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� Even in the most basic form of sequential programming, it has proved fruitful toseparate out the aspects of partial correctness and termination, and to use di�erentmethods for these two aspects [16].� In the �eld of static analysis, and particularly in the systematic framework of abstractinterpretation [23], a basic ingredient of the methodology is to use a range of non-standard interpretations to gain information about di�erent properties of interest.� In concurrency, it is standard to separate out classes of properties such as safety,liveness, and fairness constraints, extending into a whole temporal hierarchy, and toapply di�erent methods for these classes [27].The upshot of this observation is that no one monolithic type system will serve all ourpurposes. Moreover, we need a coherent framework for moving around this space ofdi�erent classes of properties.The basic picture we o�er to structure this space is the \tower of categories":C 0 � C 1 � C 2 � � � �� C k :The idea behind the picture is that we have a semantic universe (category with structure)C 0 , suitable for modelling some computational situation, but possibly carrying only avery rudimentary notion of \type" or \behavioural speci�cation". The tower arises byre�ning C 0 with richer kinds of property, so that we obtain a progressively richer settingfor performing speci�cation and veri�cation1.We will now proceed to formalize this idea of enriching a semantic universe with are�ned notion of property in terms of Speci�cation Structures.2 Speci�cation StructuresThe notion of speci�cation structure, at least in its most basic form, is quite anodyne, andindeed no more than a variation on standard notions from category theory. Nevertheless,it provides an alternative view of these standard notions which is highly suggestive, par-ticularly from a Computer Science point of view. Similar notions have been studied, for avariety of purposes, by Burstall and McKinna [28], O'Hearn and Tennent [32], and Pitts[33].De�nition 1 Let C be a category. A speci�cation structure S over C is de�ned by thefollowing data:� a set PA of \properties over A", for each object A of C .� a relation RA;B � PA � C (A;B) � PB for each pair of objects A, B of C .We write 'ffg for RA;B('; f;  ) (\Hoare triples"). This relation is required to satisfythe following axioms, for f : A! B, g : B ! C, ' 2 PA,  2 PB and � 2 PC:'fidAg' (s1)'ffg ;  fgg� =) 'ff ; gg� (s2)1Of course, non-linear patterns of re�nement|trees or dags rather than sequences|can also be con-sidered, but the tower su�ces to establish the main ideas.2



The axioms (s1) and (s2) are typed versions of the standard Hoare logic axioms for \se-quential composition" and \skip" [16].Given C and S as above, we can de�ne a new category C S . The objects are pairs (A;')with A 2 Ob(C ) and ' 2 PA. A morphism f : (A;')! (B; ) is a morphism f : A! Bin C such that 'ffg .Composition and identities are inherited from C ; the axioms (s1) and (s2) ensure thatC S is a category. Moreover, there is an evident faithful functorC � C Sgiven by A [ (A;'):In fact, the notion of \speci�cation structure on C " is coextensive with that of \faithfulfunctor into C ". Indeed, given such a functor F : D ! C , we can de�ne a speci�cationstructure by: PA = f' 2 Ob(D) j F (') = Ag'ffg � 9� 2 D (';  ): F (�) = f(by faithfulness, � is unique if it exists). It is easily seen that this passage from faithfulfunctors to speci�cation structures is (up to equivalence) inverse to that from S to C � C S .A more revealing connection with standard notions is yielded by the observation thatspeci�cation structures on C correspond exactly to lax functors from C toRel , the categoryof sets and relations. Indeed, given a speci�cation structure S on C , the object part ofthe corresponding functor R : C ! Rel is given by P , while for the arrow part we de�neR(f) = f(';  ) j 'ffg g:Then (s1) and (s2) become precisely the statement that R is a lax functor with respect tothe usual order-enrichment of Rel by inclusion of relations:idR(A) � R(idA)R(f) ;R(g) � R(f ; g):Moreover, the functor C � C S is the lax �bration arising from the Grothendieck con-struction applied to R.The notion of speci�cation structure acquires more substance when there is additionalstructure on C which should be lifted to C S . Suppose for example that C is a monoidalcategory, i.e. there is a bifunctor 
 : C 2 ! C , an object I , and natural isomorphismsassocA;B;C : (A
B) 
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Such an action extends the corresponding lax functor R : C ! Rel to a lax monoidalfunctor to Rel equipped with its standard monoidal structure based on the cartesianproduct.Now assume that C is symmetric monoidal closed, with natural isomorphism symmA;B :A 
B �= B 
 A, and internal hom( given by the adjunctionC (A 
B;C) �= C (A;B ( C):Writing �(f) : A! B ( C for the morphism corresponding to f : A
B ! C under theadjunction, we require an action(A;B: PA� PB ! P (A( B)and axioms '
  fsymmA;Bg 
 '('(  )
 'fevalA;Bg '
  ffg� =) 'f�(f)g ( ':Going one step further, suppose that C is a �-autonomous category, i.e. a model for themultiplicative fragment of classical linear logic [11], with linear negation (�)?, where forsimplicity we assume that A?? = A. Then we require an action(�)?A : PA! PA?satisfying '?? = ''(  = ('
  ?)?:Under these circumstances all this structure on C lifts to C S . For example, we de�ne(A;')
 (B; ) = (A
B;'
A;B  )(A;')? = (A?; '?A)(A;')( (B; ) = (A( B;'(A;B  ):All the constructions on morphisms in C S work exactly as they do in C , the above axiomsguaranteeing that these constructions are well-de�ned in C S . For example, if f : (A;')!(B; ) and g : (A0; '0)! (B0;  0), thenf 
 g : (A
A0; '
 '0)! (B 
B0;  
  0):Moreover, all this structure is preserved by the faithful functor C � C S .The above example of structure on C is illustrative. Exactly similar de�nitions can begiven for a range of structures, including:� models of Classical (or Intuitionistic) Linear Logic including the additives and ex-ponentials [10]� cartesian closed categories [15]� models of polymorphism [15]. 4



2.1 Examples of Speci�cation StructuresIn each case we specify the category C , the assignment of properties P to objects and theHoare triple relation.1. C = Set; PX = X; affgb � f(a) = b:In this case, C S is the category of pointed sets.2. C = Rel ; PX = }X; SfRgT � 8x 2 S:fy j xRyg � T:This is essentially a typed version of dynamic logic [25], with the \Hoare triplerelation" specialized to its original setting. If we takeS 
X;Y T = S � TS?X = XnSthen CS becomes a model of Classical Linear Logic.3. C = Rel ; PX = fC � X2 j C = Co; C \ idX = ?g;CfRgD � xCx0; xRy; x0Ry0 ) yDy0:C 
D = f((x; x0); (y; y0)) j xCy ^ x0Dy0gC?X = X2n(C [ idX):C S is the category of coherence spaces and linear maps [20].4. C = Set ; PX = fs : ! * X j 8x 2 X:9n 2 !:s(n) = xg;sffgt � 9n 2 w:f � s ' t � 'nwhere 'n is the nth partial recursive function in some acceptable numbering [34].Then CS is the category of modest sets, seen as a full subcategory of !-Set [10].5. C = the category of SFP domains;PD = K
(D)(the compact-open subsets of D);UffgV � U � f�1(V ):This yields (part of) Domain Theory in Logical Form [2], the other part arising fromthe local lattice-theoretic structure of the sets PD and its interaction with the globaltype structure.6. C = games and partial strategies, as in [9], PA = all sets of in�nite plays, Uf�gVi� � is winning with respect to U; V in the sense of [7]. Then CS is the category ofgames and winning strategies of [7].These examples show the scope and versatility of these notions. Let us return to ourpicture of the tower of categories:C 0 � C 1 � C 2 � � � �� C k :5



Such a tower arises by progressively re�ning C 0 by speci�cation structures S1; : : : ; Sk sothat C i+1 = (C i)Si+1 :Each such step adds propositional information to the underlying \raw" computationalentities (morphisms of C 0). The aim of veri�cation in this framework is to \promote" amorphism from C i to C j , i < j. That is, to promote a C 0 morphism f : A ! B to a C kmorphism f : (A;'1; : : : ; 'k)! (B; 1; : : : ;  k)is precisely to establish the \veri�cation conditions"k̂i=1'iffg i:Once this has been done, by whatever means|model checking, theorem proving, manualveri�cation, etc.|the morphism is now available in C k to participate in typing judge-ments there. In this way, a coherent framework for combining methods, including bothcompositional and non-compositional approaches, begins to open up.We now turn to the speci�c applications of this framework which in fact originallysuggested it, in the setting of the �rst author's interaction categories.3 Interaction CategoriesInteraction Categories [1, 3, 4, 6] are a new paradigm for the semantics of sequential andconcurrent computation. This term encompasses certain known categories (the categoryof concrete data structures and sequential algorithms [12], categories of games [7], geom-etry of interaction categories [8]) as well as several new categories for concurrency. Thefundamental examples of concurrent interaction categories are SProc, the category of syn-chronous processes, and ASProc, the category of asynchronous processes. These categorieswill be de�ned in this section; others will be constructed later by means of speci�cationstructures over SProc and ASProc.The general picture of these categories is that the objects are types, which we alsothink of as speci�cations; the morphisms are concurrent processes which satisfy thesespeci�cations; and composition is interaction, i.e. an ongoing sequence of communications.The dynamic nature of composition in interaction categories is one of the key features,and is in sharp contrast to the functional composition typically found in categories ofmathematical structures.There is not yet a de�nitive axiomatisation of interaction categories, although somepossibilities have been considered [18]. The common features of the existing examples arethat they have �-autonomous structure, which corresponds to the multiplicative fragmentof classical linear logic [20]; products and coproducts, corresponding to the additives oflinear logic, and additional temporal structure which enables the dynamics of processevolution to be described. Furthermore, SProc has suitable structure to interpret theexponentials ! and ? , and is thus a model of full classical linear logic.3.1 The Interaction Category SProcIn this section we briey review the de�nition of SProc, the category of synchronousprocesses. Because the present paper mainly concerns the use of speci�cation structures6



for deadlock-freedom, we omit the features of SProc which will not be needed in latersections. More complete de�nitions can be found elsewhere [1, 6, 18].An object of SProc is a pair A = (�A; SA) in which �A is an alphabet (sort) of actions(labels) and SA �nepref ��A is a safety speci�cation, i.e. a non-empty pre�x-closed subsetof ��A. If A is an object of SProc, a process of type A is a process P with sort �A suchthat traces(P ) � SA. Our notion of process is labelled transition system, with strongbisimulation as the equivalence. We will usually de�ne processes by means of labelledtransition rules.If P is a labelled transition system, traces(P ) is the set of sequences labelling �nitepaths from the root. The set of sequences labelling �nite and in�nite paths is alltraces(P )and the set of sequences labelling in�nite paths is inftraces(P ). The following coinductivede�nition is equivalent to this description.alltraces(P ) def= f"g [ fa� j P a- Q; � 2 alltraces(Q)gtraces(P ) def= f� 2 alltraces(P ) j � is �niteginftraces(P ) def= f� 2 alltraces(P ) j � is in�niteg:The fact that P is a process of type A is expressed by the notation P : A.The most convenient way of de�ning the morphisms of SProc is �rst to de�ne a�-autonomous structure on objects, and then say that the morphisms from A to B areprocesses of the internal hom type A( B. This style of de�nition is typical of interactioncategories; de�nitions of categories of games [7] follow the same pattern. Given objects Aand B, the object A
 B has�A
B def= �A � �BSA
B def= f� 2 ��A
B j fst�(�) 2 SA; snd�(�) 2 SBg:The duality is trivial on objects: A? def= A. This means that at the level of types, SProcmakes no distinction between input and output. Because communication in SProc consistsof synchronisation rather than value-passing, processes do not distinguish between inputand output either.The de�nition of 
makes clear the extent to which processes in SProc are synchronous.An action performed by a process of type A
B consists of a pair of actions, one from thealphabet of A and one from that of B. Thinking of A and B as two ports of the process,synchrony means that at every time step a process must perform an action in every oneof its ports.For simplicity, we shall work with �-autonomous categories in which A?? = A, andA ( B def= (A
B?)?; A O B def= (A? 
B?)?. In SProc, we have A = A?, and henceA O B = A ( B = A 
 B. Not all interaction categories exhibit this degeneracy ofstructure: in particular the category SProcD of deadlock-free processes, which will bede�ned in Section 4, gives distinct interpretations to 
 and O.A morphism p : A ! B of SProc is a process p of type A( B (so p has to satisfy acertain safety speci�cation). Since A( B = A
B in SProc, this amounts to saying thata morphism from A to B is a process of type A
B. The reason for giving the de�nitionin terms of( is that it sets the pattern for all interaction category de�nitions, includingcases in which there is less degeneracy.If p : A ! B and q : B ! C then the composite p ; q : A ! C is de�ned by labelledtransitions. p (a;b)- p0 q (b;c)- q0p ; q (a;c)- p0 ; q07



At each step, the actions in the common type B have to match. The processes beingcomposed constrain each other's behaviour, selecting the possibilities which agree in B.For example, if p and q are as shown:(a; b)(a; b0) (a; b)(a0; b) (b; c) (b00; c)(b; c) (b0; c)then p ; q is this tree. (a; c)(a0; c) (a; c)This ongoing communication is the \interaction" of interaction categories. If the processesin the de�nition terminated after a single step, so that each could be considered simply asa set of pairs, then the labelled transition rule would reduce to precisely the de�nition ofrelational composition. This observation leads to the SProc slogan: processes are relationsextended in time.The identity morphisms are synchronous bu�ers or wires: whatever is received byidA : A ! A in the left copy of A is instantaneously transmitted to the right copy (andvice versa|there is no real directionality). The following auxiliary de�nition helps tode�ne the identity processes. If P is a process with sort � and S �nepref �� then theprocess P �S, also with sort �, is de�ned by the transition ruleP a- Q a 2 SP �S a- Q�(S=a)where S=a def= f� j a� 2 Sg. Note that the condition a 2 S in the transition rule refersto the singleton sequence a rather than the action a. We make no notational distinctionbetween these uses of a.The identity morphism idA : A ! A is de�ned by idA def= id�SA(A where the processid with sort �A is de�ned by the transition rulea 2 �Aid (a;a)- id:Proposition 2 SProc is a category.Proof: The proof that composition is associative and that identities work correctly usesa coinductive argument to show that suitable processes are bisimilar. Full details can befound elsewhere [1, 6]. ut3.1.1 SProc as a �-Autonomous CategoryThe de�nitions of 
 and (�)? can now be extended to morphisms, making them intofunctors. If p : A ! C and q : B ! D then p 
 q : A 
 B ! C 
D and p? : C? ! A?are de�ned by transition rules.p (a;c)- p0 q (b;d)- q0p
 q ((a;b);(c;d))- p0 
 q0 p (a;c)- p0p? (c;a)- p0?8



The tensor unit I is de�ned by�I def= f�g SI def= f�n j n < !g:The following notation provides a useful way of de�ning the structural morphisms neededto specify the rest of the �-autonomous structure. If P is a process with sort �, andf : �* �0 is a partial function, then P [f ] is the process with sort �0 de�ned byP a- Q a 2 dom(f)P [f ] f(a)- Q[f ]:The canonical isomorphisms unitlA : I 
 A �= A, unitrA : A 
 I �= A, assocA;B;C : A 
(B 
 C) �= (A 
 B) 
 C and symmA;B : A 
 B �= B 
 A are de�ned as follows. Herewe are using a pattern-matching notation to de�ne the partial functions needed for therelabelling operations; for example, (a; a) 7! ((�; a); a) denotes the partial function whichhas the indicated e�ect when its arguments are equal.unitlA def= idA[(a; a) 7! ((�; a); a)]unitrA def= idA[(a; a) 7! ((a; �); a)]assocA;B;C def= idA
(B
C)[((a; (b; c)); (a; (b; c))) 7! ((a; (b; c)); ((a; b); c))]symmA;B def= idA
B [((a; b); (a; b)) 7! ((a; b); (b; a))]:If f : A
B ! C then �(f) : A! (B( C) is de�ned by�(f) def= f [((a; b); c) 7! (a; (b; c))]:The evaluation morphism ApA;B : (A( B) 
A! B is de�ned byApA;B def= idA(B [((a; b); (a; b)) 7! (((a; b); a); b)]:All of the structural morphisms are essentially formed from identities, and the only di�er-ence between f and �(f) is a reshu�ing of ports. In each of the above uses of relabelling,the partial function on sorts is de�ned by means of a pattern-matching notation; thefunction is only de�ned for arguments which �t the pattern.If P is a process of type A then P [a 7! (�; a)] is a morphism I ! A which can beidenti�ed with P . This agrees with the view of global elements (morphisms from I , in a�-autonomous category) as inhabitants of types.Proposition 3 SProc is a compact closed category.Proof: Verifying the coherence conditions for 
 is straightforward, given the nature ofthe canonical isomorphisms as relabelled identities. The properties required of � and Apare equally easy to check. Since (�)? is trivial, it is automatically an involution. Thisgives the �-autonomous structure; compact closure follows from the coincidence of 
 andO. ut3.1.2 Compact Closure and Multi-CutAs we have already seen the linear type structure of SProc is quite degenerate. Speci�ca-tion structures can be used to enrich the speci�cations of SProc to stronger behaviouralproperties. This will have the e�ect of \sharpening up" the linear type structure so thatthe degeneracies disappear. 9



Our point here is that the looser type discipline of SProc can actually be useful in thatit permits the exible construction of a large class of processes within a typed framework.In particular, compact closure validates a very useful typing rule which we call the multi-cut. (This is actually Gentzen's MIX rule [19] but we avoid the use of this term sinceGirard has used it for quite a di�erent rule in the context of Linear Logic.)The usual Cut Rule ` �; A ` �; A?` �;�allows us to plug two modules together by an interface consisting of a single \port" [5]:
A A?: : : : : :This allows us to connect processes in a tree structure������������� @ � @�� @@� � � � � � � � � � � �but not to construct cyclic interconnection networks������������'& $%� � �such as the Scheduler described in [30]. The problem with building a cycle is at the laststep where we have already connected����p1 ����p2 : : : ����pk�110



To connect ����pk� �we must plug both � and � simultaneously into the existing network. This could be doneif we had the following \binary" version of the cut rule` �; A1; A2 ` �; A?1 ; A?2` �;�or more generally the \multi-cut":` �;� ` �0;�?` �;�0This rule is not admissible in Linear Logic and cannot in general be interpreted inLinear Categories. However it can always be canonically interpreted in a compact closedcategory (and hence in particular in SProc) as the following construction shows.Let � = A1; : : :Am;�0 = B1; : : :Bn;� = C1; : : :Ck:We write ~A = A1 
 � � � 
Am; ~B = B1 
 � � � 
 Bn; ~C = C1 
 � � � 
 Ck~C? = (C1 
 � � � 
 Ck)? �= C?1 
 � � � 
 C?kSuppose that the proofs of ` �;� and ` �0;�0 are interpreted by morphismsf : I �! ~A
 ~C; g : I �! ~B 
 ~C?respectively. Then we can construct the required morphism I �! ~A
 ~B as follows:

11



II 
 I?o (unit)( ~A
 ~C)
 ( ~B 
 ~C?)? f 
 g~A 
 ((C1 
 C?1 )
 � � � 
 (Ck 
 C?k ))
 ~B?o (canonical isos)~A
 I 
 � � � 
 I 
 ~B? (evaluation)~A
 ~B?o (unit)(Note that in a compact closed category I = ? so A? = A( I .)In the case where k = 1 this construction is the internalization of composition inthe category (using the autonomous structure) so it properly generalizes the standardinterpretation of Cut. For some related notions which have arisen in work on coherencein compact closed categories, see [13, 24].3.1.3 SProc as a Linear CategorySProc also has structure corresponding to the linear logic exponentials ! and ? . We willnot need this structure in the present paper; details can be found elsewhere [1, 6, 18].3.1.4 Non-determinismWe can de�ne the non-deterministic sum exactly as in CCS. If p; q : A! B then p+ q isde�ned by p (a;b)- p0p+ q (a;b)- p0 q (a;b)- q0p+ q (a;b)- q0For any objects A and B, there is a morphism nil : A! B which has no transitions.The non-deterministic sum and the nilmorphisms exist for quite general reasons: SProchas biproducts, and it is standard that this yields a commutative monoid structure on everyhomset [26]. In the present paper, we have de�ned + directly as we will not make anyother use of the products and coproducts. 12



3.1.5 TimeSo far, none of the constructions in SProc have made use of the fact that morphisms areprocesses with dynamic behaviour. Everything that has been discussed applies equallywell to the category of sets and relations. The next step is to justify the claim thatSProc looks like \relations extended in time" by de�ning some structure which allows thetemporal aspects of the category to be manipulated.The basic construction dealing with time is the unit delay functor . It is de�ned onobjects by �A def= f�g+ �ASA def= f"g [ f�� j � 2 SAg:It is notationally convenient to write � instead of inl(�), assuming that � 62 �A. Givenf : A! B, f : A! B is de�ned by the single transition f (�;�)- f .It is straightforward to check that  is indeed a functor. In fact it is a strict monoidalfunctor.Proposition 4 There are isomorphismsmonA;B : (A)
 (B)! (A
 B)(natural in A and B) and monunit : I ! I.Proof: monunit : I �= I is de�ned bymonunit (�;�)- idIwhere �I = f�g. monA;B : (A)
 (B) �= (A
 B) is de�ned bymonA;B ((�;�);�)- idA
B :In both cases the inverse is obtained by considering the process as a morphism in theopposite direction. It is easy to check that these are isomorphisms and thatmon is natural.utThe most important feature of  is that it has the unique �xed point property (UFPP)[6]: for any objects A and B, and any morphisms f : A! A and g : B ! B there is aunique morphism h : A! B such thatA f - ABh?� g B?hcommutes. We will not go into the applications of this property in the present paper, ex-cept to mention that it supports guarded recursive de�nitions [1, 6, 18] and is an importantpart of a proposed axiomatisation of interaction categories [18].Apart from  there are two other delay functors: the initial delay � and the propagateddelay �. These are the same as the operators used by Milner [29, 30] to construct CCS fromSCCS, and they can also be used to construct asynchronous processes in the synchronous13



framework of SProc. However, when analysing asynchronous problems it is much moreconvenient to work in a di�erent category, ASProc, which we will de�ne shortly. For thisreason, we will give only the basic de�nitions of the delay functors here, and not dwell ontheir properties.The functors � and � are de�ned on objects by�� A def= 1+ �AS� A def= f�n� j (n < !) ^ (� 2 SA)g��A def= 1+ �AS�A def= f"g [ fa1 �n1 a2 �n2 a3 : : : j (ni < !)^ (a1a2a3 : : : 2 SA)gand on morphisms by transition rules.� f (�;�)- � f f (a;b)- f 0� f (a;b)- f 0 f (a;b)- f 0� f (a;b)- �� f 0Both of these functors are monads. Full details can be found elsewhere [1, 6, 18].3.2 The Interaction Category ASProcThe theory of interaction categories is not restricted to the synchronous model of con-currency which underlies the category SProc. There is also a category of asynchronousprocesses, ASProc, which we will now de�ne. In this context, asynchrony means the ca-pacity to delay; in particular, an asynchronous process can delay in some of its ports whileperforming observable actions in others. Because we do not wish to distinguish betweenprocesses which di�er only in the amount by which they delay at certain points, we nowconsider processes to be labelled transition systems modulo observation equivalence (weakbisimulation) [30] rather than strong bisimulation.In CCS there is a single silent action, � , which is used by all processes to representdelay. In the typed framework of interaction categories we no longer have a global set ofactions, so it is necessary to specify a silent action �A in each type A. Thus an objectof ASProc contains an extra piece of information compared to an object of SProc. Thisenables observation equivalence classes of typed processes to be de�ned: when consideringprocesses of type A, the action �A is used as the silent action in the standard de�nition ofobservation equivalence.The approach we will take to de�ning operations on asynchronous processes is to de�nethem by labelled transition rules, and then check that they are well-de�ned on observationequivalence classes.The de�nition of ASProc in this section is slightly di�erent from the original de�nition[4], where an action was taken to be a set of labels and the silent action was ?. Thede�nition used here emphasises the essential di�erence between ASProc and SProc, namelythe introduction of �A and the use of observation equivalence.3.3 ASProc as a CategoryAn object of ASProc is a triple A = (�A; �A; SA), in which �A is a set of actions, �A 2 �Ais the silent action, SA �nepref ObAct(A)� is a safety speci�cation, and ObAct(A) def=�A � f�Ag is the set of observable actions of A.A process with sort � and silent action � 2 � is an observation equivalence class ofsynchronisation trees with label set �. 14



A process P of type A, written P : A, is a process P with sort �A and silent action �Asuch that obtraces(P ) � SA, whereallobtraces(P ) def= f"g [ fa� j P a=)Q; � 2 allobtraces(Q)gobtraces(P ) def= f� 2 allobtraces(P ) j � is �niteginfobtraces(P ) def= f� 2 allobtraces(P ) j � is in�nitegJust as in SProc the morphisms are de�ned via the object part of the �-autonomousstructure. Given objects A and B, the object A
 B has�A
B def= �A � �B�A
B def= (�A; �B)SA
B def= f� 2 ObAct(�A
B)� j ��A 2 SA; ��B 2 SBgwhere, for � 2 ObAct(�A
B),��A def= ( fst(�) if fst(�) 6= �A" otherwiseand for � 2 ObAct(�A
B)�, ��A is obtained by concatenating the individual ��A. Theprojection ��B is de�ned similarly. Notice that taking �A
B = (�A; �B) means that aprocess with several ports delays by simultaneously delaying in its individual ports.The duality is trivial on objects: A? def= A.A morphism p : A! B of ASProc is a process p such that p : A( B.If p : A ! B and q : B ! C, then the composite p ; q : A ! C is de�ned by labelledtransitions. p (a;�B)- p0p ; q (a;�C)- p0 ; q q (�B;c)- q0p ; q (�A;c)- p ; q0p (a;b)- p0 q (b;c)- q0p ; q (a;c)- p0 ; q0The �rst two rules allow either process to make a transition independently, if no commu-nication is required. The third rule allows the processes to communicate by performingthe same action in the port B. Any of the actions a, b, c can be � ; if b = �B in the thirdrule, then two simultaneous independent transitions are made.It is necessary to prove that composition is well-de�ned on observation equivalenceclasses, but we will not give the details here.As in SProc, it is straightforward to prove that if f : A! B and g : B ! C, then f ; gsatis�es the safety speci�cation necessary to be a morphism A! C.Although ASProc is a category of asynchronous processes, the identity morphisms arestill synchronous bu�ers. As a candidate identity morphism, a synchronous bu�er seemslikely to work, given the de�nition of composition; of course, once it has been shown tobe an identity, no other choice is possible.The identity morphism idA : A! A is de�ned as in SProc: idA def= id�SA(A where theprocess id with sort �A is de�ned by a 2 �Aid (a;a)- id:15



Just as in SProc, if P is a process with sort � and S �nepref �� then the process P �S, alsowith sort �, is de�ned by the transition ruleP a- Q a 2 SP �S a- Q�(S=a):3.4 ASProc as a �-Autonomous CategoryIf p : A! C and q : B ! D then p
 q : A
 B ! C 
D and p? : C? ! A? are de�nedby transition rules. The rules for 
 illustrate the asynchronous nature of ASProc; the twoprocesses can make transitions either independently or simultaneously.p (a;c)- p0p
 q ((a;�B);(c;�D))- p0 
 q q (b;d)- q0p
 q ((�A;b);(�C;d))- p
 q0p (a;c)- p0 q (b;d)- q0p
 q ((a;b);(c;d))- p0 
 q0 p (a;c)- p0p? (c;a)- p0?The tensor unit I is de�ned by�I def= f�Ig SI def= f"g:The morphisms expressing the symmetric monoidal closed structure are de�ned as inSProc, by combining identities.Proposition 5 ASProc is a compact closed category.3.4.1 Non-determinismIt turns out that ASProc has only weak biproducts. The construction of an addition onthe homsets can still be carried out, but it yields �:P + �:Q. This is not surprising, as theCCS operation + is not well-de�ned on observation equivalence classes. In later sectionswe will often construct processes by means of guarded sums such as a:P + b:Q, which canbe given direct de�nitions in terms of labelled transitions.3.5 TimeIn ASProc, the delay monads � and � are less meaningful than in SProc, since delay isbuilt into all the de�nitions. But the unit delay functor  is still important. On objectsit is de�ned by �A def= f�g+ �A�A def= �ASA def= f"g [ f�� j � 2 SAg:If f : A! B then f : A! B is de�ned by the transition f (�;�)- f .Proposition 6  is a functor, and has the UFPP.Proof: As in SProc. ut16



4 Speci�cation Structures for Deadlock-Freedom4.1 The Synchronous CaseWe shall now describe a speci�cation structure D for SProc such that SProcD will be acategory of deadlock-free processes, closed under all the type constructions described above(and several more omitted in this introductory account). This speci�cation structure hasa number of remarkable features:� The typing rule for composition in SProcD will be a compositional proof rule forplugging together deadlock-free processes while preserving deadlock-freedom. Rulesof this kind are known to be di�cult to obtain [17].� The concepts and techniques used in de�ning this speci�cation structure and veri-fying that it has the required properties represent a striking transfer of techniquesfrom Proof Theory (Tait-Girard proofs of Strong Normalization [21]) to concurrency.This is made possible by our framework of interaction categories and speci�cationstructures.We begin with some preliminary de�nitions. Firstly we de�ne a binary process combinatorp u q by the transition rule p a- p0 q a- q0p u q a- p0 u q0:Note that p u q is the meet of p and q with respect to the simulation pre-order [30].Let STL be the set of processes labelled over L. We de�ne, for p 2 STL:p# � 8s 2 L�; q 2 STL:p s- q ) 9a 2 L; r 2 STL:q a- r:We read p# as \p is deadlock-free", i.e. it can never evolve into the nil process.An important point is that we need to restrict attention to those objects of SProcwhose safety speci�cations do not force processes to deadlock. The object A is progressiveif 8s 2 SA:9a 2 �A:sa 2 SA:By considering just the progressive objects, we can be sure that there are deadlock-freeprocesses of every type.Finally, the key de�nition: p ? q � (p u q)# :We can think of p ? q as expressing the fact that \p passes the test q"; but note that ?is symmetric so the rôles of p and q, tester and testee, can be interchanged freely.Now we lift this symmetric relation to a self-adjoint Galois connection on sets of pro-cesses in a standard fashion [14]:p ? U � 8q 2 U: p ? qU? � fp j p ? Ug:Since (�)? is a self-adjoint Galois connection, it satis�esU??? � U?:We are now ready to de�ne the speci�cation structure D on the subcategory of SProcwhich consists of just the progressive objects.PA = fU � ST�A j 8p 2 U: (p : A)^ (p#); U 6= ?; U = U??g:17



(Compare with the de�nition of candidats in [20], and with Linear Realizability Algebras[8]). U 
 V def= fp
 q j p 2 U; q 2 V g??U O V def= (U? 
 V ?)?U ( V def= (U 
 V ?)?:The Hoare triple relation is de�ned by means of a satisfaction relation between processesand properties. If p : A and U 2 PA thenp j= U () p 2 Uand UffgV () f j= U ( V:Proposition 7 These de�nitions yield a speci�cation structure D on SProc; all the typestructure on SProc described in Section 3 can be lifted to SProcD.We illustrate the proof of this proposition by sketching the veri�cation of the key case forcomposition, i.e. the cut rule:UfpgV V fqgWUfp ; qgW p : (A;U)! (B; V ) q : (B; V )! (C;W )p ; q : (A;U)! (C;W )To verify Ufp ; qgW we must show that, for all r 2 U and s 2 W?, r
 s ? p ; q, i.e. that((r 
 s) u (p ; q))#. By some elementary process algebra,((r
 s) u (p ; q)) = (r ; p)u (q ; s)where we regard r as a morphism r : I ! A and s as a morphism s : C ! I . Thus itsu�ces to prove that (r ; p) ? (q ; s)which holds since r 2 U; p 2 U ( V implies r ; p 2 V and similarly s 2 W?; q 2 V ( Wimplies that q ; s 2 V ?.It can be shown that in general, U 
 V is properly included in U O V , and hence inSProcD the operations of 
 and O are distinct. Thus the speci�cation structure leads toa category which, as a model of linear logic, is less degenerate than the original SProc.4.2 The Asynchronous CaseThe category SProcD allows synchronous problems to be analysed for deadlock-freedom,but there are also many asynchronous systems which we would like to verify. The obviousapproach to reasoning about asynchronous deadlock-freedom is to use the delay operatorsof SProcD to represent asynchrony, and then proceed as before. However, experiencehas shown that when this is done the only deadlock-free behaviours which the types canguarantee to exist are those in which all the processes in the system delay. Hence weneed a version of the speci�cation structure D over ASProc. This section describes theconstruction, and illustrates it with an application to the dining philosophers problem.When we try to de�ne a speci�cation structure for deadlock-freedom over ASProc, twocomplications arise which were not present in the synchronous case. The �rst is to do withdivergence, or livelock. Suppose there are morphisms f : A ! B and g : B ! C, each of18



which runs forever but only does actions in B. Then even if f and g do not deadlock eachother, the result of composing them is a morphism which does no observable actions atall|under observation equivalence this is the same as the nil process, which is deadlocked.This shows that when dealing with asynchronous processes, it is insu�cient simply toguarantee that processes can always communicate with each other when composed. Thesecond technical problem is that because convergence of a process will mean the abilityto continue performing observable actions, there are no convergent processes of type I inASProc, and hence no properties over I . This means that the asynchronous deadlock-freecategory will have no tensor unit; in order to retain the ability to use the �-autonomousstructure in calculations, a di�erent object will have to be used instead. We will notdiscuss this issue in the present paper.To solve the �rst problem we can adapt Hoare's solution of a similar problem [22].He considers processes with one input and one output, which can be connected togetherin sequence. This is actually quite close to the categorical view in some ways: theseprocesses have the \shape" of morphisms and can be composed, although there are noidentity processes. More to the point, he is interested in conditions on processes whichensure that connecting them together does not lead to divergence. Restating the questionin the categorical framework, if f : A! B and g : B ! C, what is the condition that f ; gdoes not diverge? Hoare's solution is to specify that f should be left-guarded or g right-guarded. Left-guardedness means that every in�nite trace of f should contain in�nitelymany observable actions in A; similarly, right-guardedness means that every in�nite traceof g should contain in�nitely many observable actions in C. If f is left-guarded it hasno in�nite behaviours which only involve actions in B, so no matter what g does therecan be no divergent behaviour of f ; g. Symmetrically, if g is right-guarded then f ; gdoes not diverge. If a process is to be a morphism in a category, it must be composableboth on the left and on the right; this means that it needs to be both left-guarded andright-guarded. Requiring that a morphism be both left- and right-guarded, i.e. that everyin�nite trace must contain in�nitely many observable actions in both ports, amounts to aspeci�cation of fairness. What we need for deadlock-freedom is a category in which all themorphisms are fair in this sense. This issue only arises in the asynchronous case, since ina synchronous category it is impossible for an in�nite trace of a process to have anythingother than an in�nite sequence of actions in each port.4.2.1 The Category FProcThe category FProc (fair processes) has objects A = (�A; �A; SA; FA). The �rst three com-ponents of an object are exactly as in ASProc. The fourth, FA, is a subset of ObAct(A)!such that all �nite pre�xes of any trace in FA are in SA. The interaction category opera-tions on objects are de�ned as in ASProc, with the addition thatFA? def= FAFA
B def= fs 2 ObAct(A
B)! j s�A 2 FA; s�B 2 FBgFA def= f�s j s 2 FAg:A process in FProc is almost the same as a process in ASProc, except that there now hasto be a way of specifying which of the in�nite traces of a synchronisation tree are to beconsidered as actual in�nite behaviours of the process. This is done by working with pairs(P; TP ) in which P is an ASProc process and ? 6= TP � infobtraces(P ). Only the in�nitetraces in TP are viewed as behaviours of P , even though the tree P may have many otherin�nite traces. There is a condition for this speci�cation of valid in�nite traces to becompatible with transitions: if P a=)Q then TP � fas j s 2 TQg.19



A process of type A in FProc is a pair (P; TP ) as above, in which P is a process oftype (�A; �A; SA) in ASProc, and TP � FA. Equivalence of processes is de�ned by(P; TP ) = (Q; TQ) def, (P � Q) ^ (TP = TQ)where the relation � is observation equivalence; thus equivalence in FProc is a re�nementof equivalence in ASProc.As usual, a morphism from A to B is a process of type A( B. The identity morphismon A in FProc is (idA; FA(A) where idA is the identity on (�A; �A; SA) in ASProc. It willoften be convenient to refer to FProc processes by their �rst components, and just considerthe second components as extra information when necessary; thus the process (P; TP ) maysimply be written P .For composition, if (f; Tf) : A ! B and (g; Tg) : B ! C then (f; Tf) ; (g; Tg) def=(f ; g; Tf ;g) whereTf ;g def= fs 2 infobtraces(f ; g) j9t 2 Tf ; u 2 Tg:[t�A = s�A; t�B = u�B; u�C = s�C]g:It is straightforward to check that if Tf � FA(B and Tg � FB(C then Tf ;g � FA(C .The functorial action of 
 is de�ned by (f; Tf) 
 (g; Tg) def= (f 
 g; Tf
g) where, forf : A! C and g : B ! D,Tf
g def= fs 2 infobtraces(f 
 g) js�(A;C) 2 Tf ; s�(B;D) 2 Tg; s 2 FA
B(C
Dg:This de�nition discards the in�nite behaviours of f 
 g which correspond to unfair inter-leavings. E�ectively, this means that we are assuming the existence of a fair scheduler forparallel composition; keeping the treatment of fairness at the level of speci�cations, we donot say anything about how such a scheduler might be implemented.FProc inherits the �-autonomous structure of ASProc, because all the structural mor-phisms, being essentially identities, are fair and the abstraction operation does not a�ectfairness. The exception to this is that there is no tensor unit: ObAct(I) = ?, so it is notpossible to de�ne FI .Proposition 8 FProc is a compact closed category without units.The de�nition of FProc is very close to the de�nition of a speci�cation structure overASProc|additional properties (the fairness speci�cations) are de�ned at each type, andsatisfaction of these properties by processes is de�ned. However, FProc does not actuallyarise from a speci�cation structure. The reason is the assumption of fair interleaving in thede�nition of 
. When a speci�cation structure S is de�ned over a category C , functors onC are lifted to C S by checking that their actions in C preserve the Hoare triple relations.By contrast, the 
 functors on FProc and ASProc have di�erent actions on morphisms.The speci�cation structure for deadlock-freedom can now be de�ned over the progres-sive subcategory FProcpr of FProc, which now consists of those objects for which everysafe trace can be extended to a valid in�nite trace. The de�nitions are very similar to thosefor SProc. The essential di�erence is that convergence of a process means the ability tokeep doing observable actions. Furthermore, the choice of next action should not committhe process to a branch of behaviour which can lead only to a disallowed in�nite trace. IfP : A then P # means 20



� whenever P s=)Q there is a 2 ObAct(A) and a process R such that Q a=)R, andthere is t 2 infobtraces(R) such that sat 2 TP .The de�nition of equivalence of FProc processes P and Q, requiring P � Q and TP = TQ,permits the possibility that although P and Q are not observation equivalent it is onlythe presence of branches corresponding to invalid in�nite traces which causes observationequivalence to fail. However, if a process is convergent then there is no branch alongwhich all in�nite traces are invalid, so this situation does not arise. In the speci�cationstructure for deadlock-freedom over FProc, a property is a set of convergent processesand satisfaction is membership, just as in the synchronous case. This means that all thedeadlock-free processes considered are convergent, and the equivalence behaves well forthem. It is not, however, possible to require that FProc should consist only of convergentprocesses, because convergence in itself is not preserved by composition. It is only whenconvergence is combined with satisfaction of suitable deadlock-free types that compositionworks.Given P and Q of type A in ASProc, P u Q is de�ned exactly as in SProc:P a- P 0 Q a- Q0P uQ a- P 0 u Q0:If P and Q have type A in FProc and TP \ TQ 6= ?, then P uQ can be converted into anFProc process of type A by de�ning TPuQ def= TP \ TQ. Orthogonality is now de�ned byP ? Q def, TP \ TQ 6= ? and (P u Q)# :It is extended to sets of processes exactly as in the synchronous case. For each object A,PDA is again the set of ??-invariant sets of convergent processes of type A. Satisfactionis membership, and all of the operations on properties are de�ned exactly as before.The proof that D satis�es the composition axiom is similar to the proof in the syn-chronous case, but is complicated by the presence of silent actions. If f : A ! B andg : B ! C in FProc, communication between f and g when f ; g is formed can includeperiods in which the common action in B is �B. This means that several cases arise in theproof, depending on whether f and g are delaying or performing observable actions, andfairness is crucial in dealing with them. Details of the proof can be found in [18].The proof that identity morphisms satisfy the correct properties is the same as in thesynchronous case. HenceProposition 9 D is a speci�cation structure over FProcpr .The asynchronous deadlock-free category is called FProcD. For each type A there is a pro-cess maxA which has every non-deadlocking behaviour allowed by the safety speci�cationof A. It is de�ned by a 2 ObAct(A)maxA a- maxA=awith TmaxA = FA. Note that a process maxA could be de�ned in this way for any FProcobject A; maxA is simply the process which exhibits every behaviour permitted by thesafety speci�cation SA. In general maxA might have deadlocking behaviours, but becausewe are working in FProcpr , every safe trace can be extended inde�nitely and so maxAnever terminates.The process maxA is orthogonal to every convergent process of type A: writing Proc(A)for the set of all convergent processes of type A, we have maxA ? Proc(A). In fact,21



Proc(A)? = fmaxAg. Proc(A) is a valid property over A, as is fmaxAg, and they aremutually related by (�)?. The deadlock-free type (A; fmaxAg) speci�es an input port,because it forces all possible actions to be accepted. The type (A;Proc(A)) speci�es anoutput, because any selection of actions is allowed. From now on, we denote Proc(A) andfmaxAg by outA and inA respectively, so that in?A = outA and out?A = inA. It is not hardto proveProposition 10 outA O outB = outAOB.If P : A in FProc and P # then P j= outA and so P : (A; outA) in FProcD. Combined withthe previous result, this givesProposition 11 If P : A1 O � � �OAn in FProc and P #, then in FProcD,P : (A1; outA1)O � � �O (An; outAn):This result is very useful for applications, as we shall see in the next section. Anotheruseful fact is that if the safety speci�cation of A is such that in every state there is aunique allowable next action, then inA = outA.4.3 Constructing Cyclic NetworksThe deadlock-free categories SProcD and FProcD are not compact closed, which meansthat the categorical structure no longer supports the construction of arbitrary processnetworks. Any non-cyclic structure can be constructed, using the fact that the categoryis �-autonomous, but additional proof rules are needed to form cycles.Suppose that P : (�; U)O(X; V )O(X?; V ?) in FProcD. There is an obvious conditionthat forming P by connecting theX and X? ports should not cause a deadlock: that everytrace s of P with s�X = s�X? can be extended by an action (�a; x; x) of P . The action xcould be �X , as it is permissible for the sequence of communications between the X andX? ports to pause, or the action tuple �a could be ��, but not both. Again, to obtainP : (�; U) in FProcD it is also necessary to ensure that the speci�cation U can still besatis�ed while the communication is taking place.The possibility of divergence does not have to be considered separately. It is conceivablethat P could have a non-deadlocking in�nite behaviour in which no observable actionsoccur in �, but the corresponding behaviour of P would be unfair because it would neglectthe ports in �. Thus it is su�cient to state a condition which guarantees that forcing Xand X? to communicate does not a�ect the actions available in the other ports. Thiscondition can be expressed in terms of ready pairs. The de�nition of readies(P ) for anFProc process P of type A isinitials(P ) def= fa 2 ObAct(A) j 9Q:P a=)Qgreadies(P ) def= f(s;X) j 9Q:[(P s=)Q) ^ (X = initials(Q))]g:The condition cycle(P ) is now� For every (s; A) 2 readies(P ) such that s�X = s�X?, and every action (�a; x; y) 2 A,there is z 2 �X such that ��OXOX? 6= (a; z; z) 2 A.This leads to a proof rule for cycle formation.P : (�; U)O (X; V )O (X?; V?) cycle(P )P : (�; U)22



This rule illustrates one of the main features of our approach|the combination of type-theoretic and traditional veri�cation techniques. Typically, the construction of a processwill be carried out up to a certain point by means of the linear combinators, and itscorrectness will be guaranteed by the properties of the type system. This phase of theveri�cation procedure is completely compositional. However, if cyclic connections are tobe formed, some additional reasoning about the behaviour of the process is needed. Thenature of this reasoning is embodied in the above proof rule. The rule is not compositional,in the sense that the internal structure of P must be examined to some extent in order tovalidate the condition cycle(P ), but the departure from compositionality is only temporary.Once the hypotheses of the proof rule have been established, the result is that P has atype, and can be combined with other processes purely on the basis of that type.5 The Dining PhilosophersThe problem of the dining philosophers [22] provides a good example of working with thecategory of asynchronous deadlock-free processes. Our analysis of it will make use of theproof rule for cycle formation, introduced in the previous section, and thus illustrates thecombination of type-theoretic arguments with more traditional reasoning. The exampleitself is well-known in the concurrency literature, but it is worth reviewing the scenariohere before plunging into an analysis.In a college there are �ve philosophers, who spend their lives seated around a table.In the middle of the table is a large bowl of spaghetti; also on the table are �ve forks, onebetween each pair of philosophers. Each philosopher spends most of his time thinking,but occasionally becomes hungry and wants to eat. In order to eat, he has to pick upthe two nearest forks; when he has �nished eating, he puts the forks down again. Theproblem consists of de�ning a concurrent system which models this situation; there arethen various questions which can be asked about its behaviour. One is about deadlock-freedom: is it possible for the system to reach a state in which nothing further can happen,for example because the forks have been picked up in an unsuitable way? Another is aboutfairness: do all the philosophers get a chance to eat, or is it possible for one of them to beexcluded forever? The reason for looking at the dining philosphers example in this paperis to illustrate techniques for reasoning about deadlock-freedom, but because of the wayin which the asynchronous deadlock-free category has been constructed, fairness has to beconsidered as well.A philosopher can be modelled as a process with �ve possible actions: eating, pickingup the left fork, putting down the left fork, picking up the right fork, and putting downthe right fork. Calling these actions e, lu, ld, ru, rd respectively, a CCS de�nition of aphilosopher could be P = lu:ru:e:ld:rd:P . There is no action corresponding to thinking: aphilosopher is deemed to be thinking at all times, unless actually doing something else. InASProc a philosopher has three ports: one for the eating action and one each for the leftand right forks. The type of the fork ports is X , de�ned by �X def= fu; d; �Xg and with SXrequiring u and d to alternate, starting with u. The type of the eating port is Y de�nedby �Y def= fe; �Y g and with SY allowing all traces. The philosopher process can be typedas P : X? O Y OX .A fork has four actions, lu, ld, ru and rd. For the usage of these names by the forkto match their usage by the philosophers, the necessary convention is that if a fork doesthe action lu, it has been picked up from the right. A possible de�nition of a fork isK = lu:ld:K + ru:rd:K and it can be typed as K : X? OX .Five philosophers and �ve forks can be connected together in the desired con�guration,23
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Figure 1: Process Con�guration for the Dining Philosophersillustrated in Figure 1, by using the compact closed structure of ASProc, as usual. Thenext step is to transfer everything to FProc and then to FProcD.To construct the P and K processes in FProc, fairness speci�cations must be added tothe types X and Y , and the acceptable in�nite behaviours of P and K must be speci�ed.This will be done in such a way that P andK satisfy the appropriate fairness speci�cations.For both X and Y the fairness speci�cation can simply be all in�nite traces. This meansthat there is no fairness requirement on the actions within a port, but only between ports.For the types of the philosopher and the fork, FX?OYOX consists of the in�nite traceswhose projections into the three ports are all in�nite, and similarly FX?OX .To convert the ASProc process P into an FProc process, it is su�cient to take TP =infobtraces(P ). It is then clear that TP � FX?OYOX because the behaviour of P simplycycles around all the available actions. Also, P is convergent because its behaviour consistsof just one in�nite branch. However, K has unfair in�nite behaviours|for example, thereis an in�nite trace in which the ru and rd actions never appear. Thus TK must be de�nedin such a way as to eliminate these undesirable in�nite traces, and this can easily be doneby taking TK = FX?OX . Then K is convergent, because any of its �nite behaviours canbe extended to a fair in�nite behaviour by choosing a suitable interleaving from that pointon. This approach means that this section is not addressing the issue of how fairnesscan be achieved in the dining philosophers problem|to do that, the implementation ofa fair scheduler would have to be considered. As already stated, this problem has beenintroduced as an example of compositional reasoning about deadlock-freedom; fairness onlyappears in the minimal possible way needed for the categorical approach to be applicable.Typing the philosopher and fork processes in FProcD requires suitable properties overthe types X and Y . For Y , outY can be used. Because Y has only one observableaction, outY = out?Y . Similarly for X , the set outX can be used, and because thesafety speci�cation of X is such that in each state there is only one action available,outX = out?X . Because K : X?OX in FProc and K is convergent, K j= outX?OoutX andso K : (X; outX)?O(X; outX) in FProcD. Similarly, P : (X; outX)?O(Y; outY )O(X; outX)in FProcD. These typings mean that any number of philosophers and forks can be con-nected together in a line, and the resulting process is guaranteed to be deadlock-free.24



Interestingly, this applies not only to the \correct" con�guration in which philosophersand forks alternate, but also to other possibilities such as a sequence of forks with nophilosophers.The interesting step of the construction consists of completing the cycle by connectingthe X and X? ports at opposite ends of a chain in which forks and philosophers alternate.Because FProcD is not compact closed, the proof rule of the previous section must be used.First of all, some traditional analysis based on reasoning about the state of the system isuseful. For the moment, the e actions can be ignored as they do not have any impact ondeadlocks in this system. The following cases cover all possibilities for a state.1. If there is Pi such that both adjacent forks are down, it can pick up the left fork.2. If there is Pi whose right fork is up and whose left fork is down, it can either putdown the right fork (if it has just put down the left fork) or pick up the left fork (ifits neighbour has the right fork).3. If all forks are up and some Pi has both its forks, it can put down the left fork.4. If all forks are up and every Pi has just one fork, they all have their left forks, andthere is a deadlock.The last case is the classic situation in which the dining philosophers may deadlock|eachphilosopher in turn picks up the left fork, and then they are stuck. In terms of ready sets,there is a state in which every possible next action has non-matching projections in thetwo X ports.In Hoare's formulation of the dining philosophers problem [22] the philosophers are notnormally seated, but have to sit down before attempting to pick up their forks. This meansthat the possibility of deadlock can be removed by adding a footman, who controls whenthe philosophers sit down. The footman ensures that at most four philosophers are seatedat any one time, which means that there is always a philosopher with an available forkon both sides; in this way, the deadlocked situation is avoided. However, implementingthis solution involves a major change to the system: there is a new process representingthe footman, the philosopher processes have extra ports on which they interact with thefootman, and consequently their types need to be re-examined. It is more convenient touse an alternative approach, which will now be described.One of the philosophers is replaced by a variant, P 0, which picks up the forks in theopposite order. So P 0 = ru:lu:e:rd:ld:P 0 in CCS notation. Intuitively, this prevents thedeadlocking case from arising, because even if the four P s each pick up their left fork, P 0is still trying to pick up its right fork (which is already in use) and so one of the P s has achance to pick up its right fork as well. The check that there are no deadlocks takes theform of a case analysis, as before.1. If all the forks are up and some philosopher has both its forks, it can put one ofthem down, whether it is P or P 0.2. If all the forks are up and every philosopher has just one, either they all have theirleft fork or all the right. If they all have their left fork, then P 0 can put down its leftfork. If they all have their right fork, then any P can put down its right fork.3. If two adjacent forks are down, then the philosopher in between them can pick oneof them up, whether it is P or P 0.4. Otherwise there is the con�guration u� phil1 � d� phil2 � u� phil3.25
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