problem (1) reduces to problem (2);

d) problem (8) reduces to problem (7)

in logarithmic space.

6.8.2. Exer cise . Assume a con text � consisting of t yp e assumptions of the

form (x

�

: �). De�ne terms t

�

suc h that � ` t

�

: � holds if and only if

� = � .

6.8.3. Exer cise . Sho w that problem (6) reduces to problem (4) in logarith-

mic space. Hint: �rst do Exercise 6.8.2.

6.8.4. Exer cise . What's wrong with the follo wing reduction of problem (3)

to problem (4)? T o answ er ? ` M : � ask ? ` �y z :y (z M)(z t

�

) : ?.

102 Chapter 6. T yp e-c hec king and related problems

6.8.5. Exer cise . Sho w that for ev ery system of equations there is an equiv-

alen t single equation.

6.8.6. Exer cise . Sho w that the size of a shortest p ossible solution of a

giv en system of equations ma y b e exp onen tial in the size of that system.

(Construct systems of equations of size O (n), suc h that all their solutions

are of size at least exp onen tial in n .) Can a solution b e alw a ys r epr esente d

in p olynomial space?

6.8.7. Exer cise . Pro v e that the general form of the uni�cation problem

reduces in logarithmic space to uni�cation o v er the signature consisting only

of an arro w.

6.8.8. Exer cise . Complete the pro of of Lemma 6.3.4.

6.8.9. Exer cise . Sho w examples of lo ops in the uni�cation algorithm that

ma y b e caused b y using rule (d) in a silly w a y , or remo ving the restriction

in rule (a) that t is not a v ariable.

6.8.10. Exer cise . Design a p olynomial time algorithm to decide whether a

giv en equation has a solution.

6.8.11. Exer cise . Mo dify the algorithm of Section 6.4 to obtain an algo-

rithm for problem (3).

6.8.12. Exer cise . Pro v e the follo wing c onverse princip al typ e the or em : If

' is a non-empt y t yp e, then there exists a closed term M suc h that ' is the

principal t yp e of M . Hint: Use the tec hnique of Exercise 6.8.2. (In fact, if

N is a closed term of t yp e � , then w e can require M to b e b eta-reducible

to N .)

6.8.13. Exer cise . Sho w that ev ery principal pair of a BCK-term in normal

form has the follo wing prop erties:

� Eac h t yp e v ariable o ccurs at most t wice;

� If it do es, then one o ccurrence is p ositiv e (to the left of an ev en n um b er

of arro ws) and the other negativ e.

Also sho w that if (� ; �) is a principal pair of a BCK-term M in normal form

then M is an erasure of a Ch urc h st yle term in long normal form that has

the t yp e � in �.

6.8.14. Exer cise . (S. Hirok a w a [56])

Pro v e that for a giv en pair (� ; �), there is at most one BCK-term M in

normal form suc h that (� ; �) is its principal pair.

6.8. Exercises 103

6.8.15. Exer cise . Pro v e Prop osition 6.5.2.

6.8.16. Exer cise . What is the natural deduction coun terpart of eta-reduction?

6.8.17. Exer cise . Sho w examples of t yp es that ha v e exactly n normal in-

habitan ts, for an y n um b er n 2 N [f@

0

g .

6.8.18. Exer cise . Pro v e Lemma 6.6.2

6.8.19. Exer cise . (C.-B. Ben-Y elles)

Sho w that it is decidable whether a t yp e has a �nite or an in�nite n um b er

of di�eren t normal inhabitan ts.

6.8.20. Exer cise . Let ' = �

1

! � � � ! �

n

! � and let � b e the only t yp e

v ariable o ccurring in ' . Pro v e (b y induction) that ' is an inhabited t yp e if

and only if at least one of the �

i

's is not inhabited.

6.8.21. Exer cise . (R. Statman)

Let p b e the only prop ositional v ariable, and let ! b e the only connectiv e

o ccurring in a classical prop ositional tautology ' . Sho w that ' is in tuition-

istically v alid. Hint: First do Exercise 6.8.20.

6.8.22. Exer cise . (T. Prucnal, W. Dekk ers [30]) A pro of rule of the form

�

1

; : : : ; �

n

�

is sound for IPC(!) i� for ev ery substitution S with S (�

1

) ; : : : S (�

n

) all

v alid, also S (�) m ust b e v alid. Pro v e that if suc h a rule is sound then the

implication �

1

! � � � ! �

n

! � is v alid.

104 Chapter 6. T yp e-c hec king and related problems

CHAPTER 7

Sequen t calculus

W e ha v e seen t w o di�eren t formalisms for presen ting systems of formal logic:

natural deduction and Hilb ert-st yle. Eac h of these has its adv an tages. F or

instance, in Hilb ert-st yle pro ofs, there are no problems p ertaining to the

managemen t of assumptions, whereas in natural deduction, the pro ofs are

easier to disco v er, informally sp eaking.

As w e ha v e seen earlier, b oth classical and in tuitionistic prop ositional

calculus are decidable; that is, there is an algorithm whic h decides, for an y ' ,

whether or not ' is classically v alid (according to the truth table seman tics),

and similarly , there is an algorithm whic h decides, for an y ' , whether or not

' is in tuitionistically v alid (according to the Heyting algebra seman tics or

Kripk e mo dels). By the soundness and completeness results, this result

means that there are algorithms that decide, for an y ' , whether or not '

is pro v able in our pro of systems for classical and in tuitionistic prop ositional

calculus, resp ectiv ely .

This result suggests that w e should b e able to dev elop decision algorithms

that do not mak e an excursion via seman tics; that is, w e should b e able to

read the inference rules b ottom-up and turn this reading in to algorithms

that decide whether form ulas ha v e pro ofs in the systems.

An y one who has tried at least once to write do wn an actual Hilb ert-st yle

pro of for ev en a simple form ula will understand wh y this approac h is not

satisfactory in practice. If w e w an t to pro v e a form ula , using the mo dus

p onens rule

'; ' !

the form ula ' has to b e someho w c hosen or guessed. And there is no b ound

for the space w e mak e this c hoice from: the form ula ' can b e anything at

all. An y approac h to automatic theorem pro ving based on this rule seems

do omed to failure.

The same problem app ears in natural deduction pro ofs, since w e also

ha v e the mo dus p onens rule there. (In addition, w e ha v e another unpleasan t

105

106 Chapter 7. Sequen t calculus

prop ert y in the Hilb ert-st yle system: form ulas o ccurring in pro ofs are v ery

long, so ev en if w e kno w what to c ho ose, suc h pro ofs are still incon v enien t.)

In this c hapter w e in tro duce a third kind of formalism, kno wn as se quent

c alculus, for presen ting systems of formal logic. Sequen t calculus w as in tro-

duced in the 1930's, b y Gerhard Gen tzen [39], who also in tro duced natural

deduction.

1

Despite similar syn tax, sequen t calculus and natural deduction are quite

di�eren t and serv e di�eren t purp oses. While natural deduction highligh ts

the most fundamen tal prop erties of connectiv es b y its in tro duction and elim-

ination rule for eac h connectiv e, sequen t calculus is more \practically" ori-

en ted: if one reads the rules of sequen t calculus from b ottom to top, the rules

simplify the pro cess of pro of construction. Instead of in tro duction and elimi-

nation rules, there are only in tro duction rules. Some of these rules in tro duce

connectiv es in the conclusion parts of judgemen ts|in fact, these rules are

iden tical to the in tro duction rules from natural deduction. But there are

also rules in tro ducing connectiv es in the assumption parts of judgemen ts.

These rules replace the elimination rules of natural deduction.

The dev elopmen t of sequen t calculus systems has b een successful not

only for theoretical purp oses: man y practical approac hes to automated the-

orem pro ving are based on some form of sequen t calculi or their relativ es.

In particular, the r esolution rule can b e seen as suc h a relativ e.

7.1. Classical sequen t calculus

Although w e are no w mostly concerned with in tuitionistic pro of systems, w e

in tro duce a classical v ersion of sequen t calculus �rst. In tuitionistic sequen t

calculus is obtained from the classical one b y a restriction whic h sheds some

ligh t on the relationship b et w een these t w o equally fundamen tal logics.

As men tioned b elo w, man y v ariations on the de�nition of sequen t calcu-

lus systems are p ossible; w e use the systems studied b y Pra witz [85 , App. A],

since these minimize the noise in the relationship with natural deduction.

A n um b er of v arian ts can b e found in, e.g., [109] and [38].

7.1.1. Definition . A (classical) se quent is a pair of sets of form ulas, written

� ` �, where the righ t-hand side is not empt y .

2

A pr o of in the sequen t

calculus is a tree lab elled with sequen ts in suc h a w a y that mothers and

daugh ters matc h the pro of rules b elo w.

W e write � `

+

LC

� i� � ` � has a pro of, and w e write � `

LC

� i� � ` �

has a pro of whic h do es not use the rule Cut .

1

Stanis la w Ja � sk o wski indep enden tly in tro duced natural deduction systems|see

Pra witz' b o ok [85], where more information ab out the origins of natural deduction and

sequen t calculus systems can b e found.

2

Sequen ts with empt y righ t-hand sides are p ermitted in man y presen tations. The

meaning of an empt y righ t-hand side is the same as of a righ t-hand side consisting only

of ? , so our restriction is not essen tial.

7.1. Classical sequen t calculus 107

W e use similar con v en tions as in the case of natural deduction. F or

instance, w e write � ; � for � [�, and ' for f ' g .

Axiom:

� ; ' ` '; �

Rules:

� ; ' ` �

� ; ' ^ ` �

(L ^)

� ; ` �

� ; ' ^ ` �

� ` '; � � ` ; �

� ` ' ^ ; �

(R ^)

� ; ' ` � � ; ` �

� ; ' _ ` �

(L _)

� ` '; �

� ` ' _ ; �

(R _)

� ` ; �

� ` ' _ ; �

� ` '; � � ; ` �

� ; ' ! ` � [�

(L !)

� ; ' ` ; �

� ` ' ! ; �

(R !)

� ; ? ` �

(L ?)

� ` '; � � ; ' ` �

� ` � [�

(Cut)

The rule (L ?) has no premise and ma y b e regarded as an axiom. The

remaining rules, except the cut rule, are called lo gic al rules since they de�ne

the meaning of the logical connectiv es ^ , _ , and ! . The logical rules consists

of left and righ t in tro duction rules for ev ery connectiv e. The righ t rules are

iden tical to the in tro duction rules from natural deduction; the left rules will

pla y the role of the elimination rules from natural deduction.

The cut rule is the only one that is neither a left nor a righ t rule. The

form ula ' in the cut rule is called the cut form ula. One can recognize a

similarit y b et w een cut and mo dus p onens .

The in tuitiv e meaning of � ` � is that the assumptions in � imply one

of the conclusions in �, i.e., that '

1

^ : : : ^ '

n

implies

1

_ : : : _

m

, where

� = f '

1

; : : : ; '

n

g and � = f

1

; : : : ;

m

g . The rules for conjunction and

disjunction clearly re
ect this idea.

108 Chapter 7. Sequen t calculus

7.1.2. Remark . In order to facilitate comparison with natural deduction

w e ha v e tak en ? as primitiv e|as w e ha v e seen earlier, negation can then

b e de�ned b y : ' = ' ! ? . One often �nds in the literature : tak en as

primitiv e instead. In this case, the rule (L ?) is replaced b y the t w o rules

� ` � ; '

� ; : ' ` �

(L :)

� ; ' ` �

� ` : '; �

(R :)

whic h are deriv ed rules in the ab o v e system.

7.1.3. W arning . In man y presen tations of sequen t calculus, sequen ts are

pairs of se quenc es (with p ossible rep etitions) rather than sets. In suc h sys-

tems one m ust in addition to the axiom, the cut rule, and the logical rules,

adopt so-called structur al rules, namely we akening rules that allo w addition

of form ulas to the left and righ t of ` , c ontr action rules that allo w con traction

of t w o iden tical form ulas in to one on the left and righ t of ` , and exchange

rules that allo w c hanging the order of t w o consecutiv e form ulas on the left

or on the righ t of ` . In this case one tak es the axiom in the form ' ` ' .

Suc h a system o ccurs, e.g., in [46].

One ma y also use multi-sets instead of sets and sequences. In this case,

the exc hange rules are not needed.

7.1.4. Remark . It is not di�cult to see that in the presence of w eak ening,

the rules (Cut) and (L !) could as w ell b e written as follo ws:

� ` '; � � ; ' ` �

� ` �

(Cut)

� ` '; � � ; ` �

� ; ' ! ` �

(L !)

W e prefer the other presen tation of these rules for uniformit y with the in tu-

itionistic fragmen t, to b e de�ned in the next section.

The follo wing sho ws that sequen t calculus is complete with resp ect to

the ordinary seman tics of classical logic.

7.1.5. Pr oposition . If � = f '

1

; : : : '

n

g then we have � `

+

LC

� if and only

if the entailment � j = '

1

_ � � � _ '

n

is classic al ly valid.

3

In p articular, `

+

LC

�

i� '

1

_ � � � _ '

n

is a classic al tautolo gy.

The pro of is omitted. Gen tzen [39] pro v ed the completeness of the se-

quen t calculus system b y pro ving that the system is equiv alen t to another

logical system. F or the purp oses of that pro of, the cut rule is v ery con v e-

nien t. Gen tzen's Hauptsatz then states that the cut rule is a deriv ed rule,

and hence the cut rule is in fact not necessary for completeness; that is,

ev ery application of the cut rule can b e eliminated from a giv en pro of. This

results is also kno wn as the Cut Elimination The or em. W e shall ha v e more

to sa y ab out this result in the con text of in tuitionistic logic b elo w.

3

That is, i� eac h v aluation satisfying all the form ulas in � m ust also satisfy '

1

_ � � � _ '

n

.

7.2. In tuitionistic sequen t calculus 109

7.1.6. Example . Here is a sequen t calculus pro of of P eirce's la w:

(R !)

(L !)

(R !)

p ` p; q

` p; p ! q

p ` p

(p ! q) ! p ` p

` ((p ! q) ! p) ! p

Note that w e sometimes ha v e t w o form ulas at the righ t-hand side.

7.1.7. Example . And here is another example that uses only sequen ts with

one-elemen t righ t-hand sides:

(L !)

p; p ! q ` p

(L !)

p ` p p; q ` q

p; p ! q ` q

p; p ! q ; r ` r

p; p ! q ; q ! r ` r

(L !)

(R !)

p; p ! q ; p ! q ! r ` r

(R !)

p ! q ; p ! q ! r ` p ! r

(R !)

p ! q ! r ` (p ! q) ! p ! r

` (p ! q ! r) ! (p ! q) ! p ! r

7.2. In tuitionistic sequen t calculus

The in tuitionistic sequen t calculus is obtained from the classical system b y

a simple syn tactic restriction. W e just require that only one form ula o ccurs

at the righ t-hand side of a sequen t. That is, the ab o v e classical rules are

mo di�ed so that

� � has alw a ys exactly one elemen t;

� � is alw a ys empt y .

7.2.1. Definition . An intuitionistic se quent is one of the form � ` ' ,

where ' is a single form ula. W e write � `

+

L

' i� � ` ' has a sequen t

calculus pro of using only in tuitionistic sequen ts, i.e., using only the b elo w

rules. W e write � `

L

' if there is suc h a pro of that do es not use the rule Cut .

110 Chapter 7. Sequen t calculus

Axiom:

� ; ' ` '

Rules:

� ; ' ` �

� ; ' ^ ` �

(L ^)

� ; ` �

� ; ' ^ ` �

� ` ' � `

� ` ' ^

(R ^)

� ; ' ` � � ; ` �

� ; ' _ ` �

(L _)

� ` '

� ` ' _

(R _)

� `

� ` ' _

� ` ' � ; ` �

� ; ' ! ` �

(L !)

� ; ' `

� ` ' !

(R !)

� ; ? ` �

(L ?)

� ` ' � ; ' ` �

� ` �

(Cut)

The follo wing sho ws that in tuitionistic natural deduction and in tuition-

istic sequen t calculus are equiv alen t.

7.2.2. Pr oposition . � `

+

L

' i� � `

N

' .

Pr oof. W e pro v e eac h direction b y induction on the deriv ation of the se-

quen t.

F or the left-to-right direction, the main problem is ho w to express the

left rules of sequen t calculus in terms of the elimination rules of natural

deduction, and ho w to express the cut rule in terms of mo dus p onens.

1. The deriv ation of � `

+

L

' is

�

0

; ' ` '

Then

�

0

; ' ` '

is also a deriv ation of � `

N

' .

7.2. In tuitionistic sequen t calculus 111

2. The deriv ation of � `

+

L

' ends in

�

0

;

1

` '

�

0

;

1

^

2

` '

By the induction h yp othesis w e ha v e a natural deduction deriv ation of

�

0

;

1

` ' . By Lemma 2.6, �

0

;

1

^

2

;

1

` ' , so �

0

;

1

^

2

`

1

! ' .

Since also �

0

;

1

^

2

`

1

^

2

, and hence �

0

;

1

^

2

`

1

, w e get

�

0

;

1

^

2

` ' , b y mo dus p onens. Th us � `

N

' .

3. The deriv ation of � `

+

L

' ends in

�

0

;

1

` ' �

0

;

2

` '

�

0

;

1

_

2

` '

By the induction h yp othesis w e ha v e deriv ations in natural deduction

of �

0

;

1

` ' and �

0

;

2

` ' . By Lemma 2.6, �

0

;

1

;

1

_

2

` '

and �

0

;

2

;

1

_

2

` ' . Since also �

0

;

1

_

2

`

1

_

2

, w e get

�

0

;

1

_

2

` ' . Th us � `

N

' .

4. The deriv ation of � `

+

L

' ends in

�

0

`

1

�

0

;

2

` '

�

0

;

1

!

2

` '

By the induction h yp othesis w e ha v e deriv ations in natural deduction

�

0

`

1

and �

0

;

2

` ' . By Lemma 2.6, �

0

;

1

!

2

`

1

and

�

0

;

1

!

2

;

2

` ' . As b efore, �

0

;

1

!

2

`

1

!

2

, so

�

0

;

1

!

2

`

2

. Also �

0

;

1

!

2

`

2

! ' , so �

0

;

1

!

2

` ' .

Th us � `

N

' .

5. The deriv ation of � `

+

L

' is

�

0

; ? ` '

Then

�

0

; ? ` ?

�

0

; ? ` '

is a deriv ation of � `

N

' .

6. The deriv ation of � `

+

L

' ends in

� ` � ; ` '

� ` '

By the induction h yp othesis w e ha v e deriv ations in natural deduction

of � ` and � ; ` ' . Then � ` ! ' , and then � ` ' . Th us

� `

N

' .

112 Chapter 7. Sequen t calculus

The remaining cases|the righ t rules|are trivial.

F or the right-to-left direction the problem is to express the elimination

rules of natural deduction in terms of the left rules of sequen t calculus; the

cut rule turns out to b e useful for this.

As ab o v e the cases where the deriv ation consists of a use of the axiom

or ends in an in tro duction rule are trivial.

1. The deriv ation of � `

N

' ends in

� ` ' ^

� ` '

By the induction h yp othesis w e ha v e a sequen t calculus deriv ation of

� ` ' ^ . By the axiom and the left rule for ^ w e get � ; ' ^ ` ' .

Then b y the cut rule � ` ' . Th us � `

+

L

' .

2. The deriv ation of � `

N

' ends in

� ;

1

` ' � ;

2

` ' � `

1

_

2

� ` '

By the induction h yp othesis w e ha v e sequen t calculus deriv ations of

� ;

1

` ' , of � ;

2

` ' , and of � `

1

_

2

. By the left rule for _

w e get � ;

1

_

2

` ' . Then b y the cut rule � ` ' . Th us � `

+

L

' .

3. The deriv ation of � `

N

' ends in

� ` ! ' � `

� ` '

By the induction h yp othesis w e ha v e sequen t calculus deriv ations of

� ` ! ' and � ` . By the axiom � ; ' ` ' , so b y the left rule

for ! w e ha v e that � ; ! ' ` ' . Then b y the cut rule � ` ' . Th us

� `

+

L

' .

4. The deriv ation of � `

N

' ends in

� ` ?

� ` '

By the induction h yp othesis w e ha v e a sequen t calculus deriv ation of

� ` ? . By the left rule for ? w e ha v e � ; ? ` ' . Then b y the cut

rule � ` ' . Th us � `

+

L

' . ut

7.3. Cut elimination 113

7.3. Cut elimination

In b oth directions of the pro of of Prop osition 7.2.2 w e in tro duce detours. In

the left-to-righ t direction w e express the left rule for, sa y ^ , b y a sequence of

rules in whic h a ^ -in tro duction is immediately follo w ed b y a ^ -elimination

(this is re
ected b y a redex of form �

i

(< M

1

; M

2

>) in the � -term corre-

sp onding to the pro of). In general w e expressed eac h left rule of the sequen t

calculus system b y a natural deduction pro of in whic h a sequen t o ccurrence

w as b oth the conclusion of an in tro duction rule and the ma jor

4

premise of

the corresp onding elimination rule (in general, suc h sequen t o ccurrences are

re
ected b y redexes in the � -term corresp onding to the pro of).

In the righ t-to-left direction w e used the cut rule to express elimination

rules in terms of left rules.

W e kno w that w e can get rid of the detours in the natural deduction

pro ofs; that is, w e can transform an y natural deduction pro of in to one in

whic h no sequen t o ccurrence is b oth the conclusion of an in tro duction rule

and the ma jor premise of the corresp onding elimination rule. This corre-

sp onds to the fact that, b y the w eak normalization theorem, w e can eliminate

all redexes in a term of the simply t yp ed � -calculus with pairs and sums.

The follo wing theorem states that w e can also do without the cuts.

7.3.1. Theorem (Cut elimination). F or al l ' and � the c onditions � `

+

L

'

and � `

L

' ar e e quivalent.

The pro of is somewhat tedious, esp ecially when presen ted in terms of

pro of trees|see, e.g., [46] or [109]. Therefore w e p ostp one the pro of to

Section 7.6 where a more con v enien t notation for pro ofs is dev elop ed. Here

w e merely re
ect on some of the more in teresting asp ects of the pro of, and

consider some consequences of the theorem.

First observ e that there is no uniform w a y to eliminate an application of

the cut rule, i.e., there is no �xed sequence of other rules that is equiv alen t

to a cut. Eac h cut has to b e eliminated di�eren tly , and this dep ends on the

shap e of the cut formula and the w a y it w as constructed ab o v e the cut.

In addition, in an attempt to eliminate a cut with a complex cut form ula,

i.e., one of the form ' ! , w e ma y actually create new cuts, as can b e seen

from the follo wing example. Consider a pro of that ends with an application

of a cut rule of the form:

4

In _ E , ! E , and ^ E the ma jor premise is the leftmost one, the righ tmost one, and

the single one, resp ectiv ely .

114 Chapter 7. Sequen t calculus

(R !)

(1)

.

.

.

� ; ' `

� ` ' !

(2)

.

.

.

� ` '

(3)

.

.

.

� ; ` #

� ; ' ! ` #

(L !)

� ` #

(Cut)

W e can eliminate this cut at the cost of in tro ducing t w o new ones. This

mak es sense, b ecause the new cut form ulas are simpler. The new pro of is as

follo ws:

(Cut)

(2)

.

.

.

� ` '

(1)

.

.

.

� ; ' `

� `

(3)

.

.

.

.

.

.

� ; ` #

� ` #

(Cut)

Note that in our example the cut form ula ' ! w as in tro duced just b efore

the cut b y the rules (R !) and (L !).

The strategy of the cut elimination pro of is as follo ws. The main cases,

when the cut form ula is in tro duced b y the appropriate left and righ t rules

directly b efore cut, is treated as in our example: b y replacing the cut b y

new \simpler" cuts. Other cuts are \p erm uted up w ard" so that eac h cut is

ev en tually either applied to an axiom (an easy case), or another main case

is obtained. This requires an induction o v er t w o parameters: the depths of

cuts and the complexit y of cut form ulas.

5

7.3.2. Remark . The cut elimination theorem also holds for the classical

sequen t calculus; that is, for all � and � the conditions � `

+

LC

� and � `

LC

�

are equiv alen t.

7.3.3. Lemma (Subform ula prop ert y). The cut-fr e e se quent c alculus `

L

has

the fol lowing pr op erty: Each formula o c curring in a pr o of of � ` ' is either

a subformula of ' or a subformula of a formula o c curring in � .

Pr oof. By induction on the deriv ation of � ` ' . ut

There are a n um b er of consequences of the subform ula prop ert y . One

is that �nding a sequen t calculus pro of of a giv en form ula (or �nding out

that no suc h pro of exists) is incomparably easier than �nding suc h a pro of

in the Hilb ert, or natural deduction system. As w e reconstruct the pro of

5

The similarit y b et w een this approac h and the pro of metho d of w eak normalization is

not at all inciden tal.

7.4. T erm assignmen t for sequen t calculus 115

b y building the tree up w ard, the searc h space at eac h step is limited to

subform ulas of the form ulas o ccurring at the presen t stage. This pro cess

cannot con tin ue inde�nitely , as the n um b er of a v ailable form ulas is b ounded,

and w e will ev en tually rep eat already considered sequen ts.

7.3.4. Cor ollar y (Gen tzen). It is de cidable, for input ' , whether `

+

L

' .

Another consequence is the conserv ativit y of fragmen ts of the calculus

determined b y a c hoice of connectiv es. The subform ula prop ert y implies

that a cut-free pro of of a sequen t can only men tion connectiv es o ccurring

in that sequen t. Th us, e.g., a form ula ((p ^ q) ! r) $ (p ! (q ! r)) is

pro v able in a system con taining only rules for implication and conjunction.

7.3.5. Cor ollar y . IPC is c onservative over its implic ational fr agment.

W e end this section with another pro of of the disjunction prop ert y

(Prop osition 2.5.7).

7.3.6. Cor ollar y . If `

+

L

' _ then either `

+

L

' or `

+

L

 .

Pr oof. If there is a pro of of `

+

L

' _ , then there is a cut-free one. And a

cut-free pro of of a disjunction m ust end up with an application of rule (_ I).

Th us, either `

L

' or `

L

 m ust ha v e b een pro v ed �rst. ut

7.4. T erm assignmen t for sequen t calculus

Natural deduction pro ofs corresp ond to t yp ed � -terms and Hilb ert-st yle

pro ofs corresp ond to t yp ed com binators. What do sequen t calculus pro ofs

corresp ond to?

There are sev eral answ ers. The traditional one|see, e.g., [84 , 118]|

is that w e can assign lam b da-terms to sequen t calculus pro ofs; that is, w e

can devise an alternativ e v ersion of simply t yp ed � -calculus|with the same

term language, but with di�eren t t yping rules|whic h is to sequen t calculus

what the traditional form ulation of simply t yp ed � -calculus is to natural

deduction.

This is carried out b elo w. W e b egin with the implicational fragmen t.

7.4.1. Definition (Sequen t calculus st yle � !). The t yp e and term language

of the sequen t calculus st yle � ! is as for � ! (� a la Curry). The t yping rules

are as follo ws:

116 Chapter 7. Sequen t calculus

Axiom:

� ; x : ' ` x : '

Rules:

� ` M : ' � ; x : ` N : �

� ; y : ' ! ` N [x := y M] : �

(L !)

� ; x : ' ` M :

� ` �x:M : ' !

(R !)

� ` M : ' � ; x : ' ` N : �

� ` (�x:N) M : �

(Cut)

W e also write `

+

L

and `

L

for deriv abilit y in this system with and without

cut, resp ectiv ely . W e th us ha v e binary and ternary v ersion of b oth `

+

L

and

`

L

; the binary v ersion refers to the sequen t calculus form ulation of IPC (!)

in De�nition 7.2.1, and the ternary v ersion refers to the presen t sequen t

calculus st yle form ulation of � ! .

As usual w e ha v e that the system with terms agrees with the system

without terms.

7.4.2. Pr oposition .

(i) If � `

+

L

M : ' then j � j `

+

L

' .

(ii) If � `

+

L

' then ther e exists M 2 � such that � `

+

L

M : ' , wher e

� = f (x

'

: ') j ' 2 � g .

The ab o v e sequen t calculus system assigns t yp es to certain � -terms. Are

these the same � -terms as those that receiv e t yp es b y the usual simply t yp ed

� -calculus �a la Curry? The answ er is no! F or instance, there is no w a y to

assign a t yp e to (�x:�y :x) (�z :z) (�z :z) in the ab o v e system.

Ho w ev er, the pro of of Prop osition 7.2.2 implicitly de�nes a translation

from terms t ypable in simply t yp ed � -calculus (corresp onding to natural

deduction pro ofs) to terms t ypable in the ab o v e system (corresp onding to

sequen t calculus pro ofs), and vice v ersa.

On the other hand, if w e restrict atten tion to � -terms in normal form,

then the set of terms t ypable in traditional simply t yp ed � -calculus coincides

with the set of terms t ypable in sequen t calculus.

7.4.3. Pr oposition . F or every term M in normal form, � `

+

L

M : ' i�

� ` M : ' in simply typ e d � -c alculus.

7.4. T erm assignmen t for sequen t calculus 117

Pr oof. First sho w that a term M is in normal form i� either

� M is a v ariable, or

� M = �x:N , where N is a normal form, or

� M = N [y := xP], where N and P are normal forms.

Then the prop ert y follo ws easily . ut

In the corresp ondence b et w een simply t yp ed � -calculus and natural de-

duction, � -terms in normal form corresp ond to normal deductions (i.e., de-

ductions where no sequen t is at the same time the conclusion of an in tro-

duction rule and the ma jor premise of the corresp onding elimination rule).

In the sequen t calculus v arian t of simply t yp ed � -calculus, � -terms in

normal form corresp ond to cut-free pro ofs in sequen t calculus.

7.4.4. Pr oposition . If � `

+

L

M : ' , then M is in normal form if and only

if � `

L

M : ' .

Pr oof. Ob vious. ut

Th us simply t ypable � -terms in normal form corresp ond to b oth nor-

mal pro ofs in natural deduction and cut-free sequen t calculus pro ofs. W e

therefore ha v e the corresp ondence

Normal de ductions () Cut-fr e e pr o ofs

Ho w ev er, note that a deduction ma y use the cut rule ev en if the cor-

resp onding � -term is in normal form (cf. Exercise 7.7.5): the substitution

N [x := y M] ma y delete the term M whic h ma y con tain redexes. In this

case w e just kno w that there is another t yping that do es not use the cut

rule of the same term.

7.4.5. Remark . As men tioned ab o v e, the pro of of Prop osition 7.2.2 implic-

itly de�nes a translation from terms t ypable in traditional simply t yp ed

� -calculus (corresp onding to natural deduction pro ofs) to terms t ypable in

the ab o v e system (corresp onding to sequen t calculus pro ofs), and vice v ersa.

F rom what has b een said ab o v e one migh t exp ect that the translations

map normal forms to normal forms. Ho w ev er this is not the case. The reason

for this is that in the pro of of Prop osition 7.2.2 w e aimed at the simplest

p ossible w a y to get from natural deduction pro ofs to sequen t calculus pro ofs;

in particular, w e translated the left rules of sequen t calculus in to natural

deduction pro ofs con taining detours, and w e made use of the cut rule in

translating elimination rules in to left rules.

118 Chapter 7. Sequen t calculus

7.5. The general case

W e brie
y sho w ho w the dev elopmen t of the preceding section can b e gen-

eralized to the full prop ositional language.

Recall the extension of � ! �a la Curry with pairs and sums:

� ` M : � ` N : '

� ` < M ; N > : ^ '

� ` M : ^ '

� ` �

1

(M) :

� ` M : ^ '

� ` �

2

(M) : '

� ` M :

� ` in

1

(M) : _ '

� ` M : '

� ` in

2

(M) : _ '

� ` L : _ ' � ; x : ` M : � � ; y : ' ` N : �

� ` case (L ; x:M ; y :N) : �

F or completeness, extend the language with an op erator " for falsit y , with

the follo wing rule:

� ` M : ?

� ` " (M) : �

and with no reduction rule (as there is no ? -in tro duction rule).

First w e generalize the construction in the pro of of Prop osition 7.4.3

7.5.1. Lemma . A term M is in normal form i� either

� M is a variable, or

� M = �x:P , or

� M = P [y := xQ] , or

� M = < P ; Q > , or

� M = in

1

(P) , or

� M = in

2

(P) , or

� M = P [y := �

1

(x)] , or

� M = P [y := �

2

(x)] , or

� M = P [y := case (x ; v :Q ; w :R)] , or

� M = " (P) ,

wher e P , Q , and R ar e normal forms.

Pr oof. Easy . ut

7.5. The general case 119

7.5.2. Definition (Sequen t calculus st yle � ! for the full language). The se-

quen t calculus st yle � ! for the full prop ositional language is as for � ! �a la

Curry with pairs and sums. The t yping rules are are those of De�nition 7.4.1

and in addition the follo wing:

(L ^)

� ; x : '

i

` M : �

� ; y : '

1

^ '

2

` M [x := �

i

(y)] : �

� ` M : ' � ` N :

� ` < M ; N > : ' ^

(R ^)

(L _)

� ; x : ' ` M : � � ; y : ` N : �

� ; z : ' _ ` case (z ; x:M ; y :N) : �

� ` M : '

i

� ` in

i

(M) : '

1

_ '

2

(R _)

� ; x : ? ` " (x) : �

(L ?)

It is a routine matter to v erify that the generalized v ersion of Prop osi-

tion 7.4.2 holds.

W e w ould lik e no w to generalize Prop osition 7.4.3, but there is a problem.

Some t ypable lam b da-terms in normal form do not corresp ond to an y terms

t ypable in the new system. F or instance, if M , N , P and Q are normal

forms, then the term �

1

(case (z ; x: < M ; N > ; y : < P ; Q >)) is in normal

form. But it has no t yp e in the ab o v e system, ev en if the term is t ypable in

� ! with pairs and sums (to see this, observ e that no rule could p ossibly b e

the last one used.)

One w a y to remedy this problem is to mo dify the term assignmen t for

the (Cut) rule to:

� ` M : ' � ; x : ' ` N : �

� ` N [x := M] : �

(Cut)

Then our example term can b e t yp ed, but only using the cut-rule, so the

corresp ondence b et w een normal pro ofs and cut-free pro ofs has b een lost.

Inciden tally , this di�cult y do es not o ccur for implication and conjunc-

tion, but only for the disjunction and falsit y . The reason is that the elimina-

tion rules for these connectiv es are di�eren t. Recall that ev ery elimination

rule has a main premise in v olving the eliminated connectiv e. In case of

implication and conjunction, the conclusion of the elimination rule (more

precisely: the righ t-hand side of the conclusion) is a subform ula of the main

premise. In case of disjunction and falsit y this is not the case.

Our example term corresp onds to the follo wing sequence of pro of steps:

conjunction in tro duction (pairing) follo w ed b y disjunction elimination (case),

follo w ed b y conjunction elimination (pro jection). Due to the \irregular" b e-

ha viour of disjunction elimination, the last pro jection should actually b e

applied to the pair(s) created at the b eginning. But the case instruction

120 Chapter 7. Sequen t calculus

mak es this imp ossible. It is a stranger who en tered here b y mistak e due to

an improp erly closed do or (the \bad" elimination, as Girard calls it) and

do es her o wn w ork quite unrelated to the form of the main premise. A so-

lution is either to ignore her or to op en the do or ev en more and let her go

out. T ec hnically , these t w o alternativ es mean that w e should either relax the

existing reduction rules to allo w for reduction of in tro duction/elimination

pairs, ev en if the latter do es not immediately follo w the former, or w e should

in tro duce c ommuting c onversions , i.e., reduction rules to p erm ute elimina-

tions.

After Girard [46] w e tak e the second option.

7.5.3. Definition . In � ! with pairs and sums let !

c

denote the union

of !

�

, of the � -reductions for pairs and sums (see P age 75), and of the

compatible closure of the relation de�ned b y the follo wing rules:

� �

1

(case (M ; x:P ; y :Q)) ! case (M ; x:�

1

(P); y :�

1

(Q));

� �

2

(case (M ; x:P ; y :Q)) ! case (M ; x:�

2

(P); y :�

2

(Q));

� (case (M ; x:P ; y :Q)) N ! case (M ; x:P N ; y :QN);

� " (case (M ; x:P ; y :Q)) ! case (M ; x:" (P); y :" (Q));

� case (case (M ; x:P ; y :Q); z :N ; v :R) !

case (M ; x: case (P ; z :N ; v :R); y : case (Q ; z :N ; v :R));

� " (�

1

(M)) ! " (M);

� " (�

2

(M)) ! " (M);

� " (" (M)) ! " (M);

� (" (M)) N ! " (M);

� case (" (M); x:P ; y :Q) ! " (M).

Also, let NF

c

denote the set of normal forms with resp ect to !

c

.

No w w e can state a v ersion of Prop osition 7.4.3.

7.5.4. Pr oposition . F or every M 2 NF

c

: � `

+

L

M : ' i� � ` M : ' in � !

with p airs and sums.

F or the full system w e also ha v e

7.5.5. Pr oposition . F or every de duction � `

+

L

M : ' , M is in c -normal

form if and only if � `

L

M : ' .

7.6. Alternativ e term assignmen t 121

Pr oof. Ob vious. ut

7.5.6. Remark . The notion of � -reduction is often understo o d as follo ws.

An elimination follo w ed b y an in tro duction of the same connectiv e should

b e ignored. W e can write the follo wing eta-rule for ^ :

< �

1

(M) ; �

2

(M) > !

�

M :

The ab o v e rule, although lo oking v ery con vincing, hides an unpleasan t sur-

prise to b e disco v ered in Exercise 7.7.6.

F or function t yp es, as w e ha v e already observ ed b efore, the meaning of

the eta rule is the p ostulate of extensionalit y for functions, In case of ^ ,

eta-reduction has the follo wing meaning: Ev ery ob ject of a pro duct t yp e is

actually a pair.

This leads to the idea of the follo wing \generalized extensionalit y" prin-

ciple: Ev ery ob ject should b e assumed to b e in a \canonical form". The

canonical form for an ob ject of t yp e � _ � is a v arian t, i.e., it is either an

in

1

(M) or an in

2

(N). Th us suggest the follo wing eta rule for disjunction:

case (M ; x: in

1

(x); y : in

2

(y)) ! M :

7.5.7. W arning . W e use logical sym b ols _ and ^ to denote also the corre-

sp onding t yp es. Similar sym b ols are often used to denote interse ction and

union t yp es, whic h ha v e quite a di�eren t meaning (see e.g. [6]). Our ^ is ac-

tually a pr o duct rather than in tersection, and our _ is a v arian t t yp e rather

than set-theoretic or lattice union.

7.6. Alternativ e term assignmen t

The sequen t calculus systems with terms in the preceding t w o sections rev eal

in teresting connections ab out normal natural deduction pro ofs and cut-free

sequen t calculus pro ofs.

Ho w ev er, for a �ne-grained analysis of cut-elimination the term assign-

men t is not satisfactory . The problem is that di�eren t pro ofs corresp ond to

the same term so that reductions on pro ofs is not exactly mirrored b y reduc-

tions on terms. In this section w e follo w another w ell-kno wn approac h|see,

e.g., [15 , 116 , 38]|and in tro duce another, more explicit, w a y of assigning

terms to sequen t calculus pro ofs. W e shall use the term assignmen t to pro v e

the Cut Elimination Theorem.

Y et another approac h to term assignmen t app ears in [52].

122 Chapter 7. Sequen t calculus

7.6.1. Definition (Alternativ e term assignmen t to sequen t calculus). W e con-

sider the language of prop ositional form ulas and the follo wing term language:

M ::= x j in

1

(M) j in

2

(M) j �x:M j < M ; M

0

>

j " (x)

j case (x ; x

0

:M

0

; x

0 0

:M

0 0

)

j let x = x

0

M in M

0

j let x = �

1

(x

0

) in M

0

j let x = �

2

(x

0

) in M

0

j let

'

x = M

0

in M

0

Note that in the �rst three kinds of let-expression, the form of N in the

expression \let x = N in M " is restricted to certain forms.

The inference rules of the system are as follo ws:

Axiom:

� ; x : ' ` x : '

Rules:

(L !)

� ` M : ' � ; x : ` N : �

� ; y : ' ! ` let x = y M in N : �

� ; x : ' ` M :

� ` �x:M : ' !

(R !)

(L ^)

� ; x : '

i

` M : �

� ; y : '

1

^ '

2

` let x = �

i

(y) in M : �

� ` M : ' � ` N :

� ` < M ; N > : ' ^

(R ^)

(L _)

� ; x : ' ` M : � � ; y : ` N : �

� ; z : ' _ ` case (z ; x:M ; y :N) : �

� ` M : '

i

� ` in

i

(M) : '

1

_ '

2

(R _)

� ; x : ? ` " (x) : �

(L ?)

� ` M : ' � ; x : ' ` N : �

� ` let

'

x = M in N : �

(Cut)

In � -terms with pairs and sums there are a n um b er of c onstructors and

a n um b er destructors. The constructors are < � ; � > , in

i

(�), and �x: � ; these

build up values, informally sp eaking. The destructors are case (� ; x:M ; x

0

:M

0

),

� N , and �

i

(�). These insp ect and dissect v alues, informally sp eaking. In

the � -calculus with pairs and sums one can freely apply a destructor to an y

7.6. Alternativ e term assignmen t 123

term. The main di�erence to the ab o v e term language is that no w the com-

bination of destructors and constructors are expressed via an explicit rule,

namely cut.

This mak es it v ery explicit where in termediate results, e.g. a pair of

whic h one tak es a pro jection, are constructed. In functional programming

there are v arious tec hniques to eliminate in termediate data structures from

functional programs, notably W adler's deforestation [115]. Marlo w [69] stud-

ies deforestation of a functional programming language whic h is similar to

the term assignmen t for sequen t calculus pro ofs.

The follo wing rules remo v e cuts from sequen t calculus pro ofs represen ted

b y the alternativ e syn tax of De�nition 7.6.1.

7.6.2. Definition . On the term language in tro duced in De�nition 7.6.1,

w e in tro duce the relation !!

a

as the transitiv e, re
exiv e, compatible closure

of the relation de�ned b y the follo wing rules, whic h are divided in to three

groups: main c ases, absent c onstructor in left term, and absent c onstructor

in right term.

The main cases are:

let

'

1

^ '

2

y = < M

1

; M

2

> in let x = �

i

(y) in M !

let

'

i

x = M

i

in M

let

'

1

_ '

2

y = in

i

(M) in case (y ; x

1

:M

1

; x

2

:M

2

) !

let

'

i

x

i

= M in M

i

let

'

1

! '

2

y = �x:M in let z = y N in L !

let

'

1

x = N in let

'

2

z = M in L

Absen t constructor from left h yp othesis:

let

'

x = y in N ! N f x := y g

let

'

x = let y = �

i

(z) in M in N ! let y = �

i

(z) in let

'

x = M in N

let

'

x = case (z ; y

1

:M

1

; y

2

:M

2

) in N !

case (z ; y

1

: let

'

x = M

1

in N ; y

2

: let

'

x = M

1

in N)

let

'

x = let y = z M in K in N ! let y = z M in let

'

x = K in N

let

'

x = let

y = M in K in N ! let

y = M in let

'

x = K in N

let

'

x = " (y) in N ! " (y)

Absen t constructor from righ t h yp othesis:

let

'

x = N in y ! y f x := N g

let

'

x = N in < M

1

; M

2

> !

< let

'

x = N in M

1

; let

'

x = N in M

2

>

let

'

x = N in in

i

(M) ! in

i

(let

'

x = N in M)

let

'

x = N in �y :M ! �y : let

'

x = N in M

let

'

x = N in " (y) ! " (y)

let

'

x = N in let

y = K in L !

let

y = (let

'

x = N in K) in (let

'

x = N in L)

124 Chapter 7. Sequen t calculus

7.6.3. Definition .

1. De�ne the de gr e e d (') of a form ula ' b y:

d (?) = d (�) = 0 ; for � 2 P V ;

and

d (' ^) = d (' _) = d (' !) = 1 + max f d (') ; d () g :

2. De�ne the de gr e e d (M) of a term M as the maximal degree of an y '

in an y let

'

x = K in L in M .

3. De�ne the heigh t h (M) of a term M as the heigh t of M view ed as a

tree.

7.6.4. Lemma . L et d = d (') and assume

� `

+

L

let

'

x = M in N :

wher e d (M) < d and d (N) < d . Then let

'

x = M in N !!

a

P for some P

with � `

+

L

P : and d (P) < d .

Pr oof. By induction on h (M) + h (N). Split in to cases according to the

form of M and N . ut

7.6.5. Pr oposition . If � `

+

L

M : ' and d (M) > 0 then M !!

a

N for

some N with � `

+

L

N : ' and d (M) > d (N) .

Pr oof. By induction on M using the lemma. ut

7.6.6. Theorem (Gen tzen). If � `

+

L

M : ' then M !!

a

N wher e � `

+

L

N : '

and d (N) = 0 , i.e., N r epr esents a cut-fr e e pr o of.

Pr oof. By induction on d (M) using the Prop osition. ut

What do es the system in tro duced ab o v e corresp ond to, computationally

sp eaking? The rules are similar to the rules that one �nds in systems for

explicit substitution |see, e.g., [14]. It w ould b e in teresting to in v estigate

this in greater detail|this has b een done recen tly [113].

7.7. Exercises 125

7.7. Exercises

7.7.1. Exer cise . Giv e sequen t calculus pro ofs for the form ulas of Exam-

ple 2.2. T o pro v e the o dd-n um b ered form ulas use only sequen ts with single

form ulas at righ t-hand sides.

7.7.2. Exer cise . Sho w that all cut-free pro ofs for the ev en-n um b ered for-

m ulas of Example 2.2 m ust in v olv e sequen ts with more than one form ula at

the righ t-hand side.

7.7.3. Exer cise . Design a sequen t calculus allo wing empt y righ t-hand sides

of sequen ts. Do es it mak e sense no w to ha v e a righ t rule for ? ?

7.7.4. Exer cise . Pro v e Prop osition 7.4.3. On the basis of this pro of de-

scrib e algorithms translating a normal deduction in to a cut-free pro of and

con v ersely .

7.7.5. Exer cise . Giv e examples of cuts that are assigned terms in normal

form, according to the term assignmen t of Section 7.4.

7.7.6. Exer cise . Sho w that the Curry-st yle v arian t of lam b da-calculus with ^

do es not ha v e the sub ject reduction prop ert y for � -reductions. Sho w that

the eta rule for _ has the sub ject reduction prop ert y .

7.7.7. Exer cise . Design a Ch urc h-st yle calculus with ^ and _ and sho w

that sub ject reduction prop ert y holds for that calculus.

7.7.8. Exer cise . Explain the di�erence b et w een the ab o v e t w o results.

7.7.9. Exer cise . Can y ou design a reasonable eta-rule for disjunction aim-

ing at erasing elimination-in tro duction pairs? Wh y not?

7.7.10. Exer cise . De�ne an eta-rule for ? .

7.7.11. Exer cise . Let A denote the term language of De�nition 7.6.1, ex-

cept that in A , cut terms ha v e the form let

�

x = M in N (the ' is omitted).

Let L denote the set of � -terms with pairs and sums and " .

Let `

L

denote t ypabilit y in � ! with pairs and sums and ? , and let `

A

denote t ypabilit y in the sense of De�nition 7.6.1 with the ob vious mo di�ca-

tion to the cut rule to accomo date the c hange in the syn tax of cut terms.

Let !!

A

denote the reduction relation from De�nition 7.6.2, and let !!

L

denote the transitiv e, re
exiv e closure of !

�

plus the reductions on pairs

and sums. =

A

and =

L

are the ob vious closures.

Use the pro of of Prop osition 7.2.2 to giv e translations t

L

: A ! L and

t

A

: L ! A b et w een A and L . Note that these can also b e view ed as

translations on t yp e-free terms.

Whic h of the follo wing prop erties hold for y our translations?

126 Chapter 7. Sequen t calculus

1. � `

L

M : ' , � `

A

t

A

(M) : ' ;

2. � `

A

M : ' , � `

L

t

L

(M) : ' ;

3. M !!

L

N , t

A

(M) !!

A

t

A

(N);

4. M !!

A

N , t

L

(M) !!

L

t

L

(N);

5. t

L

(t

A

(M)) =

L

M ;

6. t

A

(t

L

(M)) =

A

M .

What happ ens if y ou add comm uting con v ersion to the relations !

L

, =

L

,

etc.?

CHAPTER 8

Classical logic and con trol op erators

In the previous c hapters w e ha v e encoun tered the Curry-Ho w ard isomor-

phism in v arious incarnations; eac h of these state a corresp ondence b et w een

some system of t yp ed terms and a system of formal logic.

Un til no w these systems of formal logic ha v e b een c onstructive; that is,

in none of them ha v e w e found the principle of the exclude d midd le or the

double ne gation elimination principle that one �nds in classic al lo gics.

This is b y no means a coincidence. Un til around 1990 there w as a

widespread consensus to the e�ect that \there is no Curry-Ho w ard isomor-

phism for classical logic." Ho w ev er, at that time Tim Gri�n made a path-

breaking disco v ery whic h ha v e con vinced most critics that classical logics

ha v e something to o�er the Curry-Ho w ard isomorphism.

In this c hapter w e in tro duce classical prop ositional logic, w e study ho w

one can assign terms to classical pro ofs, and w e presen t a system for classical

pro of normalization. The connection b et w een classical and in tuitionistic

logic is also elab orated in some detail. Gri�n's disco v ery is then presen ted

at the end of the c hapter.

8.1. Classical prop ositional logic, implicational fragmen t

Although the bulk of the previous c hapters ha v e b een concerned with form u-

lations of in tuitionistic prop ositional logic w e ha v e o ccasionally come across

classical prop ositional logic.

F or instance, in Chapter 2, w e brie
y studied the algebraic seman tics of

classical logic, and in the preceding c hapter, w e in tro duced sequen t calculus

for in tuitionistic logic as the restriction of classical sequen t calculus to one-

form ula righ t hand sides.

In the case of natural deduction, there are sev eral w a ys to obtain classi-

cal prop ositional logic from in tuitionistic prop ositional logic. The follo wing

giv es one w a y of doing this for the implicational fragmen t.

127

128 Chapter 8. Classical logic and con trol op erators

8.1.1. Remark . In order to a v oid confusion and length y remarks it is con-

v enien t in this c hapter to ha v e a v ailable a systematic w a y of assigning names

to subsets of the language of prop ositions and to logical system and t yp ed

� -calculi.

In this c hapter, L (!) denotes the set of implic ational formulas, i.e., the

language generated b y the grammar:

L (!) 3 ' ::= ? j � j ' ! '

0

The ful l pr op ositional language L (! ; _ ; ^) is the language generated b y

the grammar:

L (! ; _ ; ^) 3 ' ::= ? j � j ' ! '

0

j ' _ '

0

j ' ^ '

0

W e shall o ccasionally b e concerned with the set L

�

(!) of pur e implic a-

tional formulas, i.e., the language generated b y

L

�

(!) 3 ' ::= � j ' ! '

0

Similarly , the pur e ful l pr op ositional language L

�

(! ; _ ; ^) is the lan-

guage generated b y the grammar:

L

�

(! ; _ ; ^) 3 ' ::= � j ' ! '

0

j ' _ '

0

j ' ^ '

0

W e will follo w similar naming con v en tions for logical systems and t yp ed

� -calculi.

8.1.2. Definition (Classical prop ositional logic, implicational fragmen t). Let

'; range o v er implicational form ulas, i.e., o v er L (!). As usual, � and �

denote con texts for whic h w e use the standard con v en tions.

The natural deduction presen tation of the implicational fragmen t CPC (!)

of classical prop ositional logic is de�ned b y the follo wing axiom and rules:

Axiom:

� ; ' ` '

Rules:

� ; ' `

� ` ' !

(! I)

� ` ' ! � ` '

� `

(! E)

� ; ' ! ? ` ?

� ` '

(:: E)

8.1. Classical prop ositional logic, implicational fragmen t 129

8.1.3. Pr oposition . L et ' b e an implic ational formula. Then � ` ' i�

� j = ' ac c or ding to the truth-table semantics. In p articular ` ' i� ' is a

tautolo gy.

Pr oof. The pro of is left as an exercise. ut

8.1.4. Remark . A small v ariation of the system is obtained b y c hanging

rule (:: E) to

� ` (' ! ?) ! ?

� ` '

(:: E

0

)

It is an easy exercise to see that this c hange do es not a�ect the set of

pro v able sequen ts, i.e., � ` ' can b e deriv ed in the original system i� � ` '

can b e deriv ed in the mo di�ed system.

Since : ' is de�ned as ' ! ? a shorter w a y to express the form ula in the

h yp othesis is :: ' , whic h explains the name double ne gation elimination.

8.1.5. Remark . In CPC (!) one can pro v e ev ery form ula that can b e pro v ed

in IPC (!), the implicational fragmen t of in tuitionistic prop ositional logic.

The latter system con tains the axiom and the rules (! I), (! E) and (? E),

so the only problem is to sho w that (? E) holds as a deriv ed rule in CPC(!).

That is, that w e ha v e to sho w that in CPC(!),

� ` ?) � ` '

for an y ' . In fact, this is easy . If � ` ? then also � ; ' ! ? ` ? b y an easy

w eak ening lemma, and then � ` ' b y (:: E).

8.1.6. Remark . Another w a y to de�ne CPC (!) is to consider the axiom

along with rules (! I) and (! E) and then the follo wing t w o rules:

� ; ' ! ` '

� ` '

(P)

� ` ?

� ` '

(? E)

The left-most rule is called Peir c e's law, and the righ t-most one is called

ex falso se quitur quo d lib et (from absurdit y follo ws whatev er y ou lik e).

An alternativ e is to consider instead the follo wing t w o rules:

� ; ' ! ? ` '

� ` '

(P ?)

� ` ?

� ` '

(? E)

In other w ords, in the presence of (? E), P eirce's la w and the sp ecial case

 = ? are equiv alen t.

It is an exercise to sho w that these t w o systems deriv e the same sequen ts

as the system in tro duced in De�nition 8.1.2.

130 Chapter 8. Classical logic and con trol op erators

8.1.7. Remark . In the case of Hilb ert-st yle pro ofs there are also sev eral

w a ys to obtain classical logic from in tuitionistic logic. F or instance, if one

tak es absurdit y as primitiv e, one can add to the t w o axioms (A1) and (A2)

of Section 5.3 the principle of double negation elimination:

((' ! ?) ! ?) ! ':

Another p ossibilit y is to add P eirce's la w in the form

((' !) ! ') ! ';

together with ex-falso in the form:

? ! ':

8.1.8. Remark . If one tak es negation as primitiv e in a Hilb ert-st yle system,

one can add to the axioms (A1) and (A2) the third axiom:

(: ' ! :) ! (: ' !) ! ';

whic h is read: \if : ' implies b oth and : , then it is con tradictory to

assume : ' , so ' holds."

In case negation is tak en as primitiv e one cannot simply add

:: ' ! ' (�)

This ma y seem a bit strange since ab o v e w e suggested to add exactly this

axiom when : is de�ned in terms of ? . The p oin t is, ho w ev er, that in

de�ning : in terms of ? w e get certain extra axioms for free. F or instance,

w e ha v e ab o v e the rule

(' !) ! (' ! (! ?)) ! (' ! ?)

and the corresp onding axiom

(' !) ! (' ! :) ! : '

do es not follo w from axioms (A1) and (A2) and the double negation ax-

iom (�).

Similar remarks apply to natural deduction systems in whic h negation

is tak en as primitiv e.

Apart from classical prop ositional logic and in tuitionistic prop ositional

logic, there are man y other similar prop ositional logics, although none of

them are as fundamen tal as these t w o. One can sho w that classical prop o-

sitional logic is a maximal logic in the sense that, for an y axiom sc heme ' ,

either ' is a theorem of classical prop ositional logic, or addition of ' to

classical prop ositional logic w ould render the system inconsisten t. Suc h

prop erties are usually kno wn as Hilb ert-Post c ompleteness.

8.2. The full system 131

8.2. The full system

In the previous section w e w ere concerned with the implicational fragmen t

of classical prop ositional logic. What is required to obtain a de�nition of

the whole system with conjunction and disjunction?

One approac h is to add to the language the t w o connectiv es ^ and _ and

adopt the in tro duction and elimination rules of the system of Section 2.2.

8.2.1. Definition (Classical prop ositional logic). Let '; range o v er for-

m ulas in the full prop ositional language, i.e., o v er L (! ; _ ; ^). As usual, �

and � denote con texts for whic h w e use the standard con v en tions.

The natural deduction presen tation of CPC (! ; _ ; ^), classical prop osi-

tional logic, is de�ned b y same rules as in De�nition 8.1.2 with the addition

of the follo wing w ell-kno wn rules.

� ` ' � `

� ` ' ^

(^ I)

� ` ' ^

� ` '

(^ E)

� ` ' ^

� `

� ` '

� ` ' _

(_ I)

� `

� ` ' _

� ; ' ` � � ; ` � � ` ' _

� ` �

(_ E)

The ab o v e addition do es not c hange an ything concerning implicational

form ulas.

8.2.2. Pr oposition . If ' 2 L (!) and ` ' in CPC (! ; _ ; ^) , then ` ' in

CPC (!) .

Pr oof. Left as an exercise. ut

In other w ords, the full system is conserv ativ e o v er the implicational frag-

men t.

Ho w ev er, there is a more economical approac h. In con trast to the sit-

uation in in tuitionistic prop ositional logic, w e ma y de�ne conjunction and

disjunction as deriv ed connectiv es.

8.2.3. Definition . Let ' ^ and ' _ abbreviate the follo wing form ulas,

resp ectiv ely:

' ^ = (' ! ! ?) ! ? ;

' _ = (' ! ?) ! (! ?) ! ? :

8.2.4. Remark . The ab o v e de�nition of ' _ is not standard; one usually

tak es ' _ = (' ! ?) ! . This de�nition lac ks the double negation on .

F rom a logical p oin t of view this is of little imp ortance, since in classical

logic w e can pass bac k and forth b et w een a form ula and its double negation.

Ho w ev er, the abbreviations in De�nition 8.2.3 are more systematic since

they arise as sp ecial case of a general sc heme for represen ting data t yp es in

t yp ed � -calculi, as w e shall see later.

132 Chapter 8. Classical logic and con trol op erators

The follo wing states that our de�nition of ^ and _ ha v e the in tended

b eha viour.

8.2.5. Pr oposition . L et ' 2 L (! ; _ ; ^) and and let '

0

2 L (!) b e the

implic ational formula obtaine d by r eplacing every o c curr enc e of ^ and _ by

their de�ning formulas ac c or ding to De�nition 8.2.3. Then � ` '

0

i� � j = ' .

Pr oof. By completeness � ` '

0

i� � j = '

0

. By elemen tary calculations

with truth tables, � j = '

0

i� � j = ' . ut

8.3. T erms for classical pro ofs

In what w a y can w e extend the Curry-Ho w ard isomorphism to classical

prop ositional logic? In one sense this is easy: w e just add a new term

constructor � x:M (or � x : ':M in the Ch urc h v arian t of the calculus) in the

conclusion of the double negation elimination rule.

8.3.1. Remark . It is con v enien t in this c hapter to ha v e a v ailable a system-

atic w a y of assigning names to subsets of the language of � -terms with pairs,

etc.

Recall that � denotes the set of � -terms, i.e., the language generated b y

the grammar:

� 3 M ::= x j �x:M j M M

0

The set of � -terms, extended with pairs and sums, �(�

i

; in

i

) is the lan-

guage generated b y the grammar:

�(�

i

; in

i

) 3 M ::= x j �x:M j M M

0

j < M ; M

0

> j �

i

(M) j

in

i

(M) j case (M ; x

0

:M

0

; x

0 0

:M

0 0

)

W e shall o ccasionally b e concerned with the set �

"

generated b y

�

"

3 M ::= x j �x:M j M M

0

j " (M)

Similarly , w e ha v e the language generated b y the grammar:

�

"

(�

i

; in

i

) 3 M ::= x j �x:M j M M

0

j < M ; M

0

> j �

i

(M)

j in

i

(M) j case (M ; x

0

:M

0

; x

00

:M

0 0

) j " (M)

8.3.2. Definition (t yp e-free and simply t yp ed �

�

-calculus, �

�

(!)). The term

language �

�

of t yp e-free �

�

-calculus is de�ned b y the grammar:

�

�

3 M ::= x j �x:M j M M

0

j � x:M

The simply t yp ed �

�

-calculus has as t yp e language the set L (!). The

inference system of simply t yp ed �

�

-calculus arises from the system of sim-

ply t yp ed � -calculus �a la Curry b y addition of the rule

� ; x : ' ! ? ` M : ?

� ` � x:M : '

8.4. Classical pro of normalization 133

8.3.3. Remark . In the Ch urc h v arian t the ob vious mo di�cations are made

to the term language and to the inference rules. In particular, the double

negation elimination rule b ecomes

� ; x : ' ! ? ` M : ?

� ` � x : ' ! ? :M : '

W e then ha v e the usual corresp ondence (where binary ` means deriv-

abilit y in CPC (!) and ternary ` means t ypabilit y in simply �

�

-calculus �a

la Curry):

8.3.4. Pr oposition .

(i) If � ` M : ' then j � j ` ' , wher e j � j = f ' j 9 x : (x : ') 2 � g .

(ii) If � ` ' then ther e exists an M such that �

0

` M : ' , wher e

�

0

= f x

'

: ' j ' 2 � g .

The assignmen t of � x:M to the double negation elimination rule only

extends the Curry-Ho w ard isomorphism to classical logic in a v ery naiv e

sense: w e still ha v e no idea what the computational signi�cance of � is.

Ho w ev er, w e shall learn more ab out this in Section 8.7.

8.4. Classical pro of normalization

As w e ha v e seen in previous c hapters, reduction on pro ofs is a rather im-

p ortan t concept in the pro of theory of in tuitionistic logic; for classical logic

the same is the case, and w e no w presen t certain reductions on classical,

prop ositional pro ofs that ha v e app eared in the literature.

The follo wing giv es reductions on �

�

-terms �a la Ch urc h. The corre-

sp onding reductions on �

�

-terms �a la Curry are obtained b y erasing all

t yp e annotations.

8.4.1. Definition . De�ne the relation !

�

on �

�

�a la Ch urc h as the small-

est compatible relation con taining the follo wing rules:

(� x : : (' !) :M) N !

�

� z : : :M f x := �y : ' ! : z (y N) g ;

� x : : ':x M !

�

M pro vided x 62 FV (M);

� x : : ':x � y : : ':N !

�

� z : : ':N f x; y := z g :

where f� := �g denotes substitution on �

�

-terms de�ned in the ob vious w a y ,

and the notion of compatibilit y is tak en in the ob vious w a y relativ e to the

set �

�

. W e use the notation NF

�

etc with the usual meaning.

F rom the p oin t of view of reduction on pro ofs, the �rst of these rules

decreases the complexit y of form ulas to whic h w e apply the double negation

elimination rule. The second rule ma y b e regarded as a form of � -rule for �.

The third rule reduces applications of the double negation elimination rule

nested in a certain trivial w a y .

134 Chapter 8. Classical logic and con trol op erators

8.4.2. W arning . The reader should b e w arned that one �nds in the liter-

ature di�eren t t yp ed � -calculi corresp onding to classical logic that are not

merely simple v ariations of the ab o v e one. This is in particular true for the

system studied b y P arigot|see, e.g, [82]|whic h is one of the most widely

cited approac hes.

Also, di�eren t authors use di�eren t sym b ols for the term corresp onding

to v arian ts of the double negation elimination rule, e.g. � (P arigot [79 , 80 ,

82 , 81], Ong [78]),
 (Rezus [91 , 92]), and C (Gri�n [49] and Murth y [75 , 76]);

the � is tak en from Rehof and S�rensen [89].

8.4.3. Remark . In the literature one �nds di�eren t sets of reduction rules

for classical pro ofs, although almost ev ery set con tains a v arian t of the �rst

of the ab o v e rules.

The follo wing giv es a c haracterization of the normal forms of � �-reduction,

i.e., a c haracterization of classical pro ofs without detours.

8.4.4. Definition . Let N b e the smallest class of �

�

-terms closed under

the rule: M

1

; : : : ; M

n

2 N) �x

1

: : : : �x

n

: � y

1

: : : : � y

m

:z M

1

: : : M

n

2 N

where n; m � 0 and z ma y b e an x

i

, a y

j

, or some other v ariable.

8.4.5. Pr oposition . If � ` M : ' in simply typ e d �

�

-c alculus, and M 2 NF

� �

,

then M 2 N .

Pr oof. By induction on the deriv ation of � ` M : ' . ut

The prop osition states that an y normal pro of pro ceeds b y �rst making

certain assumptions (re
ected b y the v ariable z), then decomp osing those

assumptions in to simpler form ulas b y elimination rules (re
ected b y the

applications z M

1

: : : M

n

), then using on the resulting form ulas some ap-

plications of the double negation elimination rule (re
ected b y � y

i

: �), and

�nally b y building up from the result more complicated form ulas again b y

in tro duction rules (re
ected b y the abstractions �x

i

: �).

The follo wing sho ws that the reduction rules are su�cien tly strong that

the c haracterization of their normal forms en tails consistency of the system.

8.4.6. Cor ollar y . 6` ? .

Pr oof. If ` ? then ` M : ? for some closed M . By the strong normal-

ization theorem|whic h will b e pro v ed later|w e can assume that M is in

normal form. Then b y induction on the deriv ation of M 2 N sho w that

` M : ? is imp ossible. ut

8.5. De�nabilit y of pairs and sums 135

8.5. De�nabilit y of pairs and sums

W e sa w in the second section ab o v e that one can de�ne conjunction and

disjunction in classical prop ositional logic. In tuitiv ely sp eaking, at the lev el

of terms, this suggest that w e should b e able to de�ne pairs and sums. In

this section w e sho w that this is indeed p ossible. F or simplicit y w e w ork in

this section with �

�

-terms �a la Curry .

First w e in tro duce the extension that corresp onds to the full system

CPC (! ; _ ; ^).

8.5.1. Definition . The term language �

�

(�

i

; in

i

) of t yp e-free �

�

-calculus

extended with pairs and sums is de�ned b y the grammar:

�

�

(�

i

; in

i

) 3 M ::= x j �x:M j M M

0

j < M ; M

0

> j �

i

(M)

j in

i

(M) j case (M ; x

0

:M

0

; x

00

:M

0 0

) j � x:M

The simply t yp ed �

�

-calculus extended with pairs and sums, denoted b y

�

�

(! ; _ ; ^), has as t yp e language the set L (! ; _ ; ^). The inference system

of �

�

(! ; _ ; ^) arises from that of �

�

(!) b y addition of the usual rules �a

la Curry for t yping pairs and sums.

The follo wing sho ws ho w to de�ne pairs and sums.

8.5.2. Definition . De�ne the follo wing abbreviations.

< P ; Q > = �z :z P Q ;

�

i

(P) = � k :P (�x

1

:�x

2

:k x

i

);

in

i

(P) = �y

1

:�y

2

:y

i

P ;

case (P ; x

1

:Q

1

; x

2

:Q

2

) = � k :P (�x

1

:k Q

1

) (�x

2

:k Q

2

) :

By some elemen tary calculations, one can then pro v e the follo wing.

8.5.3. Pr oposition . L et M 2 �

�

(�

i

; in

i

) and let M

0

2 �

�

(�

i

; in

i

) b e the

term obtaine d by exp ansion ac c or ding to the abbr eviations in the pr e c e ding

de�nition. L et ' 2 L (! ; _ ; ^) and let '

0

2 L (!) b e the formula obtaine d by

r eplacing every o c curr enc e of ^ and _ by their de�ning formulas ac c or ding

to De�nition 8.2.3.

1. If � ` M : ' in simply typ e d �

�

-c alculus extende d with p airs and sums,

then � ` M

0

: '

0

in the simply �

�

-c alculus.

2. If M !

� �

N (using r e ductions for p airs and sums) then M

0

!!

� �

N

0

,

wher e N

0

is the exp ansion of N ac c or ding to the pr e c e ding de�nition.

The de�nition of pairs is the standard one from t yp e-free � -calculus (see

Chapter 1), while the pro jection construction is di�eren t from that normally

emplo y ed in t yp e-free � -calculus, viz. M (�x

1

:�x

2

:x

i

). This latter de�nition

136 Chapter 8. Classical logic and con trol op erators

do es not w ork b ecause �x

1

:�x

2

:x

i

has t yp e '

1

! '

2

! '

i

instead of the t yp e

'

1

! '

2

! ? , whic h M exp ects. Changing the de�nition of conjunctiv e

t yp es to solv e the problem is not p ossible; it leads to the t yp e of a pair

b eing dep enden t on whic h comp onen t a surrounding pro jection pic ks.

1

The

op erator � solv es the problem b y means of an application whic h turns the

t yp e of x

i

in to ? regardless of i . When the pro jection is calculated, the k

reac hes its � and can b e remo v ed b y the second reduction rule for �:

�

1

(< M

1

; M

2

>) � � k : (�f :f M

1

M

2

) �x

1

:�x

2

:k x

1

!

�

� k : (�x

1

:�x

2

:k x

1

) M

1

M

2

!!

�

� k :k M

1

!

�

M

1

As men tioned earlier, the de�nition for disjunctiv e form ulas ab o v e is

not standard in logic. The standard de�nition is (' ! ?) ! instead

of (' ! ?) ! (! ?) ! ? . Ho w ev er, when one tries to pro v e the de-

riv ed inference rules for this translation it turns out that the corresp onding

constructions for injection and case analysis are v ery di�eren t from those

de�ning pairs and pro jections. Sp eci�cally , to ha v e the desired reduction

rule hold deriv ed one w ould need to add extra p o w er to �. The presen t

de�nition and corresp onding de�ned constructions can b e motiv ated b y cor-

resp onding de�nition in second-order logic, whic h w e will encoun ter in a

later c hapter.

8.6. Em b edding in to in tuitionistic prop ositional logic

In this section w e shall sho w that classical logic can b e em b edded in to in tu-

itionistic logic in a certain sense.

T ranslations lik e the follo wing ha v e b een studied since the 1930s b y Kol-

mogoro v, Gen tzen, G• odel, and Kuro da.

8.6.1. Definition . De�ne the translation k from implicational form ulas to

implicational form ulas b y:

k (�) = :: �

k (?) = ::?

k (' !) = :: (k (') ! k ())

W e aim to sho w that if ' is classically pro v able, then k (') is in tuition-

istically pro v able. W e do this b y giving a translation of classical pro ofs of

' in to in tuitionistic pro ofs of k ('). More precisely , the translation is stated

on terms represen ting these pro ofs.

1

If one is willing to settle for a w eak er notion of pairs where b oth comp onen t m ust

ha v e the same t yp e, then this problem v anishes. This sho ws that pairs with comp onen ts

of the same t yp e can b e represen ted in the simply t yp ed � -calculus.

8.6. Em b edding in to in tuitionistic prop ositional logic 137

8.6.2. Definition . De�ne the translation t from �

�

-terms to � -terms b y:

t (x) = �k :x k

t (�x:M) = �k :k �x:t (M)

t (M N) = �k :t (M) (�m:m t (N) k)

t (� x:M) = �k : (�x:t (M)) (�h:h �j:�i:i (j k)) �z :z

The follo wing sho ws that k de�nes an em b edding of classical logic in to

in tuitionistic logic.

8.6.3. Pr oposition . If � ` M : ' in simply typ e d �

�

-c alculus, then k (�) `

t (M) : k (') in simply typ e d � -c alculus.

This giv es another pro of of consistency of classical prop ositional logic: if

classical logic is inconsisten t, so is in tuitionistic logic.

8.6.4. Pr oposition . 6` ? in classic al pr op ositional lo gic.

Pr oof. If ` M : ? in classical prop ositional logic, then ` t (M) : ::?

in in tuitionistic logic, and then ` t (M) �z :z : ? in in tuitionistic logic, a

con tradiction. ut

The ab o v e pro of giv es a conserv ativit y result: if ? is pro v able in classical

logic, ? is pro v able already in in tuitionistic logic. The construction can

b e generalized to other form ulas than ? ; in fact, this w a y one can pro v e

that an y form ula of form 8 x 9 y : P (x; y), where P is a primitiv e recursiv e

predicate, is pro v able in classical arithmetic (i.e., P eano Arithmetic) i� it

is pro v able in in tuitionistic arithmetic (i.e., Heyting Arithmetic). F orm ulas

of this form are quite imp ortan t since they include, e.g., ev ery assertion

that some algorithm terminates (\for an y input x there is a terminating

computation y "). In other w ords, as concerns pro v abilit y of termination of

algorithms there is no di�erence b et w een in tuitionistic and classical logic.

On the one hand, this means that constructivists should raise no ob-

jection to the use of classical logic in this sp ecial case since an y classical

pro of can b e con v erted in to an in tuitionistic one of the same form ula. Con-

v ersely , classical logicians cannot claim that an y logical strength is lost b y

the restriction to in tuitionistic logic.

The follo wing sho ws that the translation t in ternalizes � con v ersion b y

� -con v ersion.

8.6.5. Pr oposition . If M =

� �

N then t (M) =

�

t (N) .

By analyzing the connection b et w een � and � in some more detail, one

can pro v e:

8.6.6. Pr oposition . If M 2 1

� �

then t (M) 2 1

�

.

138 Chapter 8. Classical logic and con trol op erators

8.6.7. Cor ollar y . The r elation !

� �

is str ongly normalizing on typ able

terms.

Pr oof. By the preceding prop osition, Prop osition 8.6.3, and strong nor-

malization of simply t yp ed � -calculus. ut

8.7. Con trol op erators and CPS translations

So far w e ha v e not rev ealed what the computational meaning of � is; in this

section w e �nally release the susp ension: � is a con trol op erator!

Con trol op erators app ear in functional programming languages lik e Sc heme

(Call/cc), ML (exceptions), Lisp (catc h and thro w).

Let us illustrate, b y w a y of example, ho w con trol op erators can b e used to

program e�cien tly and concisely . W e shall consider the problem of writing

a function M whic h tak es a binary tree of in teger no des and returns the

result of m ultiplying all the no de v alues. Of course, this problem raises the

e�ciency issue of what to do when a no de v alue of 0 is encoun tered.

Our example programs will b e written in syn tactically sugared SCHEME,

the sugar b eing that instead of (define M N) w e write M = N and in-

stead of (lambda (x) M) w e write � : x. M , and for (letrec ([f t]) t')

w e write (let f = t in t') .

Our �rst solution is the straigh tforw ard purely functional one whic h

trades e�ciency o� for elegance. W e supp ose giv en auxiliary functions mt?

testing for the empt y tree, num selecting the no de v alue of the ro ot no de,

lson and rson returning the left and righ t subtrees.

8.7.1. Example . (F unctional, elegan t, ine�cien t v ersion)

M1 = � : t.(if (mt? t)

1

(* (num t) (* (M1 (lson t)))(M1 (rson t)))))

One can optimize M1 so as to stop m ultiplying as so on as a no de v alue of 0 is

encoun tered. This can b e done in purely functional st yle, b y means of tests.

Our next solution em b o dies that strategy . Here w e assume a constructor

EX and a test function EX? suc h that (EX M) tags M with the mark er EX ,

and EX? tests for the presence of the tag. F urthermore, w e assume a 0 test

function zero? . The reader will probably agree that elegance (or at the

least conciseness) has no w b een traded o� for e�ciency .

8.7.2. Example . (F unctional, inelegan t, e�cien t v ersion)

M2 = � : t.(if (mt? t)

1

(if (zero? (num t))

(EX 0)

8.7. Con trol op erators and CPS translations 139

(let ((l (M2 (lson t))))

(if (EX? l)

(let ((r (M2 (rson t))))

(if (EX? r)

r

(* (num t) (* l r))))))))

The function M2 will return an in teger, the pro duct of all the tree no des, if

no no de con tains 0, or the v alue (EX 0) if an y no de con tains 0. W e ma y

see the EX tag as a kind of exc eption mark er whic h is propagated explicitly

up the recursion tree. In this v ein one could view the EX constructor as an

injection function taking an in teger to an elemen t of a sum t yp e of the form

int _ ex . No w, the catch / throw mec hanism is w ell suited to handle exactly

this kind of problem where an exceptional v alue is propagated. E�ciency is

enhanced b y catch and throw b ecause all the propagation is done in a single

step (or jump, as w e migh t sa y). This lea v es us with a relativ ely elegan t and

e�cien t but non functional v ersion, as sho wn in the next example program.

8.7.3. Example . (Non functional, elegan t, e�cien t v ersion)

M3 = � : t. catch j in

(let L = � : t'.(if (mt? t')

1

(if (zero? (num t'))

(throw j 0)

(* (num t')

(* (L (lson t'))(L (rson t'))))))

in (L t))

It is an in teresting fact that the mec hanism used in Example 8.7.3 can b e

in ternalized in the purely functional part of the language b y the so-called

CPS-transformation tec hnique. Applying that translation to the program

with catc h and thro w giv es:

8.7.4. Example . (CPS v ersion of M3)

M4 = � : t. � : k.

(if (mt? t)

(k 1)

(if (zero? (num t))

0

((M4 (lson t))

(� : l.((M4 (rson t))

(� : r.(k (* (num t) (* l r)))))))))

The non-functional program can b e written as follo ws in the t yp e-free

�

�

-calculus.

140 Chapter 8. Classical logic and con trol op erators

M = �t: � j:j

(Y (�f :�t

0

: (if (mt? t

0

)

1

(if (zero? (num t

0

))

" (j 0)

(* (num t

0

)

(* (f (lson t

0

))(f (rson t

0

))))))) t),

where Y denotes Ch urc h's �xp oin t com binator and " (M) abbreviates � x:M ,

for x 62 FV (M).

It is instructiv e to v erify that, e.g., for T � < 2 ,< 0 ,nil,nil>,nil> , w e

ha v e MT = 0, noticing ho w an \exception" is raised as the no de v alue 0 is

encoun tered.

In conclusion, the � ma y b e regarded as a con trol op erator similar to

call/cc of Sc heme and exceptions of ML, and the double negation em b edding

of classical logic in to in tuitionisitic logic corresp onds to w ell-kno wn CPS-

translations of terms with con trol op erators in to pure, con trol-op erator-free

languages.

8.8. Historical remarks

F elleisen and his co-w ork ers studied � -calculi with con trol op erators in an

un t yp ed setting. Their aim w as to pro vide a foundation of t yp e-free func-

tional programming langauges with con trol op erators similarly to the w a y

� -calculus ma y b e regarded as a foundation of t yp e-free pure functional

programming languages.

F elleisen devised a con trol calculus, an extension of the � -calculus, and

carried out what could aptly b e called Plotkin 's pr o gr am (see [83]) for the

study of the relation b et w een calculi and programming languages.

Gri�n disco v ered in 1990, in an attempt to incorp orate con trol op erators

in to the w orld of t yp ed � -calculi, that F elleisen's C -op erator could b e t yp ed

b y the classical double negation elimination rule [49]. Using this rule do es,

ho w ev er, lead to certain di�culties b ecause t yping is not in general preserv ed

under reduction (\F ailure of Sub ject Reduction.") This defect w as repaired

b y Gri�n via a so-called computational sim ulation.

Later, Murth y o v ercame the same di�culties b y c hanging the t yp e sys-

tem in to a so-called pseudo-classical logic. Applying conserv ativit y results

of classical logics o v er corresp onding minimal logics Murth y sho w ed in [75]

that for a certain class of classically pro v able form ulas the Realizabilit y In-

terpretation remains sound. This w as done using CPS-translations of con trol

op erator calculi in to pure � -calculi.

Since the seminal w ork of Gri�n and Murth y , n umerous systems ha v e

app eared that connect classical logic and con trol op erators; indeed, the study

of classical logic in connection with the Curry-Ho w ard isomorphism no w

8.9. Exercises 141

constitutes a separate �eld.

8.9. Exercises

8.9.1. Exer cise . Pro v e Prop osition 8.1.3.

8.9.2. Exer cise .

1. Sho w that P eirce's la w can b e deriv ed from the sp ecial case of P eirce's

la w and ex-falso.

2. Sho w that double negation elimination can b e deriv ed from the sp ecial

case of P eirce's la w and ex-falso.

3. Sho w that the sp ecial case of P eirce's la w and ex-falso can b oth b e

deriv ed from double negation elimination.

8.9.3. Exer cise . Pro v e that � ` ' can b e deriv ed in the system of De�ni-

tion 8.1.2 i� � ` ' can b e deriv ed in the system of Remark 8.1.4.

8.9.4. Exer cise . Let ' b e some implicational form ula suc h that 6` ' in

CPC (!), and consider the system Z whic h arises from CPC (!) b y adding

all instances (substituting implicational form ulas for prop ositional v ariables)

of ' as axioms. Sho w that ` ? in Z .

8.9.5. Exer cise . pro v e Prop osition 8.2.2.

8.9.6. Exer cise . Sho w that in CPC (! ; _ ; ^) one can deriv e ` � _ : � .

8.9.7. Exer cise . The rule

(� x : : (' !) :M) N !

�

� z : : :M f x := �y : ' ! : z (y N) g

can only reduce �'s inside an application. The follo wing aggressiv e v arian t

do es not w ait for the application:

(� x : : (' !) :M) !

�

�a : ' : � z : : :M f x := �y : ' ! : z (y a) g

Corresp onding to these t w o di�eren t rules, giv e reduction rules for the con-

structs �

i

(� x : : (' ^) :M) and � x : : (' ^) :M .

Can y ou giv e corresp onding rules for disjunction?

8.9.8. Exer cise . Sho w that !

� �

on �

�

-terms �a la Curry is Ch urc h-Rosser,

or sho w that !

� �

on �

�

-terms �a la Curry is not Ch urc h-Rosser.

Same question for !

� �

on terms �a la Ch urc h.

8.9.9. Exer cise . Do es the follo wing hold? F or an y M 2 �

�

, M 2 N i�

M 2 NF

� �

.

142 Chapter 8. Classical logic and con trol op erators

CHAPTER 9

First-order logic

In this c hapter w e extend our consideration to form ulas with quan ti�ers and

generalize the pro of systems and in terpretations seen in earlier c hapters to

the �rst-order case.

9.1. Syn tax of �rst-order logic

The ob jects in v estigated b y prop ositional logic are comp ound statemen ts,

built from some atomic statemen ts (represen ted b y prop ositional v ariables)

b y means of logical connectiv es. The goal is to understand relations b e-

t w een comp ound statemen ts dep ending on their structure, rather than on

the actual \meaning" of the atoms o ccurring in these statemen ts. But math-

ematics alw a ys in v olv es reasoning ab out individual obje cts , and statemen ts

ab out prop erties of ob jects can not alw a ys b e adequately expressed in the

prop ositional language. The famous syllogism is an example:

All h umans are mortal;

So crates is a h uman;

Therefore So crates is mortal.

T o express this reasoning in the language of formal logic, w e need to quan tify

o v er individual ob jects (h umans), and of course w e need predicates (rela-

tions) on individual ob jects. The logical systems in v olving these t w o features

are kno wn under the names \ pr e dic ate lo gic ", \ pr e dic ate c alculus ", \ quanti-

�er c alculus " or \ �rst-or der lo gic ". This section describ es a v arian t of the

�rst-order syn tax. Suc h syn tax is alw a ys de�ned with resp ect to a �xed

�rst-order signature �, whic h is t ypically assumed to b e �nite. Recall from

Chapter 6 that a signature is a family of function, relation and constan t

sym b ols, eac h with a �xed arit y . Also recall that algebr aic terms o v er � are

individual v ariables, constan ts and expressions of the form (f t

1

: : : t

n

), where

f is an n -ary function sym b ol, and t

1

; : : : ; t

n

are algebraic terms o v er �.

143

144 Chapter 9. First-order logic

9.1.1. Definition .

1. An atomic formula is an expression of the form (r t

1

: : : t

n

), where r is

an n -ary relation sym b ol, and t

1

; : : : ; t

n

are algebraic terms o v er �.

2. The set �

�

of �rst-or der formulas o v er �, is the least set suc h that:

� All atomic form ulas and ? are in �

�

;

� If '; 2 �

�

then (' !) ; (' _) ; (' ^) 2 �

�

;

� If ' 2 �

�

and x is an individual v ariable, then 8 x '; 9 x ' 2 �

�

.

3. As usual, w e abbreviate (' ! ?) as : ' and ((' !) ^ (! ')) as

(' $).

4. A form ula is op en i� it con tains no quan ti�ers.

9.1.2. Convention . The paren theses-a v oiding con v en tions used for prop o-

sitional form ulas apply as w ell to �rst-order form ulas. Ho w ev er, there is no

general consensus ab out ho w quan ti�ers should b e written. One con v en tion,

whic h is common in logic, is that a quan ti�er is an op erator of highest pri-

orit y , so that \ 8 x ' ! " stands for \(8 x ') ! ". The other con v en tion

seems to ha v e originated in t yp e theory and is that the quan ti�er scop e

extends as m uc h to the righ t as p ossible. In order to a v oid confusion, w e

will sometimes use extra paren theses and sometimes w e will use an explicit

dot notation. Namely , w e will write \ 8 x:' ! " for \ 8 x (' !)" and

\ 8 x': ! " instead of \(8 x') ! ". (Needless to sa y , authors sometimes

forget ab out suc h con v en tions. The reader should b e w arned that eac h of

the t w o authors has got used to a di�eren t st yle.)

9.1.3. Definition .

1. If t is an algebraic term then F V (t) stands for the set of all v ariables

o ccurring in t .

2. The set F V (') of free v ariables of a form ula ' is de�ned b y induction:

� F V (r t

1

: : : t

n

) = F V (t

1

) [: : : [F V (t

n

);

� F V (' !) = F V (' _) = F V (' ^) = F V (') [F V ();

� F V (8 x ') = F V (9 x ') = F V (') � f x g .

3. A sentenc e , also called a close d formula , is a form ula without free

v ariables.

9.1.4. Definition . The de�nition of a substitution of a term for an individ-

ual v ariable, denoted ' [x := t], resp ects the quan ti�ers as v ariable-binding

op erators, and th us m ust in v olv e v ariable renaming. F ormally ,

9.2. In tuitiv e seman tics 145

x [x := t] = t ;

y [x := t] = y ; if y 6= x ;

(f t

1

: : : t

n

)[x := t] = f t

1

[x := t] : : : t

n

[x := t];

(r t

1

: : : t

n

)[x := t] = r t

1

[x := t] : : : t

n

[x := t];

(8 x')[x := t] = 8 x' ;

(8 y ')[x := t] = 8 y ' [x := t], if y 6= x , and y 62 FV (t) or x 62 FV (');

(8 y ')[x := t] = 8 z ' [y := z][x := t], if y 6= x and y 2 FV (t) and x 2 FV (');

(9 x')[x := t] = 9 x' ;

(9 y ')[x := t] = 9 y ' [x := t] if y 6= x , and y 62 FV (t) or x 62 FV (');

(9 y ')[x := t] = 9 z ' [y := z][x := t] if y 6= x and y 2 FV (t) and x 2 FV (').

where z is a fresh v ariable.

The simultane ous substitution , written ' [x

1

:= t

1

; : : : ; x

n

:= t

n

], is the

term

' [x

1

:= s

1

] � � � [x

n

:= s

n

][y

1

1

:= z

1

1

] � � � [y

1

m

1

:= z

1

m

1

] � � � [y

n

1

:= z

n

1

] � � � [y

n

m

n

:= z

n

m

n

] ;

where z

i

1

; : : : ; z

i

m

i

are all v ariables in t

i

, the v ariables y

i

j

are all fresh and

di�eren t, and s

i

= t

i

[z

i

1

:= y

i

1

] � � � [z

i

m

i

:= y

i

m

i

], for all i .

9.1.5. Convention . It is a common con v en tion to write e.g., ' (x; y ; z) in-

stead of ' , to stress that x; y ; z ma y o ccur in ' . In this case, the notation

lik e ' (t; s; u) is used as a shorthand for ' [x := t; y := s; z := u]. W e will

also use this con v en tion, but one should b e a w are that it is not a part of the

syn tax.

It is not customary to in tro duce alpha-con v ersion on �rst-order form u-

las. T ypically , alpha-equiv alen t form ulas are considered di�eren t, although

they are equiv alen t with resp ect to all reasonable seman tics, and one can

b e deriv ed from another with all reasonable pro of systems. Ho w ev er, for

uniformit y of our presen tation, w e prefer to allo w for the alpha-con v ersion

(de�ned in the ob vious w a y) and iden tify alpha-con v ertible form ulas from

no w on.

9.2. In tuitiv e seman tics

The Brou w er-Heyting-Kolmogoro v in terpretation of prop ositional form ulas

(Chapter 2) extends to �rst-order logic as follo ws:

� A c onstruction of 8 x ' (x) is a metho d (function) tr ansforming every

obje ct a into a c onstruction of ' (a) .

� A c onstruction of 9 x ' (x) is a p air c onsisting of an obje ct a and a

c onstruction of ' (a) .

Note that the BHK-in terpretation should b e tak en with resp ect to some do-

main of \ob jects". These ob jects are syn tactically represen ted b y algebraic

terms.

146 Chapter 9. First-order logic

9.2.1. Example . Consider the follo wing form ulas:

1. :9 x ': $ 8 x : ' ;

2. :8 x ': $ 9 x : ' ;

3. (! 8 x ' (x)) $ 8 x (! ' (x)), where x 62 F V ();

4. (! 9 x ' (x)) $ 9 x (! ' (x)), where x 62 F V ();

5. 8 x (' !) ! (9 x ': ! 9 x);

6. 8 x (_ ' (x)) $ _ 8 x ' (x), where x 62 F V ();

7. 8 x (' !) : ! (8 x ': ! 8 x);

8. (8 x ' (x) : !) ! 9 x (' (x) !), where x 62 F V ();

9. 8 x ' (x) : ! ' (t);

10. ::8 x (' _ : ');

11. ! 8 x , where x 62 F V ();

12. 9 x (9 y ' (y) : ! ' (x))

Although all these form ulas are all classical �rst-order tautologies,

1

one will

ha v e di�culties �nding BHK-in terpretations for some of them.

9.2.2. Remark . It should b e no surprise when w e sa y that univ ersal quan-

ti�cation is a generalization of conjunction. Indeed, the sen tence \all cats

ha v e tails" is quite lik e an in�nite conjunction of statemen ts concerning eac h

individual cat separately . In quite the same spirit one can sa y that existen-

tial quan ti�cation is a generalized disjunction. This idea is re
ected b y the

algebraic seman tics, where w e in terpret quan ti�ers as (p ossibly in�nite) joins

and meets, see De�nitions 9.4.3 and 9.4.4.

But the BHK-in terpretation as ab o v e hin ts for another corresp ondence:

b et w een univ ersal quan ti�cation and implication, b ecause in b oth cases w e

ha v e a function as a construction. The analogy is so strong that in certain

systems with quan ti�ers, implication is just syn tactic sugar. W e will see it

in Chapters 10 and 13.

9.3. Pro of systems

The three main approac hes: natural deduction, sequen t calculus and the

Hilb ert st yle extend to �rst-order logic b y adding suitable rules and axioms

to the rules and axiom sc hemes for prop ositional logic. The notation `

N

,

`

L

, etc., is the ob vious mo di�cation from the prop ositional case.

1

W e assume that the reader is familiar with classical �rst-order logic. A suggested

textb o ok is e.g. [70].

9.3. Pro of systems 147

Natur al de duction

W e extend the system of natural deduction with the follo wing rules to in-

tro duce and eliminate quan ti�ers:

(8 I)

� ` '

� ` 8 x '

(x 62 F V (�)) (8 E)

� ` 8 x '

� ` ' [x := t]

(9 I)

� ` ' [x := t]

� ` 9 x '

(9 E)

� ` 9 x ' � ; ' `

� `

(x 62 F V (� ;))

The reader should b e w arned that our rules are suc h b ecause w e ha v e agreed

on alpha-con v ersion of form ulas. Otherwise, one has to mo dify rules (8 I)

and (9 E) to w ork for an y alpha-v arian t of the quan ti�er bindings. Similar

mo di�cations w ould ha v e to b e done on the other pro of systems to follo w.

Se quent c alculus

Here are classical sequen t calculus rules for quan ti�ers. Note the symmetry

b et w een the t w o quan ti�ers.

(8 L)

� ; ' [x := t] ` �

� ; 8 x ' ` �

(8 R)

� ` '; �

� ` 8 x '; �

(x 62 F V (� ; �))

(9 L)

� ; ' ` �

� ; 9 x ' ` �

(x 62 F V (� ; �)) (9 R)

� ` ' [x := t] ; �

� ` 9 x '; �

T o obtain in tuitionistic sequen t calculus w e restrict ourselv es to single for-

m ulas at the righ t-hand sides (� consists of a single form ula and � is alw a ys

empt y).

(8 L)

� ; ' [x := t] ` �

� ; 8 x ' ` �

(8 R)

� ` '

� ` 8 x '

(x 62 F V (�))

(9 L)

� ; ' ` �

� ; 9 x ' ` �

(x 62 F V (� ; �)) (9 R)

� ` ' [x := t]

� ` 9 x '

9.3.1. Theorem (Cut elimination). F or al l ' and � , if the se quent � ` '

has a pr o of then it has a cut-fr e e pr o of.

The follo wing w as probably �rst sho wn b y Rasio w a and Sik orski using

the top ological space seman tics, see [88].

9.3.2. Cor ollar y (Existence prop ert y). If ` 9 x ' then ther e exists a term t

such that ` ' [x := t] .

148 Chapter 9. First-order logic

Pr oof. The last rule in a cut-free pro of of ` 9 x ' m ust b e (9 R). ut

Note that if the signature consists of relation sym b ols only (and th us the

only terms are v ariables) then ` 9 x ' implies ` 8 x ' !

Hilb ert-style pr o ofs

It is di�cult to �nd t w o di�eren t authors who w ould giv e iden tical Hilb ert-

st yle pro of systems.

2

Our c hoice is as follo ws. W e tak e as axioms all the

prop ositional axiom sc hemes, and in addition all form ulas of the form:

� 8 x ' (x) : ! ' (t);

� ' (t) ! 9 x ' (x);

� ! 8 x , where x 62 F V ();

� 9 x : ! , where x 62 F V ();

� 8 x (' !) : ! (9 x ': ! 9 x);

� 8 x (' !) : ! (8 x ': ! 8 x).

As inference rules of our system w e tak e mo dus p onens and the follo wing

gener alization rule :

'

8 x '

The use of generalization requires some caution (corresp onding to the side

conditions in rules (8 I) and (8 R)).

9.3.3. Definition . A formal pr o of of a form ula ' from a set � of assump-

tions is a a �nite sequence of form ulas

1

;

2

; : : : ;

n

, suc h that

n

= ' ,

and for all i = 1 ; : : : ; n , one of the follo wing cases tak es place:

�

i

is an axiom;

�

i

is an elemen t of �;

� there are j; ` < i suc h that

j

=

`

!

i

(i.e.,

i

is obtained from

j

,

`

using mo dus p onens);

� there is j < i suc h that

i

= 8 x

j

, for some x 62 F V (�) (i.e.,

i

is

obtained from

j

b y generalization).

2

Unless they are c o-authors , of course.

9.3. Pro of systems 149

9.3.4. W arning . In man y textb o oks, the ab o v e de�nition of a pro of do es

not include the restriction on applicabilit y of the generalization rule. This

do es not matter as long as � is a set of sen tences (what is t ypically assumed).

In general ho w ev er, this giv es a di�eren t relation `

�

H

, suc h that

� `

�

H

' i� �

�

`

H

';

where �

�

is obtained from � b y binding all free v ariables b y univ ersal quan ti-

�ers placed at the b eginning of all form ulas. F or this relation, the deduction

theorem (see b elo w) w ould only hold for � consisting of sen tences.

9.3.5. Lemma (Deduction Theorem).

The c onditions � ; ' `

H

 and � `

H

' ! ar e e quivalent.

Pr oof. Easy . ut

9.3.6. Theorem . Natur al de duction, se quent c alculus, and the ab ove Hilb ert-

style pr o of system ar e al l e quivalent, i.e., � `

N

' and � `

L

' and � `

H

'

ar e e quivalent to e ach other for al l � and ' .

Pr oof. Boring. ut

T r anslations fr om classic al lo gic

Double negation translations from classical to in tuitionistic logic can b e ex-

tended to the �rst-order case. W e add the follo wing clauses to the de�nition

of the Kolmogoro v translation of Chapter 8:

� t (8 x ') := ::8 x t (');

� t (9 x ') := ::9 x t (').

and w e still ha v e the follo wing result:

9.3.7. Theorem . A formula ' is a classic al the or em i� t (') is an intuition-

istic the or em.

Pr oof. Exercise 9.5.6 ut

Since classical pro v abilit y reduces to in tuitionistic pro v abilit y , and classical

�rst-order logic is undecidable, w e obtain undecidabilit y of in tuitionistic

�rst-order logic as a consequence.

9.3.8. Cor ollar y . First-or der intuitionistic lo gic is unde cidable.

In fact, the undecidabilit y result holds already for a v ery restricted frag-

men t of �rst-order in tuitionistic logic, with 8 and ! as the only connectiv es

and with no function sym b ols. In particular, there is no need for negation

or falsit y .

150 Chapter 9. First-order logic

9.4. Seman tics

W e b egin with classical seman tics. Assume that our signature � consists of

the function sym b ols f

1

; : : : ; f

n

, relation sym b ols r

1

; : : : ; r

m

and constan t

sym b ols c

1

; : : : ; c

k

.

9.4.1. Definition . A structur e or mo del for � is an algebraic system A =

h A; f

A

1

; : : : ; f

A

n

; r

A

1

; : : : ; r

A

m

; c

A

1

; : : : ; c

A

k

i , where the f

A

i

's and r

A

i

's are resp ec-

tiv ely op erations and relations o v er A (of appropriate arities) and the c

A

i

's

are distinguished elemen ts of A .

9.4.2. Convention .

� T ypical notational con v en tions are to forget ab out the sup erscript

A

in

e.g., f

A

, and to iden tify A and A . (Otherwise w e ma y write A = jAj .)

� W e think of relations in A as of functions ranging o v er the set f 0 ; 1 g

rather than of sets of tuples.

9.4.3. Definition .

1. Let t b e a term with all free v ariables among ~ x , and let ~ a b e a v ector of

elemen ts of A of the same length as ~ x . W e de�ne the v alue t

A

(~ a) 2 A

b y induction:

� (x

i

)

A

(~ a) = a

i

;

� (f t

1

: : : t

n

)

A

(~ a) = f

A

(t

A

1

(~ a) ; : : : ; t

A

n

(~ a)).

2. Let ' b e a form ula suc h that all free v ariables of ' are among ~ x , and

let ~ a b e as b efore. W e de�ne the v alue '

A

(~ a) 2 f 0 ; 1 g , as follo ws

� ?

A

(~ a) = 0;

� (r t

1

: : : t

n

)

A

(~ a) = r

A

(t

A

1

(~ a) ; : : : ; t

A

n

(~ a));

� (' _)

A

(~ a) = '

A

(~ a) [

A

(~ a);

� (' ^)

A

(~ a) = '

A

(~ a) \

A

(~ a);

� (' !)

A

(~ a) = '

A

(~ a))

A

(~ a);

� (8 y ' (y ; ~ x))

A

(~ a) = inf f ' (y ; ~ x)

A

(b; ~ a) : b 2 A g ;

� (9 y ' (y ; ~ x))

A

(~ a) = sup f ' (y ; ~ x)

A

(b; ~ a) : b 2 A g ,

where the op erations [, \ ,) , inf and sup , and the constan t 0 are in

the t w o-elemen t Bo olean algebra of truth v alues. (Of course, w e ha v e

a) b = (1 � a) [b .) W e write A ; ~ a j = ' (~ x) i� '

A

(~ a) = 1, and w e

write A j = ' (~ x) i� A ; ~ a j = ' (~ x), for all ~ a . W e write � j = ' i� for all A

and ~ a with A ; ~ a j = , for all 2 �, w e also ha v e A ; ~ a j = ' .

9.4. Seman tics 151

The ab o v e de�nition can no w b e generalized so that v alues of form ulas are

not necessarily in f 0 ; 1 g , but in the algebra P (X) of all subsets of a certain

set X . Relations o v er A ma y no w b e seen as functions ranging o v er P (X)

rather than f 0 ; 1 g , i.e., the notion of a structure is more general. One can go

further and p ostulate v alues of form ulas in an arbitrary Bo olean algebra B .

This will w ork as w ell, pro vided B is a c omplete algebra, i.e., all in�nite

sup 's and inf 's do exist in B . (Otherwise, v alues of some quan ti�ed form ulas

could not b e de�ned.)

One can sho w that these generalizations do not c hange the class of clas-

sically v alid statemen ts of the form � j = ' (Exercise 9.5.7). W e do not

in v estigate this further, since classical logic serv es us as an illustration only .

A lgebr aic semantics

An ob vious idea ho w to adopt the ab o v e approac h to in tuitionistic logic is

to replace complete Bo olean algebras b y complete Heyting algebras.

9.4.4. Definition .

1. An intuitionistic H -structur e for � is a system

A = h A; f

A

1

; : : : ; f

A

n

; r

A

1

; : : : ; r

A

m

; c

A

1

; : : : ; c

A

k

i ,

where the f

A

i

's and r

A

i

's and c

A

i

's are as b efore, and the r

A

i

's are

functions of appropriate arit y from A to a complete Heyting algebra H .

2. The v alues of terms and form ulas are de�ned as in De�nition 9.4.3,

except that op erations [, \ , inf , sup and) are in H .

3. The notation A ; ~ a j = ' (~ x) and A j = ' (~ x) is as in De�nition 9.4.3.

4. The notation � j = ' should b e understo o d as follo ws: \F or all H

and all H -structures A and v ectors ~ a , with A ; ~ a j = �, w e also ha v e

A ; ~ a j = ' ".

5. The sym b ol j =

K

is j = restricted to an y giv en class K of complete Heyt-

ing algebras.

An example of a complete Heyting algebra is the algebra of op en sets of a

top ological space (in particular a metric space), where sup is set-theoretic

S

,

and

inf f A

i

: i 2 I g = In t(

T

f A

i

: i 2 I g) :

9.4.5. Theorem .

The fol lowing c onditions ar e e quivalent for the intuitionistic �rst-or der

lo gic:

1. � ` ' , wher e \ ` " is either \ `

N

" or \ `

L

" or \ `

H

";

152 Chapter 9. First-order logic

2. � j = ' ;

3. � j =

K

' , wher e K is the class of (algebr as of op en sets of) al l metric

sp ac es.

It seems to b e still an op en problem whether the class of all metric spaces

can b e replaced b y a one-elemen t class consisting only of R

2

. But it can

b e sho wn that there exists a single metric space of this prop ert y , see [88].

(Note ho w ev er that R

2

can still b e used for coun terexamples.)

Kripke semantics

An alternativ e w a y of relaxing the de�nition of classical seman tics is to k eep

the classical notion of a mo del, but think of mo dels as of p ossible w orlds.

9.4.6. Definition . A structure A = h A; f

A

1

; : : : ; f

A

n

; r

A

1

; : : : ; r

A

m

; c

A

1

; : : : ; c

A

k

i

is a substructur e of B = h B ; f

B

1

; : : : ; f

B

n

; r

B

1

; : : : ; r

B

m

; c

B

1

; : : : ; c

B

k

i i� the follo w-

ing hold:

� A � B ;

� r

A

i

� r

B

i

, for all i ;

� f

A

i

� f

B

i

, for all i ;

� c

A

i

= c

B

i

, for all i .

Th us, B extends the p ossible w orld A b y enric hing the domain of a v ailable

ob jects and b y adding more information ab out kno wn ob jects. W e write

A � B to express that A is a substructure of B .

9.4.7. Definition . A Kripke mo del for �rst-order logic is a triple of the

form C = h C ; � ; fA

c

: c 2 C gi , where C is a non-empt y set, � is a partial

order in C , and A

c

's are structures suc h that

if c � c

0

then A

c

� A

c

0

:

Let no w ' b e a form ula suc h that all free v ariables of ' are among ~ x , and

let ~ a b e a v ector of elemen ts of A

c

of the same length as ~ x . W e de�ne the

relation
 b y induction as follo ws:

� c; ~ a
 r t

1

: : : t

n

i� A

c

; ~ a j = r t

1

: : : t

n

(classically);

� c; ~ a 1 ? ;

� c; ~ a
 ' _ i� c; ~ a
 ' or c; ~ a
 ;

� c; ~ a
 ' ^ i� c; ~ a
 ' and c; ~ a
 ;

9.5. Exercises 153

� c; ~ a
 ' ! i� c

0

; ~ a
 , for all c

0

suc h that c � c

0

and c

0

; ~ a
 ' ;

� c; ~ a
 9 y ' (y ; ~ x) i� c; b ; ~ a
 ' (y ; ~ x), for some b 2 A

c

;

� c; ~ a
 8 y ' (y ; ~ x) i� c

0

; b ; ~ a
 ' (y ; ~ x), for all c

0

suc h that c � c

0

and

all b 2 A

c

0

.

The sym b ol
 is no w used in v arious con texts as usual, in particular �
 '

means that c; ~ a
 ' whenev er c; ~ a
 �.

9.4.8. Theorem . The c onditions �
 ' and � j = ' ar e e quivalent.

More ab out seman tics can b e found in [88 , 106 , 107 , 108].

9.5. Exercises

9.5.1. Exer cise . Find constructions for form ulas (1), (3), (5), (7), (9) and (11)

of Example 9.2.1, and do not �nd constructions for the other form ulas.

9.5.2. Exer cise . A �rst-order form ula is in pr enex normal form i� it b egins

with a sequence of quan ti�ers follo w ed b y an op en form ula. Consider a

signature with no function sym b ols, and let ' b e an in tuitionistic theorem

in a prenex normal form. Sho w that there exists an op en form ula '

0

obtained

from ' b y remo ving quan ti�ers and b y replacing some v ariables b y constan ts,

and suc h that ` '

0

. Hint: Use the existence prop ert y (Corollary 9.3.2).

9.5.3. Exer cise (V.P . Orevk o v). Apply Exercise 9.5.2 to sho w that the prenex

fragmen t of in tuitionistic �rst-order logic o v er function-free signatures is

decidable. (In fact, this remains true ev en with function sym b ols in the

signature, but fails for logics with equalit y , see [29]).

9.5.4. Exer cise . Pro v e that ev ery �rst-order form ula is classically equiv-

alen t to a form ula in prenex normal form. Then pro v e that in tuitionistic

�rst-order logic do es not ha v e this prop ert y .

9.5.5. Exer cise . Sho w that the existence prop ert y (Corollary 9.3.2) do es

not hold for classical logic. Wh y do es the pro of break do wn in this case?

9.5.6. Exer cise . Pro v e Theorem 9.3.7.

9.5.7. Exer cise . Let X b e an arbitrary set with more than one elemen t.

Sho w that the seman tics of classical logic where v alues of form ulas are tak en

in the family P (X) of all subsets of X is equiv alen t to the ordinary seman tics.

That is, the sets of tautologies are the same.

9.5.8. Exer cise . V erify that the o dd-n um b ered form ulas of Example 9.2.1

are in tuitionistically v alid, while the ev en-n um b ered ones are not.

154 Chapter 9. First-order logic

9.5.9. Exer cise . Sho w that the follo wing classical �rst-order tautologies are

not v alid in tuitionistically:

� 9 x (' (x) ! 8 x ' (x));

� 9 x (' (0) _ ' (1) ! ' (x));

� 8 x :: ' (x) : $::8 x ' (x);

� 9 x :: ' (x) : $::9 x ' (x).

9.5.10. Exer cise . A Kripk e mo del C = h C ; � ; fA

c

: c 2 C gi has c onstant

domains i� all the A

c

are the same. Pro v e that the form ula 8 x (_ ' (x)) $

 _ 8 x ' (x), where x 62 F V () (form ula (6) of Example 9.2.1) is v alid in all

mo dels with constan t domains.

9.5.11. Exer cise . Pro v e that the form ula ::8 x (' _ : ') (form ula (10) of

Example 9.2.1) is v alid in all Kripk e mo dels with �nite sets of states.

CHAPTER 10

Dep enden t t yp es

Dep enden t t yp es can probably b e considered as old as the whole idea of

pr op ositions-as-typ es . Explicitly , dep enden t t yp es w ere p erhaps �rst used

in v arious systems aimed at constructing and v erifying formal pro ofs. One of

the �rst w as the pro ject A UTOMA TH of de Bruijn, see [28]. Another suc h

system that gained m uc h atten tion is the Edin burgh Logical F ramew ork (LF)

of Harp er, Honsell and Plotkin [51]. The expression \logical framew orks"

is no w used as a generic name for v arious similar calculi, see [59]. Last but

not least, one should men tion here Martin-L• of 's t yp e theory [77]. F or more

references, see [108 , 51 , 8]. Our presen tation of dep enden t t yp es follo ws

essen tially that of [8].

F rom a programmer's p oin t of view, a dep enden t t yp e is one that dep ends

on an ob ject v alue. F or instance, one ma y need to in tro duce a t yp e string (n)

of all binary strings of length n .

1

This t yp e dep ends on a c hoice of n : int .

The op erator string mak es a t yp e from an in teger, and corresp onds, under

the Curry-Ho w ard isomorphism, to a predicate o v er int . Suc h a predicate

is called a typ e c onstructor , or simply c onstructor . Of course, w e ha v e to

classify constructors according to their domains, and this leads to the notion

of a kind : w e sa y that our constructor string is of kind int) � , where � is the

kind of all t yp es. Of course, there is no reason to disallo w binary predicates,

and so on, and th us the family of kinds should include �

1

) � � � �

n

) � .

A de�nition of an ob ject of t yp e string (n) ma y happ en to b e uniform

in n , i.e., w e ma y ha v e a generic pro cedure Onlyzer os that turns an y n : int

in to a string of zeros of length n . The t yp e of suc h a pro cedure should b e

written as (8 x : int) string (x).

In general, a t yp e of the form (8 x : �) � is a t yp e of a function applicable

to ob jects of t yp e � and returning an ob ject of t yp e � [x := a], for eac h

argumen t a : � . It is not di�cult to see that this idea is more general than

the idea of a function t yp e. Indeed, if x is not free in � , then (8 x : �) � b eha v es

1

Example from [74].

155

156 Chapter 10. Dep enden t t yp es

exactly as � ! � . Th us, in presence of dep enden t t yp es there is no need to

in tro duce ! separately .

The set-theoretic coun terpart of a dep enden t t yp e is the pr o duct . Recall

that if f A

t

g

t 2 T

is an indexed family of sets (formally a function that assigns

the set A

t

to an y t 2 T)

2

then the pro duct of this family is the set:

Y

t 2 T

A

t

= f f 2 (

[

t 2 T

A

t

)

T

: f (t) 2 A

t

; for all t 2 T g :

F or f 2

Q

t 2 T

A

t

, the v alue of f (t) is in a set A

t

, p erhaps di�eren t for eac h

argumen t, rather than in a single co-domain A . If all A

t

are equal to a �xed

set A , w e obtain the equalit y

Y

t 2 T

A

t

= A

T

;

corresp onding to our previous observ ation ab out ! v ersus 8 .

The logical coun terpart of this should no w b e as follo ws: the implication

is a sp ecial case of univ ersal quan ti�cation. And that is correct, b ecause w e

ha v e already agreed to iden tify ob jects of t yp e � with pro ofs of � . W e only

ha v e to agree that this w a y of thinking applies to individual ob jects as w ell,

so that, for instance, an in teger can b e seen as a pr o of of int .

10.1. System � P

W e will no w de�ne the Ch urc h-st yle system � P of dep enden t t yp es. W e

b egin with a calculus without existan tial quan ti�cation, as in [8]. Unfortu-

nately , ev en without existan tial quan ti�ers, the language of � P is a broad

extension of the language of simply-t yp ed lam b da-calculus. W e ha v e three

sorts of expressions: ob ject expressions (ranged o v er b y M ; N , etc.), con-

structors (ranged o v er b y � ; ' , etc.) and kinds (ranged o v er b y � ; �

0

, etc.).

There are ob ject and constructor v ariables (ranged o v er b y x , y , : : : and

�; � , : : : , resp ectiv ely), and one kind constan t � . A t yp e is treated as a

sp ecial case of a constructor, so w e do not need extra syn tax for t yp es.

Con texts can no longer b e arbitrary sets of assumptions. This is b ecause

in order to declare a v ariable of t yp e e.g., �x , one has to kno w b efor e that

the application is legal, i.e., that the t yp e of x �ts the kind of � . Th us,

con texts in � P are de�ned as sequences of assumptions. In addition, not

ev ery sequence of declarations can b e regarded as a v alid con text, and b eing

v alid or not dep ends on deriv abilit y of certain judgemen ts.

F or similar reasons, b eing a constructor or a kind, also dep ends on deriv-

able judgemen ts. W ell-formed t yp es, kinds and con texts are th us formally

de�ned b y the rules of our system.

2

That is wh y w e do not use here the set notation f A

t

: t 2 T g .

10.1. System � P 157

Unfortunately , w e cannot stic k to) as the only w a y to build kinds, and

w e ha v e to in tro duce a more general pro duct op erator also at the lev el of

kinds. T o understand wh y , see Example 10.2.3(2).

10.1.1. Definition .

1. R aw expr essions (ra w con texts �, ra w kinds � , ra w constructors � and

ra w lam b da-terms M) are de�ned b y the follo wing grammar:

� ::= fg j � ; (x : �) j � ; (� : �);

� ::= � j (� x : �) � ;

� ::= � j (8 x : �) � j (�M);

M ::= x j (M M) j (�x : �:M).

2. Beta reduction on ra w terms is de�ned as follo ws:

� (�x : � :M) N !

�

M [N := x];

� If � !

�

�

0

then �x : � :M !

�

�x : �

0

:M ;

� If M !

�

M

0

then �x : � :M !

�

�x : � :M

0

and N M !

�

N M

0

and

M N !

�

M

0

N ;

� If � !

�

�

0

then (� x : �) � !

�

(� x : �

0

) � ;

� If � !

�

�

0

then (� x : �) � !

�

(� x : �) �

0

;

� If � !

�

�

0

then (8 x : �) � !

�

(8 x : �

0

) � ;

� If � !

�

�

0

then (8 x : �) � !

�

(8 x : �) �

0

;

� If ' !

�

'

0

then 'M !

�

'

0

M ;

� If M !

�

M

0

then 'M !

�

'M

0

.

3. If (x : �) or (� : �) is in � then w e write �(x) = � or �(�) = � ,

resp ectiv ely . W e also write Dom (�) for the set of all constructors and

ob ject v ariables declared in �.

4. W e skip the ob vious de�nition of free v ariables. Of course, there are

three binding op erators no w: lam b da-abstraction, quan ti�cation and

the pro duct of kinds. And w e also omit the de�nition of substitution.

5. W e use arro ws as abbreviations: if x is not free in � then w e write

�) � instead of (� x : �) � . And if x is not free in � then (8 x : �) � is

abbreviated b y our go o d old implication � ! � .

10.1.2. Remark . In order to spare the reader some additional noise, w e

c ho ose a non-standard presen tation of � P, namely w e do not allo w lam b da

abstractions in constructors. Th us, ev ery constructor m ust b e of the form

(8 x : �

1

) � � � (8 x : �

n

) �M

1

: : : M

n

. This restriction is not essen tial as long as our

primary in terest is in typ es . Indeed, a dep enden t t yp e in normal form alw a ys

ob eys this pattern, and a term substitution ma y nev er create a constructor

redex.

158 Chapter 10. Dep enden t t yp es

W e will ha v e three di�eren t sorts of judgemen ts in our system:

� kind formation judgemen ts of the form \� ` � : 2 ";

� kinding judgemen ts of the form \� ` ' : � ";

� t yping judgemen ts of the form \� ` M : � ".

The meaning of \ � : 2 " is just that � is a w ell-formed kind, and 2 itself is

not a part of the language.

10.2. Rules of � P

Kind formation rules:

` � : 2

� ; x : � ` � : 2

� ` (� x : �) � : 2

Kinding rules:

� ` � : 2

� ; � : � ` � : �

(� 62 Dom (�))

� ` ' : (� x : �) � � ` M : �

� ` 'M : � [x := M]

� ; x : � ` � : �

� ` (8 x : �) � : �

T yping rules:

� ` � : �

� ; x : � ` x : �

(x 62 Dom(�))

� ` N : (8 x : �) � � ` M : �

� ` N M : � [x := M]

� ; x : � ` M : �

� ` �x : � :M : (8 x : �) �

Note that there is no restriction \ x 62 FV (�)" attac hed to the 8 -in tro duction

rule. This restriction is unnecessary b ecause otherwise � ; x : � w ould not b e

a v alid con text, in whic h case the premise could not b e deriv ed.

We akening rules:

There are six w eak ening rules, but all ob ey the same pattern: an additional

assumption do es not h urt, as long as it is w ell-formed. W e need explicit

w ek ening (rather than relaxed axioms) b ecause of the sequen tial structure

of con texts w e m ust resp ect.

� ` � : � � ` � : 2

� ; x : � ` � : 2

(x 62 Dom(�))

� ` � : 2 � ` �

0

: 2

� ; � : � ` �

0

: 2

(� 62 Dom(�))

10.3. Prop erties of � P 159

� ` � : � � ` ' : �

� ; x : � ` ' : �

(x 62 Dom(�))

� ` � : 2 � ` ' : �

0

� ; � : � ` ' : �

0

(� 62 Dom (�))

� ` � : � � ` M : �

� ; x : � ` M : �

(x 62 Dom(�))

� ` � : 2 � ` M : �

� ; � : � ` M : �

(� 62 Dom (�))

Conversion rules

These rules are necessary b ecause of the terms o ccurring in t yp es whic h do

not ha v e to b e in normal forms.

� ` ' : � � =

�

�

0

� ` ' : �

0

� ` M : � � =

�

�

0

� ` M : �

0

10.2.1. Remark . Note that t yp e-c hec king in � P is not a trivial task, ev en

if our language is Ch urc h-st yle. This is b ecause the con v ersion rules. A

v eri�cation whether t w o t yp es or kinds are equal ma y b e as di�cult as

c hec king equalit y of simply-t yp ed lam b da terms, and this decision problem

is non-elemen tary (Theorem 6.7.1).

10.2.2. Definition .

If � ` � : � then w e sa y that � is a typ e in the con text �.

10.2.3. Example .

1. The lam b da term �y :(8 x :0 :�x ! � x) :�z : (8 x :0 :�x) :�x : 0 :y x (z x) has

t yp e (8 x :0 :�x ! � x) ! (8 x :0 :�x) ! 8 x : 0 :� x in the con text consisting

of declarations � : 0) � and � : 0) � .

2. Here is an example of a kind that cannot b e expressed only with) :

� : 0) � ` (� y : 0)(�y) �) : 2

If w e no w declare a v ariable ' to b e of this kind, w e can consider t yp es

of the form 'y x , where x is of t yp e �y .

10.3. Prop erties of � P

System � P has the Ch urc h-Rosser and strong normalization prop erties.

These facts follo w from prop erties of simply t yp ed terms, thanks to an

em b edding M 7! M

�

, describ ed in [51]. Certain v arian ts of this em b ed-

ding (esp. the \forgetting map" M 7! M , whic h erases all dep endencies)

w ere also disco v ered b y V. Breazu-T annen and Ch. P aulin, but apparen tly

R.O. Gandy w as the �rst to use this approac h (see [108 , p. 565]).

160 Chapter 10. Dep enden t t yp es

10.3.1. Definition . W e de�ne the dep endency-erasure map on construc-

tors:

� = � ;

(8 x : �) � = � ! � ;

'M = ' .

W e write � for the con texts obtained b y applying the ab o v e op eration to all

righ t-hand sides of declarations in � of the form (x : �), and remo ving other

declarations.

10.3.2. Definition . The translations M 7! M

�

and � 7! �

�

are de�ned

for b oth t yp es and terms of � P. Both terms and t yp es are translated in to

terms. Belo w, 0 stands for a �xed t yp e v ariable. Abusing the formalism a

little, w e assume that w e can use as man y fresh term v ariables as w e w an t.

(�M

1

: : : M

n

)

�

= x

�

M

�

1

: : : M

�

n

, where x

�

is a fresh v ariable;

((8 x : �) �)

�

= x

�

�

�

(�x : � :�

�

), where x

�

is a fresh v ariable;

x

�

= x ;

(M N)

�

= M

�

N

�

;

(�x : � :M)

�

= (�y : 0 �x : � :M

�

) �

�

, where y is a fresh v ariable.

10.3.3. Lemma .

1. If � ` � : � then �

0

` �

�

: 0 , for some extension �

0

of � .

2. If � ` M : � then �

0

` M

�

: � , for some extension �

0

of � .

3. If � ` M : � and M !

�

M

1

then M

�

! !

�

M

�

1

in at le ast one step.

Pr oof. Exercise 10.7.2. ut

10.3.4. Cor ollar y (Strong normalization).

The system � P has the str ong normalization pr op erty.

Pr oof. By part (3) of Lemma 10.3.3, an in�nite reduction starting from M

w ould b e translated to an in�nite reduction in the simply-t yp ed lam b da

calculus. ut

10.3.5. Cor ollar y . The system � P has the Chur ch-R osser pr op erty.

Pr oof. Exercise 10.7.5. ut

10.4. Dep enden t t yp es �a la Curry 161

10.4. Dep enden t t yp es � a la Curry

10.4.1. Definition . W e de�ne a t yp e-erasure mapping j � j from terms of � P

to pure lam b da terms, as usual:

� j x j = x ;

� j �x : � :M j = �x: j M j ;

� j M N j = j M jj N j .

F or a a pure lam b da term N , w e write � `

P

N : � i� N = j M j , for some

Ch urc h-st yle term M with � ` M : � . W e sa y that a pure lam b da term N

is typ able i� � `

P

N : � holds for some � ; � .

An alternativ e to the ab o v e de�nition is to de�ne a t yp e assignmen t

system for pure lam b da-terms, corresp onding to � P. Note that in this case

w e m ust deal with di�eren t notion of a t yp e, since t yp es m ust dep end on

pure lam b da-terms rather than on Ch urc h-st yle terms. It follo ws that the

t yp e-erasure mapping m ust b e extended to t yp es and kinds. F ortunately ,

the notion of a t ypable term is the same with this approac h as with our

simple de�nition, see [5].

10.4.2. Pr oposition . The Curry-style variant of � P has the subje ct-r e duction

pr op erty, that is if � `

P

N : � and N ! !

�

N

0

then also � `

P

N

0

: � .

Pr oof. Boring. See [5]. ut

Let us come bac k to the dep endency-erasure map. W e extend it to terms

as follo ws:

10.4.3. Definition .

x = x ;

M N = M N ;

�x : � :M = �x : � : M ;

W e ha v e the follo wing result:

10.4.4. Lemma . If � ` M : � then � ` M : � (in � !).

Pr oof. Exercise 10.7.3. ut

10.4.5. Pr oposition . A term is typ able in � P i� it is simply-typ able. In

p articular, the typ e r e c onstruction pr oblem for � P is de cidable in p olynomial

time.

162 Chapter 10. Dep enden t t yp es

Pr oof. Supp ose that � ` M : � in � P. By Lemma 10.4.4, w e ha v e

� ` M : � , in the simply t yp ed lam b da calculus. But it is easy to see that

j M j = j M j .

W e ha v e just sho wn that all pure terms t ypable in � P are t ypable in

simple t yp es. The con v erse is ob vious, and th us t yp e reconstruction in � P

is the same as in simple t yp es. ut

Here comes the surprise: it is not at all that easy with t yp e c hec king!

10.4.6. Theorem (G. Do w ek [31]). T yp e che cking in the Curry-style ver-

sion of � P is unde cidable.

No Pr oof. W e regret that w e do not ha v e enough time to presen t this nice

pro of. But w e recommend reading the original pap er [31]. ut

10.5. Existen tial quan ti�cation

This section is a diggression. The system � P, as most other t yp ed lam b da-

calculi, is normally studied with 8 and ! as the only basic connectiv es. Of

course, an extension of this system with _ , ^ and ? can b e de�ned in m uc h

the same w a y as for the simply-t yp ed lam b da calculus. It remains to see

what is the lam b da calculus coun terpart of existen tial quan ti�cation. The

in tuition suggests that (9 x : �) ' (x) should b e understo o d as a disjoint union

or c opr o duct of t yp es ' (a), for all ob jects a of t yp e � . That is, ob jects of

t yp e (9 x : �) ' (x) are pairs consisting of an ob ject a of t yp e � and a pro of M

of ' (a). This ma y b e syn tactically written as: pac k M ; a to (9 x : �) ' (x).

An elimination op erator for t yp e (9 x : �) ' (x) tak es suc h a pair and uses

it whenev er an ob ject of t yp e ' (x) can b e used with an unsp eci�ed x . This

leads to the follo wing deduction rules:

(9 I)

� ` M : ' [x := N] � ` N : �

� ` pac k M ; N to (9 x : �) ' : (9 x : �) '

(9 E)

� ` M : (9 x : �) ' � ; x : � ; z : ' ` N :

� ` let z : ' b e M : (9 x : �) ' in N :

(x 62 F V (� ;))

Note that although in (9 E) cannot con tain x free, this restriction do es

not extend to the pro of N . The v ariable x ma y th us b e free in N , but it

should b e considered b ound in the let expression.

The reduction rule for sum t yp es is as follo ws:

let z : ' b e (pac k M ; N to (9 x : �) ') in Q � !

�

Q [x := N][z := M]

Ev erything is �ne with this rule, as long as w e do not get seduced b y the

temptation of making a Curry-st yle calculus with existen tial quan ti�ers.

Lo ok, ho w b eautiful rules w e ma y ha v e:

10.6. Corresp ondence with �rst-order logic 163

(9 I)

� ` M : ' [x := N] � ` N : �

� ` M : (9 x : �) '

(9 E)

� ` M : (9 x : �) ' � ; z : ' ` N :

� ` N [z := M] :

(x 62 F V (� ;))

These rules are based on the idea of existential p olymorphism : a term of

an existen tial t yp e is lik e an ob ject with some data b eing abstracted or

encapsulated or \priv ate", and not a v ailable for external manipulations. It

seems v ery app ealing that this sort of abstraction migh t b e done with only

implicit t yping discipline.

There are ho w ev er some anno ying little di�culties when one attempts

to pro v e the sub ject reduction prop ert y for a t yp e inference system `

9

with

rules as ab o v e. Some of these di�culties can b e eliminated b y impro ving

the rules, but some cannot. The follo wing example is based on an idea used

in [6] for union t yp es (whic h cause similar problems).

10.5.1. Example . Consider a con text � with the follo wing declarations:

0 : � ; � : � ; � : � ; � : 0) � ; x : 0 ;

X : � x ! � x ! �; Y : � ! (9 x :0) � x; Z : � .

Then � `

9

X (I Y Z)(I Y Z) : � , but � 6`

9

X (I Y Z)(Y Z) : � .

10.6. Corresp ondence with �rst-order logic

The system � P of dep enden t t yp es is m uc h stronger than is needed to pro vide

a term assignmen t for �rst-order in tuitionistic logic. In fact, �rst-order logic

corresp onds to a fairly w eak fragmen t of � P. This fragmen t is obtained b y

restricting the syn tax

3

so that eac h con text m ust satisfy the follo wing:

� There is only one t yp e v ariable 0 (whic h should b e regarded as a t yp e

constan t), represen ting the t yp e of individuals;

� All kinds are of the form 0) � � �) 0) � ;

� There is a �nite n um b er of distinguished constructor v ariables, repre-

sen ting relation sym b ols in the signature (they m ust b e of appropriate

kinds, dep ending on arit y);

� F unction sym b ols in the signature are represen ted b y distinguished

ob ject v ariables of t yp es 0 ! � � � ! 0 ! 0, dep ending on arit y;

� Constan t sym b ols are represen ted b y distinguished ob ject v ariables of

t yp e 0;

3

Of course one has to either add 9 to � P, as in the previous section, or to consider only

univ ersal quan ti�cation in form ulas.

164 Chapter 10. Dep enden t t yp es

� Other declarations in the con text ma y only b e of the form (x : 0), and

corresp ond to individual v ariables.

Clearly , algebraic terms are represen ted no w b y lam b da terms of t yp e 0

in normal form. F orm ulas are represen ted b y t yp es. Because of strong

normalization, w e can restrict atten tion to form ulas con taining only terms

in normal form. It follo ws that an inhabited form ula is a theorem and

con v ersely . The reader is in vited to formally de�ne the syn tax of the �rst-

order fragmen t (Exercise 10.7.9).

In summary , w e ha v e the follo wing pairs of corresp onding items:

form ulas � t yp es

pro ofs � terms

domain of individuals � t yp e constan t 0

algebraic terms � terms of t yp e 0

relations � constructors of kind

0) 0) � � �) 0) �

atomic form ula r (t

1

; : : : ; t

n

) � dep enden t t yp e r t

1

: : : t

n

: �

univ ersal form ula � pro duct t yp e

pro of b y generalization � abstraction �x : 0 :M

'

pro of b y mo dus p onens � application M

8 x :0 '

N

0

10.6.1. Example . Consider the Hilb ert-st yle axioms of Section 9.3 Eac h of

them corresp onds to a t yp e in � P, extended b y existen tial quan ti�cation as

in Section 10.5. These t yp es are inhabited as follo ws. (W e write t yp es as

upp er indices to impro v e readabilit y .)

� �Y

(8 x : 0) ' (x)

:Y t : (8 x :0) ' (x) : ! ' (t);

� �X

' (t)

: pac k X ; t to (9 x :0) ' (x) : ' (t) ! (9 x :0) ' (x);

� �Y

�x

0

:Y : ! (8 x : 0) , where x 62 F V ();

� �Y

(9 x :0)

: let z : b e Y : (9 x :0) in z : (9 x :0) : ! ,

where x 62 F V ();

� �X

(8 x :0)(' !)

�Y

(9 x :0) '

: let z

'

b e Y : (9 x :0) ' in pac k X xz ; x to (9 x :0) ' :

(8 x :0)(' !) : ! ((9 x :0) ': ! (9 x :0));

� �X

(8 x :0)(' !)

�Y

(8 x : 0) '

�z

0

:X z (Y z) : (8 x :0)(' !) : ! ((8 x :0) ': !

(8 x :0)).

Out of the ab o v e six examples three do not use existen tial quan ti�cation.

If w e apply the dep endency-erasing translation M 7! M to the third and

sixth of the ab o v e terms, w e obtain the t yp ed com binators

� K : ! 0 ! and

10.7. Exercises 165

� S : (0 ! ' !) ! (0 ! ') ! 0 ! .

This ma y b e a suprise on the �rst lo ok that w e obtain something so m uc h

familiar. But it is fully justi�ed b y the fact that univ ersal quan ti�cation is

a generalization of implication.

The �rst example is a little less sp ectacular, as it erases to �Y

0 ! '

:Y t :

(0 ! ') ! ' (parameterized b y t : 0).

The ab o v e em b edding of �rst-order logic in to � P can easily b e generalized

to v arious extensions. F or instance, man y-sorted logic is handled just b y

allo wing more than one atomic t yp e. Here are some examples of other

features that are not presen t in �rst-order logic:

� There are sorts (t yp es) for man y domains for individuals, and also for

functions on the individuals;

� There is a function abstraction mec hanism (w e deal with lam b da-terms

rather than algebraic terms);

� Quan ti�cation o v er functions is p ermitted; a quan ti�er ranges o v er

arbitrary expressions of a giv en sort;

� Pro ofs are terms, so that prop erties of pro ofs can b e expressed b y

form ulas.

The presence of quan ti�cation o v er ob jects of all �nite t yp es means that

� P can express man y higher-order languages (see [51]). W e w ould ho w-

ev er prefer not to use the expression \higher-order logic" here, as there is

no quan ti�cation o v er prop ositions. A more adequate statemen t ab out � P

is that it pro vides a man y-sorted �rst-order represen tation of higher-order

logic.

Another issue is expressibilit y of �rst-order the ories in � P. Y ou can �nd

more ab out this in [8, p. 202].

As w e ha v e already observ ed, �rst-order in tuitionistic logic is undecid-

able. Th us t yp e inhabitation in the corresp onding fragmen t of � P m ust b e

also undecidable. But � P can b e sho wn conserv ativ e o v er this fragmen t, and

it follo ws that t yp e inhabitation for the whole system is also undecidable.

Another direct and simple pro of can b e found in [13].

10.6.2. Theorem . T yp e inhabitation in � P is unde cidable. ut

10.7. Exercises

10.7.1. Exer cise . Let string (n) b e the t yp e of binary strings of length n .

Ev ery suc h string w determines a record t yp e with in teger and b o olean

�elds corresp onding to the digits in w . F or example, for 01101 w e tak e

166 Chapter 10. Dep enden t t yp es

int ^ b o ol ^ b o ol ^ int ^ b o ol . De�ne an appropriate con text � declaring

v ariables string and r e c or d so that r e c or d (n)(w) is a w ell-formed t yp e, for

n : int and w : string (n).

10.7.2. Exer cise . Pro v e Lemma 10.3.3. (First extend the translation to

kinds and de�ne �

0

. A substitution lemma will also b e necessary .)

10.7.3. Exer cise . Pro v e Lemma 10.4.4. Also pro v e that � ` M : � and

M !

�

M

0

implies M !

�

M

0

or M = M

0

.

10.7.4. Exer cise . Consider the follo wing attempt to pro v e strong normal-

ization for � P:

Assume �rst that a term M is suc h that no t yp e o ccurring in M con tains a lam b da

term. In this case an in�nite reduction starting from M w ould b e translated,

b y Lemma 10.4.4, to an in�nite reduction in the simply-t yp ed lam b da calculus.

The general case follo ws from the follo wing induction step: If all subterms of M

(including all terms o ccurring in t yp es in M) are strongly normalizing then M

is strongly normalizing. T o pro v e the induction step, w e observ e that an in�nite

reduction starting from M translates to a sequence of pure terms N

i

, with N

i

= N

j

,

for all i; j > i

0

. Th us our in�nite reduction m ust, from some p oin t on, consist

exclusiv ely of reduction steps p erformed exclusiv ely within t yp es. But all terms

o ccurring in t yp es are obtained from subterms of the original term M and th us

m ust strongly normalize b y the induction h yp othesis.

Find the bug in this pro of. Can y ou �x it?

4

10.7.5. Exer cise . Pro v e the Ch urc h-Rosser prop ert y for � P (Corollary 10.3.5).

W arning: do �rst Exercise 10.7.6. Hint: Apply Newman's Lemma.

10.7.6. Exer cise . Sho w an example of � P terms M and M

0

of the same

t yp e suc h that M = M

0

, but M 6=

�

M

0

.

10.7.7. Exer cise . The pro of tec hnique that fails for Ch urc h-st yle � P (Exer-

cise 10.7.4) w orks for the Curry-st yle terms. Pro v e strong normalization for

Curry-st yle � P with help of the dep endency-erasing translation M 7! M .

10.7.8. Exer cise . V erify the correctness of Example 10.5.1.

10.7.9. Exer cise . De�ne formally the fragmen t of � P corresp onding to �rst-

order logic o v er a �xed signature.

10.7.10. Exer cise . Consider the o dd-n um b ered form ulas of Example 9.2.1,

as t yp es in an appropriate extension of � P. W rite lam b da-terms inhabiting

these t yp es. (If necessary use op erators related to conjunction, disjunction,

and the existen tial quan ti�er.)

4

W e do not kno w ho w.

10.7. Exercises 167

10.7.11. Exer cise . W e kno w that t yp es of K and S are su�cien t to ax-

iomatize the arro w-only fragmen t of prop ositional in tuitionistic logic. These

t yp es corresp ond to the third and sixth axiom of Section 9.3 (see Exam-

ple 10.6.1). One can th us conjecture that the �rst axiom 8 x ' (x) : ! ' (t) ,

whic h b ecomes (0 ! ') ! ' after erasing dep endencies, can b e eliminated

from the axiom system. Sho w that this conjecture is wrong: our form ula

cannot b e deriv ed from the other t w o axiom sc hemes.

168 Chapter 10. Dep enden t t yp es

CHAPTER 11

First-order arithmetic and G• odel's T

Arithmetic is the core of almost all of mathematics. And expressing and

pro ving prop erties of in tegers alw a ys w as one of the primary goals of math-

ematical logic. In this c hapter, w e will trace the Curry-Ho w ard corresp on-

dence bac k to the 40's and 50's, to disco v er it in some fundamen tal w orks of

Kleene and G• odel. Both these w orks aimed at pro ving consistency of P eano

Arithmetic. F or this purp ose they giv e some fundamen tal insigh ts on the

constructiv e con ten ts of arithmetical pro ofs.

11.1. The language of arithmetic

The signature (cf. De�nition 6.6) of �rst-order arithmetic consists of t w o

binary function sym b ols + and � , t w o constan t sym b ols 0 and 1 and the sym-

b ol = for equalit y .

1

The standar d mo del of arithmetic is the set of in tegers

N with the ordinary understanding of these sym b ols, i.e., the structure:

N = h N ; + ; � ; 0 ; 1 ; = i :

Note that all elemen ts of N can b e giv en names in the language of arithmetic.

Let n denote the term 1 + 1 + � � � + 1, with exactly n copies of 1 (assuming

that 0 is 0).

By Th (A) w e denote the set of all �rst-order sen tences that are classically

true in A (i.e., the set of all sen tences ' suc h that A j = ' , in the sense of

Section 9.4). The follo wing classical result sho ws the limitation of �rst-order

logic:

11.1.1. Theorem . Ther e exists a nonstandar d mo del of arithmetic, i.e., a

structur e M = h M ; � ;
 ; 0 ; 1 ; = i , such that Th (M) = Th (N) , but M and

N ar e not isomorphic.

1

Another t ypical c hoice is to tak e a unary function sym b ol s for the successor function,

instead of 1.

169

170 Chapter 11. First-order arithmetic and G• odel's T

The ab o v e fact is a consequence of c omp actness the or em , see [71].

Ho w ev er, the de�nitional strength of �rst-order form ulas o v er the stan-

dard mo del is quite non trivial. Let us sa y that a k -ary relation r o v er N

is arithmetic al i� there exists a form ula ' (~ x) with k free v ariables ~ x , suc h

that, for ev ery ~ n 2 N

k

:

r (~ n) holds i� N j = ' (~ n) :

A function is arithmetic al i� it is arithmetical as a relation. W e ha v e the

follo wing theorem of G• odel:

11.1.2. Theorem . A l l p artial r e cursive functions (in p articular al l r e cursive

functions) ar e arithmetic al.

In fact, partial recursiv e functions and relations are just the v ery b eginning

of the \arithmetical hierarc h y". The ab o v e theorem implies in paricular

that Th (N) m ust b e undecidable. Otherwise, mem b ership in ev ery r.e. set

w ould b e also decidable.

11.2. P eano Arithmetic

Before G• odel, p eople though t that it could b e p ossible to axiomatize Th (N),

i.e., to giv e a simple set of axioms A suc h that all sen tences of Th (N)

w ould b e consequences of A . P eano Arithmetic, abbreviated P A, is suc h an

attempt. The axioms of P A are the follo wing form ulas:

� 8 x (x = x);

� 8 x 8 y (x = y ! y = x);

� 8 x 8 y (' (x) ! x = y ! ' (y));

� 8 x : (x + 1 = 0);

� 8 x 8 y (x + 1 = y + 1 ! x = y);

� 8 x (x + 0 = x);

� 8 x 8 y (x + (y + 1) = (x + y) + 1);

� 8 x (x � 0 = 0);

� 8 x 8 y (x � (y + 1) = (x � y) + x);

� 8 x (' (x) ! ' (x + 1)) : ! ' (0) ! 8 x ' (x)).

11.2. P eano Arithmetic 171

The third and the last items are actually axiom sc hemes, not single axioms.

Although the set of axioms is th us in�nite, it is still recursiv e, and th us the

set of theorems (deriv able sen tences) of P A is r.e. The last axiom sc heme is

called the induction scheme .

A theory T (a set of sen tences) is c omplete i� for all sen tences of

the �rst-order language of T , either T ` or T ` : . G• odel's famous

incompleteness theorem asserts that P A is not a complete theory . This

statemen t is equiv alen t to P A 6= Th (N), b ecause ev ery Th (A) is complete.

The imp ortance of G• odel's theorem is that it holds also for all extensions

of P A, as long as they are e�ectiv ely axiomatizable. (A consequence of this

is of course that Th (N) is not r.e.)

11.2.1. Theorem (G• odel incompleteness). Ther e is a sentenc e Z such that

neither P A ` Z nor P A ` : Z .

Pr oof. The pro of of the theorem is so b eautiful that w e cannot resist the

temptation to sk etc h here the main idea, whic h is to express the \liar para-

do x"

2

in the language of arithmetic. This cannot b e done in full, as it w ould

imply inconsistency of arithmetic, but a w eak er prop ert y will do. G• odel's

sen tence Z expresses the prop ert y \ Z has no pr o of in P A". More formally ,

w e ha v e:

N j = Z i� P A 6` Z :

No w if P A ` Z then N j = Z , b ecause N is a mo del of P A, and th us P A 6` Z .

On the other hand, if P A ` : Z then N j = : Z , but also N j = Z , b y the

prop ert y of Z . Th us Z can b e neither pro v ed nor dispro v ed within P A.

The construction of Z is based on the idea of G• odel n um b ering. Eac h

expression in the language gets a n um b er, and w e can write form ulas express-

ing prop erties of expressions b y referring to their n um b ers. In particular,

one can write a form ula T (x; y), suc h that:

N j = T (n ; m) i� P A ` '

n

(m)

whenev er n is a n um b er of a form ula '

n

(x) with one free v ariable x . The

form ula : T (x; x) m ust also ha v e a n um b er, sa y : T (x; x) = '

k

(x). Th us

N j = '

k

(n) i� P A 6` '

n

(n) :

The form ula Z that sa ys \I ha v e no pro of !" can no w b e de�ned as '

k

(k):

N j = '

k

(k) i� P A 6` '

k

(k) :

ut

2

The sen tence: \This sentenc e is false" cannot b e true and cannot b e false.

172 Chapter 11. First-order arithmetic and G• odel's T

It w as a p opular opinion among mathematicians that G• odel's theorem is of

little practical imp ortance. Indeed, the form ula Z is based on an arti�cial

diagonalization, and ev erything one �nds in n um b er theory textb o oks could

b e formalized in P A. It is commonly assumed that the �rst \natural" mathe-

matical problem indep enden t from P A, w as sho wn b y P aris and Harrington,

see [11]. This problem concerns �nite com binatorics and ma y indeed b e

considered natural. But it is not a purely arithmetical problem, i.e., it has

to b e co ded in to arithmetic. In addition, it w as actually in v en ted for the

purp ose of b eing indep enden t, rather than suggested b y actual mathemat-

ical researc h. W e will see later a strong normalization theorem (and these

de�nitely b elong to the mathematical practice) indep enden t from P A. This

theorem w as obtained already b y G• odel, and th us is m uc h older than the

P aris and Harrington example.

With the G• odel n um b ers tec hnique, one can express consistency of P A.

Indeed, let T (x) b e a form ula suc h that:

N j = T (n) i� P A ` '

n

;

whenev er n is a n um b er of a sen tence '

n

. Let k b e the n um b er of the

sen tence \0 = 1" and let Con b e the form ula \ : T (k)". Then Con expresses

consistency of P A:

N j = Con i� P A is consisten t.

The follo wing theorem w as also obtained b y G• odel, b y a re�nemen t of tec h-

niques used for the pro of of Theorem 11.2.1.

11.2.2. Theorem (Non-pro v abilit y of consistency). If P A is c onsistent then

P A 6` Con .

The conclusion is that to pro v e consistency of arithmetic, one m ust neces-

sarily use to ols from outside the arithmetic.

11.3. Represen table and pro v ably recursiv e functions

W e no w consider t w o prop erties of functions that are stronger than b eing

arithmetical. W e not only w an t our functions to b e de�nable o v er the stan-

dard mo del, but w e w an t to pro v e in P A (or some other theory) that the

appropriate form ula actually de�nes a function.

In the de�nition b elo w, the sym b ol 9 ! should b e read as \there exists ex-

actly one". F ormally , 9 ! x ' (x) is an abbreviation for \ 9 x ' (x) : ^ 8 y (' (y) !

x = y)".

11.3.1. Definition . W e sa y that a k -ary total function f o v er N is r epr e-

sentable in P A i� there exists a form ula ' (~ x ; y), with k + 1 free v ariables

~ x; y , suc h that:

11.3. Represen table and pro v ably recursiv e functions 173

1) f (~ n) = m implies P A ` ' (~ n ; m), for all ~ n ; m ;

2) P A ` 9 ! y ' (~ n ; y) ; for all ~ n 2 N

k

.

A function is str ongly r epr esentable in P A, if (1) holds and

3) P A ` 8 ~ x 9 ! y ' (~ x ; y).

Eac h represen table function is in fact strongly represen table (Exercise 11.8.3)

but pro ving that (2) implies (3) is a brutal application of tertium non datur .

Of course, eac h represen table function is arithmetical. The con v erse is not

true, but w e ha v e the follo wing stronger v ersion of Theorem 11.1.2:

11.3.2. Theorem (G• odel). A function is r epr esentable in P A if and only if

it is r e cursive.

The ab o v e theorem implies that the totalit y of ev ery recursiv e function can

actually b e pro v en in P A. Ho w ev er, the excluded middle tric k used in Exer-

cise 11.8.3 suggests that suc h pro ofs are not necessarily constructiv e. Pro ofs

required b y part (2) of De�nition 11.3.1 are constructiv e, but non-uniform.

What w e w an t, is a constructiv e and uniform pro of of termination for all

argumen ts, suc h that w e are able to actually compute the v alue m of f (~ n)

from this pro of. W e should understand ho w ev er that for this reason w e

should b e concerned with particular algorithms rather than extensionally

understo o d functions. This calls for a �ner notion of pro v able totalit y .

Recall that, b y Kleene's normal form the or em , ev ery partial recursiv e

function f can b e written as

f (~ n) = �

2

(�y :t

f

(~ n; y) = 0) ;

where �

2

is a pro jection (second in v erse to the pairing function) and t

f

is

primitiv e recursiv e. The function t

f

describ es a particular algorithm com-

puting f . T ermination of this particular algorithm can b e expressed b y a

form ula of the form

8 ~ x 9 y (t

f

(~ x ; y) = 0) :

F ortunately , primitiv e recursiv e functions do not create an y of the ab o v e

men tioned di�culties. That is, pro ofs of totalit y for primitiv e recursiv e

functions are completely e�ectiv e. In addition, ev ery primitiv e recursiv e

function can b e uniquely de�ned b y means of equational axioms. Th us, w e

can actually extend the language of P A b y names and de�ning equations for

\as man y primitiv e recursiv e functions as w e wish"

3

without an y un w an ted

side-e�ects (i.e., this extension of P A is conserv ativ e.) It follo ws that as-

suming the ab o v e form ula to b e literally a form ula of P A is as harmless as

it is con v enien t.

3

A quotation from [26].

174 Chapter 11. First-order arithmetic and G• odel's T

11.3.3. Definition . A recursiv e function f is said to b e pr ovably total (or

pr ovably r e cursive) in P A i�

P A ` 8 ~ x 9 y (t

f

(~ x; y) = 0) :

It is customary to talk ab out pro v ably recursiv e functions , but what w e

actually deal with is the notion of a pro v ably recursiv e algorithm . A function

should b e regarded pro v ably total if one of its algorithms is pro v ably total.

The class of functions pro v ably total in P A is v ery large and includes

most of commonly considered functions, and m uc h more, up to un b eliev able

complexit y . But there are recursiv e functions that are not pro v ably total

in P A.

11.4. Heyting Arithmetic

The searc h for a constructiv e meaning of classical pro of of totalit y of a recur-

siv e function, leads of course to the notion of in tuitionistic arithmetic. By

Heyting A rithmetic (HA), w e mean a formal theory based on the follo wing

axioms and rules:

� All axioms and rules of �rst-order in tuitionistic logic;

� All axioms of P eano Arithmetic;

� De�ning equations for all primitiv e recursiv e functions.

This means that HA is a theory in the language of arithmetic, extended b y

new function sym b ols for all primitiv e recursiv e functions. This extension is

not essen tial, b ecause of conserv ativit y , but is tec hnically v ery useful.

Here are some in teresting prop erties of HA. (More can b e found in [107]

and [26].)

11.4.1. Theorem .

1. HA ` 8 x 8 y (x = y _ : (x = y)) .

2. If HA ` 9 x ' (x) for a close d formula 9 x ' (x) then HA ` ' (k) , for

some k 2 N .

3. HA ` (' _) $ 9 x ((x = 0 ! ') ^ (: (x = 0) !)) , for al l '; .

4. If HA ` ' _ , for close d ' and , then either HA ` ' or HA ` .

5. If HA ` 8 x (' (x) _ : ' (x)) and HA ` ::9 x ' (x) then HA ` 9 x ' (x) .

(Markov's Principle)

11.4. Heyting Arithmetic 175

Pr oof.

1) Exercise 11.8.6.

2) See [26] for a seman tical pro of using Kripk e mo dels.

3) F ollo ws from part 2.

4) F ollo ws from parts 2 and 3.

5) F rom HA ` ::9 x ' (x) it follo ws that P A ` 9 x ' (x), and th us N j =

' (k), for some k . But w e ha v e HA ` ' (k) _ : ' (k) and th us, b y (4),

either ' (k) or : ' (k) is a theorem of HA. In eac h case w e conclude

that HA ` 9 x ' (x). (But note that this pro of is classical.)

ut

11.4.2. Theorem (Kreisel (1958)). A r e cursive function is pr ovably total in

Pe ano A rithmetic i� it is pr ovably total in Heyting A rithmetic.

Pr oof. The righ t-to-left part is immediate. W e pro v e the other part.

Without loss of generalit y , w e consider the case of a unary function. Let

P A ` 8 x 9 y (t

f

(x; y) = 0). Th us also P A ` 9 y (t

f

(x; y) = 0) . One can sho w

that the Kolmogoro v translation (see Chapter 8 and 9) w orks for arithmetic

(see e.g. [107]), so that w e obtain HA ` ::9 y (t

f

(x; y) = 0) . F rom Theo-

rem 11.4.1(1), w e ha v e

HA ` 8 x 8 y (t

f

(x; y) = 0 _ : t

f

(x; y) = 0) :

W e apply Mark o v's Principle (Theorem 11.4.1(5)) to obtain the desired re-

sult. ut

There is also a direct syn tactic pro of due to F riedman, whic h do es not

require the whole p o w er of Mark o v's Principle and carries o v er to second-

order arithmetic. See Exercise 11.8.8.

The pro of of Kreisel's theorem w orks as w ell for an y form ula of the form

8 x 9 y R (x; y), where R is a primitiv e recursiv e predicate. F or instance, R

ma y b e just ? , in whic h case the quan ti�ers are redundan t. W e conclude

with the follo wing result.

11.4.3. Cor ollar y . HA is c onsistent if and only if P A is c onsistent. ut

Kreisel's theorem has the follo wing consequence: classical termination

pro ofs can b e made constructiv e.

11.4.4. Example . Consider a form ula of the form 8 x 9 y P (x; y) = 0 with

primitiv e recursiv e P . It can b e seen as a sp eci�cation for an input-output

relation of a program. A classical or in tuitionistic pro of of our form ula

176 Chapter 11. First-order arithmetic and G• odel's T

asserts that suc h a program (a recursiv e function) exists. A program com-

puting this function can actually b e extracted from a constructiv e pro of. F or

this, let us assume that the signature of arithmetic (and p erhaps a bit more)

has b een added to � P. Then a form ula lik e 8 n 9 m (n = 2 � m _ n = 2 � m + 1)

is inhabited b y a pro of, i.e., a lam b da term. This lam b da term M , applied

to an y sp eci�c n , will ev aluate to a normal form pac k in

i

(N) ; m to : : : for

a sp eci�c v alue of m . Th us M is actually a program for dividing n um b ers

b y 2.

The little missing p oin t in the ab o v e example is the \bit more" to b e added

to the lam b da calculus. W e ha v e sp eci�c axioms in arithmetic, most notably

the induction sc heme. And this has to b e accoun ted for b y extending the

lam b da calculus b y a primitiv e recursion op erator.

11.5. Kleene's realizabilit y in terpretation

The BHK in terpretation men tioned in previous c hapters relies on the infor-

mal notion of a \construction." Kleene [60] prop osed a w a y to mak e this

precise.

The idea is that a construction of a form ula is a numb er enco ding the

constructions of the subform ulas of the form ula. F or instance, a construction

of a conjunction '

1

^ '

2

is a n um b er n enco ding a pair of n um b ers n

1

and n

2

,

where n

1

and n

2

are constructions of '

1

and '

2

, resp ectiv ely .

The main problematic parts of the BHK-in terpretation is in the case

of implication and univ ersal quan ti�er. F or instance, a construction of an

implication ' ! is an e�ectiv e pro cedure that maps an y construction of '

in to a construction of . Ha ving settled on N as the domain of constructions

it is no w natural to require that a construction of an implication b e a n um b er

enco ding a recursiv e function that maps an y construction of the an teceden t

to a construction of the succeden t.

Belo w w e carry this out in detail, follo wing [61], sho wing that an y form ula

pro v able in in tuitionistic arithmetic has a construction in this sense.

11.5.1. Definition . Let e 2 N and ' b e a closed form ula of arithmetic.

Then the circumstances under whic h e r e alizes ' are de�ned as follo ws.

1. e realizes A , where A is an atomic form ula, if e = 0 and A is true;

2. e realizes '

1

^ '

2

if e = 2

a

� 3

b

where a realizes '

1

and b realizes '

2

;

3. e realizes '

1

_ '

2

if e = 2

0

� 3

a

and a realizes '

1

, or e = 2

1

� 3

a

and a

realizes '

2

;

4. e realizes '

1

! '

2

if e is the G• odel n um b er of a partial recursiv e

function f of one argumen t suc h that, whenev er a realizes '

1

, then

f (a) realizes '

2

;

11.5. Kleene's realizabilit y in terpretation 177

5. e realizes 9 x' (x), where ' (x) is a form ula con taining only x free, if

e = 2

n

� 3

a

where a realizes ' (n).

6. e realizes 8 x' (x), where ' (x) is a form ula con taining only x free, if e

is the G• odel n um b er of a general recursiv e function f of one argumen t

suc h that f (n) realizes ' (n), for ev ery n .

A closed form ula ' is r e alizable if there exists a n um b er e whic h re-

alizes ' . A form ula ' (x

1

; : : : ; x

k

) con taining only the distinct v ariables

x

1

; : : : ; x

k

(k � 0) free is r e alizable if there exists a general recursiv e func-

tion f of k v ariables suc h that f (n

1

; : : : ; n

k

) realizes ' (n

1

; : : : ; n

k

), for ev ery

n

1

; : : : ; n

k

.

W e shall pro v e b elo w that ev ery form ula pro v able in HA is realizable. Be-

fore pro ceeding with the details it is con v enien t to in tro duce some notation

for partial recursiv e functions.

Let us recall again Kleene's normal form theorem, whic h w e used in

Section 11.3. The predicate t

f

is in fact uniform in f , or more precisely

in the G• odel n um b er of f . That is, for ev ery partial recursiv e function

f (x

1

; : : : ; x

n

) of n v ariables, there is a n um b er e suc h that

f (x

1

; : : : ; x

n

) = �

2

(�y : T

n

(e; x

1

; : : : ; x

n

; y)) ;

where T

n

is a certain primitiv e recursiv e predicate. Informally sp eaking, T

n

states that e is an enco ding of f , and y is an enco ding of a computation of

the function enco ded b y e (i.e., f) on input x

1

; : : : ; x

n

. This enco ding is a

pair, and the second comp onen t of this pair is the output. The pro jection �

2

extracts this output from y . The n um b er e is called a G• odel numb er of f .

W e abbreviate �

2

(�y : T

n

(e; x

1

; : : : ; x

n

; y)) b y �

n

(e; x

1

; : : : ; x

n

).

Also recall that b y Kleene's S

m

n

the or em, there is for ev ery m; n � 0 an

m + 1-ary primitiv e recursiv e function S

m

n

(z ; y

1

; : : : ; y

m

) suc h that, if e is a

G• odel n um b er of the m + n -ary function f (y

1

; : : : ; y

m

; x

1

; : : : ; x

n

), then for

eac h m -tuple (k

1

; : : : ; k

m

) of n um b ers, S

m

n

(e; k

1

; : : : ; k

m

) is a G• odel n um b er

of the n -ary function f (k

1

; : : : ; k

m

; x

1

; : : : ; x

n

).

When f (y

1

; : : : ; y

n

; x

1

; : : : ; x

m

) is an n + m -ary partial recursiv e function

with G• odel n um b er e , w e denote b y

� x

1

: : : x

m

:f (y

1

; : : : ; y

n

; x

1

; : : : ; x

m

)

the function S

m

n

(e; y

1

; : : : ; y

m

).

Th us, � x

1

: : : x

n

:f (x

1

; : : : ; x

n

) denotes a G• odel n um b er of the function f

and � x

1

: : : x

n

:f (y

1

; : : : ; y

m

; x

1

; : : : ; x

n

) denotes a primitv e recursiv e func-

tion f (y

1

; : : : ; y

m

) whose v alue for eac h m -tuple (k

1

; : : : ; k

m

) of n um b ers is

a G• odel n um b er of the n -ary function f (k

1

; : : : ; k

m

; x

1

; : : : ; x

n

).

W e also write f z g (x

1

; : : : ; x

n

) for �

n

(z ; x

1

; : : : ; x

n

).

178 Chapter 11. First-order arithmetic and G• odel's T

W e then ha v e for an y n -tuple k

1

; : : : ; k

n

of n um b ers that

f � x

1

: : : x

n

:f (y

1

; : : : ; y

m

; x

1

; : : : ; x

n

) g (k

1

; : : : ; k

n

)

� f (k

1

; : : : ; k

m

; x

1

; : : : ; x

n

)

where � means that the t w o functions ha v e the same domain and ha v e the

same results on same argumen ts inside the domain.

11.5.2. Theorem . If `

H A

' then ' is r e alizable.

Pr oof. W e use a Hilb ert-t yp e form ulation of HA: this amoun ts to the

Hilb ert-t yp e form ulation of in tuitionistic predicate calculus from Chapter 9,

together with the axioms for arithmetic in the �rst section ab o v e.

The pro of is b y induction on the deriv ation of `

H A

' . (This requires

a generalized induction h yp othesis that mak es sense for form ulas with free

v ariables.) W e skip most of the pro of, sho wing only t w o example cases. The

reader ma y �nd the details in x 82 of Kleene's classic [61].

1. Let the pro of b e an instance of the axiom A ! B ! A for some A; B .

Then ' = A ! B ! A . W e de�ne

e = � a: � b:a

(do es this lo ok familiar?) T o sho w that e realizes ' , let a realize A .

W e m ust sho w that f � a: � b:a g (a) i.e.� b:a realizes B ! A . F or this

end let b realize B , and w e m ust sho w that f � b:a g (b), i.e., a realizes A ,

but this holds b y assumption.

2. Let the pro of b e an instance of (A ! B ! C) ! (A ! B) ! A ! C

for some A; B ; C . Then:

e = � p: � q : � a: ff p g (a) g (f q g (a))

ut

11.5.3. Cor ollar y . HA is c onsistent.

Pr oof. There is no n um b er realizing ? . ut

11.5.4. Cor ollar y . P A is c onsistent.

Pr oof. Immediate from Corollaries 11.4.3 and 11.5.3. ut

The pro of that all in tuitionistically pro v able arithmetical statemen ts

ha v e realizers w orks b y mapping pro ofs in to realizers. These realizers are

n um b ers co ding recursiv e functions.

Another similar approac h w ould b e to iden tify the pro ofs with � -terms

in an appropriate extension of � P. This w ould a v oid the passing bac k and

11.6. G• odel's System T 179

forth b et w een functions and enco ding of functions. And w e w ould ha v e a nice

example of a Curry-Ho w ard corresp ondence. If w e de�ne suc h an extension,

then consistency of arithmetic should b e inferred from normalization: there

is no normal form of t yp e ? .

In fact, it o ccurs that w e do not need dep enden t t yp es at all to p erform

a similar construction. It w as actually done b y G• odel at the simply-t yp ed

(prop ositional) lev el, with help of his System T .

11.6. G• odel's System T

W e ha v e seen that in � ! , the simply t yp ed � -calculus, v ery few functions can

b e de�ned. F or instance, among the n umeric functions, only the extended

p olynomials can b e de�ned.

In this section w e consider G• odel's system T , whic h arises from � ! b y

addition of primitiv e t yp es for n um b ers and b o oleans and b y addition of

primitiv e recursion and conditionals for computing with these new t yp es.

the exp osition follo ws [46] to a large exten t.

It will b e seen that � T is far more expressible than � ! . The system w as

conceiv ed and used b y G• odel to pro v e the consistency of arithmetic.

11.6.1. Definition . G• odel's system T , denoted also b y � T, is de�ned as

follo ws.

1. � T has the same set of t yp es as simply t yp ed � -calculus � ! , with the

follo wing additions:

� ::= : : : j in t j b o ol

2. � T has the same set of terms as simply t yp ed � -calculus � ! �a la

Curry , with the follo wing additions:

M ::= : : : j z j s (M) j r (M ; N ; L) j t j f j d (M ; N ; L)

3. � T has the same set of t yping rules as simply t yp ed � -calculus � ! �a

la Curry , with the follo wing additions:

� ` z : in t

� ` M : in t

� ` s (M) : in t

� ` M : � & � ` N : � ! in t ! � & � ` L : in t

� ` r (M ; N ; L) : �

� ` t : b o ol � ` f : b o ol

� ` M : � & � ` N : � & � ` L : b o ol

� ` d (M ; N ; L) : �

180 Chapter 11. First-order arithmetic and G• odel's T

4. � T has the same set of reduction rules as simply t yp ed � -calculus � !

�a la Curry , with the follo wing additions:

r (M ; N ; z) ! M

r (M ; N ; s (L)) ! N (r (M ; N ; L)) L

d (M ; N ; t) ! M

d (M ; N ; f) ! N

By !

T

w e denote the union of !

�

and the ab o v e reductions.

As men tioned ab o v e, in t and b o ol denote t yp es for in tegers and b o oleans,

resp ectiv ely . The term formation op erators z and s denote zero and succes-

sor, resp ectiv ely , as one migh t imagine.

The t w o �rst inference rules for in t can b e seen as intr o duction rules,

whereas the third rule for in t is an elimination rule. Analogously , z and s are

c onstructors of t yp e in t and r is a destructor of t yp e in t . Similar remarks

apply to the inference rules and term formation op erators for b o ol .

11.6.2. Remark . As alw a ys one can study a Ch urc h v arian t and one can

study a v arian t in whic h pairs are included.

The follo wing t w o theorems sho w that the main prop erties of simply

t yp ed � -calculus are preserv ed. In particular, the extra expressibilit y do es

not come at the exp ense of lo osing strong normalization.

11.6.3. Theorem . The r elation !

T

is Chur ch-R osser.

Pr oof. By the T ait{Martin-L• of tec hnique. ut

11.6.4. Theorem . The r elation !

T

is str ongly normalizing.

Pr oof. By the metho d of T ait. ut

Recall that T ait's metho d (whic h applies to � T with v ery few adjust-

men ts) is based on a construction that assigns a set of terms to ev ery t yp e.

If w e attempt to formalize T ait's pro of, w e necessarily m ust use expressions

of the form: \F or al l sets A of terms, satisfying : : : we have : : : " . W e can

talk ab out terms using their n um b ers, but one cannot en umerate all p ossible

sets of terms, and expressions as the ab o v e cannot b e co ded in to �rst-order

arithmetic. One needs to quan tify o v er sets of n um b ers.

Sp eci�cally , Lemma 4.4.3(iii) asserts that for al l typ es � the set [[�]] is

satur ate d . If w e could de�ne [[�]] directly then w e could write a form ula �

�

(x)

expressing in arithmetic that x is a mem b er of [[�]]. Then, the statemen t of

our lemma could b e expressed in the �rst-order language. But the de�nition

of [[�]] is b y induction, and there is no single form ula expressing the prop ert y

11.6. G• odel's System T 181

of b eing a mem b er of [[�]]. The de�nition of [[�]] can only b e seen as a set of

p ostulates ab out a set (unary relation) v ariable X . Th us, Lemma 4.4.3(iii)

can only b e formalized as follo ws: for al l typ es � and al l sets X , if X

satis�es the p ostulates on [[�]] then X is satur ate d. And this in v olv es the

quan ti�er \ 8 X ".

Our �rst normalization pro ofs w ere for simply t yp ed � -calculus. W e

pro v ed b oth w eak normalization b y the \simple" T uring-Pra witz tec hnique

and strong normalization b y the \non trivial" tec hnique due to T ait. There

are also \simple" pro ofs of the strong normalization theorem for � ! . The

di�erence b et w een simple and nontrivial can b e giv en more precise mean-

ing: the \simple" tec hniques can b e formalized in arithmetic, whereas the

\non trivial" can not.

In the case of � T the situation is di�eren t. The T ait pro of can b e adapted

to pro v e strong normalization for � T, but the simple pro ofs men tioned ab o v e

do not w ork. In fact, an y strong normalization pro of for System T m ust b e

\non trivial". See Corollary 11.7.5.

Ho w ev er, if w e restrict atten tion to �nitely man y t yp es, the situation

is di�eren t. W e no longer need to quan tify o v er all sets, b ecause w e only

need �nitely man y of them, and these can b e explicitely de�ned b y form ulas.

Th us, the whole pro of carries o v er in �rst-order arithmetic. This situation

o ccurs in particular when w e deal with a single function f , de�nable b y a

term F , see Prop osition 11.6.10.

In � T, one can compute with b o oleans.

11.6.5. Example . De�ne

not (M) = d (f ; t ; M)

or (M ; N) = d (t ; N ; M)

and (M ; N) = d (N ; f ; M)

Then

not (t) !

T

f

not (f) !

T

t

and w e similarly ha v e the exp ected reductions for or and and .

W e also ha v e some more reductions. F or instance,

or (t ; N) !

T

t

Ho w ev er, w e do not ha v e

or (N ; t) !

T

t

Indeed, one can sho w that there is no t ypable term G (x; y) suc h that b oth

G (t ; N) !

T

t and G (N ; t) !

T

t .

Ab o v e w e ha v e in tro duced in t as a represen tation of in tegers. The fol-

lo wing c haracterization of normal forms giv es the precise in terpretation of

that.

182 Chapter 11. First-order arithmetic and G• odel's T

11.6.6. Pr oposition . L et M b e a close d normal form and supp ose ` M : � .

1. if � = in t then M = m , for some m 2 N ;

2. if � = b o ol then M = f or M = t ;

3. if � = �

1

! �

2

then M = �x:N .

In � T one can also compute with in tegers.

11.6.7. Example . De�ne for an y n um b er n 2 N :

n = s

n

(z)

Then w e can de�ne

plus (M ; N) = r (M ; �x:�y : s (x) ; N)

Indeed,

plus (m ; z) = r (m ; �x:�y : s (x) ; z)

!

T

m

and

plus (m ; n + 1) = plus (m ; s (n))

= r (m ; �x:�y : s (x) ; s (n))

!

T

(�x:�y : s (x)) (r (m ; �x:�y : s (x) ; n)) n

!!

T

s (r (m ; �x:�y : s (x) ; n))

!!

T

s (m + n)

= m + n + 1

11.6.8. Definition . A function f : N

k

! N is de�nable in � T b y a term F

if

4

1. ` F : in t

k

! in t ;

2. F (m

1

; : : : ; m

k

) =

T

f (m

1

; : : : ; m

k

) .

It is an easy exercise to sho w that m ultiplication, exp onen tial, predecessor,

etc.. are de�nable.

As long as � in the t yping rules for the new constructs is restriced to

base t yp es, i.e., b o ol and in t , the functions that can b e de�ned in this

w a y are primitiv e recursiv e. Ho w ev er, as the t yp e � increases, more and

more functions b ecome de�nable. In fact, one can sho w that Ac k ermann's

function is de�nable in � T (Exercise 11.8.11).

The system � T is also called the system of primitive r e cursive function-

als of �nite typ e , b ecause it mak es a system of notation for higher-order

functions (i.e., functions on functions etc.) de�ned o v er the set of in tegers

b y means of primitiv e recursion. (The \al" in \functionals" re
ects exactly

the p oin t that w e deal with higher-order ob jects.)

4

in t

k

means in t ! : : : ! in t (k arro ws).

11.7. G• odel's Diale ctic a in terpretation 183

11.6.9. Remark . A construction related to the r e cursor r is the iter ator i .

It has form i (M ; N ; L) with the t yping rule

� ` M : � & � ` N : � ! � & � ` L : in t

� ` i (M ; N ; L) : �

and reduction rules

i (M ; N ; z) ! M

i (M ; N ; s (L)) ! N (i (M ; N ; L))

The predecessor function satisfying p (s (x)) !

T

x can b e de�ned b y the

recursor but not b y the iterator. Ho w ev er, also the iterator can de�ne the

predecessor pro vided one only requires that p (m + 1) !

T

m . In fact, one

can de�ne the recursor from the iterator and pairing, pro vided one only

requires reductions of this form.

The question arises exactly whic h functions can b e de�ned in � T. It is

not di�cult to see that ev ery primitiv e recursiv e function is de�nable. It is

also not di�cult to see that not ev ery recursiv e function can b e de�nable.

Indeed, supp ose otherwise. All terms of t yp e in t ! in t can b e e�ectiv ely

en umerated, and eac h of these terms de�nes a total function (b ecause of

strong normalization). Th us, w e can en umerate all total recursiv e functions

of one argumen t: g

0

; g

1

; : : : . But the function h (x) = g

x

(x) is recursiv e and

cannot o ccur in the sequence. W e can ha v e ev en a tigh ter upp er b ound.

11.6.10. Pr oposition . A l l functions de�nable in � T ar e pr ovably total in P A .

Pr oof. If a function f is de�nable b y a term F then this term describ es an

algorithm to compute f . Th us, a predicate t

f

can b e e�ectiv ely computed

from F and con v ersely . Pro ving the form ula 8 x 9 y (t

f

(x; y) = 0) th us reduces

to pro ving that all applications of the form F n are strongly normalizable.

One can do it (with T ait's tec hnique) so that only �nitely man y t yp es m ust

b e considered. All this argumen t can b e co ded in to arithmetic. ut

W e will see later (Theorem 11.7.7) that the class of functions de�nable

in � T coincides with the class of pro v ably total functions of P A.

11.7. G• odel's Diale ctic a in terpretation

G• odel in tro duced System T as a v ehicle to pro v e consistency of P A. More

precisely , he translates eac h form ula of arithmetic in to a statemen t ab out

the primitiv e recursiv e functionals of �nite t yp e b y the so-called Diale ctic a

interpr etation. The original G• odel's pap er is [48]. W e will only sk etc h the

main ideas here. More details can b e found e.g. in [55 , Ch.18].

184 Chapter 11. First-order arithmetic and G• odel's T

The basis of the metho d is a translation of a form ula ' in the language

of arithmetic in to a term '

D

of t yp e b o ol . Supp ose �rst that ' is an atomic

form ula. Since all primitiv e recursiv e functions and predicates are de�nable

in � T, w e can de�ne '

D

so that

H A ` ' i� '

D

=

T

t :

Here w e do not require an y additional information ab out the pro of of ' to b e

preserv ed b y '

D

. (This is b ecause primitiv e recursiv e statemen ts are treated

as \observ ables". Compare this to 0 realizing all atomic form ulas in Kleene's

approac h.) F or complex form ulas, w e w an t more. An ideal situation w ould

b e as follo ws: '

D

has one free v ariable x , and

H A ` ' i� '

D

[x := M] =

T

t ; for some M :

The term M w ould b e the realizer, i.e., it w ould represen t the pro of. (Note

the distinction: '

D

is a syn tactic translation, the computational con ten ts is

in M .)

Life is not that easy , and w e ha v e to settle for something a little less

transparen t and more complicated. But the essen tial idea remains the same.

Belo w w e w ork in Ch urc h-st yle � T, extended with pro duct t yp es for simplic-

it y . (This is a syn tactic sugar that allo ws us to iden tify sequences of t yp es

(v ariables etc.) with single t yp es (v ariables, etc.) if w e �nd it con v enien t.)

11.7.1. Definition .

1. F or a term M : b o ol , with FV (M) = f z

�

g , w e write T j = M i�

M [z := Z] =

T

t , for all closed Z : � .

2. W e de�ne a � - formula as an expression of the form \ 9 x

�

8 y

�

D (x; y)",

where x; y are v ariables, � and � are arbitrary t yp es, and D (x; y) has

t yp e b o ol .

3. W e write T j = 9 x

�

8 y

�

D i� there exists a term X : � with y 62 FV (X),

suc h that T j = D [x := X].

5

The v ariables x and y in the ab o v e de�nition, part (2) ma y b e of pro duct

t yp es, th us actually ma y represen t se quenc es of v ariables.

11.7.2. Definition . F or eac h form ula ' in the language of arithmetic, w e

de�ne a � -form ula '

D

= 9 x 8 y '

D

b y induction with resp ect to ' .

� If ' is an atom (a primitiv e recursiv e relation) then '

D

= 9 x

in t

8 y

in t

'

D

,

where '

D

is a term whic h de�nes this relation in � T, and x and y are

fresh v ariables.

5

The term X should b e seen as parameterized b y the free v ariables of D , except y .

11.7. G• odel's Diale ctic a in terpretation 185

Note that ? is a primitiv e recursiv e relation. Th us, as ?

D

w e can tak e e.g.

the term f . Also note that the quan ti�ers 9 x

in t

8 y

in t

are redundan t and

in tro duced here just for uniformit y .

Let no w assume that '

D

= 9 x

�

8 y

�

'

D

(x; y) and

D

= 9 u

�

8 v

�

D

(u; v).

Then:

� (' ^)

D

= 9 xu 8 y v ('

D

(x; y) ^

D

(u; v));

� (' _)

D

= 9 z

in t

xu 8 y v ((z = 0 ! '

D

) ^ (z 6= 0 !

D

));

� (' !)

D

= 9 u

1

� ! �

y

1

� ! � ! �

8 xv ('

D

(x; y

1

xv) !

D

(u

1

x; v));

� (: ')

D

= 9 z

� ! �

8 x (: '

D

(x; z x));

And no w tak e '

D

= 9 x

�

8 y

�

'

D

(x; y ; z

in t

). Then

� (9 z ')

D

= 9 z x 8 y '

D

(x; y ; z);

� (8 z ')

D

= 9 x

1

in t ! �

8 y z '

D

(x

1

z ; y ; z)

11.7.3. Theorem (G• odel). If HA ` ' then T j = '

D

.

Pr oof. The pro of is b y induction with resp ect to the pro of of ' . W e omit

this pro of, whic h can b e found in [55 , Ch.18]. ut

The pro of of the ab o v e theorem is actually building a realizer X for a giv en

pro of in HA. The computational con ten ts of the pro of in HA is preserv ed

b y the realizer as w e will see b elo w. Here are some consequences of the

in terpretation.

11.7.4. Cor ollar y . HA is c onsistent.

Pr oof. Supp ose HA ` ? . Then T j = ?

D

, i.e., w e ha v e f =

T

t . ut

11.7.5. Cor ollar y . The str ong normalization the or em for System T is a

statement indep endent fr om P A .

6

Pr oof. Otherwise, all the pro of of SN w ould b e formalizable in P A. This

con tradicts Theorem 11.2.2. ut

The ab o v e result can b e explained as follo ws. G• odel's consistency pro of

mak es use of the normalization theorem for � T, and ev ery other part than

this latter result can b e pro v ed in P A itself, pro vided w e go through the e�ort

of translating terms to n um b ers b y some G• odel-n um b ering. By G• odel's the-

orem ab out the unpro v abilit y of consistency of arithmetic within arithmetic

6

SN is expressible in the language of arithmetic with help of K• onig's Lemma: \F or

e ach (G• odel numb er of a) term M ther e is n such that al l r e duction p aths fr om M (c o de d

by a G• odel numb er) c onsist of at most n steps".

186 Chapter 11. First-order arithmetic and G• odel's T

it follo ws that the normalization therem cannot b e pro v ed in P A|unless

P A is inconsisten t.

Th us, in pro ving the normalization for � T w e m ust b e using metho ds

whic h essen tially transcend pro of tec hniques that are formalizable in P A,

i.e., induction o v er natural n um b ers.

In normalization pro of for simply t yp ed � -calculus w e used induction

on lexicographically order triples, and similarly in the pro of of Gen tzen's

Hauptsatz (the cut-elimination theorem). Suc h inductions can b e reduced

to nested inductions and are therefore still formalizable in P A.

One can also view induction on lexicographically ordered tuples as an

ordinal induction|induction up to !

n

|whic h happ ens to b e formalizable

in P A. Gen tzen disco v ered that b y mo ving to larger ordinals, one could pro v e

a cut-elimination theorem for arithmetic. More sp eci�cally he considers

induction up to �

0

. This is the �rst ordinal that cannot b e reac hed b y

addition, m ultiplication, and exp onen tiation.

Also, one can sho w that the functions de�nable in � T are the functions

whic h are de�nable b y trans�nite recursion up to the ordinals whic h are

strictly smaller than �

0

, see [96]. This sho ws that the expressiv e p o w er

of � T is enormous.

11.7.6. Cor ollar y . A l l functions pr ovably total in �rst-or der arithmetic

ar e de�nable in T .

Pr oof. Without loss of generalit y w e can consider a unary function. As-

sume P A ` 8 x 9 y (t

f

(x; y) = 0), where t

f

is as in De�nition 11.3.3. Recall

that t

f

(x; y) = 0 is primitiv e, and th us treated as an atomic form ula. Th us,

the translation of the ab o v e form ula (after remo ving redundan t quan ti�ers)

has the form

(8 x 9 y (t

f

(x; y) = 0))

D

= 9 y

in t ! in t

1

8 x

!

D (y

1

x; x) ;

where D represen ts the relation t

f

(x; y) = 0.

Since HA j = (8 x 9 y (t

f

(x; y) = 0))

D

, w e ha v e a realizing term Y

1

, suc h

that D (Y

1

n ; n) reduces to t . Let Y

1

n =

T

m . Then w e ha v e t

f

(n; m) = 0,

and th us f (n) = �

2

(m). Clearly , the pro jection is primitiv e recursiv e and

represen ted b y some term �

2

. The conclusion is that the term �x: �

2

(Y

1

x)

represen ts f in System T . ut

T ogether with Prop osition 11.6.10, this giv es:

11.7.7. Theorem . The functions de�nable in � T ar e exactly those that ar e

pr ovably total in P A.

11.7.8. Remark . Let us no w come bac k to the idea men tioned in Exam-

ple 11.4.4 of a v arian t of � P corresp onding to �rst-order arithmetic. W e

11.8. Exercises 187

shall argue that System T can b e seen as a prop ositional coun terpart of

suc h a calculus. Indeed, let us consider again the induction sc heme

(8 x : in t)(' (x) ! ' (x + 1)) : ! ' (0) ! (8 x : in t) ' (x) :

In order to incorp orate arithmetic in to � P one has to mak e sure that ev ery

suc h t yp e is inhabited. One w a y to do it is to in tro duce new constan ts R

'

of the ab o v e t yp es. A pro of b y induction is no w represen ted b y a term

R

'

M

(8 x : in t)(' (x) ! ' (x +1))

N

'

0 of t yp e (8 x : in t) ' (x).

The next question is what should b e a reduction rule asso ciated with R

'

.

Let n : in t b e a sp eci�c in teger. The term R

'

M N n represen ts a pro of

of ' (n) obtained as follo ws: �rst pro v e the general statemen t (8 x : in t) ' (x)

b y induction and then apply it to n . Suc h a pro of can b e seen as con taining

a redundancy: an in tro duction of univ ersal quan ti�er b y R

'

follo w ed b y

elimination of that quan ti�er. W e can a v oid redundancy b y applying M

to N exactly n times instead. This justi�es the reduction rules:

� R

'

M N 0 !

�

N ;

� R

'

M N (n + 1) !

�

M n (R

'

M N n).

No w observ e what happ ens to our constan t under the dep endency erasing

translation M 7! M . The t yp e of R

'

b ecomes:

(in t ! ' ! ') ! ' ! in t ! ' (x) ;

whic h is, up to p erm utation, the same as the t yp e of the recursor r . Also,

the reduction rules ab o v e di�er from those of De�nition 11.6.1(4) just in the

order of argumen ts.

11.8. Exercises

11.8.1. Exer cise . Sho w that the follo wing theorems are deriv able in P A:

� 8 x (: (x = 0) ! 9 y (y = x + 1));

� 8 x 8 y 8 z (x = y ! y = z ! x = z);

� 8 x 8 y 8 z ((x + y) + z = x + (y + z));

� 8 x 8 y (x + y = y + x);

� 2 + 2 = 4 ;

� 8 x 9 y (x = 2 � y _ x = 2 � y + 1);

� other common arithmetical prop erties.

188 Chapter 11. First-order arithmetic and G• odel's T

11.8.2. Exer cise . Chec k whether the axiom sc heme 8 x 8 y (' (x) ! x =

y ! ' (y)) of P A can b e replaced b y 8 x 8 y (x = y ! x + 1 = y + 1) and

8 x 8 y 8 z (x = y ! y = z ! x = z).

11.8.3. Exer cise . Sho w that ev ery function represen table in P A is strongly

represen table (and con v ersely). Hint: Consider the form ula:

(9 ! z ' (~ x ; z) : ^ ' (~ x ; y)) _ (:9 ! z ' (~ x ; z) : ^ y = 0) :

11.8.4. Exer cise . Sho w that the condition (2) in De�nition 11.3.1 can b e

replaced b y:

2') P A ` 9 y ' (~ n ; y) ; for all ~ n 2 N

k

;

2") N j = ' (~ n ; m) implies f (n) = m , for all ~ n and m .

Hint: Consider the form ula: ' (~ x; y) ^ 8 z (' (~ x ; z) ! y � z).

11.8.5. Exer cise . Consider again the form ulas of Exercise 11.8.1. Are they

pro v able in HA?

11.8.6. Exer cise . Pro v e part 1 of Theorem 11.4.1.

11.8.7. Exer cise . Let % b e a �xed form ula. F or an y form ula ' , let '

%

b e

obtained from ' b y replacing ev ery atomic subform ula � b y � _ ' . Sho w

that if HA ` ' then also HA ` '

%

.

11.8.8. Exer cise (H. F riedman). Pro v e Theorem 11.4.2, using Exercise 11.8.7

as a lemma. Hint: T ak e % to b e 9 y (t

f

(~ x; y) = 0), and apply Exercise 11.8.7

to the form ula ::9 y (t

f

(~ x; y) = 0).

11.8.9. Exer cise . Sho w that m ultiplication, exp onen tiation, subtraction,

and all y our fa v ourite in teger functions are de�nable in � T.

11.8.10. Exer cise . Here are our fa v ourite in teger functions: let f

0

b e the

successor function, and de�ne f

k +1

(x) := f

x

k

(x) (apply f

k

to x exactly x

times). Sho w that all functions f

k

are de�nable i n � T.

11.8.11. Exer cise . The A ckermann function f

!

is de�ned b y f

!

(x) = f

x

(x).

Pro v e that the Ac k ermann function is not primitiv e recursiv e. Hint: Sho w

that ev ery primitiv e recursiv e function is ma jorized b y one of the f

k

's.

11.8.12. Exer cise . Sho w that the Ac k ermann function f

!

(Exercise 11.8.11)

is de�nable in � T.

11.8.13. Exer cise . Sho w that all functions f

! + k +1

(x) = f

x

! + k

(x) are de�n-

able in � T, as w ell as the function f

! � 2

(x) = f

! + x

(x).

11.8. Exercises 189

11.8.14. Exer cise . Go ahead, de�ne ev en faster gro wing functions, all de-

�nable in � T. Will this ev er stop?

11.8.15. Exer cise . Sho w that all functions de�nable in � ! are de�nable

in � T. T o o easy? Do not use Sc h wic h ten b erg theorem.

11.8.16. Exer cise . Sho w that Bo oleans mak e syn tactic sugar in � T, that

is, the class of in teger functions de�nable in � T without Bo oleans is the

same.

190 Chapter 11. First-order arithmetic and G• odel's T

CHAPTER 12

Second-order logic and p olymorphism

W e often sa y that individuals are ob jects of or der zer o . F unctions and

relations on individuals are of or der one . F urther, op erations on ob jects of

order n will b e themselv es classi�ed as b eing of order n + 1. This terminology

is often used in the metalanguage, referring to problems, systems etc. F or

instance, the uni�cation problem discussed in Chapter 6, is often called

\�rst-order uni�cation". Note that the uni�ed expressions (unkno wns) are of

order zero, its the uni�cation itself (an op eration on terms) that is �rst-order.

One can also consider se c ond-or der uni�c ation , with function unkno wns and

so on.

W e talk of \�rst-order logic", b ecause w e ha v e �rst-order predicates, and

b ecause quan ti�cation can b e seen as an op erator acting on individuals. So

what \second-order logic" should b e? T ypically , one adds to the language

v ariables ranging o v er predicates, sets or functions, and quan tify o v er suc h

v ariables. Th us, second-order logic is usually an extension of �rst-order

logic. Ho w ev er, in presence of second-order quan ti�cation, the �rst-order

features b ecome less imp ortan t than one could exp ect, and man y prop erties

of second-order logic can b e studied in a simpli�ed settings: prop ositional

second-order logic. This logic is obtained b y adding second-order features di-

rectly to prop ositional calculus. That is, quan ti�ers are no w binding prop o-

sitional v ariables.

12.1. Prop ositional second-order form ulas

W e extend the language of prop ositional logic b y second-order quan ti�ers,

i.e., quan ti�ers o v er prop ositions. As b efore, w e assume an in�nite set P V of

prop ositional v ariables and w e de�ne the se c ond-or der pr op ositional formulas

b y induction, represen ted b y the follo wing grammar:

2� ::= ? j p j (2� ! 2�) j (2� _ 2�) j (2� ^ 2�) j 8 p 2� j 9 p 2� ;

191

192 Chapter 12. Second-order logic and p olymorphism

where p ranges o v er P V . The quan ti�ers are mean t to bind prop ositional

v ariables within their scop e, so that e.g., FV (8 p ') = FV (') � f p g . (W e

skip the full de�nition of FV , lea ving this pleasure to the reader, as w ell as

another one: to de�ne the op eration of substitution ' [p :=].) W e iden tify

alpha-con v ertible form ulas. Notational con v en tions are similar to those used

for prop ositional and �rst-order logic.

The in tended meaning of \ 8 p ' (p)" is that ' (p) holds for all p ossible

meanings of p . The meaning of \ 9 p ' (p)" is that ' (p) holds for some mean-

ing of p . Classically , there are just t w o p ossible suc h meanings: the t w o truth

v alues. Th us, the statemen t 8 p ' (p) is classically equiv alen t to ' (>) ^ ' (?),

and 9 p ' (p) is equiv alen t to ' (>) _ ' (?). Therefore, ev ery prop ert y express-

ible with quan ti�ers can b e also expressed without.

1

In fact, ev ery function

o v er the t w o-elemen t Bo olean algebra f? ; >g can b e de�ned with help of

ordinary prop ositional connectiv es (this prop ert y is called functional c om-

pleteness) and th us no extension at all of the prop ositional language can

increase its expressiv e p o w er.

12.1.1. W arning . The ab o v e is no longer true when w e add second-order

quan ti�cation to �rst-order classical logic, and when the quan ti�ed predi-

cates ma y dep end on individual terms. These are no longer just truth-v alues,

but rather truth-v alued functions on individuals.

In the in tuitionistic logic, there is no �nite set of truth-v alues, and the

prop ositional quan ti�ers should b e regarded as ranging o v er some in�nite

space of predicates. (In fact, there is nothing lik e functional completeness:

Kreisel [64] and Goad [47] sho w predicates non-expressible in prop ositional

in tuitionistic logic but de�nable with help of quan ti�ers or in�nite op era-

tions.)

The in tuitiv e meaning of quan ti�ed expressions is b est explained b y

means of the Brou w er-Heyting-Kolmogoro v in terpretation. Note that w e

deal only with prop ositions expressible in our language. Indeed, to handle

the predicates in a constructiv e w a y , w e m ust b e able to refer to their pro ofs.

� A c onstruction of 8 p ' (p) is a metho d (function) tr ansforming every

c onstruction of any pr op osition P into a pr o of of ' (P) .

� A c onstruction of 9 p ' (p) c onsists of a pr op osition P , to gether with a

c onstruction of P , and a c onstruction of ' (P) .

Syn tactically , predicates P m ust b e themselv es represen ted b y form ulas. The

class of form ulas quan ti�ers range o v er can b e tak en to b e the full set 2�, or

a prop er subset of 2�. W e c ho ose the �rst option (called ful l c ompr ehension)

so that the follo wing sc hemes are v alid (for ev ery '):

1

But at a certain cost: compare the PSP A CE-completeness of satis�abilit y of quan ti�ed

Bo olean form ulas to the NP-completeness of ordinary prop ositional form ulas. It follo ws

that remo ving quan ti�ers ma y cause an exp onen tial increase of the size of a form ula.

12.2. Seman tics 193

� 8 p ': ! ' [p :=];

� 9 p (p $ ').

One has to b e a w are that the full comprehension p ostulate has the follo w-

ing side-e�ect, called impr e dic ativity of second-order logic. The meaning of

a form ula 8 p ' is determined b y the meanings of all form ulas ' [p :=],

including the cases when is either equal or more complex than 8 p ' it-

self. There is no w ell-founded hierarc h y with resp ect to the seman tics, in

particular man y pro of metho ds based on induction m ust fail.

On the other hand, the assumption that quan ti�ers range o v er de�nable

prop ositions only is a sharp restriction compared to the ordinary understand-

ing of (full) second-order classical logic, as in W arning 12.1.1. Ho w ev er, from

a constructiv e p oin t of view, a pr o of and not a mo del is the ultimate cri-

terium, and th us the syn tactic approac h should b e giv en priorit y o v er the

seman tic w a y of thinking. See also Remark 12.2.7.

12.1.2. Definition . Natural deduction.

The natural deduction system for second-order in tuitionistic prop osi-

tional logic consists of the ordinary rules for prop ositional connectiv es plus

the follo wing rules for quan ti�ers:

(8 I)

� ` '

� ` 8 p '

(p 62 F V (�)) (8 E)

� ` 8 p '

� ` ' [p := #]

(9 I)

� ` ' [p := #]

� ` 9 p '

(9 E)

� ` 9 p ' � ; ' `

� `

(p 62 F V (� ;))

In the ab o v e, the notation F V (�) is the union of all FV (%), for % 2 �.

One can also de�ne other pro of systems, most notably sequen t calculus

for second-order prop ositional in tuitionistic logic. Cut-elimination pro ofs

for this calculus w ere obtained indep enden tly b y sev eral authors; three of

them (b y Girard, Martin-L• of and Pra witz) are published in the b o ok [34].

12.2. Seman tics

W e b egin, as usual, with the algebraic approac h, based on Heyting algebras,

although, historically , second-order Kripk e seman tics w as considered �rst.

12.2.1. Definition . Let v : V ! H b e a v aluation of prop ositional v ariables

in a complete Heyting algebra H . W e extend v to arbitrary second-order

form ulas as follo ws:

� v (' _) = v (') [v ();

194 Chapter 12. Second-order logic and p olymorphism

� v (' ^) = v (') \ v ();

� v (' !) = v (')) v ();

� v (?) = 0;

� v (8 p') = inf f v

a

p

(') : a 2 H g ;

� v (9 p') = sup f v

a

p

(') : a 2 H g .

where v

p

is a v aluation de�ned b y v

a

p

(p) = a , and v

a

p

(q) = v (q), for q 6= p .

W e use the sym b ol j = in the ob vious w a y , except that w e deal no w

exclusiv ely with complete algebras. F or instance, w e write j = ' (and w e

sa y that ' is a tautology) i� ' has the v alue 1 under all v aluations in all

complete Heyting algebras.

12.2.2. Theorem (Heyting completeness). The c onditions � j = ' and � ` '

ar e e quivalent.

Pr oof. Omitted.

2

See the pap er [40] for details. ut

The pap er of Geuv ers [40] is suggested for reading, but algebraic seman tics

for v arious second-order and higher-order in tuitionistic logics w as kno wn

b efore Geuv ers, cf. the w ork of Alb ert Dragalin [32].

Kripk e seman tics for second-order prop ositional form ulas w as considered

b y sev eral authors. There are v arious sorts of mo dels and di�eren t v arian ts

of the logics under consideration. One should b egin with a reference to

Pra witz [86], who �rst pro v ed a completeness theorem for a class of Beth

mo dels , structures similar in spirit to Kripk e mo dels. Then, Gabba y [36 , 37]

sho w ed completeness for a sligh t extension of our second-order logic for a

restricted class of Kripk e mo dels. This result w as adjusted b y Sob olev [100]

so that the Gabba y's axiom (see Remark 12.2.5) w as no longer necessary .

W e recommend the pap er [99] of Skv oro v for a surv ey of these results. Our

de�nition b elo w follo ws the latter pap er (up to syn tactic sugar).

12.2.3. Definition .

1. A second-order Kripke mo del is a tuple of the form C = h C ; � ; f D

c

:

c 2 C gi , where C is a non-empt y set, � is a partial order in C , and

the D

c

's are families of up w ard-closed

3

subsets of C , satisfying

if c � c

0

then D

c

� D

c

0

:

The in tuition is that D

c

is the family of predicates meaningful at

state c .

2

A di�cult y in this pro of is that the Linden baum algebra of second-order form ulas is

not complete and has to b e emb e dde d in to a complete one in suc h a w a y that the existing

joins and meets are preserv ed.

3

If c

0

2 x 2 D

c

and c

0

� c

0 0

then also c

00

2 x .

12.2. Seman tics 195

2. A valuation in C assigns up w ard-closed subsets of C to prop ositional

v ariables. Suc h a v aluation v is admissible for a state c i� v (p) 2 D

c

,

for all prop ositional v ariables p . Clearly , a v aluation admissible for c

is also admissible for all c

0

� c . W e write v

x

p

for a v aluation satisfying

v

x

p

(p) = x , and v

x

p

(q) = v (q), for q 6= p .

The forcing relation c; v
 ' is de�ned (when v is admissible for c) as

follo ws:

� c; v
 p i� c 2 v (p);

� c; v
 ' _ i� c; v
 ' or c; v
 ;

� c; v
 ' ^ i� c; v
 ' and c; v
 ;

� c; v
 ' ! i� c

0

; v
 , for all c

0

� c with c

0

; v
 ' ;

� c; v
 ? nev er happ ens;

� c; v
 9 p ' i� c; v

x

p

 ' , for some x 2 D

c

;

� c; v
 8 p ' i� c

0

; v

x

p

 ' , for all c

0

� c , and all x 2 D

c

0

.

3. A Kripk e mo del is c omplete i� for ev ery form ula ' , ev ery c and v , the

set v (') = f c

0

: c

0

; v
 ' g is in D

c

, whenev er v is admissible for c . (If

w e understand the meaning of prop ositional v ariables free in ' then

w e should understand the form ula to o.)

4. W e write �
 ' i� for ev ery complete Kripk e mo del C , ev ery c 2 C

and ev ery v aluation v admissible for c , suc h that c; v forces all form ulas

in �, w e also ha v e c; v
 ' .

The completeness theorem for Kripk e mo dels in the form b elo w should prob-

ably b e attributed to Sob olev [100].

12.2.4. Theorem (Kripk e completeness). The c onditions �
 ' and � ` '

ar e e quivalent.

12.2.5. Remark . The additional axiom sc heme used b y Gabbba y is:

8 p (_ ' (p)) : ! _ 8 p ' (p) ; where p 62 FV () :

This is a classical second-order tautology , but not an in tuitionistic tautology .

The class of mo dels corresp onding to prop ositional second-order in tuition-

istic logic extended with Gabba y's axiom (called also Grzegorczyk sc hema)

is obtained b y p ostulating that all D

c

are equal to eac h other (mo dels with

constan t domains).

12.2.6. Remark . Note that the p ostulate of completeness of Kripk e mo dels

re
ects the idea of impredicativit y . Indeed, it guaran tees that the range of

a quan ti�ed v ariable includes ev ery de�nable predicate. In fact, if w e do

not require completeness, the follo wing tautology sc hemes (expressing full

comprehension) w ould b e no longer v alid:

196 Chapter 12. Second-order logic and p olymorphism

� 8 p ' ! ' [p :=];

� 9 p (p $ ').

Observ e that completeness cannot b e replaced b y a mo di�ed de�nition of

forcing,

c; v
 8 p ' i� c

0

; v

v ()

p

 '; for all c

0

� c; and all form ulas ;

b ecause suc h a de�nition w ould b e circular. (T ak e = 8 p' .)

12.2.7. Remark . It is tempting to consider Kripk e mo dels with all D

c

equal

to the family of all up w ard-closed subsets of C (princip al Kripk e mo dels).

Unfortunately , the class of all form ulas v alid in principal mo dels is not re-

cursiv ely en umerable, and th us non-axiomatizable in a �nitary w a y . This

result is due to Skv oro v [99] and indep enden tly to Kremer [65].

Of course the ab o v e men tioned results of Skv oro v and Kremer imply

that the set of second-order sen tences true in all principal mo dels cannot

b e decidable or ev en recursiv ely en umerable. The set of pro v able sen tences

of our second-order in tuitionistic logic is of course recursiv ely en umerable.

But it is undecidable.

12.2.8. Theorem .

It is unde cidable whether a given formula ' 2 2� has a pr o of.

The �rst pro of of undecidabilit y w as giv en b y Gabba y [36 , 37]. But this pro of

applies to the logic extended b y Gabba y's axiom (see Remark 12.2.5), and

it do es not extend automatically to the pure in tuitionistc case. The pro of is

using completeness theorem, for Kripk e mo dels with constan t domains. The

pap er [100] of Sob olev �lled this gap, and allo w ed to infer Theorem 12.2.8 b y

essen tially the same metho d. In the mean time, M.H. L• ob [67] has published

another pro of of Theorem 12.2.8. The main result of [67] whic h implies

undecidabilit y , is an e�ectiv e translation from �rst-order classical logic to

second-order in tuitionistic logic. Unfortunately , L• ob's pap er is quite in-

comprehensible. It has b een later sligh tly simpli�ed b y Arts [3] and Arts

and Dekk ers [4], but the resulting presen tations are still quite complicated.

A simpler, syn tactic pro of of Theorem 12.2.8 can b e found in [112].

12.3. P olymorphic lam b da-calculus (System F)

The p olymorphic lam b da-calculus � 2, often referred to as \System F " is an

excellen t example of a Curry-Ho w ard corresp ondence and pro vides a surpris-

ing evidence for the relationships b et w een logic and computer science. This

system w as actually in v en ted t wice: b y the logician Jean-Yv es Girard [44]

and b y the computer scien tist John Reynolds [90]. The �rst one's goal w as

12.3. P olymorphic lam b da-calculus (System F) 197

to design a pro of notation needed for his w ork on second-order logic, the

other's idea w as to build a t yp e system for a p olymorphic programming

language. The results (after dissolving the syn tactic sugar) w ere essen tially

the same.

F or a treatmen t of System F extending the scop e of the presen t notes,

one can consult the follo wing b o oks: [45 , 66 , 74].

12.3.1. Definition .

1. (Second-order) typ es are de�ned as follo ws:

� T yp e v ariables are t yp es;

� If � and � are t yp es then (� ! �) is a t yp e;

� If � is a t yp e and � is a t yp e v ariable, then 8 � � is a t yp e.

Th us, t yp es coincide with second-order prop ositional form ulas o v er !

and 8 only .

2. W ell-t yp ed lam b da-terms (Ch urc h st yle) are de�ned b y the t yp e infer-

ence rules b elo w. Ev ery term is either a v ariable, an ordinary applica-

tion or abstraction, or it is

� a p olymorphic abstr action , written � �:M , where M is a term and

� is a t yp e v ariable, or

� a typ e applic ation , written (M �), where M is a term and � is a

t yp e.

The in tuitiv e meaning of � �:M is that the term M (whic h ma y refer to a

free t yp e v ariable �) is tak en as a p olymorphic pro cedure with a t yp e param-

eter � . T yp e application corresp ond to a call to suc h a generic pro cedure

with an actual t yp e parameter. This is an explicit form of p olymorphism

(t yp e as parameter) as opp osed to implicit p olymorphism of ML.

12.3.2. Definition (T yp e inference rules). A c ontext is again a �nite set of

declarations (x : �), for di�eren t v ariables (i.e., �nite partial function from

v ariables to t yp es). The axiom and the rules for ! are as usual:

� ; x : � ` x : �

� ` N : � ! � � ` M : �

� ` N M : �

� ; x : � ` M : �

� ` �x : � :M : � ! �

and w e also ha v e rules for 8 corresp onding to natural deduction rules (8 I)

and (8 E)

� ` M : �

� ` (� �:M) : 8 � �

(� 62 F V (�))

� ` M : 8 � �

� ` M � : � [� := �]

198 Chapter 12. Second-order logic and p olymorphism

Let us recall that a Ch urc h-st yle term mak es sense for us only within a con-

text that assigns t yp es to free v ariables. W e sometimes stress this fact b y

placing (informally) an upp er index, as for instance in x

8 � (� ! �)

� y

� [� := �]

. In

fact, �nding a prop er decoration of free v ariables in a giv en term expres-

sion (to obtain a prop er Ch urc h-st yle term) is, surprisingly , an undecidable

problem, see [95].

12.3.3. Convention . As in previous c hapters, w e sometimes write upp er

indices to mark t yp es of certain (sub)terms. Also, w e sometimes write e.g.

�x

�

: M , rather than �x : � : M , to impro v e readabilit y .

As should b e no w clear from the rules, the univ ersal t yp e 8 � � (�) corre-

sp onds to a pro duct construction of the form

Q

� 2 ?

� (�). This answ ers v ery

w ell to the idea that a pro of of 8 � � (�) is a function translating pro ofs of �

in to pro ofs of � (�).

F rom the programmer's p oin t of view, 8 � � is a t yp e of a p olymorphic

pro cedure. Note that the restriction � 62 F V (�) in the 8 in tro duction rule

(called also generalization rule) corresp onds to that a t yp e parameter m ust

b e a lo c al iden ti�er.

12.3.4. Example . Here are some w ell-t yp ed Ch urc h-st yle terms:

� ` � �: (�x

8 � (� ! �)

:x (� ! �)(x�) : 8 � (8 � (� ! �) : ! � ! �);

� ` � �:�f

� ! �

�x

�

:f (f x) : 8 � ((� ! �) ! (� ! �));

� ` �f

8 � (� ! � ! �)

� ��x

�

:f (� ! �)(f �x) : 8 � (� ! � ! �) : ! 8 � (� !

� ! � ! �).

12.3.5. Theorem (Curry-Ho w ard isomorphism). We have � ` M : � in the

p olymorphic lamb da c alculus if and only if j � j ` � has a pr o of in the f8 ; !g -

fr agment of the se c ond-or der intuitionistic pr op ositional lo gic.

12.3.6. Cor ollar y . The inhabitation pr oblem for the p olymorphic lamb da

c alculus (\Giv en t yp e � , is there a closed term of t yp e � ?") is unde cidable.

Pr oof. Immediate from the ab o v e and Theorem 12.2.8. ut

12.3.7. W arning . W e skip the detailed de�nition of free v ariables and sub-

stitution. The reader should b e able to write this de�nition herself, pro vided

she remem b ers ab out the follo wing:

� There are free ob ject v ariables in terms as w ell as free t yp e v ariables.

The latter o ccur in the lam b da abstractions \ �x : � " and in t yp e appli-

cations. Th us w e ha v e to consider substitutions of the form M [x := N]

and of the form M [� := �].

12.4. Expressiv e p o w er 199

� There are t w o binding op erators in terms: the big and the small

lam b da. Substitutions m ust accoun t for b oth. And note that the

term N in M [x := N] ma y con tain free t yp e v ariables that are b ound

in M . Th us, b oth sorts of renaming ma y b e necessary .

� The de�nition of alpha con v ersion m ust accoun t for the t w o sorts of

bindings.

� Binding an ob ject v ariable x

�

do es not mean binding t yp e v ariables

in � .

� The e�ect of substitution x [� := �] is of course x . But if w e w ork

in a con text con taining a declaration (x : �), then one should b etter

understand it this w a y: x

�

[� := �] = x

� [� := �]

. This is b ecause what

w e w an t is �[� := �] ` M [� := �] : � [� := �] whenev er � ` M : � .

12.3.8. Definition (Beta reduction).

There are t w o sorts of b eta reduction rules:

� Ob ject reduction: (�x : � :M) N � !

�

M [x := N];

� T yp e reduction: (� �:M) � � !

�

M [� := �].

This notion of reduction has the exp ected prop erties, in particular it is

Ch urc h-Rosser and preserv es t yp es.

12.4. Expressiv e p o w er

In classical logic, the connectiv es : , _ and ^ can b e de�ned b y means of

? and ! . The quan ti�er 9 is also expressible via the De Morgan la w, so

that ? , ! and 8 mak e a su�cien t set of op erators. This is not the case in

in tuitionistic logic, neither prop ositional nor �rst-order. Ho w ev er, in second-

order prop ositional logic, this opp ortunit y app ears again. And w e can ev en

get more: using ! and 8 one can express the other connectiv es and also

the constan t ? . W e ha v e p ostp oned these de�nitions un til no w, in order to

accompan y them with term notation.

12.4.1. Definition (Absurdit y). W e de�ne

? := 8 � �:

W e ha v e the follo wing term assignmen t to rule (E ?):

� ` M : ?

� ` M � : �

200 Chapter 12. Second-order logic and p olymorphism

It is easy to see that there is no closed term in normal form that can b e

assigned t yp e 8 � � . It will follo w from strong normalization that ? is an

empt y t yp e.

12.4.2. Definition (Conjunction (pro duct)).

Let � b e not free in � nor � . Then

� ^ � := 8 � ((� ! � ! �) ! �) :

(Read this de�nition as: � ^ � holds i� ev erything holds that can b e deriv ed

from f � ; � g .)

Lam b da-terms related to conjunction are pairs and pro jections. W e

de�ne them as follo ws:

� h P ; Q i := � ��z

� ! � ! �

: z P Q ;

� �

1

(M

� ^ �

) := M � (�x

�

�y

�

: x);

� �

2

(M

� ^ �

) := M � (�x

�

�y

�

: y).

It is left to the reader to c hec k that the term assignmen t to the ^ -related

rules of natural deduction, describ ed in Section 4.2:

� ` M : � ` N : '

� ` < M ; N > : ^ '

� ` M : ^ '

� ` �

1

(M) :

� ` M : ^ '

� ` �

2

(M) : '

is correct, as w ell as the b eta-reduction �

i

(h P

1

; P

2

i) !

�

P

i

is implemen ted

(but with !

�

replaced b y ! !

�

). Note ho w ev er that eta-con v ersion is not

implemen ted: if y

� ^ �

is a v ariable then h �

1

(y) ; �

2

(y) i is a normal form.

12.4.3. Definition (Disjunction (v arian t)).

W e de�ne the disjunction of � and � as their w eak est common conse-

quence. That is, � _ � holds i� all common consequences of � and � hold.

F ormally , for � 62 FV (�) [FV (�), w e tak e:

� _ � := 8 � ((� ! �) ! (� ! �) ! �) :

W e de�ne injections and case eliminator this w a y:

� in

1

(M

�

) := � ��u

� ! �

�v

� ! �

: uM ;

� in

2

(M

�

) := � ��u

� ! �

�v

� ! �

: v M ;

� case (L

� _ �

; x

�

:M

�

; y

�

:N

�

) := L� (�x

�

:M)(�y

�

:N).

12.4. Expressiv e p o w er 201

The reader is in vited to c hec k the correctness of rules:

� ` M :

� ` in

1

(M) : _ '

� ` M : '

� ` in

2

(M) : _ '

� ` L : _ ' � ; x : ` M : � � ; y : ' ` N : �

� ` case (L ; x:M ; y :N) : �

as w ell as the correctness of b eta reduction (Exercise 12.7.6).

Before w e discuss the existen tial quan ti�er, let us observ e that v arious

data t yp es can b e implemen ted in System F . F or instance, t yp e Bo ol can

b e in terpreted as 8 � (� ! � ! �), with true = � ��x

�

y

�

: x and false =

� ��x

�

y

�

: y . In tegers are represen ted b y the t yp e

! := 8 � ((� ! �) ! � ! �) ;

with the p olymorphic Ch urc h n umerals

c

n

:= � ��f

� ! �

x

�

: f (� � � f (x) � � �)

represen ting n um b ers. W e can no w generalize the notion of a de�nable

in teger function in the ob vious w a y . Clearly , all functions de�nable in simple

t yp es can also b e de�ned in System F b y simply adding some �'s at the

b eginning. F or instance, w e de�ne the successor function as:

succ := �n

!

: � �:�f

� ! �

x

�

: f (n�f x) :

But one can do m uc h more, for instance the function n 7! n

n

can b e de�ned

as follo ws:

Exp := �n

!

: n (� ! �)(n�) :

Note that this tric k uses p olymorphism in an essen tial w a y . W e can general-

ize it to represen t primitiv e recursion. Indeed, System T (as an equational

theory) can b e em b edded in to System F .

12.4.4. Pr oposition . F or a given typ e � , de�ne r

�

: � ! (� ! ! ! �) !

! ! � as the fol lowing term:

�y

�

�f

� ! ! ! �

�n

!

: �

1

(n (� ^ !)(�v

� ^ !

: h f (�

1

(v))(�

2

(v)) ; succ (�

2

(v)) i) h y ; c

0

i) :

Then r

�

M N (c

0

) =

�

M and r

�

M N (succ(n)) =

�

N (r

�

M N n) n ,

Pr oof. Exercise 12.7.8. ut

The reader is in vited to de�ne represen tation of v arious other data t yp es in

Exercise 12.7.7.

Let us no w consider the existen tial quan ti�er. W e need a term assign-

men t the in tro duction and elimination rules. One p ossibilit y is as follo ws:

202 Chapter 12. Second-order logic and p olymorphism

(9 I)

� ` M : � [� := �]

� ` pac k M ; � to 9 �: � : 9 �: �

(9 E)

� ` M : 9 �: � � ; x : � ` N : �

� ` abst yp e � with x : � is M in N : �

(� 62 F V (� ; �))

As in the �rst-order case, existen tial quan ti�cation corresp onds to data ab-

straction. An existen tial t yp e of the form 9 � � can b e seen as a partial t yp e

sp eci�cation, where t yp e � is \priv ate" and not accessible for the user. F or

instance, one can consider a t yp e of push-do wn stores (with the push and

p op op erations) de�ned as

! - p ds := 9 � (� ^ (! ! � ! �) ^ (� ! � ^ !)) :

A user can op erate on suc h a p ds without kno wing the actual t yp e used to

implemen t it. A generic p ds t yp e ma y no w b e de�ned this w a y:

generic - p ds := 8 � 9 � (� ^ (� ! � ! �) ^ (� ! � ^ �)) :

The b eta reduction rule for existen tial t yp e constructors is as follo ws:

abst yp e � with x : � is pac k M ; � to 9 �: � in N � !

�

N [� := �][x := M] :

This corresp onds to using an abstract t yp e in a con text where an actual

implemen tation ma y b e hidden from the user. More on existen tial t yp es can

b e found in Mitc hell's b o ok [74].

Existen tial quan ti�cation can b e represen ted in System F as follo ws:

12.4.5. Definition . Assuming � 62 FV (�), w e de�ne

9 � � := 8 � (8 � (� ! �) : ! �) :

The pac king and unpac king terms are as follo ws:

� pac k M ; � to 9 �: � = � � :�x

8 � (� ! �)

: x� M ;

� abst yp e � with x : � is M in N

�

= M � (��:�x

�

:N).

Compare the ab o v e de�nition to De�nition 12.4.3. W e again ha v e the w eak-

est common consequence of all � (�), for arbitrary t yp e � . This supp orts

the understanding of existen tial quan ti�er as in�nite disjunction. But note

also that there is a similarit y to De Morgan's la w here: tak e ? instead of �

and w e obtain :8 � : � . W e lea v e to the reader the v eri�cation that b eta

reduction is correctly implemen ted.

12.5. Curry-st yle p olymorphism 203

12.5. Curry-st yle p olymorphism

The Curry-st yle v arian t of System F is de�ned b y the follo wing t yp e assign-

men t rules for pure lam b da terms. These rules corresp ond exactly to these

in De�nition 12.3.2. (The notion of a t yp e and a con text remains the same.)

� ; x : � ` x : �

� ` N : � ! � � ` M : �

� ` N M : �

� ; x : � ` M : �

� ` �x:M : � ! �

� ` M : �

� ` M : 8 � �

(� 62 F V (�))

� ` M : 8 � �

� ` M : � [� := �]

Rules for abstraction and application are the same as for the simply-t yp ed

Curry-st yle lam b da-calculus. Rules for in tro ducing and eliminating the uni-

v ersal quan ti�er (called resp ectiv ely gener alization and instantiation rules)

re
ect the idea of implicit p olymorphism: to ha v e the univ ersal t yp e 8 � �

means to ha v e all p ossible instances of this t yp e (all t yp es � [� := �]).

12.5.1. Definition . The erasure map j � j from terms of Ch urc h-st yle Sys-

tem F to pure lam b da terms, is de�ned b y the follo wing clauses:

j x j = x

j M N j = j M jj N j

j �x : � : M j = �x: j M j

j � �: M j = j M j

j M � j = j M j

12.5.2. Pr oposition . F or a pur e lamb da term M , we have � ` M : � if and

only if ther e is a Chur ch-style term M

0

with j M

0

j = M , such that � ` M

0

: � .

Pr oof. Easy .

A Ch urc h-st yle term M

0

can b e seen as a t yp e deriv ation for a Curry-

st yle term j M

0

j . The follo wing theorem follo ws from the fact that ev ery

b eta reduction p erformed in a t ypable pure lam b da term corresp onds to a

reduction in the corrsp onding Ch urc h-st yle term.

12.5.3. Theorem (Sub ject reduction). L et � ` M : � , for a pur e lamb da

term M . Then M !

�

M

0

implies � ` M

0

: � .

Pr oof. Omitted. ut

204 Chapter 12. Second-order logic and p olymorphism

The ab o v e result is not as ob vious as it can p erhaps app ear at the �rst lo ok.

T o see this, consider the follo wing example:

12.5.4. Example . W e ha v e the follo wing correct t yp e assignmen t:

x : � ! 8 � (� ! �) ` �y : xy : � ! � ! � ;

and the eta-reduction �y : xy !

�

x . Ho w ev er,

x : � ! 8 � (� ! �) 6` x : � ! � ! � :

Observ e that the Ch urc h-st yle term corresp onding to �y : xy in our example

is �y : �: xy � and is not an � -redex. Th us, the reason wh y Curry-st yle Sys-

tem F is not closed under � -reductions is that there are Curry-st yle � -redexes

that do not corresp ond to an y Ch urc h-st yle redex.

12.5.5. Remark . Closure under � -reductions can b e obtained (see Mitc hell's

pap er [73]) b y adding to the system a certain subt yping relation � together

with a subsumption rule of the form

� ` M : � ; � � �

� ` M : � :

12.5.6. Remark . Adding existen tial quan ti�cation to Curry-st yle v ersion of

System F results with the same problem as that describ ed in Section 9.10.

See Exercise 12.7.10.

With p olymorphism, one can assign t yp es to man y pure lam b da terms

whic h are un t ypable in simple t yp es. A prominen t example is �x: xx , and

another one is c

2

K . As w e will see b elo w, only strongly normalizable terms

can b e t ypable, b ecause of strong normalization. But there are strongly

normalizable terms, un t ypable in F . The �rst suc h example

4

w as giv en b y

Simona Ronc hi Della Ro cca and P aola Giannini in the pap er [43], and it is

the follo wing term:

(�z y : y (z I)(z K))(�x: xx) :

The essen tial thing here is that w e cannot �nd one t yp e for (�x: xx) that

could b e applied to b oth I and K . Another example is:

c

2

c

2

K :

Compare the latter to the t ypable term c

2

(c

2

K).

It w as long an op en question whether the t yp e reconstruction and t yp e

c hec king problem for System F w as decidable. Both w ere sho wn undecidable

b y Jo e W ells.

12.5.7. Theorem (W ells [117]). T yp e r e c onstruction and typ e che cking in

the se c ond-or der � -c alculus ar e r e cursively e quivalent and unde cidable.

Pr oof. T o o long. ut

4

apparen tly based on an idea of F urio Honsell.

12.6. Strong normalization of second-order t yp ed � -calculus 205

12.6. Strong normalization of second-order t yp ed � -calculus

W e end the c hapter b y extending the pro of of strong normalization of simply

t yp ed � -calculus from Chapter 4 to second-order t yp ed � -calculus �a la Curry .

As men tioned earlier, the standard metho d of pro ving strong normaliza-

tion of t yp ed � -calculi w as in v en ted b y T ait [104] for simply t yp ed � -calculus

and generalized to second-order t yp ed � -calculus b y Girard [44].

Our presen tation follo ws again [8].

12.6.1. Definition .

(i) The set of t yp e v ariables is denoted U and the set of second-order t yp es

is denoted b y �

2

.

(ii) A valuation in S is a map

� : U ! S :

(iii) F or a v aluation � , de�ne the v aluation � f � := X g b y: de�ned b y

� f � := X g (�) =

�

X if � = �

� (�) otherwise

(iv) F or eac h v aluation � in S and eac h � 2 �

2

the set [[�]]

�

is de�ned b y:

[[�]]

�

= � (�)

[[� ! �]]

�

= [[�]]

�

! [[�]]

�

[[8 �:�]]

�

=

T

X 2 S

[[�]]

� f � := X g

12.6.2. Lemma . F or e ach valuation � in S and � 2 �

2

, we have [[�]]

�

2 S .

Pr oof. Similar to the corresp onding pro of for � ! . ut

12.6.3. Definition .

(i) Let � b e a substitution (i.e., a map from term v ariables to �), and � b e

a v aluation in S . Then

�; � j = M : � , [[M]]

�

2 [[�]]

�

(ii) Let � b e a substitution and � b e a v aluation in S . Then

�; � j = � , �; � j = x : � ; for all x : � in �

(iii) Finally ,

� j = M : � , 8 � 8 � [�; � j = �) �; � j = M : �]

12.6.4. Pr oposition (Soundness).

� ` M : �) � j = M : �

206 Chapter 12. Second-order logic and p olymorphism

Pr oof. Similar to the pro of for the corresp onding prop ert y of � ! , i.e.,

b y induction on the deriv ation of � ` M : � . There are t w o new cases

corresp onding to the 8 -rules.

If the deriv ation ends in

� ` M : 8 �:�

� ` M : � f � := � g

then b y the induction h yp othesis

� j = M : 8 �:�

No w supp ose �; � j = �, and w e are to sho w that �; � j = M : � f � := � g . W e

ha v e

[[M]]

�

2 [[8 �:�]]

�

=

\

X 2 S

[[�]]

� f � := X g

Hence

[[M]]

�

2 [[�]]

� f � :=[[�]]

�

g

= [[� f � := � g]]

�

:

If the deriv ation ends in

� ` M : �

� ` M : 8 �:�

where � is not free in �, then b y the induction h yp othesis,

� j = M : � :

Supp ose �; � j = �, w e are to sho w that �; � j = M : 8 �:� . Since � is not free

in �, w e ha v e for all X 2 S that �; � f � := X g j = �. Therefore,

[[M]]

�

2 [[�]]

� f � := X g

for all X 2 S . Hence also

[[M]]

�

2 [[8 �:�]]

�

as required. ut

12.6.5. Theorem (Strong normalization). If � ` M : � then M is str ongly

normalizing.

Pr oof. Similar to the corresp onding pro of for � ! . ut

The ab o v e pro of di�ers in a v ery substan tial w a y from T ait's strong

normalization pro of for simple t yp es or for System T . The di�erence is that

a formalization of this argumen t necessarily requires quan ti�cation o v er sets

of sets of � -terms.

12.7. Exercises 207

Indeed, let us compare the statemen t of Lemma 12.6.2 and Lemma 4.4.3

part (iii). As w e ha v e noticed in Chapter 11, the latter requires quan ti�ca-

tion o v er sets X satisfying the de�nition of [[�]]. But then w e could de�ne

a �xed set [[�]] for eac h � b y induction. Because of impredicativit y , suc h a

de�nition of [[�]] w ould no w b ecome circular and w e m ust consider v arious

c andidates [[�]]

�

for the p osition of [[�]]. Eac h � giv es a family of suc h candi-

dates (sets), and the quan ti�cation o v er � in the statemen t of Lemma 12.6.2

is equiv alen t to quan ti�cations o v er these families.

In other w ords, our pro of cannot b e formalized ev en in the second-order

language of arithmetic. In fact, w e can rep eat G• odel's argumen t and obtain

a consistency pro of for second-order P eano Arithmetic in this w a y . Th us,

strong normalization for System F mak es an example of a statemen t inde-

p enden t from second-order P eano Arithmetic.

But as long as w e are only in terested in strong normalization of a set

of terms in v olving only �nitely man y t yp es, w e can pro ceed within second-

order arithmetic. Indeed, in this case, the functions � are of �nite domains

and can b e handled as tuples of sets. Th us, if (an algorithm of) an in teger

function is de�nable in F , then its totalit y can b e sho wn within second-order

arithmetic. On the other hand, the Diale ctic a in terpretation, generalized b y

Girard for System F , allo ws one to deriv e a de�nition in F for ev ery function

pro v ably total in second-order arithmetic. W e obtain the follo wing result:

12.6.6. Theorem (Girard). The class of functions de�nable in F c oincides

with the class of pr ovably r e cursive functions of se c ond-or der Pe ano A rith-

metic.

12.7. Exercises

12.7.1. Exer cise . Pro v e that Gabba y's axiom holds in all Kripk e mo dels

with constan t domains, but not in all Kripk e mo dels.

12.7.2. Exer cise . Can y ou simplify the de�nition of forcing of univ ersal

form ulas in mo dels with constan t domains? Hint: Y es, y ou can.

12.7.3. Exer cise . Sho w that in complete Kripk e mo dels, the seman tics of

the de�ned connectiv es (see Section 12.4) coincides with the seman tics of

their de�nitions. Do es this hold in non-complete mo dels?

12.7.4. Exer cise . Sho w that the t yp e assignmen t rules for pairs and pro-

jections are correct under De�nition 12.4.2 and that �

i

(h P

1

; P

2

i) ! !

�

P

i

.

12.7.5. Exer cise . Sho w that the t yp e assignmen t rules for injections and

case elimination are correct under De�nition 12.4.3 and that b eta-reduction

is prop erly implemen ted, i.e.,

case (in

i

(N

�

i

); x

�

1

1

:M

�

1

; x

�

2

2

:M

�

2

) ! !

�

M

i

[x

i

:= N].

208 Chapter 12. Second-order logic and p olymorphism

12.7.6. Exer cise . Consider the eta reduction rule for disjunction, and the

comm uting con v ersions of De�nition 7.23. Are they correct with resp ect to

De�nition 12.4.3?

12.7.7. Exer cise . De�ne an in terpretetion in System F for the t yp es of:

� w ords o v er a �xed �nite alphab et;

� �nite binary trees;

� lists o v er a t yp e � ,

with the appropriate basic op erations on these t yp es.

12.7.8. Exer cise . Pro v e Prop osition 12.4.4. Can y ou strengh ten it b y re-

placing =

�

b y ! !

�

?

12.7.9. Exer cise . Sho w that the de�nitions of abst yp e and pac k in Sys-

tem F satisfy the b eta reduction rule for existen tial t yp es.

12.7.10. Exer cise . Consider a Curry-st yle calculus with existen tial t yp es,

analogous to the Curry-st yle calculus with �rst-order existen tial quan ti�ca-

tion, as in Section 10.5. Sho w that it do es not ha v e the sub ject reduction

prop ert y .

12.7.11. Exer cise . V erify the correctness of Example 12.5.4.

12.7.12. Exer cise . Sho w that all terms in normal form are t ypable in Sys-

tem F .

12.7.13. Exer cise . Sho w that (�x: xx)(�z : z y z) is t ypable in System F .

12.7.14. Exer cise . Sho w an example of a pure lam b da-term M , t ypable in

System F , and suc h that M !

�

M

0

, for some un t ypable M

0

. W arning: An

example kno wn to the authors is the term

�a: [�y z : a ((�v : v (�xy : y ay)) y)(z y)(z (�x: xxx))] Y Z ;

where Y is �x: K (xx)(xaa) and Z is �u: u (�xy : a). A v eri�cation tak es 5

handwritten pages.

12.7.15. Exer cise . Pro v e that (�x: xx)(�x: xx) is un t ypable in System F ,

without using the fact that t ypable terms can b e normalized.

12.7.16. Exer cise . Pro v e that the terms c

2

c

2

K and (�z y : y (z I)(z K))(�x: xx)

are un t ypable in System F .

12.7.17. Exer cise . Sho w that the p olymorphic t yp e assignmen t has no prin-

cipal t yp e prop ert y . (F or instance sho w that �x: xx has no principal t yp e.)

12.7.18. Exer cise . Assume strong normalization for Curry-st yle System F .

Deriv e strong normalization for Ch urc h-st yle System F .

CHAPTER 13

The � -cub e and pure t yp e systems

In this c hapter w e in tro duce Barendregt's � -cub e whic h can b e seen as a

generic t yp ed � -calculus with eigh t instances. Among these are � ! , � 2,

and �P seen earlier. W e also presen t the generalization to pur e typ e systems

whic h can b e seen as a generic t yp ed � -calculus with in�nitely man y t yp ed

� -calculi as instances|among these are the eigh t systems of the � -cub e.

W e �rst presen t some motiv ation for the study of the � -cub e and then

pro ceed to the actual de�nitions. A n um b er of examples are giv en to illus-

trate v arious asp ects of the � -cub e. W e then argue that the new presen ta-

tions of � ! etc. are equiv alen t to the previous presen tations, although w e

do not settle this in all detail.

After this, w e in tro duce pure t yp e systems, giv e a n um b er of examples,

and dev elop the most rudimen tary theory of pure t yp e systems.

The presen tation follo ws [8].

13.1. In tro duction

The previous c hapters of the notes ha v e presen ted sev eral related t yp ed � -

calculi, e.g, the simply t yp ed � -calculus � ! , the system �P of dep enden t

t yp es, and the second-order t yp ed � -calculus � 2.

1

The simplest of the systems is clearly simply t yp ed � -calculus; in this

system one can ha v e a term �x : � : x of t yp e � ! � , in short

` �x : � : x : � ! � :

Giv en a term M , w e ma y form the new term �x : � : M whic h exp ects a

term as argumen t; in other w ords, the term �x : � : M dep ends on a term.

Th us, in � ! , terms ma y dep end on terms.

1

In this c hapter w e are exclusiv ely concerned with t yp ed � -calculi �a la Ch urc h.

209

210 Chapter 13. The � -cub e and pure t yp e systems

In � 2 one can ha v e a term

2

� � : � : �x : � : x of t yp e 8 �:� ! � , in short

` � � : � : �x : � : x : 8 �:� ! �:

Giv en a term M , w e ma y form the new term � � : � : M whic h exp ects a

t yp e � as argumen t; in other w ords, the term � � : � : M dep ends on a typ e.

Th us, in � 2 terms ma y dep end on t yp es.

Finally , in the system �P , w e can ha v e an expression �x : � : � exp ecting

a term of t yp e � as argumen t and returning the t yp e � as result. Suc h

an expression is called a typ e c onstructor since it constructs a t yp e when

pro vided with suitable argumen ts. T o describ e the input and output of a

term one uses t yp es; a term has a certain t yp e. Similarly , the input and

output of constructors are describ ed b y kinds. F or instance, if � is a t yp e,

then �x : � : � has kind � ! � , in short

� : � ` �x : � : � : �) � ;

expressing the fact that the constructor exp ects a term of t yp e � and con-

structs a mem b er of � , i.e., a t yp e. If w e apply this expression to a term of

t yp e � , then w e get a t yp e:

� : � ; y : � ` (�x : � : �) y : � :

In conclusion, giv en a t yp e � w e ma y form the t yp e constructor �x : � : �

whic h exp ects a term of t yp e � as argumen t; in other w ords, the t yp e con-

structor �x : � : � dep ends on a term. Th us, in �P t yp es ma y dep end on

terms.

There is one com bination w e ha v e not men tioned: w e ha v e seen terms

dep ending on terms, terms dep ending on t yp es and t yp es dep ending on

terms|what ab out t yp es dep ending on t yp es? Can w e ha v e expressions

lik e �� : � : � ! � ? This w ould again b e a t yp e constructor, but where

the argumen t is no w a t yp e rather than a term; suc h an expression w ould

ha v e kind � ! � . In fact, a system exists in whic h suc h expressions ma y b e

formed, kno wn as �! .

The three systems � 2, �P , and �! eac h arise from � ! b y adding an-

other t yp e of dep endency than terms dep ending on terms; it is natural to

study also the com bination of these dep endencies, and systems exist in whic h

sev eral dep endencies are allo w ed, e.g., the system �! in whic h b oth terms

dep ending on t yp es and t yp es dep ending on t yp es are allo w ed, and this will

also b e done b elo w.

Before pro ceeding with the details of suc h systems, it will b e w ell w orth

our e�ort to reconsider the st yle or presen tation from previous c hapters.

In all the � -calculi presen ted in previous c hapters, one or more forms of

2

The annotation \: � " w as not written in the preceding c hapter. The informal meaning

of � : � is that � is a t yp e.

13.2. Barendregt's � -cub e 211

abstraction are presen t, and di�eren t rules go v ern the t yping of the v arious

forms of abstraction. F or instance, in � 2 w e ha v e b oth

� ; x : � ` M : �

� ` �x : � : M : � ! �

and

� ` M : �

� ` � � : � : M : 8 �:�

Similarly , w e ha v e sev eral t yp es of pro ducts, e.g. � ! � and 8 �:� .

It w ould b e b etter if w e could presen t the systems with a single notion of

abstraction parametrized o v er the p ermitted dep endencies. This is exactly

what one do es on the � -cub e.

This idea facilitates a more slic k presen tation of eac h of the systems

in the � -cub e, and also mak es the connection b et w een the v arious systems

more transparen t. Moreo v er, prop erties ab out the v arious systems can b e

dev elop ed once and for all b y pro viding pro ofs that are parametric in the

p ermitted dep endencies: if w e can pro v e, e.g., sub ject reduction regardless

of whic h dep endencies are p ermitted, then w e do not ha v e to pro v e the

prop ert y for all the systems individually .

13.2. Barendregt's � -cub e

W e in tro duce Barendregt's � -cub e follo wing [8].

13.2.1. Definition .

(i) The set S of sorts is de�ned b y S = f� ; 2 g . W e use s; s

0

; s

1

; s

2

, etc. to

range o v er sorts.

(ii) F or eac h s 2 S , let V

s

denote a coun tably in�nite set of variables suc h

that V

s

\ V

s

0

= ; when s 6= s

0

, and let V =

S

s 2S

V

s

.

(iii) The set E of expr essions is giv en b y the abstract syn tax:

E = V j S j E E j � V : E : E j � V : E : E

As b efore, w e assume familiarit y with the sub expr ession relation � , with

the set FV (M) of fr e e variables of M , and with substitution M f x := N g

for x 2 V and M ; N 2 E . W e write A ! B for � d : A: B when d 62 FV (B).

W e use = to denote syn tactic iden tit y mo dulo � -con v ersion and adopt

the usual h ygiene con v en tions.

(iv) The relation !

�

on E is the compatible closure of the rule

(�x : A : M) N � M f x := N g

Also, !!

�

and =

�

are the transitiv e, re
exiv e closure and the transitiv e,

re
exiv e, symmetric closure of !

�

, resp ectiv ely .

212 Chapter 13. The � -cub e and pure t yp e systems

(v) The set C of c ontexts is the set of all sequences

x

1

: A

1

; : : : ; x

n

: A

n

where x

1

; : : : ; x

n

2 V , A

1

; : : : ; A

n

2 E , and x

i

6= x

j

when i 6= j .

The empt y sequence is [], and the concatenation of � and � is � ; �.

W e write x : A 2 � if � = �

1

; x : A; �

2

, for some �

1

, �

2

, and w e

write � � � if, for ev ery x : A 2 �, also x : A 2 �. F or � 2 C ,

dom(�) = f x j x : A 2 � ; for some A g .

(vi) F or an y set R � S � S of rules, the relation ` � C � E � E is de�ned

in Figure 13.1. If � ` M : A , then � is le gal and M , A are le gal (in

�). W e use the notation � ` A : B : C meaning that � ` A : B and

� ` B : C .

(axiom) [] ` � : 2

(start)

� ` A : s

� ; x : A ` x : A if x 2 V

s

& x 62 dom (�)

(w eak ening)

� ` A : B � ` C : s

� ; x : C ` A : B if x 2 V

s

& x 62 dom (�)

(pro duct)

� ` A : s

1

� ; x : A ` B : s

2

� ` (� x : A: B) : s

2

if (s

1

; s

2

) 2 R

(application)

� ` F : (� x : A: B) � ` a : A

� ` F a : B f x := a g

(abstraction)

� ; x : A ` b : B � ` (� x : A: B) : s

� ` �x : A : b : � x : A: B

(con v ersion)

� ` A : B � ` B

0

: s

� ` A : B

0

if B =

�

B

0

Figure 13.1: Inference r ules of the � -cube

(vii) The � -cub e consists of the eigh t � -calculi obtained b y taking the di�er-

en t sets of rules f (� ; �) g � R � f (� ; �) ; (2 ; �) ; (� ; 2) ; (2 ; 2) g sp eci�ed

in the table in Figure 13.2.

13.2. Barendregt's � -cub e 213

� ! (� ; �)

� 2 (� ; �) (2 ; �)

�! (� ; �) (2 ; 2)

�! = �! 2 (� ; �) (2 ; �) (2 ; 2)

�P (� ; �) (� ; 2)

�P 2 (� ; �) (2 ; �) (� ; 2)

�P ! (� ; �) (2 ; 2) (� ; 2)

�C = �P ! (� ; �) (2 ; �) (2 ; 2) (� ; 2)

Figure 13.2: R ules of the � -cube

13.2.2. Remark . The di�eren t rules in Figure 13.2 corresp ond to the de-

p endencies men tioned earlier:

(� ; �) : terms dep ending on terms

(� ; 2) : terms dep ending on t yp es

(2 ; �) : t yp es dep ending on terms

(2 ; 2) : t yp es dep ending on t yp es

Informally sp eaking, terms ma y also dep end on t yp es in � ! ; for instance,

�x : � : x is a term dep ending on the t yp e � . Ho w ev er, the crucial p oin t

is that w e ma y not abstract o v er � in the term. In con tract, this form of

abstraction is p ermitted in � 2.

The � -cub e is depicted diagrammatically in Figure 13.3.

�!

//
�C

� 2

??•••••••••••
//

�P 2

??•••••••••••

�!

//

OO

�P !

OO

� !

OO

//

??•••••••••••
�P

??•••••••••••

OO

Figure 13.3: The � -cube

214 Chapter 13. The � -cub e and pure t yp e systems

13.3. Example deriv ations

There are sev eral subtle details in the previous de�nition. Some of these

are illustrated in the follo wing examples, tak en from [8], whic h the reader is

encouraged to w ork out in detail.

13.3.1. Example . In � ! one can deriv e the follo wing.

1. � : � ` � x : �: � : � . Being a mem b er of � should b e conceiv ed as b eing

a t yp e, so if � is a t yp e, then so is � x : �: � .

Here � is a v ariable from V

2

(t yp e v ariables) and x is another v ariable

from V

�

(term v ariables). Hence x 62 FV (�), so � x : �: � = � ! � ,

using the abbreviation from De�nition 13.2.1(iii).

This means that w e ma y form expressions that map terms of t yp e �

to terms of t yp e � (terms ma y dep end on terms).

Note that the t yp e v ariable � m ust b e declared in the con text; the

only t yping in the empt y con text in this form ulation of � ! is ` � : 2 !

2. � : � ` �x : � : x : � x : �: � . Using the abbreviation from De�ni-

tion 13.2.1(iii), this means that w e ha v e � : � ` �x : � : x : � ! � .

Note that � : � ` �x : � : x : � x : �: � do es not follo w from the

mere fact that � : � ; x : � ` x : � alone; w e also ha v e to sho w that

� : � ` � x : �: � : � , whic h can b e deriv ed using the fact that (� ; �) 2 R .

3. � : � ; � : � ; y : � ` �x : � : y : � x : �: � .

4. � : � ; y : � ` (�x : � : x) y : � .

5. � : � ; y : � ` y : � . W e ha v e

(�x : � : x) y !

�

y :

Note that t yping is preserv ed under this particular reduction.

6. � : � ; � : � ; x : �; y : � ` (�z : � : y) x : � . Note ho w the w eak ening

rule is required to establish this.

7. � : � ; � : � ` �x : � : �y : � : y : � ! � ! � : � .

13.3.2. Example . In � 2 one can deriv e the follo wing.

1. � : � ` �x : � : x : � ! � , just lik e in � ! .

2. ` �� : � : �x : � : x : � � : � : � ! � : � .

T o understand the relationship with the previous form ulation of � 2,

the reader should realize that � � : � : � is just a new w a y of writing

8 �:� and that �� : � : M is just a new w a y of writing � � : � : M .

13.3. Example deriv ations 215

This means that w e ma y form expressions that map an y t yp e � to a

term of t yp e � ! � (terms ma y dep end on t yp es).

The reader ma y b e w orried ab out the absence of the side condition

\where � is not free in the con text" in the abstraction rule for second-

order generalization. Ho w can w e b e sure that w e do not mo v e from

� : � ; x : � ` M : � to x : � ` �� : � : M : � � : � : � , where w e

generalize o v er a v ariable whic h is free in the con text? In terestingly ,

this is ensured b y the fact that con texts are se quenc es and that w e

ma y disc harge the rightmost assumption only .

This also sho ws wh y the w eak ening rule is necessary: without w eak en-

ing, w e could not deriv e something as elemen tary as � : � ; x : � ` � : � .

3. � : � ` (�� : � : �x : � : x) � : � ! � .

4. � : � ; y : � ` (�� : � : �x : � : x) � y : � . W e ha v e

(�� : � : �x : � : x) � y !

�

(�x : � : x) y !

�

y

and eac h of these terms has t yp e � .

5. Let ? = � � : � : � . Then ` (�� : � : �x : ? : x �) : � � : � : ? ! � . Via the

Curry-Ho w ard isomorphism this t yp e is a prop osition in second-order

prop ositional logic whic h states that ev erything follo ws from absurdit y;

the term is the constructiv e pro of of the prop osition.

13.3.3. Example . Let D = �� : � : � ! � . In �! one can deriv e the

follo wing.

1. ` � ! � : 2 . Being a mem b er of 2 should b e conceiv ed as b eing a

kind, so � ! � is a kind.

This means that w e ma y form expressions that map t yp es to t yp es

(t yp es ma y dep end on t yp es).

2. ` D : � ! � .

3. � : � ` D � : � .

4. � : � ` D (D �) : � .

5. � : � ` �x : (D �) : x : (D �) ! (D �).

6. � : � ` �x : (D �) : x : D (D �). Note ho w the con v ersion rule is used

to deriv e this. W e ha v e

(D �) ! (D �) =

�

D (D �)

and the con v ersion rule allo ws us to exc hange the �rst t yp e with the

second.

216 Chapter 13. The � -cub e and pure t yp e systems

13.3.4. Example . In �P one can deriv e the follo wing.

1. � : � ` � ! � : 2 .

This means that w e ma y form expressions that map a term of t yp e �

to a t yp e (t yp es ma y dep end on terms).

If w e view � as a set and � as the univ erse of prop ositions, then a

mem b er of � ! � is a map from � to prop ositions, i.e., a predicate

on � .

2. � : � ; p : � ! � ; x : � ` p x : � . Again, if w e view � as a set, p as a

predicate on � , and x as an elemen t of � , then p x is a prop osition.

3. � : � ; p : � ! � ! � ` � x : �: p x x : � .

If � is a set and p is a binary predicate on � , then � x : �: p x x is a

prop osition.

4. � : � ; p : � ! � ; q : � ! � ` � x : �: p x ! q x : � . This prop osition

states that ev ery mem b er of � whic h satis�es p also satis�es q .

5. � : � ; p : � ! � ` �x : � : �z : p x : z : � x : �: p x ! p x .

6. � : � ; x

0

: �; p : � ! � ; q : � `

�z : (� x : �: p x ! q) : �y : (� x : �: p x) : (x a

0

) (y a

0

) :

(� x : �: p x ! q) ! (� x : �: p x) ! q .

This prop osition states that in ev ery non-empt y set A ,

(8 x 2 A : P x ! Q) ! (8 x 2 A : P x) ! Q:

13.3.5. Example . In �! , the follo wing can b e deriv ed.

1. Let � & � = �
 : � : (� ! � !
) !
 . Then � : � ; � : � ` � & � : � .

This is can also b e deriv ed in � 2; it is the second-order de�nition of

conjunction.

2. Let AND = �� : � : �� : � : � & � . Then ` AND : � ! � ! � and

` AND � � : � . Th us, AND is a uniform de�nition of conjunction o v er

all t yp es|this cannot b e done in � 2.

3. Let �

i

= ��

1

: � : ��

2

: � : �x

1

: �

1

: �x

2

: �

2

: x

i

. Then

` �

i

: � �

1

: � : � �

2

: � : �

1

! �

2

! �

i

:

Also,

� : � ; � : � ` �x : AND � � : x � (�

1

� �) : AND � � ! �:

13.4. Classi�cation and equiv alence with previous form ulations 217

13.3.6. Example . In �P 2 the follo wing can b e deriv ed.

1. � : � ; p : � ! � ` �x : � : p x ! ? : � ! � Here the construction of ?

requires � 2 and the construction of expressions � ! � requires �P .

2. � : � ; p : � ! � � ` (� x : �: � y : �: p x y ! p y x ! ?) ! � z : �: p z z !

? : � : This prop osition states that an asymmetric binary relation is

irre
exiv e.

13.3.7. Example . In �P ! the follo wing can b e deriv ed.

1. � : � ` �p : � ! � ! � : �x : � : p x x : (� ! � ! �) ! (� ! �).

This constructor maps an y predicate to its o wn \diagonalization."

Here the presence of � to the left and righ t of ! requires �! , and the

construction of � ! � requires �P .

2. ` �� : � : �p : � ! � ! � : �x : � : pxx : � � : � : (� ! � ! �) ! (� ! �).

This constructor do es the same uniformly in � .

13.3.8. Example . In �C the follo wing can b e deriv ed.

1. �� : � : �p : � ! ? : �x : � : p x ! ? : � � : � : (� ! �) ! (� ! �) : This

constructor maps a t yp e � and a predicate p on � to the negation of p .

Here the presence of � on b oth sides of ! requires �! , and A ! �

requires �P , and � � : � : : : : requires � 2.

13.4. Classi�cation and equiv alence with previous form ula-

tions

The ab o v e presen tation of � ! etc. has sev eral adv an tages, as men tioned

ab o v e. Ho w ev er, the presen tation also has the disadv an tage that in the case

of some of the simple systems (e.g. � !) the presen tation in v olv es a certain

amoun t of redundancy . F or instance, in case of � ! the pro duct � x : A: B

men tioned in the pro duct rule alw a ys has form A ! B . Also, the distinction

b et w een terms, t yp es, and kinds, whic h is abandoned in the cub e is, after

all, useful for understanding the details of the v arious systems.

In this section w e therefore try to reco v er some of what has b een lost b y

sho wing that|to a certain exten t|the traditional form ulations of some of

the systems in the � -cub e are equiv alen t with the form ulations in terms of

the � -cub e. More ab out this can b e found in [12 , 8 , 41].

Belo w w e sho w ho w terms b elonging to systems in the � -cub e can b e

classi�ed according to the notions of obje ct , c onstructors , and kinds .

218 Chapter 13. The � -cub e and pure t yp e systems

13.4.1. Definition . De�ne the sets O ; T ; K of obje cts, c onstructors, and

kinds as follo ws:

O ::= V

�

j � V

�

: T : O j O O j � V

2

: K : O j O T

T ::= V

2

j � V

�

: T : T j T O j � V

2

: K : T j T T j � V

�

: T : T j � V

2

: K : T

K ::= � V

�

: T : K j � V

2

: K : K j �

Reading ob jects as terms, constructors as t yp es, and kinds as|w ell|

kinds, this crystalizes the four forms of dep endencies b et w een terms and

t yp es expressed b y the four forms of abstractions, or the four forms of pro d-

ucts.

The follo wing selects among the ab o v e expressions those that are legal.

In the de�nition and the follo wing prop osition, ` refers to �C .

13.4.2. Definition . De�ne the sets O

+

; T

+

; K

+

as follo ws:

O

+

= f O 2 O j 9 � ; A : � ` O : A g

T

+

= f T 2 T j 9 � ; A : � ` T : A g

K

+

= f K 2 K j 9 � : � ` K : 2 g

13.4.3. Pr oposition (Classi�cation of the � -cub e).

1. The sets O

+

; T

+

; K

+

and f 2 g ar e p airwise disjoint and close d under

r e duction.

2. If � ` A : B then exactly one of the fol lowing holds:

� (A; B) 2 O

+

� T

+

, or

� (A; B) 2 T

+

� K

+

, or

� (A; B) 2 K

+

� f 2 g

One obtains similar classi�cations for particular systems within the � -cub e:

1. F or � ! , � 2, �! , and �! omit the clauses �V

�

: T : T , T O , and

� V

�

: T : K ;

2. F or � ! , � 2, �P 2, and �P omit the clauses �V

2

: K : T , T T , and

� V

2

: K : K ;

3. F or � ! , �! , �P ! , and �P omit the clauses �V

2

: K : O , O T , and

� V

2

: K : T .

One can use this to sho w, e.g., that in � ! pro ducts � x : �: � in fact alw a ys

ha v e form � ! � , i.e., x 62 FV (�).

13.5. Pure t yp e systems 219

13.5. Pure t yp e systems

In this subsection w e in tro duce pur e typ e systems, as presen ted b y Baren-

dregt, Geuv ers, and Nederhof [8, 42 , 41]. The main ideas in the step from

the � -cub e to pure t yp e systems are the follo wing:

1. One tak es a set S as the set of sorts rather than just f� ; 2 g .

2. One tak es a relation A � S � S as the set of axioms rather than the

single axiom (� : 2).

3. One tak es a relation R � S � S � S as the set of rules rather than the

sp eci�c sets of rules from Figure 13.2.

4. The pro duct rule is generalized so that pro ducts need not liv e in the

same univ erse as their range. That is, A ! B do es not necessarily liv e

in the same sort as B .

3

13.5.1. Definition . A pur e typ e system (PTS) is a triple (S ; A ; R) where

(i) S is a set of sorts ;

(ii) A � S � S is a set of axioms ;

(iii) R � S � S � S is a set of rules .

W e write (s; s

0

) 2 R for (s; s

0

; s

0

) 2 R .

13.5.2. Definition . Let (S ; A ; R) b e a PTS.

(i) F or eac h s 2 S , let V

s

denote a coun tably in�nite set of variables suc h

that V

s

\ V

s

0

= ; when s 6= s

0

, and let V =

S

s 2S

V

s

.

(ii) The set E of expr essions is giv en b y the abstract syn tax:

E = V j S j E E j � V : E : E j � V : E : E

W e assume familiarit y with the sub expr ession relation � , with the set

FV (M) of fr e e variables of M , and with substitution M f x := N g for

x 2 V and M ; N 2 E . W e write A ! B for � d : A: B when d 62 FV (B).

W e use = to denote syn tactic iden tit y mo dulo � -con v ersion and adopt

the usual h ygiene con v en tions|see [7].

(iii) The relation !

�

on E is smallest compatible relation satisfying

(�x : A : M) N !

�

M f x := N g

Also, !!

�

and =

�

are the transitiv e, re
exiv e closure and the transitiv e,

re
exiv e, symmetric closure of !

�

, resp ectiv ely .

3

Notice the di�erence in the side condition in the pro duct rule in the � -cub e and the

pro duct rule in pure t yp e systems (see b elo w): in the latter case w e also ha v e to sp ecify

s

3

|the sort in whic h the pro duct is to liv e.

220 Chapter 13. The � -cub e and pure t yp e systems

(iv) The set C of c ontexts is the set of all sequences

x

1

: A

1

; : : : ; x

n

: A

n

where x

1

; : : : ; x

n

2 V , A

1

; : : : ; A

n

2 E , and x

i

6= x

j

when i 6= j .

The empt y sequence is [], and the concatenation of � and � is � ; �.

W e write x : A 2 � if � = �

1

; x : A; �

2

, for some �

1

, �

2

, and w e

write � � � if, for ev ery x : A 2 �, also x : A 2 �. F or � 2 C ,

dom(�) = f x j x : A 2 � ; for some A g .

(v) The relation ` � C � E � E is de�ned in Figure 13.4. If � ` M : A , then

� is le gal and M , A are le gal (in �). W e use the notation � ` A : B : C

meaning that � ` A : B and � ` B : C .

(axiom) [] ` s

1

: s

2

if (s

1

; s

2

) 2 A

(start)

� ` A : s

� ; x : A ` x : A if x 2 V

s

& x 62 dom (�)

(w eak ening)

� ` A : B � ` C : s

� ; x : C ` A : B if x 2 V

s

& x 62 dom (�)

(pro duct)

� ` A : s

1

� ; x : A ` B : s

2

� ` (� x : A: B) : s

3

if (s

1

; s

2

; s

3

) 2 R

(application)

� ` F : (� x : A: B) � ` a : A

� ` F a : B f x := a g

(abstraction)

� ; x : A ` b : B � ` (� x : A: B) : s

� ` �x : A : b : � x : A: B

(con v ersion)

� ` A : B � ` B

0

: s

� ` A : B

0

if B =

�

B

0

Figure 13.4: Pure type systems

13.5.3. Convention . T o sa v e notation w e often consider in the remainder a

PTS �S and sa y , e.g., that s 2 S or M 2 E with the understanding that �S =

(S ; A ; R) and that V , E , C , !

�

and ` are de�ned as in De�nition 13.5.2.

13.6. Examples of pure t yp e systems 221

13.6. Examples of pure t yp e systems

13.6.1. Example . The � -cub e consists of the eigh t PTSs �S , where

(i) S = f� ; 2 g ;

(ii) A = f (� ; 2) g ;

(iii) f (� ; �) g � R � f (� ; �) ; (2 ; �) ; (� ; 2) ; (2 ; 2) g .

The follo wing systems extend �! with sort 4 , axiom 2 : 4 , and some

rules for the new sort. The system � HOL is de�ned b y:

(i) S = f� ; 2 ; 4g ;

(ii) A = f (� ; 2) ; (2 ; 4) g ;

(iii) R = f (� ; �) ; (2 ; �) ; (2 ; 2) g .

The system �U

�

is de�ned b y:

(i) S = f� ; 2 ; 4g ;

(ii) A = f (� ; 2) ; (2 ; 4) g ;

(iii) R = f (� ; �) ; (2 ; �) ; (2 ; 2) ; (4 ; 2) g .

The system �U is de�ned b y:

(i) S = f� ; 2 ; 4g ;

(ii) A = f (� ; 2) ; (2 ; 4) g ;

(iii) R = f (� ; �) ; (2 ; �) ; (2 ; 2) ; (4 ; �) ; (4 ; 2) g .

13.6.2. Example . The system � � is de�ned b y:

(i) S = f�g ;

(ii) A = f (� ; �) g ;

(iii) R = f (� ; �) g .

W e end this section with an example of a somewhat di�eren t pure t yp e

system.

13.6.3. Example . The system � PRED is de�ned b y:

(i) S = f�

s

; �

p

; �

f

; 2

s

; 2

p

g ;

(ii) A = f (�

s

; 2

s

) ; (�

p

; 2

p

) g ;

(iii) R = f (�

p

; �

p

) ; (�

s

; �

p

) ; (�

s

; 2

p

) ; (�

s

; �

s

; �

f

) ; (�

s

; �

f

; �

f

) g .

This is another form ulation of predicate logic as a PTS (other than �P).

The signi�cance of the sorts is as follo ws.

222 Chapter 13. The � -cub e and pure t yp e systems

1. The sort �

s

is for sets.

2. The sort �

p

is for prop ositions.

3. The sort �

f

is for �rst-order functions from sets to sets.

4. The sorts 2

s

and 2

p

con tain �

s

and �

p

resp ectiv ely . There is no

sort 2

f

. This means that w e cannot ha v e v ariables ranging o v er func-

tion spaces.

The signi�cance of the rules is as follo ws.

1. The rule (�

p

; �

p

) allo ws the formation of implication b et w een prop osi-

tions.

' : �

p

; : �

p

` ' ! = � x : ': : �

p

2. The rule (�

s

; �

p

) allo ws quan ti�cation o v er sets.

� : �

s

; ' : �

p

` 8 x 2 �:' = � x : �: ' : �

p

3. The rule (�

s

; 2

p

) allo ws the formation of �rst-order predicates.

� : �

s

` � ! �

p

= � x : �: �

p

: 2

p

so

� : �

s

; p : � ! �

p

; x : � ` p x : �

p

:

4. The rule (�

s

; �

s

; �

f

) allo ws the formation of function spaces b et w een

sets.

� : �

s

; � : �

s

` � ! � : �

f

:

5. The rule (�

s

; �

f

; �

f

) allo ws the formation of curried m ulti-argumen t

function spaces b et w een sets.

� : �

s

` � ! (� ! �) : �

f

:

13.7. Prop erties of pure t yp e systems

As men tioned in the in tro duction, one of the reasons for in tro ducing the

� -cub e is the desire to facilitate pro ofs whic h apply to a n um b er of systems

at the same time. F or instance, it is b etter to pro v e the sub ject reduction

prop ert y in a generic w a y whic h applies to all the systems in the � -cub e,

regardless of the particular set R of rules, than it is to pro v e the prop ert y

for eac h system individually .

This idea is ev en more comp elling in the case of pure t yp e systems:

ha ving sho wn that a prop ert y holds for all pure t yp e systems w e kno w

not only that the prop ert y holds for all the systems of the � -cub e, but

13.7. Prop erties of pure t yp e systems 223

also for in�nitely man y other systems, a n um b er of whic h ha v e app eared

indep enden tly in the literature.

In this section w e dev elop the most rudimen tary theory of pure t yp e

systems. Throughout the section, �S denotes an arbitrary pure t yp e system.

13.7.1. Lemma (Prop erties of substitution).

1. A f x := B gf y := C g = A f y := C gf x := B f y := C gg , if y 62 FV (B) ;

2. B =

�

C) A f x := B g =

�

A f x := C g ;

3. A =

�

B & C =

�

D) A f x := C g =

�

B f x := D g .

Pr oof. (1)-(2): By induction on A . (3): By induction on A =

�

B , using

(1)-(2). ut

13.7.2. Pr oposition (Ch urc h-Rosser). The r elation !

�

on E is c on
uent.

Pr oof. By the tec hnique of T ait and Martin-L• of|see e.g. [8]. ut

13.7.3. Lemma (F ree v ariables). If x

1

: A

1

; : : : ; x

n

: A

n

` B : C then:

1. x

1

; : : : ; x

n

ar e distinct;

2. FV (B) [FV (C) � f x

1

; : : : ; x

n

g ;

3. FV (A

i

) � f x

1

; : : : ; x

i � 1

g for 1 � i � n .

Pr oof. By induction on the deriv ation of x

1

: A

1

; : : : ; x

n

: A

n

` B : C . ut

13.7.4. Lemma (Start). If � is le gal then:

1. (s

1

; s

2

) 2 A) � ` s

1

: s

2

;

2. x : A 2 �) � ` x : A .

Pr oof. Since � is legal � ` B : C for some B ; C . Pro ceed b y induction

on the deriv ation of � ` B : C . ut

13.7.5. Lemma (T ransitivit y). L et � b e le gal. If x

1

: A

1

: : : ; x

n

: A

n

` A : B

and � ` x

i

: A

i

for i = 1 ; : : : ; n then � ` A : B .

Pr oof. By induction on the deriv ation of x

1

: A

1

; : : : ; x

n

: A

n

` A : B

making use of the start lemma. ut

13.7.6. Lemma (Substitution). If � ; x : A; � ` B : C and � ` a : A , then

4

� ; � f x := a g ` A f x := a g : B f x := a g .

4

Substitution (and an y other map) is extended from expressions to con texts in the

usual w a y .

224 Chapter 13. The � -cub e and pure t yp e systems

Pr oof. By induction on the deriv ation of � ; x : A; � ` B : C using the free

v ariables lemma and prop erties of substitution. ut

13.7.7. Lemma (Thinning). If � ` A : B , � is le gal, and every (x : A) in �

is also in � , then � ` A : B .

Pr oof. This follo ws from the start lemma and the transitivit y lemma. ut

13.7.8. Lemma (Generation). Supp ose that � ` M : C .

1. M = s) 9 (s; s

0

) 2 A : C =

�

s

0

2. M = x) 9 D 2 E : C =

�

D & x : D 2 � .

3. M = �x:Ab) 9 s 2 S ; B 2 E : C =

�

� x : A: B & � ;x : A ` b : B & � `

� x : A: B : s .

4. M = � x : A: B) 9 (s

1

; s

2

; s

3

) 2 R : C =

�

s

3

& � ` A : s

1

& � ; x :

A ` B : s

2

.

5. M = F a) 9 x 2 V ; A;B 2 E : C =

�

B f x := a g & � ` F : � x :

A: B & � ` a : A .

Pr oof. By induction on the deriv ation of � ` M : C . ut

13.7.9. Lemma (Correctness of t yp es). If � ` A : B then either B 2 S or

9 s 2 S : � ` B : s .

Pr oof. By induction on � ` A : B , using the generation and substitution

lemmas. ut

13.7.10. Theorem (Sub ject reduction). If � ` A : B and A !

�

A

0

then

� ` A

0

: B .

Pr oof. Pro v e b y sim ultaneous induction on the deriv ation of � ` A : B :

1. if � ` A : B and A !

�

A

0

then � ` A

0

: B ;

2. if � ` A : B and � !

�

�

0

then �

0

` A : B .

The pro of uses the substitution lemma. ut

13.8. The Barendregt-Geuv ers-Klop conjecture 225

13.8. The Barendregt-Geuv ers-Klop conjecture

The follo wing terminology should b e w ell-kno wn b y no w.

13.8.1. Definition . Let �S b e a PTS. A � -r e duction p ath from an expres-

sion M

0

is a (p ossibly in�nite) sequence M

0

!

�

M

1

!

�

M

2

!

�

: : : If the

sequence is �nite, it ends in the last expression M

n

and has length n .

13.8.2. Definition . Let �S b e a PTS, and M an expression.

(i) M 2 1

�

, there is an in�nite � -reduction path from M ;

(ii) M 2 NF

�

, there is no � -reduction path of length 1 or more from M ;

(iii) M 2 SN

�

, all � -reduction paths from M are �nite ;

(iv) M 2 WN

�

, there is a � -reduction from M ending in N 2 NF

�

.

Elemen ts of NF

�

; SN

�

; WN

�

are � -normal forms , � -str ongly normalizing , and

� -we akly normalizing , resp ectiv ely . W e also write, e.g., 1

�

(M) for M 2 1

�

.

13.8.3. Definition . �S is we akly normalizing if all legal expressions are

w eakly normalizing, and str ongly normalizing if all legal expressions are

strongly normalizing. In this case w e write �S j = WN

�

and �S j = SN

�

,

resp ectiv ely .

13.8.4. Example . All the systems of the � -cub e are strongly normalizing|

see, e.g., [12 , 8 , 42, 41]. The system � � is the simplest PTS whic h is not

strongly normalizing. The system �U is is a natural extension of �! whic h,

surprisingly , is not strongly normalizing. This result sho ws that, apparen tly ,

the fact that � � fails to b e strongly normalizing is not merely a consequence

of the cyclicit y in its axiom (� ; �).

W e conclude the notes b y men tioning an op en problem in the �eld|for

more on the problem see [101].

13.8.5. Conjecture (Barendregt, Geuv ers, Klop). F or every PTS �S :

�S j = WN

�

) �S j = SN

�

226 Chapter 13. The � -cub e and pure t yp e systems

CHAPTER 14

Solutions and hin ts to selected exercises

Some of the solutions b elo w are based on actual homew ork done in L

A

T

E

X b y

Henning Niss (1.7.7) and Henning Makholm (6.8.20 and 6.8.21). In one of

his homew orks, Henning Makholm has solv ed an apparen tly op en problem

(Exercise 6.8.3).

Exercise 1.7.7

14.0.6. Lemma (Substitution Lemma). If x 6= y and x 62 FV (L) then

M f x := N gf y := L g = M f y := L gf x := N f y := L gg

Pr oof. By induction on M .

Case M = x . Since x 6= y :

M f x := N g f y := L g = x f x := N gf y := L g

= N f y := L g

= x f x := N f y := L gg

= x f y := L gf x := N f y := L g g

= M f y := L gf x := N f y := L g g

The remaining cases are sho wn in less detail.

Case M = y . Since x 62 FV(L):

M f x := N g f y := L g = L

M f y := L gf x := N f y := L g g

Case M = z where z 6= x and z 6= y . Then:

M f x := N g f y := L g = z

= M f y := L gf x := N f y := L g g

Case M = �z :P . Without loss of generalit y w e ma y assume z 6= x and

227

228 Chapter 14. Solutions and hin ts to selected exercises

z 6= y . Then b y the induction h yp othesis:

M f x := N gf y := L g = �z :P f x := N g f y := L g

= �z :P f y := L gf x := N f y := L gg

= M f y := L gf x := N f y := L g g

Case M = P Q . Similar to the preceding case. ut

The follo wing states that !!

�

is c omp atible .

14.0.7. Lemma . Assume that P ; P

0

2 � ar e such that P !!

�

P

0

. Then, for

al l x 2 V and al l Q 2 � :

(i) �x:P !!

�

�x:P

0

;

(ii) P Q !!

�

P

0

Q ;

(iii) Q P !!

�

Q P

0

.

Pr oof. (i): By induction on the deriv ation of P !!

�

P

0

.

Case P !!

�

P

0

b ecause P !

�

P . Then �x:P !

�

�x:P

0

. Therefore

also �x:P !!

�

�x:P

0

.

Case P !!

�

P

0

b ecause P !!

�

P

0 0

and P

00

!!

�

P . By the induction

h yp othesis, �x:P !!

�

�x:P

00

and �x:P

00

!!

�

�x:P

0

, so �x:P !!

�

�x:P

0

.

Case P !!

�

P

0

b ecause P = P

0

. Then �x:P = �x:P

0

. Therefore also

�x:P !!

�

�x:P

0

.

(ii)-(iii): induction on the de�nition of P !!

�

P

0

ut

14.0.8. Lemma . F or al l P ; P

0

; Q 2 � , if

P !

�

P

0

then also

P f x := Q g !

�

P

0

f x := Q g :

Pr oof. By induction on the deriv ation of P !

�

P

0

. The in teresting case

is P = (�y :P

1

) Q

1

!

�

P

1

f y := Q

1

g = P

0

. W e ha v e

((�y :P

1

) Q

1

) f x := Q g = (�y :P

1

f x := Q g) (Q

1

f x := Q g)

!

�

P

1

f x := Q g f y := Q

1

f x := Q g g

= P

1

f y := Q

1

gf x := Q g ;

where the last equalit y follo ws from the Substitution Lemma (since y is not

free in Q). ut

229

14.0.9. Lemma . F or al l P ; Q; Q

0

2 � , if

Q !

�

Q

0

then also

P f x := Q g !!

�

P f x := Q

0

g :

Pr oof. By induction on the structure of P .

Case P = x , then P f x := Q g = Q !

�

Q

0

= P f x := Q

0

g :

Case P = y , then P f x := Q g = y !!

�

y = P f x := Q

0

g :

Case P = �y :P

0

, then

(�y :P

0

) f x := Q g = �y :P

0

f x := Q g

!!

�

�y :P

0

f x := Q

0

g

= (�y :P

0

) f x := Q

0

g

where !!

�

follo ws from the induction h yp othesis and compatibilit y of !!

�

.

Case P = P

1

P

2

, then

(P

1

P

2

) f x := Q g = (P

1

f x := Q g) (P

2

f x := Q g)

!!

�

(P

1

f x := Q

0

g) (P

2

f x := Q g)

!!

�

(P

1

f x := Q

0

g) (P

2

f x := Q

0

g)

= (P

1

P

2

) f x := Q

0

g

where b oth !!

�

-steps follo w from the induction h yp othesis and compatibilit y

of !!

�

. ut

No w the prop osition in the exercise (1.72) can b e pro v ed.

14.0.10. Pr oposition (W eak Ch urc h-Rosser). F or al l M

1

; M

2

; M

3

2 � , if

M

1

!

�

M

2

and M

1

!

�

M

3

, then ther e exists an M

4

2 � such that

M

2

!!

�

M

4

and M

3

!!

�

M

4

.

Pr oof. By induction on the deriv ation of M

1

!

�

M

2

.

Case M

1

= (�x:P) Q and M

2

= P f x := Q g . Then either (1) M

3

=

(�x:P

0

) Q for P

0

suc h that P !

�

P

0

, (2) M

3

= (�x:P) Q

0

for Q

0

suc h that

Q !

�

Q

0

, or M

3

= M

2

. In the last case w e are done. In situation (1)

w e ha v e M

3

= (�x:P

0

) Q !

�

P

0

f x := Q g and M

2

= P f x := Q g !

�

P

0

f x := Q g b y Lemma 14.0.8, i.e., M

4

= P

0

f x := Q g . Situation (2) is

similar using Lemma 14.0.9.

(1) (2)

(�x:P) Q

||yy
yy

yy
yy

""EE
EE

EE
EE

P f x := Q g

��

(�x:P

0

) Q

��
P

0

f x := Q g

=

P

0

f x := Q g

(�x:P) Q

||yy
yy

yy
yy

""EE
EE

EE
EE

P f x := Q g

����

(�x:P) Q

0

��
P f x := Q

0

g

=

P f x := Q

0

g

230 Chapter 14. Solutions and hin ts to selected exercises

Case M

1

= �x:P and M

2

= �x:P

0

b ecause P !

�

P

0

. Then M

3

m ust

b e �x:Q for Q 2 � suc h that P !

�

Q . By the induction h yp othesis there

is a term M

0

suc h that P

0

!!

�

M

0

and Q !!

�

M

0

. Then since !!

�

is

compatible w e ha v e M

2

= �x:P

0

!!

�

�x:M

0

and M

3

= �x:Q !!

�

�x:M

0

,

and M

4

= �x:M

0

is the sough t term.

�x:P

����
��

��
�

��99
99

99
9

�x:P

0

����99
99

99
9 �x:Q

������
��
��
�

�x:M

0

Case M

1

= P Q and M

2

= P

0

Q b ecause P !

�

P

0

. Then

(1) M

3

= P

00

Q for P

00

2 � suc h that P !

�

P

0 0

, or

(2) M

3

= P Q

0

for Q

0

2 � suc h that Q !

�

Q

0

.

In the former case b y the induction h yp othesis w e obtain an M

0

suc h that

P

0

!!

�

M

0

and P

00

!!

�

M

0

and th us (again b y compatibilit y of !!

�

) that

M

2

= P

0

Q !!

�

M

0

Q and M

3

= P

0 0

Q !!

�

M

0

Q , i.e., M

4

= M

0

Q . In the

latter case w e ha v e that M

2

= P

0

Q !

�

P

0

Q

0

and M

3

= P Q

0

!

�

P

0

Q

0

(also b y compatibilit y) and consequen tly M

4

= P Q

0

as desired.

(1) (2)

P Q

����
��

��
�

��<<
<<

<<
<

P

0

Q

����;;
;;

;;
; P

00

Q

������
��

��
�

M

0

Q

P Q

����
��

��
�

��::
::

::
:

P

0

Q

��

P Q

0

��
P

0

Q

0

=

P

0

Q

0

This completes the pro of. ut

The pro of do es not extend directly to the full Ch urc h-Rosser prop ert y .

Let us sa y that a relation ! on a set S is we akly c on
uent if, whenev er

s

1

! s

2

and s

1

! s

3

, there is an s

4

suc h that s

2

! : : : ! s

4

and s

3

! : : : !

s

4

. Let us call ! c on
uent if, whenev er s

1

! : : : ! s

2

and s

1

! : : : ! s

3

,

there is an s

4

suc h that s

2

! : : : ! s

4

and s

3

! : : : ! s

4

.

There are relations that are w eakly con
uen t and not con
uen t. The

simplest example is when w e ha v e a four-elemen t set S = f s

1

; s

2

; s

3

; s

4

g

s

1

 s

2

, and s

2

! s

3

, s

2

 s

3

, and s

3

! s

4

:

s

1

s

2

oo //
s

3

oo //
s

4

A relation ! on a set S is str ongly normalizing if there are no in�nite

reduction sequences

s

1

! s

2

! : : :

231

of (not necessarily distinct) elemen ts from S . Can y ou �nd a w eakly con
u-

en t, strongly normalizing relation that is not con
uen t?

A diggression

Ho w man y details should a pro of con tain? Ev eryb o dy should do a pro of in

the st yle of Lemma 14.0.6 (induction on M 2 �) and a pro of in the st yle of

Lemma 14.0.7 (induction on the de�nition of P !!

�

P

0

) in ev ery detail at

least once in their life.

Ho w ev er, ha ving tried this, one can see that man y details are completely

mec hanical. In c ho osing a lev el of detail in a pro of, one should lea v e out de-

tails that can b e reconstructed mec hanically with little e�ort b y the reader.

In con trast, steps that require go o d ideas, ev en small go o d ideas, should

usually not b e left out.

Th us, a complete pro of of Lemma 14.0.6 w ould b e \Induction on M " and

a complete pro of of Lemma 14.0.7 w ould read \Induction on the de�nition

of P !!

�

P

0

." A complete pro of of Lemma 14.0.8 migh t b e \Induction on

the de�nition of P !

�

P

0

," but since something in teresting happ ens in the

case where P = (�y :P

1

) Q

1

!

�

P

1

f y := Q

1

g = P

0

, one can also presen t

that case and refer to the substitution lemma.

If sev eral cases in a pro of are similar, but non-trivial, one can do the

�rst example in detail and omit the remaining ones.

Exercise 1.7.17

14.0.11. Pr oposition (Klop). L et �x

1

x

2

: : : x

n

:M b e an abbr eviation for the

� -term �x

1

:�x

2

: : : : �x

n

:M . L et

? = �abcdef g hij k l mnopq stuv w xy z r :r (thisisaf ixedpointcombinator)

$ = ??????????????????????????

Then $ is a �xed p oin t com binator, i.e., for any F 2 � : $ F =

�

F ($ F) .

Pr oof. W e ha v e:

$ F = ?????????????????????????? F

= (�abcdef g hij k l mnopq stuv w xy z r :

r (thisisaf ixedpointcombinator))

????????????????????????? F

=

�

F (?????????????????????????? F)

= F ($ F)

as required. ut

232 Chapter 14. Solutions and hin ts to selected exercises

Exercise 2.7.2

W e only sho w the closure under w eak ening. The pro of is b y induction with

resp ect to the size of the pro of of � ` ' . W e pro ceed b y cases dep ending

on the last rule used in this pro of. Recall that the notation � ; stands for

� [f g , whether or not 2 �. That's wh y e.g., Case 3 b elo w w orks.

Case 1: The pro of consists only of a single application of an axiom sc heme,

that is ' is an elemen t of �. Then � ; ` ' is also an axiom.

Case 2: The pro of ends with an application of (^ I). That is, ' has the

form '

1

^ '

2

and w e ha v e pro v en � ` '

1

and � ` '

2

. The pro ofs of

these judgemen ts are con tained in the pro of of � ` ' , so w e can apply the

induction h yp othesis to obtain � ; ` '

1

and � ; ` '

2

. By an application

of (^ I) w e can deriv e � ; ` '

1

^ '

2

.

Case 3: The pro of ends with an application of (_ E). That is, w e ha v e

� ` �

1

_ �

2

, for some form ulas �

1

, �

2

, suc h that � ; �

1

` ' and � ; �

2

` ' .

These pro ofs are all shorter, th us w e can apply the induction h yp othesis to

obtain � ; ` �

1

_ �

2

and � ; �

1

; ` ' and � ; �

2

; ` ' . It remains to use

rule (_ E).

Other cases are similar.

Exercise 2.7.3

1) Begin with the axiom ? ` ? . Apply (? E), to deriv e ? ` ' and (! I)

to deriv e ` ? ! ' .

3) Begin with p; p ! ? ` p and p; p ! ? ` p ! ? . Apply (! E) to get

p; p ! ? ` ? , then t wice (! I) to get ` p ! (p ! ?) ! ? .

5) First sho w that ::: p; : p; p ` ? (unfold the : 's). Th us, ::: p; p `

: p ! ? , i.e., ::: p; p ` :: p . But ::: p = :: p ! ? and one can

deriv e ::: p; p ` ? . It remains to use (! I).

7) First sho w that p ! q ; q ! ? ; p ` ? . Then apply (! I) three times.

9) What w e need is : p _ : q ; p ^ q ` ? . With help of (^ E), deriv e separately

: p _ : q ; : p; p ^ q ` ? and : p _ : q ; : q ; p ^ q ` ? . Apply (_ E) to these

t w o judgemen ts.

11) Remem b er that $ abbreviates a conjunction, so (^ I) will b e the last

rule. One part of this pro of uses (^ E), the other one uses (^ I).

13) First deriv e (p _ : p) ! ? ; p ` ? , using rules (_ E) and (! E). By (! I)

obtain (p _ : p) ! ? ` : p . Then use (_ E) and (! E) again to deriv e

(p _ : p) ! ? ` ? .

233

Exercise 2.7.4

� First w e sho w that a [a = a , that is a � a holds for all a . This is

b ecause a = 0 [a = (� a \ a) [a = (� a [a) \ (a [a) = 1 \ (a [a) = a [a .

� The relation � is transitiv e b ecause a [b = b and b [c = c implies

that c = b [c = (a [b) [c = a [(b [c) = a [c .

� The an tisymmetry (a � b and b � a implies a = b) follo ws immediately

from the de�nition. T o see that a [b is the lub of a and b , assume

that a � c and b � c . Then (a [b) [c = a [(b [c) = a [c = c , i.e.,

a [b � c .

� The condition a \ b � a (that is (a \ b) [a = a) is sho wn as follo ws:

(a \ b) [a = (a \ b) [(a \ 1) = (a \ b) [(a \ (b [� b)) = (a \ b) [(a \

b) [(a \ � b) = (a \ b) [(a \ � b) = a \ (b [� b) = a \ 1 = a .

� If a \ b = a then b = (a \ b) [b = a [b , i.e., a � b . On the other hand,

if a � b then (a \ b) [a = (a [a) \ (b [a) = a \ b , and th us a � a \ b .

W e conclude a = a \ b , b y the previous item and an tisymmetry .

Exercise 2.7.5

� The pro of that the relation � is a partial order, and that [is the lub ,

is similar as for Exercise 2.7.4.

� Next w e sho w that � a \ a = 0. W e ha v e � a � � a , i.e., a) 0 � a) 0.

Th us, a \ (a) 0) � 0, and since 0 is ob viously the least elemen t, w e

ha v e a \ � a = a \ (a) 0) = 0.

� No w w e pro v e (a [b) \ a = a , in a similar w a y as w e pro v ed the dual

la w (a \ b) [a = a for a Bo olean algebra. (Note that no w w e use

b \ � b = 0 instead of b [� b = 1.)

� W e deriv e (a \ b) [a = a from the ab o v e, b ecause (a \ b) [a =

(a [a) \ (b [a) = a \ (b [a). Note that w e obtain here the idemp otency

of \ , since a \ a = a \ (a [a) = a \ a .

� Then w e pro ceed in a similar w a y as for Bo olean algebra.

Exercise 2.7.6

The only prop ert y whic h is not immediate is the equiv alence b et w een A \

C � B and C � In t(� A [B). First note that the condition A \ C � B

is equiv alen t to C � � A [B , for all A , B and C . F or the left-to-righ t

implication observ e that X � Y implies X � In t(Y), whenev er X is an

op en set. The con v erse follo ws from In t(� A [B) � � A [B .

234 Chapter 14. Solutions and hin ts to selected exercises

Exercise 2.7.8 (1)) (2)

Let � = f #

1

; : : : ; #

n

g , and let v b e a v aluation in a Heyting algebra H .

W e write v (�) to denote v (#

1

) \ � � � \ v (#

n

). By induction with resp ect to

deriv ations w e pro v e the follo wing statemen t: \If � ` ' then v (�) � v ('),

for all v aluations in arbitrary Heyting algebras". The h yp othesis follo ws

from the sp ecial case when v (�) = 1.

F or instance, consider the case of (! I). T o sho w v (�) � v (' !)

recall that v (' !) = v (')) v () and use the induction h yp othesis

v (�) \ v (') � v (). F or the case of (_ E) use the distributivit y la w.

Exercise 2.7.9

First w e consider coun terexamples with op en sets. In what follo ws w e use

the con v en tion that v (p) = P , v (q) = Q , etc, and w e write � A for In t(� A).

4) T ak e P to b e the whole R

2

without one p oin t. Then � P is empt y

and �� P is the full set R

2

. Th us �� P) P 6= 1.

6) Let P b e an op en disk, and Q b e R

2

without one straigh t line crossing

the middle of the disk. Then P) Q is the whole space without the

in tersection of the disk and the line. The v alue of the righ t-hand side

is the whole space.

8) T ak e the in teriors of t w o complemen tary halv es of R

2

.

10) T ak e Q and R to b e the half of R

2

where x < 0, and tak e P =

R

2

� f (0 ; 0) g . Then (P) Q) \ (Q) P) is equal to Q and R . Th us

the v alue of (p $ q) $ r is R

2

6� P .

12) T ak e b oth P and Q to b e the same op en disk.

Here are coun terexamples in Kripk e mo dels.

4) A t w o-elemen t mo del with c < c

0

, where c 1 p and c

0

 p .

6) A t w o-elemen t mo del with c < c

0

, where c; c

0

 p and c

0

 q and c 1 q .

8) A three-elemen t mo del with c < c

0

; c

0 0

, where c

0

 p , c

0 0

 q and noth-

ing more happ ens.

10) A three-elemen t mo del with c < c

0

< c

00

, where c

0

 p , c

00

 p; q ; r and

nothing more happ ens.

12) A t w o-elemen t mo del with c < c

0

, where c

0

 p; q and c forces nothing.

235

Exercise 2.7.10

Use n lines b eginning in (0 ; 0) to divide the space R

2

in to n disjoin t angles

and tak e their in teriors as v alues of p

i

. The p oin t (0 ; 0) do es not b elong

to the in terpretation of this form ula. Or tak e a Kripk e mo del with all sets

f c � c

0

: c
 p

i

g di�eren t. Then c

0

do es not force our form ula.

Exercise 2.7.11

Let F b e maximal and let a [b 2 F , but a; b 62 F . W e sho w that either

F [f a g or F [f b g can b e extended to a prop er �lter. First assume that

there are f

1

; f

2

2 F suc h that f

1

\ a = f

2

\ b = 0. Then (f

1

\ f

2

) \ (a [b) =

(f

1

\ f

2

\ a) [(f

1

\ f

2

\ b) = 0 [0 = 0, a con tradiction. Th us either suc h

f

1

or suc h f

2

do es not exist. Assume for instance that f \ a 6= 0, for all

f 2 F . Then the set F

a

= f x : x � f \ a for some f 2 F g is a prop er �lter

extending F .

Let F b e a prime �lter in a Bo olean algebra, and assume that F � F

0

,

with a 2 F

0

� F . Since a [� a = 1 2 F and F is prime, w e ha v e � a 2 F

and 0 = a \ � a 2 F

0

, a con tradiction.

Exercise 2.7.12

The argumen t is similar to the �rst part of Exercise 2.7.11. Assume that G

is our maximal elemen t, and that c [d 2 G , but c; d 62 G . The assumption

of g

1

; g

2

2 G with g

1

\ a � b and g

2

\ a � c leads to con tradiction, and th us

either G [f b g or G [f c g can b e extended to a prop er �lter, not con taining a .

Exercise 2.7.13 ())

W e need to pro v e a sligh tly more general statemen t, namely:

Let � ` ' . Then for ev ery Kripk e mo del C and ev ery state c

of C , the condition c
 � implies c
 ' .

(An alternativ e of this generalization is to remem b er that for eac h state c ,

the set of all c

0

with c � c

0

mak es a Kripk e mo del.) As an example consider

the induction step for rule (_ E). Assume that w e ha v e deriv ed � ` ' from

the three assertions: � ; ` ' and � ; # ` ' and � ` _ # . Let c
 �. By

the induction h yp othesis w e ha v e c
 _ # , and th us either c
 or c
 # .

Assume the �rst case and w e ha v e c
 � ; . By induction h yp othesis w e get

c
 ' .

Exercise 2.7.14

The induction fails in the case of disjunction.

236 Chapter 14. Solutions and hin ts to selected exercises

Exercise 2.7.17

First do the previous t w o exercises. No w assume that ' is a classical tautol-

ogy (the other direction is ob vious), but :: ' is not v alid in tuitionistically .

This means that there is a Kripk e mo del with a state c , suc h that c
 : ' .

Without loss of generalit y , w e can assume that c determines all prop ositional

v ariables in ' . Indeed, supp ose that c do es not determine a v ariable p . Then

there is a c

0

� c with c

0

 p , and w e can tak e c

0

instead. F rom Exercise 2.7.16

w e obtain that c
 ' , a con tradiction.

Exercise 4.6.4

14.0.12. Lemma (Newman's Lemma). L et ! b e a binary r elation satisfying

SN . If ! satis�es W CR , then ! satis�es CR .

Pr oof. W e giv e the pro of in the case where ! satis�es FB , i.e., for all

M 2 L the set f N j M ! N g is �nite. [This w as the case the hin t aimed

at. See another pro of at the end of the note.] Since ! satis�es FB and SN ,

there is for an y M an m so that an y reduction sequence from M has length

at most m .

1

Assume ! is SN and W CR . Giv en M

1

; M

2

; M

3

2 L where M

1

!! M

2

and

M

1

!! M

3

, w e m ust �nd M

4

2 L suc h that

M

1

}}}}{{
{{

{{
{{

!!!!CC
CC

CC
CC

M

2

!!!!

M

3

}}}}
M

4

Since ! is strongly normalizing, for ev ery M 2 L there will b e a longest

reduction starting in M . Let j M j 2 N denote the length of this reduction.

Assume M

1

; M

2

; M

3

2 L suc h that M

1

!! M

2

and M

1

!! M

3

. W e pro ceed

b y induction o v er j M

1

j :

Case j M

1

j = 0: Since the longest reduction has length 0, it m ust b e the

case that M

1

= M

2

and M

1

= M

3

, and th us M

4

= M

1

is the desired term.

Case j M

1

j > 0: Assume for all N

1

2 L suc h that j N

1

j < j M

1

j , if N

1

!! N

2

and N

2

!! N

3

then there exists N

4

suc h that N

2

!! N

4

and N

3

!! N

4

.

1

Ho w do es this follo w? Recall K• onig's Lemma whic h states that if a tree|whic h is

�nitely branc hing, i.e., eac h no de has �nitely man y c hildren|is in�nite, then it m ust ha v e

an in�nite branc h. No w, giv en M , consider the tree where the ro ot is lab eled with M , and

for an y no de lab eled with K , if K ! N then the no de lab eled K has a c hild lab eled N .

Since ! satis�es SN , there is no in�nite branc h. Also, there cannot b e arbitrarily long

�nite sequences, b ecause then the tree w ould b e in�nite, and then b y K• onig's Lemma

there w ould b e an in�nite branc h, con tradicting SN .

237

If M

1

!! M

2

has length 0 the desired term is M

3

:

M

1

{{
{{

{{
{{

{{
{{

{{
{{

!!!!CC
CC

CC
CC

M

2

!!!!

M

3

{{
{{

{{
{{

{{
{{

{{
{{

M

3

Similarly if M

1

!! M

3

has length 0.

Th us assume that M

1

! N

2

!! M

2

and M

1

! N

3

!! M

3

,

M

1

}}{{
{{

{{
{{

!!CC
CC

CC
CC

N

2

����

N

3

����
M

2

M

3

Since ! is W CR from M

1

! N

2

and M

1

! N

3

w e get a term N 2 L suc h

that N

2

!! N and N

3

!! N

M

1

}}{{
{{

{{
{{

!!CC
CC

CC
CC

N

2

!!!!����

N

3

}}}} ����
M

2

N

M

3

Since M

1

! N

2

!! N , j N

2

j < j M

1

j . Applying the induction h yp othesis w e

th us get a term M

0

4

2 L suc h that M

2

!! M

0

4

and N !! M

0

4

M

1

}}{{
{{

{{
{{

!!CC
CC

CC
CC

N

2

!!!!CC
CC

CC
CC

����

N

3

}}}}{{
{{

{{
{{

����
M

2

!!!!

N

����

M

3

M

0

4

238 Chapter 14. Solutions and hin ts to selected exercises

Then N

3

!! M

0

4

and N

3

!! M

3

and hence b y the induction h yp othesis w e get

a term M

4

2 L suc h that M

0

4

!! M

4

and M

3

!! M

4

M

1

}}{{
{{

{{
{{

!!CC
CC

CC
CC

N

2

!!!!CC
CC

CC
CC

����

N

3

}}}}{{
{{

{{
{{

��
M

2

!!!!CC
CC

CC
CC

N

����

M

3

����

M

0

4

����
M

4

i.e., M

2

!! M

4

and M

3

!! M

4

. This concludes the pro of. ut

14.0.13. Pr oposition . Ther e is a binary r elation satisfying WN and W CR ,

but not CR .

Pr oof. Consider L = f M ; M

NF

; N ; N

NF

g and the relation ! giv en b y

M

��

%%
Nee

��
M

NF

N

NF

The relation is not Ch urc h-Rosser: for M 2 L w e ha v e t w o reductions

M ! M

NF

and M ! N ! N

NF

, but there is no term in L suc h that M

NF

and N

NF

b oth reduce to this term (b ecause b oth are in \normal form").

The relation is W eak Ch urc h-Rosser: if M ! M

NF

and M ! N , then

M

NF

is a common reduct. Similarly for N .

Finally , w e ha v e that ! is w eakly normalizing since an y reduction can

alw a ys end in either M

NF

or N

NF

. (It is ob viously not strongly normalizing

b ecause w e ha v e an in�nite reduction M ! N ! M ! � � � .) ut

14.0.14. Cor ollar y . L et M

1

2 � b e typ able in � ! �a la Curry and assume

that M

1

!!

�

M

2

and M

1

!!

�

M

3

. Then ther e is an M

4

2 � such that

M

2

!!

�

M

4

and M

3

!!

�

M

4

.

Pr oof. Let L = f M 2 � j9 � : ` M : � g and consider ! = !

�

. By The-

orem 4.10 ! satis�es SN and b y Exercise 1.72 ! satis�es W CR , th us b y

Newman's Lemma ! satis�es CR , i.e., !

�

is Ch urc h-Rosser on L |the set

of Curry-t ypable terms. ut

239

Ho w do es one pro v e Newman's Lemma in case ! do es not necessarily

satisfy FB ? As follo ws.

Pr oof. Let ! b e a relation on L satisfying SN and W CR . As usual, a

normal form is an M 2 L suc h that for all N 2 L , M 6! N .

Since ! satis�es SN , an y M 2 L reduces to a normal form. Call M

ambiguous if M reduces to t w o distinct normal forms. It is easy to see that

! satis�es CR if there are no am biguous terms.

No w, for an y am biguous M there is another am biguous M

0

suc h that

M ! M

0

. Indeed, supp ose M !! N

1

and M !! N

2

. Both of these reductions

m ust mak e at least one step since N

1

and N

2

are distinct, so the reductions

ha v e form M ! M

1

!! N

1

and M ! M

2

!! N

2

. If M

1

= M

2

w e can c ho ose

M

0

= M

1

= M

2

. If M

1

6= M

2

w e no w b y W CR that for some N

3

, M

1

!! N

3

and M

2

! N

3

. W e can assume that N

3

is a normal form. Since N

1

and N

2

are distinct, N

3

is di�eren t from N

1

or N

2

so w e can c ho ose M

0

= M

1

or

M

0

= M

2

.

Th us, M has an in�nite reduction sequence, con tradicting SN . Hence,

there are no am biguous terms. ut

Exercise 5.6.1

One p ossibilit y is S (S (KS) K) I .

Exercise 5.6.9

It should b e easy to see that all t yp es that can b e assigned to K , I and S

�

m ust b e resp ectiv ely of the form:

� � ! � ! � ;

� � ! � ;

� (� ! �) ! (� ! � ! �) ! (� ! �) ! � ! � .

W e can tak e all instances of the ab o v e form ulas as our Hilb ert st yle axioms.

But w e can easily simplify the the system, replacing the last axiom b y:

� (� ! � ! �) ! (� ! �) ! � ! � .

A Hilb ert st yle pro of will no w corresp ond to a com binatory term built from

the com binators of Exercise 5.6.8, and without loss of generalit y , w e can

only deal with terms in normal forms.

Supp ose w e ha v e a pro of of (p ! p ! q) ! p ! q , where p and q are

prop ositional (t yp e) v ariables. Let M b e the corresp onding com binatory

term in the language of Exercise 5.6.8, and assume that M is in a normal

form.

240 Chapter 14. Solutions and hin ts to selected exercises

Clearly , M is neither K

� ;�

, nor S

� ;� ;�

, nor I

�

. If M = K

� ;�

N , then

N pro v es p ! q , whic h is not a v alid tautology . Also M = S

� ;� ;�

P Q or

M = S

� ;� ;�

N is imp ossible, b ecause t yp es of these expressions do not matc h

(p ! p ! q) ! p ! q .

Exercise 6.8.1

a) T o reduce ? ` M : ? to ` M : ?, observ e that a term M with free

v ariables x

1

; : : : ; x

n

is t ypable if and only if �x

1

: : : x

n

:M is t ypable.

b) In order to �nd out if a closed term M is t ypable, ask if x : � ` K xM : � .

Exercise 6.8.2

Of course t

�

= x

�

, and then w e pro ceed b y induction as follo ws: t

� ! �

=

�x: K t

�

(�z y :z (y x)(y t

�

)).

Exercise 6.8.3 (Author's hin t)

Adopt the tec hnique of Exercise 6.8.2 to write lam b da-terms t

[x : �]

suc h that

x 2 F V (t

[x : �]

) and t

[x : �]

is t ypable in a con text � if and only if �(x) = S (�),

for some S . (Use a fresh v ariable x

�

, for ev ery t yp e v ariable � o ccurring in � .)

Then reduce the problem of � ` M : ? with � = f (x

1

: �

1

) ; : : : ; (x

n

: �

n

) g to

the problem ? ` M

0

: ?, where M

0

= �z :z M t

[x

1

: �

1

]

: : : t

[x

n

: �

n

]

.

Exercise 6.8.3 (Solution b y Henning Makholm)

(This is a fragmen t of Henning's solution con taining the reduction of prob-

lem (3) to problem (4).)

Definition . Let �

0

denote a t yp e en vironmen t of the form discussed in

exercise 6.29. That is, one that maps all v ariables to distinct t yp e v ariables.

Definitions . I consider the follo wing problems:

(3) ? ` M : � ;

(4) ? ` M : ?;

(5

1

2

) �

0

` M : ? :

In eac h of the follo wing reductions, x

1

up to x

n

will b e understo o d to b e the

free v ariables of the giv en M .

Reduction fr om (3) to (5

1

2

) . T o answ er ? ` M : � , ask

�

0

` �x

1

� � � x

n

y z :y (z M)(z t

�

) : ? :

241

Reduction fr om (5

1

2

)to (4) . This is the harder part. Without the �

0

it is not trivial to design a subterm that is forced to ha v e a primitiv e t yp e

(one that cannot b e destructed).

Solution with pr oduct types . One simple solution can b e obtained if

w e assume that w e ha v e pro duct t yp es at our disp osal, together with pair

and pro jection op erators. T o answ er �

0

` M : ?, ask:

? ` K ((�x

1

� � � x

n

:M) h x

1

; x

1

i h x

2

; x

2

i : : : h x

n

; x

n

i)

((�x

1

� � � x

n

:M)(�y

1

:y

1

)(�y

1

y

2

:y

1

) : : : (�y

1

� � � y

n

:y

1

)) : ?

Clearly , if M has a t yping in �

0

then this complicated term is also t ypable.

F or the other direction, I exploit the existence of unique principal t yp es. If

the long term is t ypable, then �x

1

� � � x

n

:M will ha v e a principal t yp e

�

1

! � � � ! �

n

! � :

Since that principal t yp e ha v e instances where the �

i

's are arro w t yp es as

w ell as where they are pair t yp es, w e conclude that the �

i

's m ust b e t yp e

v ariables. F urthermore, b ecause �y

1

� � � y

i

:y

1

and �y

1

� � � y

j

:y

1

cannot ha v e

equal t yp e for i 6= j , the �

i

's m ust b e di�er ent t yp e v ariables. Th us, mo dulo

renaming of t yp e v ariables w e ha v e �

0

` M : � .

Implica tional solution . My solution is based on an \enco ding" � of

t yp es and terms

2

:

� = � ;

� ! � = (� ! �) ! (� ! �);

x = x ;

�x:M = �ex:e (e (M));

M N = (�e:e (M eN))(�x:x) :

Lemma .

� If � ` M : � then � ` M : � .

� If � ` M : � then � ` M : � , for some � and � with � = � and � = � .

The pro of of the �rst part is easy . The other part follo ws b y induction with

resp ect to M . ut

2

Nev er mind that � is not LOGSP A CE-computable b ecause � can b e exp onen tially

bigger than � . It is not used in the actual reduction, just in the argumen t for its correct-

ness. The imp ortan t thing is that M is LOGSP A CE-computable b y ha ving a treeless,

linear de�nition.

242 Chapter 14. Solutions and hin ts to selected exercises

No w, to answ er �

0

` M : ?, ask

? ` (�x

1

� � � x

n

:M)(�z y

1

:z)(�xy

1

y

2

:z) : : : (�z y

1

� � � y

n

:z) : ? :

It is easy to see that this holds whenev er M is t ypable in �

0

. Con v ersely ,

assume that the massaged and wrapp ed M is t ypable. W e kno w then that

M is t ypable and th us so is M . Let (� ; �) b e the principal pair of M .

What remains to b e sho wn is that � is �

0

. W e kno w that � (x

i

) = �(x

i

)

has an instance whic h is a t yp e of �z y

1

� � � y

i

:z . But b y insp ection of the

de�nition of � w e see that this can only b e the case when �(x

i

) is a t yp e

v ariable. (This is b ecause all comp ound t yp es are translated in to t yp es with

\symmetric" �rst argumen ts.) F urthermore the t yp e v ariables in � ha v e to

b e di�eren t, b ecause �z y

1

� � � y

i

:z and �z y

1

� � � y

j

:z do not ha v e a common

t yp e for i 6= j . Th us � is a �

0

whic h completes the reduction. ut

Exercise 6.8.6

T ak e the equations \ �

1

= �

2

! �

2

", \ �

2

= �

3

! �

3

", : : : , \ �

n � 1

= �

n

! �

n

".

Exercise 6.8.7

Use non-uni�able terms as di�eren t
ags. Represen t n -ary op erators as

com binations of arro ws, using
ags to iden tify op erators.

Exercise 6.8.8

Lab el all subterms o ccurring in the equations and k eep lab els unc hanged in �

in steps (a) and (d). A v ariable x is called de�ne d i� there is an equation

of the form \ x = t " or \ t = x ". The o ccurrence of x as a left-hand or a

righ t-hand side of suc h an equation is called main . Note that \ x = y " has

t w o main o ccurrences.

Pro ceed b y induction w.r.t. the follo wing parameters: 1) n um b er of la-

b els; 2) n um b er of equations; 3) n um b er of main o ccurrrences of de�ned

v ariables; 4) n um b er of all o ccurrrences of de�ned v ariables. Eac h applica-

tion of rule (c) decreases (1) and do es not increase the other parameters.

Rule (e) decreases (2) without a�ecting (1), and rule (a) decreases (3) with-

out increasing (1) or (2). Rule (d), used with caution (i.e., only when x

o ccurs in \ r = s " and when t is not a de�ned v ariable), will not increase an y

of the parameters (1){(3) and will decrease (4). Th us, after a �nite n um b er

of applications of rules (a), (c), (d) and (e) w e obtain a system of equations,

that is not normal only for the follo wing reasons: there ma y b e some equa-

tions of the form \ t = x " and there ma y b e some equations b et w een de�ned

v ariables. Use rules (b) and (d) for a clean-up.

243

Exercise 6.8.10

Use acyclic graphs instead of trees to represen t algebraic terms. Pro ceed b y

iden tifying no des of these graphs as long as either a con tradiction is found

(a lo op or an attempt to place t w o di�eren t op eration lab els at a no de) or

no more no des need to b e iden ti�ed.

Exercise 6.8.11

Just add one more equation.

Exercise 6.8.12

T ak e the term (�v : K v (�x

�

1

: : : x

�

n

:t

[v : �]

)) N , where N is an y inhabitan t of � ,

and t

[v : �]

is as in Exercise 6.8.3.

Exercise 6.8.14

Let a pair (� ; �) b e called semi-princip al i� it has the prop erties men tioned in

Exercise 6.8.13. W e sho w that if (� ; �) is semi-principal then there is at most

one Ch urc h-st yle BCK-term M in long normal form suc h that � ` M : � .

The pro of is b y induction w.r.t. the total n um b er of arro ws in (� ; �). Assume

�rst that � = �

1

! �

2

. Then M cannot b e of the form xM

1

: : : M

n

, as it

w ould not b e fully-applied (x has to o few argumen ts). Th us, M = �y :N ,

with fully applied N , and w e apply the induction h yp othesis to the pair

(� [f y : �

1

g ; �

2

).

The remaining case is when � is a t yp e v ariable � . There is at most one

v ariable x declared in � to b e of t yp e �

1

! � � � ! �

p

! � , since � o ccurs at

most t wice. Th us M = xN

1

:::N

p

. Apply the induction h yp othesis to pairs

(�

0

; �

j

), where �

0

is � without the declaration (x : �

1

! � � � ! �

p

! �).

Exercise 6.8.18

Mo dify the algorithm of Lemma 6.6.1 so that it searc hes for all inhabitan ts

rather than for only one. This pro cess ma y lo op b y asking a question of the

form � ` ? : � , whic h has already b een ask ed. W e can e�ectiv ely iden tify all

lo op-free solutions and all lo ops. If w e ha v e a lo op caused b y a question that

has a lo op-free solution, then the answ er is: \in�nite". (Note the similarit y

of this argumen t to the pumping lemma for CF-languages.)

Exercise 6.8.20

Assume all �

i

's are inhabited. W e pro v e indirectly that then ' is not inhab-

ited. Assume ` N

i

: �

i

and ` M : ' . Then ` M N

1

� � � N

n

: � , whic h is a

con tradiction b ecause t yp e v ariables are not inhabited.

244 Chapter 14. Solutions and hin ts to selected exercises

The pro of that ' is inhabited if there is a �

i

that is not inhabited is b y

induction on the size of ' . Since � is the only t yp e v ariable in ' , t yp e �

i

has

the form �

1

! � � � ! �

m

! � . If an y of the �

j

's w ere not inhabited then

b y the induction h yp othesis �

i

w ould b e inhabited, but w e kno w it is not.

Th us for some N

j

's w e ha v e ` N

j

: �

j

. Then ` �x

1

� � � x

n

:x

i

N

1

: : : N

m

: ' .

Exercise 6.8.21

The form ula ' m ust ha v e the form

1

! � � � !

n

! p . Classically , this

is equiv alen t to (

1

^ � � � ^

n

) ! p . F or this to b e a tautology , some

i

m ust b e false in a v aluation that sets p to b e false. Hence that

i

is not

classically v alid, so it cannot b e in tuitionistically v alid either. That means

that

i

is not inhabited when view ed as a t yp e. Then ' is inhabited b y

Exercise 6.8.20, and ' is th us in tuitionistically v alid.

Exercise 6.8.22

First reduce the general case to the case when � is a t yp e v ariable � . T o pro v e

that �

1

; : : : ; �

n

` � , consider a substitution S suc h that S (�) = �

1

! � � � !

�

n

! � , and S (�) = � , for � 6= � . Sho w that all form ulas S (�

1

) ; : : : ; S (�

n

)

are v alid, and conclude what y ou need.

Exercise 7.7.6

Consider the term M = < �

1

(F K) ; �

2

(F K) > , where F = �x: < x; �y :x > .

Then F can b e assigned all instances of the t yp e � ! (� ^ (� ! �)), and

since K has b oth the t yp es
 !
 !
 and
 ! (
 !
) !
 , w e can

deriv e that M : (
 !
 !
) ^ (� !
 ! (
 !
) !
). But M !

�

F K ,

and F K cannot b e assigned this t yp e.

Exercise 7.7.8

The example term in the ab o v e solution is an un t yp ed � -redex that is not

an erasure of a t yp ed � -redex. The Ch urc h-st yle v ersion of that term uses

t w o di�eren t K 's.

Exercise 7.7.9

The problem is that the conclusion of the elimination rule is not neces-

sarily iden tical to a premise of an y of the in tro duction rules. Th us, in an

elimination-in tro duction pair, one eliminates and in tro duces p ossibly di�er-

en t things.

245

Exercise 7.7.10

There is no canonical ob ject of t yp e ? , so one can argue that no eta rule

mak es sense. By analogy to the eta rule for _ one ma y only p ostulate

that an \arti�cial" use of ? -in tro duction should b e a v oided. This leads to

something lik e "

?

(M) ! M , for M : ? .

Exercise 8.9.1 (Hin t)

F or the righ t-to-left direction, pro ceed as follo ws:

1. Sho w that ` (' !) ! (: ' !) ! .

2. Let �

1

; : : : ; �

n

b e the prop ositional v ariables of ' . Let � b e a Bo olean

v aluation. No w let

�

0

i

=

�

�

i

if � (�) = 1

: �

i

if � (�) = 0

Also, let

'

0

=

�

' if � (') = 1

: ' if � (') = 0

where � is lifted to form ulas according to the usual truth-table seman-

tics. Sho w that f �

0

1

; : : : ; �

0

n

g ` '

0

.

3. Pro v e the righ t-to-left direction.

Exercise 9.5.2

The construction of '

0

is b y induction w.r.t. the length of the quan ti�er

pre�x of ' . If ' is quan ti�er-free then '

0

= ' . If ' = 8 x (x) then '

0

=

0

(x). If ' = 9 x (x) then '

0

=

0

(c), where c is a constan t suc h that

` (c). (Here w e apply the induction h yp othesis to (c).)

Exercise 9.5.3

F or a giv en form ula there is a �nite n um b er of p ossible replacemen ts of

existen tially quan ti�ed v ariables b y constan ts. T o v erify pro v abilit y of a

prenex form ula one c hec ks pro v abilit y of these replacemen ts (pro v abilit y of

op en form ulas is decidable, lik e for the prop ositional case).

Exercise 9.5.4 (In tuitionistic case)

The argumen t is of course as follo ws: if ev ery in tuitionistic �rst-order for-

m ula w as equiv alen t to a prenex form ula, then in tuitionistic �rst-order logic

w ould b e decidable b y the previous exercise. Note ho w ev er that to apply

this argumen t one needs to kno w that the translation to prenex normal form

246 Chapter 14. Solutions and hin ts to selected exercises

m ust b e e�ectiv e, and w e can assume only the existence of a prenex form ula

equiv alen t to an y giv en ' . But one can e�ectiv ely list all pro ofs un til a

pro of of ' $, for a prenex form ula is found, and this giv es an e�ectiv e

translation.

Exercise 9.5.5

Consider the form ula 9 x (P (0) _ P (1) ! P (x)), where P is a unary predicate

sym b ol and 0 and 1 are constan ts. It should b e clear that no form ula of the

form P (0) _ P (1) ! P (t) is classically v alid. The pro of of Corollary 9.3.2

breaks do wn in the \ob vious" and omitted part, and the confusion is cre-

ated b y the principle of c ontr action (t w o o ccurrences of the same form ula

in a sequen t are treated as a single o ccurrence). In a sequen t calculus with

explicit con traction rules, the last rule of our pro of w ould b e the righ t con-

traction rule. In our v ersion of sequen t-calculus, the con traction is implicit,

and the last rule m ust indeed b e (9 R). But the premise of this rule ma y b e

for instance of the form:

` 9 x (P (0) _ P (1) ! P (x)) ; P (0) _ P (1) ! P (1) ;

b ecause a classical sequen t ma y ha v e t w o form ulas at the righ t-hand side.

The second last rule is also (9 R) with premise

` P (0) _ P (1) ! P (0) ; P (0) _ P (1) ! P (1) ;

a classical pro of of whic h should b e easy .

Exercise 9.5.7 (Hin t)

The pro of is similar to that of Prop osition 2.3.4. Cho ose c 2 X . W e trans-

form a mo del A where relations are v alued o v er P (X) in to an ordinary

mo del

�

A , b y de�ning

(a

1

; : : : ; a

n

) 2 r

�

A

i� c 2 r

A

(a

1

; : : : ; a

n

) :

Both our mo dels ha v e a common domain A . Let v b e a v aluation in A . W e

extend v to terms and form ulas in the usual w a y (the v alues of form ulas

range o v er P (X)). One pro v es b y induction the follo wing claim:

c 2 v (') i�

�

A ; v j = ';

for all ' . (Note that the righ t-hand side mak es sense, b ecause v can also b e

regarded as ordinary t w o-v alued v aluation in

�

A .) Note that in the righ t-to-

left direction in the case of 8 , one uses the fact that lo w er b ounds in P (X)

are actually in tersections (if c b elongs to all sets in a family then it b elongs

to their glb).

3

No w if A ; v 6j = ' then there is c 62 v ('), and th us

�

A ; v 6j = ' as w ell.

3

One has to use ultra�lters for the case of arbitrary Bo olean algebras.

247

Exercise 9.5.8

A lgebr aic c ounter examples, after [88]

The domain of individuals A is the set of all p ositiv e in tegers. The Heyting

algebra H is the set of all op en sets of R

2

. W e tak e ' and as atomic

form ulas p (x) and q (y), and w e abbreviate p (x)

A

(n) b y P (n) and q (y)

A

(m)

b y Q (the latter will not dep end on m). The sym b ol w

i

denotes the i -th

p oin t with rational co e�cien ts, according to some �xed order.

2) T ak e P (n) = R

2

� f w

n

g , a full space without one rational p oin t. The

in tersection of all sets P (n) is R

2

with all rational p oin ts deleted. This

set has an empt y in terior, and th us the v alue of the form ula :8 x p (x) is

the full space. On the other hand, the complemen t in H of ev ery P (n)

is empt y and the v alue of the form ula at the righ t-hand side is the

union of empt y sets.

4) Let Q b e the whole space without the p oin t (0 ; 0), and let P (n) b e the

set of all p oin ts with distance from (0 ; 0) greater than

1

n

(full space

without a disk). The union of all P (n)'s is equal to Q , and the v alue

of the left-hand side is Q) Q = R

2

. But Q) P (n) = P (n), for all n ,

and the union of these sets (the v alue of the righ t-hand side) do es not

con tain (0 ; 0).

6) T ak e Q as ab o v e and let P (n) b e the op en disk cen tered at (0 ; 0), with

radius equal to

1

n

. The v alue of the left-hand side is R

2

b ecause eac h

set Q [P (n) co v ers the whole space. The v alue of the righ t-hand side

is Q b ecause the glb in H of all sets P (n) is empt y . (Their in tersection

is a one-p oin t set whic h is not op en.)

8) Let Q b e empt y , and let P (n) b e as in (2). The v alue of the left-hand

side is the full space, b ecause the glb of all sets P (n) is empt y . But

the v alue of the righ t-hand side is empt y .

10) Let P (n) b e as in (2) and (8). Then � P (n) is empt y and th us P (n) [

� P (n) = P (n). The in tersection of these sets has an empt y in terior,

th us the v alue of our form ula is empt y .

12) T ak e P (n) = A for ev en n and P (n) = B for o dd n where A and B

are complemen tary op en halv es of the space. (Note that this form ula

has a prop ositional coun terpart: (p _ q ! p) _ (p _ q ! q), whic h is

also not v alid.)

Counter examples in Kripke mo dels

2) Hin t: adopt the solution of Exercise 2.7.9(8).

248 Chapter 14. Solutions and hin ts to selected exercises

4) Hin t: �rst mak e a coun terexample for the prop ositional v ersion of this

la w: (p ! q _ r) ! (p ! q) _ (p ! r).

6) The mo del consists of t w o states c � d , with A

c

= f 1 g and A

d

=

f 1 ; 2 g . Let c; 1
 ' (x) and c 1 , and let d
 and d; 1
 ' (x), but

d; 2 1 ' (x). Then c
 8 x (_ ' (x)), b ecause d; 2
 , but c 1 _

8 x ' (x), b ecause d; 2 1 ' (x).

8) Generalize (2).

10) The set of states is f c

n

: n 2 N g , the domain for eac h state is the set of

in tegers, and c

i

; j
 ' if and only if j > i . Then c

1

1 ::8 x (' _ : ') .

Otherwise there w ould b e c

i

with c

i

 8 x (' _ : '), in particular

c

i

; i
 ' _ : ' , and this do es not hold.

12) The mo del consists of t w o states c � d , with A

c

= f 1 g and A

d

=

f 1 ; 2 g . Let c; 1 1 ' (x), and let d; 1 1 ' (x) and d; 2
 ' (x). Then

c 1 9 x (9 y ' (y) : ! ' (x)), as otherwise c; 1
 9 y ' (y) : ! ' (x), whic h

implies d; 1
 ' (x).

Exercise 9.5.9

� 9 x (' (x) ! 8 x ' (x))

Heyting coun terexample as for Exercise 9.5.8(2). Kripk e coun terexample as

for Exercise 9.5.8(6).

� 9 x (' (0) _ ' (1) ! ' (x))

Similar to Exercise 9.5.8(12).

� 8 x :: ' (x) : $::8 x ' (x)

Heyting coun terexample as for Exercise 9.5.8(2). Kripk e coun terexample as

for Exercise 9.5.8(10).

� 9 x :: ' (x) : $::9 x ' (x).

Heyting coun terexample as for Exercise 9.5.8(12). A Kripk e coun terexample

consists of three states c � d; e (with d; e incomparable), all with domain

f 1 ; 2 g . The forcing relation consists only of d; 1
 ' (x) and e; 2
 ' (x).

Exercise 9.5.10

The implication from righ t to left is alw a ys v alid, so w e only consider the

implication 8 x (_ ' (x)) ! _ 8 x ' (x). Assume that A

c

= A for all c in

our mo del. Let c; ~ a
 8 x (_ ' (x)), and supp ose that c; ~ a 1 . Th us for

all b 2 A it m ust b e that c; b ; ~ a
 ' (x). By monotonicit y , c

0

; b ; ~ a
 ' (x),

for all c

0

� c . It follo ws that c; ~ a
 8 x ' (x).

249

Exercise 9.5.11

First observ e that c

0 0

; b ; ~ a 1 ' _ : ' alw a ys holds if c

00

is a maximal state.

No w supp ose c; ~ a
 ::8 x (' _ : ') in a �nite Kripk e mo del. There is c

0

� c

with c

0

; ~ a
 :8 x (' _ : '). T ak e a maximal state c

00

� c

0

and w e obtain

c

00

; b ; ~ a 1 ' _ : ' .

Exercise 10.7.11

Consider a logic where all form ulas of the form 8 x ' are equiv alen t to true .

Then the other t w o axioms remain sound but 8 x ' (x) : ! ' (t) is not v alid.

Exercise 11.8.1

� 8 x (: (x = 0) ! 9 y (x = y + 1))

W e use induction sc heme applied to the form ula : (x = 0) ! 9 y (x = y + 1).

This means w e ha v e to sho w that the follo wing form ulas are pro v able:

: (0 = 0) ! 9 y (0 = y + 1);

8 x [(: (x = 0) ! 9 y (x = y + 1)) ! : (x + 1 = 0) ! 9 y (x + 1 = y + 1)],

and then it su�ces to apply mo dus p onens t wice. The �rst form ula is pro v en

with help of the �rst axiom, whic h can b e generalized to 0 = 0. The second

form ula is easily deriv ed from 9 y (x + 1 = y + 1), and this is a consequence

of y + 1 = y + 1 (�rst axiom).

� 8 x 8 y 8 z (x = y ! y = z ! x = z);

This is an instance of the third axiom.

� 8 x 8 y 8 z ((x + y) + z = x + (y + z))

W e pro v e 8 z ((x + y) + z = x + (y + z)) b y induction and then generalize o v er

x and y . The �rst step is (x + y) + 0 = x + (y + 0) and is an easy application

of the axiom 8 x (x + 0 = x) and the transitivit y of equalit y . Then w e m ust

deriv e (x + y) + (z + 1) = x + (y + (z + 1)) from (x + y) + z = x + (y + z). With

the axiom 8 x 8 y (x + (y + 1) = (x + y) + 1) and the transitivit y of equalit y ,

w e can formalize the calculation (x + y) + (z + 1) = ((x + y) + z) + 1 =

(x + (y + z)) + 1 = x + ((y + z) + 1) = x + (y + (z + 1)).

� 8 x 8 y (x + y = y + x)

Hin t: First pro v e b y induction that 8 y (0 + y = y + 0). This is the base

of the main induction (with resp ect to x). The induction step is to deriv e

8 y ((x + 1) + y = y + (x + 1)) from 8 y (x + y = y + x). This also go es b y

induction (with resp ect to y). Ha v e fun!

250 Chapter 14. Solutions and hin ts to selected exercises

Exercise 11.8.3

Supp ose a function f is represen table b y a form ula ' . Then f is strongly

represen table b y the form ula

 (~ x ; y) = (9 ! z ' (~ x; z) : ^ ' (~ x; y)) _ (:9 ! z ' (~ x; z) : ^ y = 0) :

W e sho w P A ` 8 ~ x 9 ! y (~ x ; y). (Then implies ' and represen tabilit y follo ws

easily .) Begin with P A ` # _ : # , where # = 9 ! z ' (~ x; z). Then one can sho w

that P A ` # ! 9 ! y (# ^ ' (~ x ; y)) and P A ` : # ! 9 ! y (: # ^ y = 0). Th us

P A ` 9 ! y (# ^ ' (~ x ; y)) _ 9 ! y (: # ^ y = 0) and it remains to p erm ute _ with 9 ! y .

Exercise 11.8.8

By translation, w e ha v e HA ` :: % (note that t

f

(~ x; y) = 0 is an atomic

form ula), and th us HA ` (%

%

! %) ! % . No w, the form ula %

%

is equiv alen t

to % (b ecause ` 9 y (_ 9 y) $ 9 y) and th us HA ` (% ! %) ! % . Then

HA ` % , b ecause ` % ! % .

Exercise 12.7.1 (Hin t)

Cf. Exercise 9.5.10.

Exercise 12.7.2

F or a mo del with a constan t domain D w e ha v e

c; v
 8 p ' i� c; v

x

p

 '; for all x 2 D :

(One do es not need to refer to c

0

� c b ecause of monotonicit y .)

Exercise 12.7.3

This exercise con tains a little trap: the notion of a complete mo del refers

to all form ulas, including those con taining _ , ^ and 9 . But one can also

consider Kripk e mo dels for the language con taining only ! and 8 , satisfying

the appropriate (w eak er) notion of completeness. Then the seman tics of the

form ula

� + � := 8 � ((� ! �) ! (� ! �) ! �)

do es not ha v e to coincide with the exp ected seman tics of � _ � . Indeed,

consider a mo del of three states c

0

; c

1

and c

2

with a constan t domain D =

ff g ; f c

1

g ; f c

2

g ; f c

0

; c

1

; c

2

gg and with c

1

 p and c

2

 q , and no other forcing.

This mo del is complete with resp ect to ! and 8 , and w e ha v e c

0

 p + q .

The case of ^ is di�eren t: if a mo del is complete with resp ect to !

and 8 , then c
 8 � ((� ! � ! �) ! �) i� c
 � and c
 � .

251

Exercise 12.7.13

In the con text f y : ? ; z : 8
 (� !
 ! �) g one can deriv e z y z : � . No w

consider the con text f y : ? ; x : 8 �� (8
 (� !
 ! �) : ! �) and deriv e

xx : ? . Th us our term has t yp e 8 �� (8
 (� !
 ! �) : ! �) : ! ? in the

con text f y : ?g .

Exercise 12.7.15

Think of t yp es as �nite binary trees with lea v es lab eled b y t yp e v ariables

and in ternal no des corresp onding to arro ws). Some of the in ternal no des are

lab eled b y quan ti�ers.

Supp ose that xx is t ypable in an en vironmen t con taining the declara-

tion (x : �). The t yp e � m ust b egin with one or more univ ersal quan ti�ers,

and one of these quan ti�ers m ust bind a t yp e v ariable o ccurring at the v ery

end of the leftmost path of the t yp e. (Otherwise self-application is imp ossi-

ble.) Th us, a t yp e assigned to �x: xx m ust ha v e the form (8 ~��) ! � with

one of the ~� 's at the end of the leftmost path. This observ ation applies to

b oth copies of �x: xx whic h results in that t w o di�eren t quan ti�ers attempt

to bind the same v ariable | a con tradiction.

Exercise 12.7.16 (After [111])

The t yp e � assigned to K m ust ha v e the form:

� = 8 ~� (� ! 8

~

� (� ! �

0

)) ;

where �

0

is an instance of � . The righ tmost path of �

0

m ust b e at least as

long as the righ tmost path in � . In addition, one of the v ariables ~� , sa y � ,

m ust o ccur at the end of the righ tmost path in � . The same � m ust remain

at the end of the righ tmost path in the instance �

0

, at the same depth.

The t yp e of the second c

2

in c

2

c

2

K m ust ha v e the form 8 ~
 (�

0

! %),

where � can b e obtained from �

0

b y instan tiating ~
 . It b egins with 8 ~� and

has o ccurrences of � at the same places as � do es. In particular there is an

o ccurrence of � at some depth n at the righ tmost path of the left subtree

of �

0

and at depth n + 1 at the righ tmost path of the righ t subtree of �

0

.

No w, �

0

is the t yp e of f in f (f x) and % is the t yp e of �x: f (f x). No matter

what is the t yp e of x , w e can note that the asymetry of �

0

is doubled in % ,

and th us the righ tmost path in % m ust b e of length at least n + 3. Although

8 ~
 (�

0

! %) ma y still b e a go o d t yp e for c

2

, a term of this t yp e cannot

b e comp osed with itself, as the p ositions of � cannot b e c hanged b y just

instan tiating ~
 .

Exercise 12.7.18(12.48)

An in�nite sequence of Ch urc h-st yle b eta reductions M

i

!

�

M

i +1

erases to

an in�nite sequence of Curry-st yle terms j M

i

j , where at eac h step w e either

252 Chapter 14. Solutions and hin ts to selected exercises

ha v e j M

i

j !

�

j M

i +1

j or j M

i

j = j M

i +1

j . The latter case m ust hold for almost

all i , and is only p ossible when almost all steps M

i

!

�

M

i +1

are caused b y

t yp e reductions of the form (� �:M) � � !

�

M [� := �]. But eac h of these

steps decreases the n um b er of �'s in our term, so this pro cess m ust also

terminate.

Bibliograph y

[1] A.R. Anderson and N.A. Belnap. Entailment. The L o gic of R elevanc e

and Ne c essity , v olume I. Princeton Univ ersit y Press, 1975.

[2] A.R. Anderson, N.A. Belnap, and J.M. Dunn. Entailment. The L o gic

of R elevanc e and Ne c essity , v olume I I. Princeton Univ ersit y Press,

1992.

[3] T. Arts. Em b edding �rst order predicate logic in second order prop o-

sitional logic. Master's thesis, Katholiek e Univ ersiteit Nijmegen, 1992.

[4] T. Arts and W. Dekk ers. Em b edding �rst order predicate logic in

second order prop ositional logic. T ec hnical Rep ort 93-02, Katholiek e

Univ ersiteit Nijmegen, 1993.

[5] S. v an Bak el, L. Liquori, S Ronc hi della Ro cca, and P . Urzyczyn.

Comparing cub es of t yp ed and t yp e assignmen t systems. A nnals of

Pur e and Applie d L o gic , 86:267{303, 1997.

[6] F. Barbanera, M. Dezani-Ciancaglini, and U. de' Liguoro. In tersection

and union t yp es: syn tax and seman tics. Information and Computa-

tion , 119:202{230, 1995.

[7] H.P . Barendregt. The L amb da Calculus: Its Syntax and Semantics .

North-Holland, second, revised edition, 1984.

[8] H.P . Barendregt. Lam b da calculi with t yp es. In S. Abramsky , D.M.

Gabba y , and T.S.E. Maibaum, editors, Handb o ok of L o gic in Computer

Scienc e , v olume I I, pages 117{309. Oxford Univ ersit y Press, 1992.

[9] H.P . Barendregt, M. Bunder, and W. Dekk ers. Completeness of some

systems of illativ e com binatory logic for �rst-order prop ositional and

predicate calculus. T o app ear in A r chive f • ur Mathematische L o gik ,

1996.

[10] H.P . Barendregt, M. Bunder, and W. Dekk ers. Completeness of the

prop ositions-as-t yp es in terpretation of in tuitionistic logic in to illativ e

com binatory logic. T o app ear in the Journal of Symb olic L o gic , 1996.

253

254 Bibliograph y

[11] J. Barwise. Handb o ok of Mathematic al L o gic . North-Holland, 1977.

[12] S. Berardi. T yp e Dep endenc e and Constructive Mathematics . PhD

thesis, Univ ersita di T orino, 1990.

[13] M. Bezem and J. Springin tv eld. A simple pro of of the undecidabilit y

of inhabitation in �P . Journal of F unctional Pr o gr amming , 6(5):757{

761, 1996.

[14] R. Blo o and K. Rose. Preserv ation of strong normalisation in named

lam b da calculi with explicit substitution and garbage collection. In

CSN '95 - Computer Scienc e in the Netherlands , pages 62{72, 1995.

[15] V. Breazu T annen, D. Kesner, and L. Puel. A t yp ed pattern calculus.

In L o gic in Computer Scienc e , pages 262{274, 1993.

[16] S. Bro da and L. Damas. On principal t yp es of strati�ed com binators.

T ec hnical Rep ort DCC-97-4, Departamen to de Cincia de Computa-

dores, Univ ersidade do P orto, 1997.

[17] L.E.J. Brou w er. In tu • �tionistisc he splitsing v an mathematisc he grond-

b egripp en. Ne derl. A kad. Wetensch. V erslagen , 32:877{880, 1923.

[18] A. Ch urc h. A form ulation of the simple theory of t yp es. Journal of

Symb olic L o gic , 5:56{68, 1940.

[19] R. Constable. Constructiv e mathematics and automatic program writ-

ers. In Pr o c e ddings of the IFIP Congr ess , pages 229{233, Ljubljana,

1971.

[20] R. Constable. Programs as pro ofs: A synopsis. Information Pr o c essing

L etters , 16(3):105{112, 1983.

[21] H.B. Curry . Grundlagen der Kom binatorisc hen Logik. teil I. A meric an

Journal of Mathematics , LI I:509{536, 1930.

[22] H.B. Curry . Grundlagen der Kom binatorisc hen Logik. teil I I. A meri-

c an Journal of Mathematics , LI I:789{834, 1930.

[23] H.B. Curry . F unctionalit y in com binatory logic. Pr o c e e dings of the

National A c ademy of Scienc e USA , 20:584{590, 1934.

[24] H.B. Curry and R. F eys. Combinatory L o gic . North-Holland, 1958.

[25] H.B. Curry , J.R. Hindley , and J.P . Seldin. Combinatory L o gic II ,

v olume 65 of Studies in L o gic and the F oundations of Mathematics .

North-Holland, 1972.

[26] D. v an Dalen. In tuitionistic logic. In Handb o ok of Philosophic al L o gic ,

v olume I I I, pages 225{339. Reidel Publ. Co., 1986.

Bibliograph y 255

[27] L. Damas and R. Milner. Principal t yp e sc hemes for functional pro-

grams. In Confer enc e R e c or d of the A nnual A CM SIGPLAN-SIGA CT

Symp osium on Principles of Pr o gr amming L anguages , pages 207{212,

Jan. 1982.

[28] N.G. de Bruijn. A surv ey of the pro ject A UTOMA TH. In Seldin and

Hindley [98], pages 579{606.

[29] A. Degt y arev and A. V oronk o v. Decidabilit y problems for the prenex

fragmen t of in tuitionistic logic. In L o gic in Computer Scienc e , pages

503{512, 1996.

[30] W. Dekk ers. Inhabitation of t yp es in the simply t yp ed � -calculus.

Information and Computation , 119:14{17, 1995.

[31] G. Do w ek. The undecidabilit y of t ypabilit y in the lam b da-pi-calculus.

In M. Bezem and J.F. Gro ote, editors, T yp e d L amb da Calculus and

Applic ations , v olume 664 of L e ctur e Notes in Computer Scienc e , pages

139{145. Springer-V erlag, 1993.

[32] A. Dragalin. A completeness theorem for higher-order in tuitionistic

logic. an in tuitionistic pro of. In D. Sk ordev, editor, Mathematic al L o gic

and its Applic ations , pages 107{124. Plen um Press, New Y ork, 1987.

[33] C. Dw ork, P .C. Kanellakis, and J.C. Mitc hell. On the sequen tial nature

of uni�cation. Journal of L o gic Pr o gr amming , 1:35{50, 1984.

[34] J.E. F enstad, editor. Pr o c. Se c ond Sc andinavian L o gic Symp osium .

North-Holland, Amsterdam, 1971.

[35] S. F ortune, D. Leiv an t, and M. O'Donnell. The expresssiv eness of

simple and second-order t yp e structures. Journal of the Asso ciation

for Computing Machinery , 30:151{185, 1983.

[36] D.M. Gabba y . On 2nd order in tuitionistic prop ositional calculus with

full comprehension. A r chiv f • ur Mathematische L o gik und Grund lagen-

forschung , 16:177{186, 1974.

[37] D.M. Gabba y . Semantic al Investigations in Heyting's Intuitionistic

L o gic . D. Reidel Publ. Co, 1981.

[38] J.H. Gallier. Constructiv e logics, part I: A tutorial on pro of systems

and t yp ed � -calculi. The or etic al Computer Scienc e , 110:249{339, 1993.

[39] G. Gen tzen. Un tersuc h ungen •ub er das logisc he Sc hliessen. Mathema-

tische Zeitschrift , 39:176{210, 405{431, 1935.

256 Bibliograph y

[40] J.H. Geuv ers. Conserv ativit y b et w een logics and t yp ed lam b da-calculi.

In H. Barendregt and T. Nipk o w, editors, T yp es for Pr o ofs and Pr o-

gr ams , v olume 806 of L e ctur e Notes in Computer Scienc e , pages 79{

107. Springer-V erlag, 1993.

[41] J.H. Geuv ers. L o gics and T yp e Systems . PhD thesis, Univ ersit y of

Nijmegen, 1993.

[42] J.H. Geuv ers and M.J. Nederhof. A mo dular pro of of strong nor-

malization for the calculus of constructions. Journal of F unctional

Pr o gr amming , 1(2):155{189, 1991.

[43] P . Giannini and S. Ronc hi Della Ro cca. Characterization of t ypings

in p olymorphic t yp e discipline. In Pr o c. Symp. on L o gic in Computer

Sciene , pages 61{70. Computer So ciet y Press, 1988.

[44] J.-Y. Girard. In terpr � etation fonctionelle et � elimination des coupures

dans l'arithm � etique d'ordre sup � erieur. Th � ese d'

�

Etat, Univ ersit � e P aris

VI I, 1972.

[45] J.-Y. Girard. The system F of v ariable t yp es, �fteen y ears later. The-

or etic al Computer Scienc e , 45:159{192, 1986.

[46] J.-Y. Girard, Y. Lafon t, and P . T a ylor. Pr o ofs and T yp es , v olume 7

of Cambridge T r acts in The or etic al Computer Scienc e . Cam bridge

Univ ersit y Press, 1989.

[47] C.A. Goad. Monadic in�nitary prop ositional logic. R ep orts on Math-

ematic al L o gic , 10, 1978.

[48] K. G• odel. •ub er eine bisher no c h nic h t b en • un tze erw eiterung des �niten

standpunktes. Diale ctic a , 12:280{287, 1980. (English translation: J.

Philos. L o gic , 9:133{142, 1980.).

[49] T.G. Gri�n. A form ulae-as-t yp es notion of con trol. In Confer enc e

R e c or d of the A nnual A CM SIGPLAN-SIGA CT Symp osium on Prin-

ciples of Pr o gr amming L anguages , pages 47{58. A CM Press, 1990.

[50] K. Grue. Map theory . The or etic al Computer Scienc e , 102:1{133, 1992.

[51] R. Harp er, F. Honsell, and F. Plotkin. A framew ork for de�ning logics.

Journal of the Asso ciation for Computing Machinery , 40(1):143{184,

1993.

[52] H. Herb elin. A � -calculus structure isomorphic to Gen tzen-st yle se-

quen t calculus structure. In Computer Scienc e L o gic 1994 , v olume 933

of L e ctur e Notes in Computer Scienc e , pages 61{75. Springer-V erlag,

1995.

Bibliograph y 257

[53] A. Heyting. Mathematische Grund lagenforschung. Intuitionismus. Be-

weiste orie . Springer, 1934.

[54] J.R. Hindley . Basic Simple T yp e The ory , v olume 42 of Cambridge

T r acts in The or etic al Computer Scienc e . Cam bridge Univ ersit y Press,

1997.

[55] J.R. Hindley and J.P . Seldin. Intr o duction to Combinators and � -

c alculus . Cam bridge Univ ersit y Press, 1986.

[56] S. Hirok a w a. Principal t yp es of BCK-lam b da terms. The or etic al Com-

puter Scienc e , 107:253{276, 1993.

[57] J. E. Hop croft and J. D. Ullman. Intr o duction to A utomata The ory,

L anguages and Computation . Addison-W esley , 1979.

[58] W. Ho w ard. The form ulae-as-t yp es notion of construction. In Seldin

and Hindley [98], pages 479{490.

[59] G. Huet and G. Plotkin. L o gic al F r ameworks . Cam bridge Univ ersit y

Press, 1991.

[60] S.C. Kleene. On the in terpretation of in tuitionistic n um b er theory .

Journal of Symb olic L o gic , 10:109{124, 1945.

[61] S.C. Kleene. Intr o duction to Metamathematics . V an Nostrand, 1952.

[62] S.C. Kleene. Origins of recursiv e function theory . A nnals of the History

of Computing , 3(1):52{67, 1981.

[63] A. Kolmogoro v. Zur Deutung der in tuitionistisc hen Logik. Mathema-

tische Zeitschrift , 35:58{65, 1932.

[64] G. Kreisel. Monadic op erators de�ned b y means of prop ositional quan-

ti�cation in in tuitionistic logic. R ep orts on Mathematic al L o gic , 12:9{

15, 1981.

[65] P . Kremer. On the complexit y of prop ositional quan ti�cation in in tu-

itionistic logic. Journal of Symb olic L o gic , 62(2):529{544, 1997.

[66] J.-L. Krivine. L amb da-Calculus, T yp es and Mo dels . Ellis Horw o o d Se-

ries in Computers and their Applications. Masson and Ellis Horw o o d,

English Edition, 1993.

[67] M. L• ob. Em b edding �rst order predicate logic in fragmen ts of in tu-

itionistic logic. Journal of Symb olic L o gic , 41(4):705{718, 1976.

[68] H.G. Mairson. A simple pro of of a theorem of Statman. The or etic al

Computer Scienc e , 103(2):387{394, 1992.

258 Bibliograph y

[69] S.D. Marlo w. Defor estation for Higher-Or der F unctional L anguages .

PhD thesis, Univ ersit y of Glasgo w, 1996.

[70] E. Mendelson. Intr o duction to Mathematic al L o gic . W adsw oth &

Bro oks/Cole Adv anced Bo oks and Soft w are, third edition, 1987.

[71] E. Mendelson. Intr o duction to Mathematic al L o gic . Chapman & Hall,

London, fourth edition, 1997.

[72] R. Milner. A theory of t yp e p olymorphism in programming. Journal

of Computer and System Scienc es , 17:348{375, 1978.

[73] J. Mitc hell. P olymorphic t yp e inference and con tainmen t. Information

and Contr ol , 76:211{249, 1988.

[74] J.C. Mitc hell. F oundations for Pr o gr amming L anguages . MIT Press,

Cam bridge, 1996.

[75] C.R. Murth y . Extr acting Constructive Contents fr om Classic al Pr o ofs .

PhD thesis, Cornell Univ ersit y , 1990.

[76] C.R. Murth y . Con trol op erators, hierac hies, and pseudo-classical t yp e

systems: A-translation at w ork. In A CM SIGPLAN Workshop on

Continuations , 1992.

[77] B. Norstr• om, K. P etersson, and J.M. Smith. Pr o gr amming in Martin-

L• of 's T yp e The ory, A n Intr o duction . Oxford Univ ersit y Press, 1990.

[78] C.-H. L. Ong. A seman tic view of classical pro ofs: T yp e-theoretic,

categorical, and denotational c haracterizations. In L o gic in Computer

Scienc e , pages 230{241, 1996.

[79] M. P arigot. F ree deduction: An analysis of \computations" in classical

logic. In Se c ond R ussian Confer enc e on L o gic pr o gr amming , v olume

592 of L e ctur e Notes in A rti�cial Intel ligenc e , pages 361{380. Springer-

V erlag, 1991.

[80] M. P arigot. �� -calculus: An algorithmic in terpretation of classical

natural deduction. In International Confer enc e on L o gic Pr o gr amming

and A utomate d R e asoning , v olume 624 of L e ctur e Notes in Computer

Scienc e , pages 190{201. Springer-V erlag, 1992.

[81] M. P arigot. Classical pro ofs as programs. In Kurt G• odel Col lo quium ,

v olume 713 of L e ctur e Notes in Computer Scienc e , pages 263{276.

Springer-V erlag, 1993.

[82] M. P arigot. Strong normalization for second order classical natural

deduction. In L o gic in Computer Scienc e , 1993.

Bibliograph y 259

[83] G. Plotkin. Call-b y-name, call-b y-v alue and the � -calculus. The or etic al

Computer Scienc e , 1:125{159, 1975.

[84] G. P ottinger. Normalization as a homomorphic image of cut-

elimination. A nnals of Mathematic al L o gic , 12:323{357, 1977.

[85] D. Pra witz. Natur al De duction: A Pr o of The or etic al Study . Almquist

& Wiksell, 1965.

[86] D. Pra witz. Some results for in tuitionistic logic with second order

quan ti�cation. pages 259{270. North-Holland, Amsterdam, 1970.

[87] D. Pra witz. Ideas and results of pro of theory . In F enstad [34], pages

235{307.

[88] H. Rasio w a and R. Sik orski. The Mathematics of Metamathematics .

PWN, W arsa w, 1963.

[89] N.J. Rehof and M.H. S�rensen. The �

�

calculus. In M. Hagiy a and

J. Mitc hell, editors, The or etic al Asp e cts of Computer Softwar e , v olume

789 of L e ctur e Notes in Computer Scienc e , pages 516{542. Springer-

V erlag, 1994.

[90] J. Reynolds. T o w ards a theory of t yp e structure. In B Robinet, edi-

tor, Pr o c e e dings of the Pr o gr amming Symp osium , v olume 19 of L e ctur e

Notes in Computer Scienc e , pages 408{425. Springer-V erlag, 1974.

[91] A. Rezus. Classical pro ofs: Lam b da calculus metho ds in elemen tary

pro of theory , 1991. Man uscript.

[92] A. Rezus. Bey ond BHK, 1993. Man uscript.

[93] J.A. Robinson. A mac hine-orien ted logic based on the resolution prin-

ciple. Journal of the Asso ciation for Computing Machinery , 12(1):23{

41, 1965.

[94] J.B. Rosser. Highligh ts of the history of the lam b da-calculus. A nnals

of the History of Computing , 6(4):337{349, 1984.

[95] A. Sc h ub ert. Second-order uni�cation and t yp e inference for c h urc h-

st yle p olymorphism. In Pr o c. 25th A CM Symp osium on Principles of

Pr o gr amming L anguages , pages 233{244, Jan uary 1998.

[96] H. Sc h wic h ten b erg. Elimination of higher t yp e lev els in de�nitions of

primitiv e recursiv e function b y means of trans�nite recursion. In H.E.

Rose, editor, L o gic Col lo quium '73 , pages 279{303. North-Holland,

1975.

260 Bibliograph y

[97] H. Sc h wic h ten b erg. De�nierbare Funktionen im Lam b da-Kalkul mit

Typ en. A r chiv L o gik Grund lagenforsch. , 17:113{114, 1976.

[98] J.P . Seldin and J.R. Hindley , editors. T o H.B. Curry: Essays on

Combinatory L o gic, L amb da Calculus and F ormalism . Academic Press

Limited, 1980.

[99] D. Skv ortso v. Non-axiomatizable second-order in tuitionistic prop osi-

tional logic. A nnals of Pur e and Applie d L o gic , 86:33{46, 1997.

[100] S.K. Sob olev. On the in tuitionistic prop ositional calculus with quan-

ti�ers (russian). Mat. Zamietki AN SSSR , 22(1):69{76, 1977.

[101] M.H. S�rensen. Normalization in � -Calculus and T yp e The ory . PhD

thesis, Departmen t of Computer Science, Univ ersit y of Cop enhagen,

1997.

[102] M.H. S�rensen. Strong normalization from w eak normalization in

t yp ed � -calculi. Information and Computation , 133(1):35{71, 1997.

[103] R. Statman. In tuitionistic prop ositional logic is p olynomial-space com-

plete. The or etic al Computer Scienc e , 9:67{72, 1979.

[104] W.W. T ait. In tensional in terpretations of functionals of �nite t yp e I.

Journal of Symb olic L o gic , 32(2):190{212, 1967.

[105] W.W. T ait. A realizabilit y in terpretation of the theory of sp ecies. In

R. P arikh, editor, L o gic Col lo quium , v olume 453 of L e ctur e Notes in

Mathematics , pages 240{251. Springer-V erlag, 1975.

[106] A.S. T ro elstra. Metamathematic al Investigation of Intuitionistic A rith-

metic and A nalysis , v olume 344 of L e ctur e Notes in Mathematics .

Springer-V erlag, 1973.

[107] A.S. T ro elstra and D. v an Dalen. Constructivism in Mathematics,

A n Intr o duction, V olume I , v olume 121 of Studies in L o gic and the

F oundations of Mathematics . North-Holland, 1988.

[108] A.S. T ro elstra and D. v an Dalen. Constructivism in Mathematics,

A n Intr o duction, V olume II , v olume 123 of Studies in L o gic and the

F oundations of Mathematics . North-Holland, 1988.

[109] A.S. T ro elstra and H. Sc h wic h ten b erg. Basic Pr o of The ory , v olume 43

of Cambridge T r acts in The or etic al Computer Scienc e . Cam bridge

Univ ersit y Press, 1996.

[110] J. T yszkiewicz. Z lo _ zono � s � c problem u wypro w adzania t yp� ow w rac h unku

lam b da. Master's thesis, W arsa w, 1988.

Bibliograph y 261

[111] P . Urzyczyn. P ositiv e recursiv e t yp e assigmen t. In J. Wiedermann and

P . H� ajek, editors, Mathematic al F oundations of Computer Scienc e ,

v olume 969 of L e ctur e Notes in Computer Scienc e , pages 382{391.

Springer-V erlag, 1995.

[112] P . Urzyczyn. T yp e inhabitation in t yp ed lam b da calculi (a syn tactic

approac h). In de Gro ote P . and J.R. Hindley , editors, T yp e d L amb da

Calculus and Applic ations , v olume 1210 of L e ctur e Notes in Computer

Scienc e , pages 373{389. Springer-V erlag, 1995.

[113] R. V estergaard. The cut rule and explicit substitutions. Man uscript,

1998.

[114] A. V oronk o v. Pro of searc h in in tuitionistic logic with equalit y or bac k

to sim ultaneous rigid E-uni�cation. In M.A. Mc Robbie and J.K.

Slaney , editors, CADE-13 , v olume 1104 of L e ctur e Notes in Computer

Scienc e , pages 32{46. Springer-V erlag, 1996.

[115] P .L. W adler. Deforestation: T ransforming programs to eliminate in-

termediate trees. The or etic al Computer Scienc e , 73:231{248, 1990.

[116] P .L. W adler. A Curry-Ho w ard isomorphism for sequen t calculus.

Man uscript, 1993.

[117] J. W ells. T ypabilit y and t yp e c hec king in the second-order � -calculus

are equiv alen t and undecidable. In Pr o c. Symp. on L o gic in Computer

Sciene , pages 176{185. IEEE, Computer So ciet y , Computer So ciet y

Press, 1994.

[118] J.I. Zuc k er. Corresp ondence b et w een cut-elimination and normaliza-

tion. A nnals of Mathematic al L o gic , 7:1{156, 1974.

