Specification Structures and Propositions-as-Types for
Concurrency”

Samson Abramsky Simon Gay Rajagopal Nagarajan

Department of Computing,
Imperial College of Science, Technology and Medicine, London, UK.
email: {sa,sjg3,rn4}0doc.ic.ac.uk.

Abstract

Many different notions of “property of interest” and methods of verifying such
properties arise naturally in programming. A general framework of “Specification
Structures” is presented for combining different notions and methods in a coherent
fashion. This is then applied to concurrency in the setting of Interaction Categories.
As an example, we present a type system for concurrent processes strong enough to
guarantee deadlock-freedom, and expressive enough to allow the treatment of some
standard examples from the literature. This is illustrated using the classic Dining
Philosophers problem.

This paper appears in Logics for Concurrency: Structure vs. Automata— Proceedings of the
VIIiIth Banff Higher Order Workshop (F. Moller and G. Birtwistle, eds), Springer-Verlag
Lecture Notes in Computer Science, 1995.

1 Introduction

Type Inference and Verification are two main paradigms for constraining the behaviour
of programs in such a way as to guarantee some desirable properties. Although they are
generally perceived as rather distinct, on closer inspection it is hard to make any very
definite demarcation between them; type inference rules shade into compositional proof
rules for a program logic. Indeed, type inference systems, even for the basic case of func-
tional programming languages, span a broad spectrum in terms of expressive power. Thus,
ML-style types [31] are relatively weak as regards expressing behavioural constraints, but
correspondingly tractable as regards efficient algorithms for “type checking”. System F
types [21] are considerably more expressive of polymorphic behaviour, and System F typ-
ing guarantees Strong Normalization. However, System F cannot express the fact that
a program of type list[nat] = list[nat] is actually a sorting function. Martin-Lo6f type
theory, with dependent types and equality types, can express complete total correctness
specifications. In the richer theories, type checking is undecidable [35].

One might try to make a methodological distinction: post-hoc verification vs. construc-
tions with intrinsic properties. However, this is more a distinction between ways in which
Type Inference/Verification can be deployed than between these two formal paradigms.

We suggest that it is the rule rather than the exception that there are many different
notions of “properties of interest” for a given computational setting. Some examples:

*This research was supported by EPSRC project “Foundational Structures in Computer Science”, and

EU projects “CONFER” (ESPRIT BRA 6454) and “COORDINATION” (ESPRIT BRA 9102).

e Even in the most basic form of sequential programming, it has proved fruitful to
separate out the aspects of partial correctness and termination, and to use different
methods for these two aspects [16].

e In the field of static analysis, and particularly in the systematic framework of abstract
interpretation [23], a basic ingredient of the methodology is to use a range of non-
standard interpretations to gain information about different properties of interest.

e In concurrency, it is standard to separate out classes of properties such as safety,
liveness, and fairness constraints, extending into a whole temporal hierarchy, and to
apply different methods for these classes [27].

The upshot of this observation is that no one monolithic type system will serve all our
purposes. Moreover, we need a coherent framework for moving around this space of
different classes of properties.

The basic picture we offer to structure this space is the “tower of categories”:

Co —~Cp ~Cp — -+ = Cy.

The idea behind the picture is that we have a semantic universe (category with structure)
Co, suitable for modelling some computational situation, but possibly carrying only a
very rudimentary notion of “type” or “behavioural specification”. The tower arises by
refining Cy with richer kinds of property, so that we obtain a progressively richer setting
for performing specification and verification?!.

We will now proceed to formalize this idea of enriching a semantic universe with a
refined notion of property in terms of Specification Structures.

2 Specification Structures

The notion of specification structure, at least in its most basic form, is quite anodyne, and
indeed no more than a variation on standard notions from category theory. Nevertheless,
it provides an alternative view of these standard notions which is highly suggestive, par-
ticularly from a Computer Science point of view. Similar notions have been studied, for a
variety of purposes, by Burstall and McKinna [28], O’Hearn and Tennent [32], and Pitts
[33].

Definition 1 Let C be a category. A specification structure S over C is defined by the
following data:

o a set PA of “properties over A”, for each object A of C.
o a relation Ry p C PA x C(A, B) x PB for each pair of objects A, B of C.

We write o{ f} for Ra (@, f,¢) (“Hoare triples”). This relation is required to satisfy
the following axioms, for f: A— B, g: B—=C, o€ PA, v € PB and 8 € PC':

elidate (s1)
ol [0, ¥{g}0 = o{f;9}0 (s2)

1Of course, non-linear patterns of refinement—trees or dags rather than sequences—can also be con-
sidered, but the tower suffices to establish the main ideas.

The axioms (s1) and (s2) are typed versions of the standard Hoare logic axioms for “se-
quential composition” and “skip” [16].

Given C and S as above, we can define a new category Cg. The objects are pairs (A, ¢)
with A € 0b(C) and ¢ € PA. A morphism f:(A4,¢) — (B,%)is a morphism f: A — B
in C such that o{f}1.

Composition and identities are inherited from C; the axioms (s1) and (s2) ensure that
Cs is a category. Moreover, there is an evident faithful functor

C —~Cg
given by
A — (A, o).

In fact, the notion of “specification structure on C” is coextensive with that of “faithful
functor into C”. Indeed, given such a functor F' : D — C, we can define a specification
structure by:

PA {p e pD) | F(e) = A}
e{f1v da € D(p,). F(a) = f

(by faithfulness, a is unique if it exists). It is easily seen that this passage from faithful
functors to specification structures is (up to equivalence) inverse to that from $ to C «~ Cs.
A more revealing connection with standard notions is yielded by the observation that
specification structures on C correspond exactly tolax functors from C to Rel, the category
of sets and relations. Indeed, given a specification structure S on C, the object part of
the corresponding functor R : C — Rel is given by P, while for the arrow part we define

R(f) = (g, 0) | {30}

Then (s1) and (s2) become precisely the statement that R is a lax functor with respect to
the usual order-enrichment of Rel by inclusion of relations:

idpay C Rlida)
R(f);R(g) C R(f;g).

Moreover, the functor C «+< Cg is the lax fibration arising from the Grothendieck con-
struction applied to R.

The notion of specification structure acquires more substance when there is additional
structure on C which should be lifted to Cg. Suppose for example that C is a monoidal
category, i.e. there is a bifunctor ® : C*> — C, an object I, and natural isomorphisms

assocqspc: (A@B)C =2 A (Bel)
unitl 4 : IoA =2 A
unitr4 : Al =2 A

satisfying the standard coherence equations [26]. A specification structure for C must then
correspondingly be extended with an action

©®ap:PAX PB— P(A® B)

and an element u € PI satisfying, for f: A — B, f': A — B’ and properties ¢, ¢', 1,
', 0 over suitable objects:

P, I = e d{f e [y ad
(p @) @ 6{assoca p.cle @ (¢ @ 0)
u @ @{unitl4}p
© © u{unitr 4 }e.

Such an action extends the corresponding lax functor R : C — Rel to a lax monoidal
functor to Rel equipped with its standard monoidal structure based on the cartesian
product.

Now assume that C is symmetric monoidal closed, with natural isomorphism symm, g :
A® B2 B® A, and internal hom — given by the adjunction

C(A®@B,C) = C(A,B—C).

Writing A(f) : A — B — C for the morphism corresponding to f: A®@ B — C under the
adjunction, we require an action

—©A,B: PAX PB — P(A —o B)
and axioms
o @ P{symmy gt @
(p —o) © pfevalap o
e @ U{f10 = o{A(f)} — .

Going one step further, suppose that C is a #-autonomous category, i.e. a model for the
multiplicative fragment of classical linear logic [11], with linear negation (—)*, where for
simplicity we assume that At+ = A. Then we require an action

(=)j: PA— PAt

satisfying

et = e

p—t = (poot)t.

Under these circumstances all this structure on C lifts to Cg. For example, we define

(A, o)®(B,v) = (AR B,¢®aB1Y)
(Ae) = (AYeh)
(A,QO)—O(B,Q#) = (A_OBv@_OA,B ¢)

All the constructions on morphisms in Cg work exactly as they do in C, the above axioms
guaranteeing that these constructions are well-defined in Cg. For example, if f: (A, ¢) —

(B,v)and g: (A", ¢") — (B',9'), then
fog:(AoA,p0¢) = (Bo B, v

Moreover, all this structure is preserved by the faithful functor C «— Cg.
The above example of structure on C is illustrative. Exactly similar definitions can be
given for a range of structures, including;:

e models of Classical (or Intuitionistic) Linear Logic including the additives and ex-
ponentials [10]

e cartesian closed categories [15]

e models of polymorphism [15].

2.1 Examples of Specification Structures

In each case we specify the category C, the assignment of properties P to objects and the
Hoare triple relation.

1.
C=8et, PX=X, a{f}b= f(a)=0.
In this case, Cg is the category of pointed sets.
2.
C=Rel, PX=9X, S{R}T=Vxe S{y|aRy} CT.
This is essentially a typed version of dynamic logic [25], with the “Hoare triple
relation” specialized to its original setting. If we take
SoxyT = SxT
Sy = X\§
then Cg becomes a model of Classical Linear Logic.
3.
C=TRel, PX={CCX?|C=C°Cnidx = T},
C{R}D = zC2',zRy,2'Ry' = yDy/ .
CoD = {(z,2),(y,y))]| 2Cy Aa’'Dy'}
Cx = X\(CuUidy).
Cg is the category of coherence spaces and linear maps [20].
4.
C=8et, PX={s:w— X|Vee X.dn€cws(n)=uza},
s{fit=dnew.fos~top,
where ¢,, is the nth partial recursive function in some acceptable numbering [34].
Then Cg is the category of modest sets, seen as a full subcategory of w-Set [10].
5.

C = the category of SFP domains,
PD = KQ(D)(the compact-open subsets of D),
UL}V = U C fH V).

This yields (part of) Domain Theory in Logical Form [2], the other part arising from
the local lattice-theoretic structure of the sets PD and its interaction with the global
type structure.

6. C = games and partial strategies, as in [9], PA = all sets of infinite plays, U{c}V
iff o is winning with respect to U,V in the sense of [7]. Then Cg is the category of
games and winning strategies of [7].

These examples show the scope and versatility of these notions. Let us return to our
picture of the tower of categories:

Co —~Cp ~Cp — -+ = Cy.

Such a tower arises by progressively refining Cy by specification structures Sq,...,.5% so
that

(Ci-l-l = ((CZ)Si+1 :

Each such step adds propositional information to the underlying “raw” computational
entities (morphisms of Cp). The aim of verification in this framework is to “promote” a
morphism from C; to C;, 7 < j. That is, to promote a Cy morphism f: A — B toa C;
morphism

f:(A79917---799k)—>(B7¢17---7¢k)

is precisely to establish the “verification conditions”

k
/\ oi{ i

Once this has been done, by whatever means—model checking, theorem proving, manual
verification, etc.—the morphism is now available in C; to participate in typing judge-
ments there. In this way, a coherent framework for combining methods, including both
compositional and non-compositional approaches, begins to open up.

We now turn to the specific applications of this framework which in fact originally
suggested it, in the setting of the first author’s interaction categories.

3 Interaction Categories

Interaction Categories [1, 3, 4, 6] are a new paradigm for the semantics of sequential and
concurrent computation. This term encompasses certain known categories (the category
of concrete data structures and sequential algorithms [12], categories of games [7], geom-
etry of interaction categories [8]) as well as several new categories for concurrency. The
fundamental examples of concurrent interaction categories are SProc, the category of syn-
chronous processes, and ASProc, the category of asynchronous processes. These categories
will be defined in this section; others will be constructed later by means of specification
structures over SProc and ASProc.

The general picture of these categories is that the objects are types, which we also
think of as specifications; the morphisms are concurrent processes which satisfy these
specifications; and composition is interaction, i.e. an ongoing sequence of communications.
The dynamic nature of composition in interaction categories is one of the key features,
and is in sharp contrast to the functional composition typically found in categories of
mathematical structures.

There is not yet a definitive axiomatisation of interaction categories, although some
possibilities have been considered [18]. The common features of the existing examples are
that they have x-autonomous structure, which corresponds to the multiplicative fragment
of classical linear logic [20]; products and coproducts, corresponding to the additives of
linear logic, and additional temporal structure which enables the dynamics of process
evolution to be described. Furthermore, SProc has suitable structure to interpret the
exponentials ! and 7, and is thus a model of full classical linear logic.

3.1 The Interaction Category SProc

In this section we briefly review the definition of SProc, the category of synchronous
processes. Because the present paper mainly concerns the use of specification structures

for deadlock-freedom, we omit the features of SProc which will not be needed in later
sections. More complete definitions can be found elsewhere [1, 6, 18].

An object of SProc is a pair A = (¥ 4,.54) in which X4 is an alphabet (sort) of actions
(labels) and Sy crepref Y% is a safety specification, i.e. a non-empty prefix-closed subset
of ¥%. If A is an object of SProc, a process of type A is a process P with sort ¥4 such
that traces(P) C S4. Our notion of process is labelled transition system, with strong
bisimulation as the equivalence. We will usually define processes by means of labelled
transition rules.

If P is a labelled transition system, traces(P) is the set of sequences labelling finite
paths from the root. The set of sequences labelling finite and infinite paths is alltraces(P)
and the set of sequences labelling infinite paths is inftraces(P). The following coinductive
definition is equivalent to this description.

alltraces(P) def {eYU{ao | P -2+ Q,0 € alltraces(Q)}
traces(P) def {o € alltraces(P) | o is finite}
inftraces(P) ef {o € alltraces(P) | ¢ is infinite}.

The fact that P is a process of type A is expressed by the notation P : A.

The most convenient way of defining the morphisms of SProc is first to define a
x-autonomous structure on objects, and then say that the morphisms from A to B are
processes of the internal hom type A — B. This style of definition is typical of interaction
categories; definitions of categories of games [7] follow the same pattern. Given objects A

and B, the object A ® B has

def
EA@B = EAXEB

Sacn ¥ {o €N p | fst* (o) € S4,snd"(0) € SB).

The duality is trivial on objects: AL 4f A, This means that at the level of types, SProc
makes no distinction between input and output. Because communication in SProc consists
of synchronisation rather than value-passing, processes do not distinguish between input
and output either.

The definition of ® makes clear the extent to which processes in SProc are synchronous.
An action performed by a process of type A ® B consists of a pair of actions, one from the
alphabet of A and one from that of B. Thinking of A and B as two ports of the process,
synchrony means that at every time step a process must perform an action in every one
of its ports.

For simplicity, we shall work with *-autonomous categories in which At+ = A, and

A—oBY (A@BJ‘)J', Ao B (AL ®BJ‘)J'. In SProc, we have A = A+ and hence
Ao B =A — B = A® B. Not all interaction categories exhibit this degeneracy of
structure: in particular the category SProcp of deadlock-free processes, which will be
defined in Section 4, gives distinct interpretations to ® and »p.

A morphism p: A — B of SProc is a process p of type A — B (so p has to satisfy a
certain safety specification). Since A — B = A® B in SProc, this amounts to saying that
a morphism from A to B is a process of type A ® B. The reason for giving the definition
in terms of —o is that it sets the pattern for all interaction category definitions, including
cases in which there is less degeneracy.

Ifp: A— B and g: B — C then the composite p; g : A — C is defined by labelled

transitions.

At each step, the actions in the common type B have to match. The processes being
composed constrain each other’s behaviour, selecting the possibilities which agree in B.
For example, if p and ¢ are as shown:

then p; ¢ is this tree.

(a,c)
(a/,c) M (a,c)

This ongoing communication is the “interaction” of interaction categories. If the processes
in the definition terminated after a single step, so that each could be considered simply as
a set of pairs, then the labelled transition rule would reduce to precisely the definition of
relational composition. This observation leads to the SProc slogan: processes are relations
extended in time.

The identity morphisms are synchronous buffers or wires: whatever is received by
idg : A — A in the left copy of A is instantaneously transmitted to the right copy (and
vice versa—there is no real directionality). The following auxiliary definition helps to
define the identity processes. If P is a process with sort ¥ and § C™?"f ¥* then the
process P[5, also with sort 3, is defined by the transition rule

P—a>Q a €S

PIS —+ Q1(5/a)

where S/a def {o | ac € S}. Note that the condition a € S in the transition rule refers

to the singleton sequence a rather than the action a. We make no notational distinction
between these uses of a.

The identity morphism idg : A — A is defined by id4 def id [S4_04 where the process
id with sort ¥4 is defined by the transition rule

a €y
id L id.
Proposition 2 SProc is a category.

Proof: The proof that composition is associative and that identities work correctly uses
a coinductive argument to show that suitable processes are bisimilar. Full details can be
found elsewhere [1, 6]. O

3.1.1 SProc as a *-Autonomous Category

The definitions of @ and (—)* can now be extended to morphisms, making them into
functors. f p: A — C and ¢: B— Dthenp®q: A@ B — C®D and pt : C+ — At
are defined by transition rules.

(a,c) (b,d) (a,c)

p—D q——™4q p—™0D
a,b),(c,d c,a
P& ((a,5),(c,d)) "o q pJ_()p’L

The tensor unit [is defined by

{*} Sp ¥ <)

The following notation provides a useful way of defining the structural morphisms needed
to specify the rest of the *-autonomous structure. If P is a process with sort X, and
f X — Y is a partial function, then P[f] is the process with sort ¥/ defined by

P—2.Q a € dom(f)

The canonical isomorphisms unitly : 7 © A = A, unitry : A® [= A, assocy o : A®
(B C)= (A® B)® C and symmy g : AR B = B® A are defined as follows. Here
we are using a pattern-matching notation to define the partial functions needed for the
relabelling operations; for example, (a,a) — ((*,a),a) denotes the partial function which
has the indicated effect when its arguments are equal.

unitl 4 L idaf(a.a) ~ ((+.a),a)]
unitr 4 T idal(a,a) — ((a,+),a)]
assocanc = idan(pac[((a,(b,0),(a,(b,0) — ((a,(b,¢)), ((a,b),0))]

symmy . idagnl((a,0), (0,0)) = ((a,5), (b a))].
If f:A®@ B — C then A(f): A — (B — (') is defined by

def

ACf) = fl(a,b),c) = (a,(b,c))].
The evaluation morphism Apy g : (A — B) ® A — B is defined by

Apap = idaonl((a,b), (a.b) — (((a,b),a),b)].

All of the structural morphisms are essentially formed from identities, and the only differ-
ence between f and A(f) is a reshuffling of ports. In each of the above uses of relabelling,
the partial function on sorts is defined by means of a pattern-matching notation; the
function is only defined for arguments which fit the pattern.

If P is a process of type A then Pla — (%,a)] is a morphism I — A which can be
identified with P. This agrees with the view of global elements (morphisms from I, in a
k-autonomous category) as inhabitants of types.

Proposition 3 SProc is a compact closed category.

Proof: Verifying the coherence conditions for ® is straightforward, given the nature of
the canonical isomorphisms as relabelled identities. The properties required of A and Ap
are equally easy to check. Since (—)J‘ is trivial, it is automatically an involution. This
gives the x-autonomous structure; compact closure follows from the coincidence of ® and

2. g

3.1.2 Compact Closure and Multi-Cut

As we have already seen the linear type structure of SProc is quite degenerate. Specifica-
tion structures can be used to enrich the specifications of SProc to stronger behavioural
properties. This will have the effect of “sharpening up” the linear type structure so that
the degeneracies disappear.

Our point here is that the looser type discipline of SProc can actually be useful in that
it permits the flexible construction of a large class of processes within a typed framework.
In particular, compact closure validates a very useful typing rule which we call the multi-
cut. (This is actually Gentzen’s MIX rule [19] but we avoid the use of this term since
Girard has used it for quite a different rule in the context of Linear Logic.)

The usual Cut Rule

F2,A4 0 FAAl
F?7,A

allows us to plug two modules together by an interface consisting of a single “port” [5]:

This allows us to connect processes in a tree structure

but not to construct cyclic interconnection networks

such as the Scheduler described in [30]. The problem with building a cycle is at the last
step where we have already connected

o>

To connect

s

we must plug both a and § simultaneously into the existing network. This could be done
if we had the following “binary” version of the cut rule

7, A, Ay A AL AS
F7,A

or more generally the “multi-cut”:

F7,A 2/ At

!
7,7

This rule is not admissible in Linear Logic and cannot in general be interpreted in
Linear Categories. However it can always be canonically interpreted in a compact closed
category (and hence in particular in SProc) as the following construction shows.

Let

7 =Ay,...A,,7 =B1,...B,,A=C1,...C}.

We write

A=A ®---®A,, B=Bi®---0B,, C=C0--0C

ct :(Cl®...®ck)J- >0k
Suppose that the proofs of =7, A and F 7/, A’ are interpreted by morphisms

f:I—A@C, g: 1 — BaC*t

respectively. Then we can construct the required morphism I — A @ B as follows:

11

! (canonical isos)
Ag((Crecho-o(Cetp))e B
(evaluation)

Apl@---@I® B

! (unit)
Ao B
Note that in a compact closed category I = — so A+ = A — I.
g
In the case where & = 1 this construction is the internalization of composition in

the category (using the autonomous structure) so it properly generalizes the standard
interpretation of Cut. For some related notions which have arisen in work on coherence
in compact closed categories, see [13, 24].

3.1.3 SProc as a Linear Category

SProc also has structure corresponding to the linear logic exponentials ! and 7. We will
not need this structure in the present paper; details can be found elsewhere [1, 6, 18].
3.1.4 Non-determinism

We can define the non-deterministic sum exactly as in CCS. If p,g: A — B then p+ ¢ is
defined by

(a,b) (a,b)
p—>p ¢g—>q
(a,b) (a,b)
ptqg—>7p p+qg—¢

For any objects A and B, there is a morphism nil : A — B which has no transitions.

The non-deterministic sum and the nil morphisms exist for quite general reasons: SProc
has biproducts, and it is standard that this yields a commutative monoid structure on every
homset [26]. In the present paper, we have defined + directly as we will not make any
other use of the products and coproducts.

12

3.1.5 Time

So far, none of the constructions in SProc have made use of the fact that morphisms are
processes with dynamic behaviour. Everything that has been discussed applies equally
well to the category of sets and relations. The next step is to justify the claim that
SProc looks like “relations extended in time” by defining some structure which allows the
temporal aspects of the category to be manipulated.
The basic construction dealing with time is the unit delay functor O. It is defined on
objects by
def
Y04 = {¥}+Za
def
Soa (A Ufse o e sa)

It is notationally convenient to write * instead of inl(x), assuming that * ¢ ¥ 4. Given
f:A—= B, Of :0A — OB is defined by the single transition O f Lox) f.

It is straightforward to check that O is indeed a functor. In fact it is a strict monoidal
functor.

Proposition 4 There are isomorphisms
mong g : (OA) ® (OB) — O(A ® B)
(natural in A and B) and monunit: [— OI.

Proof: monunit : I = OI is defined by
(%)

monunit —— idy
where X7 = {e}. mong g : (OA)® (OB) = O(A ® B) is defined by
(%) %)

mony B id4gsB.
In both cases the inverse is obtained by considering the process as a morphism in the
opposite direction. It is easy to check that these are isomorphisms and that mon is natural.
O
The most important feature of O is that it has the unique fized point property (UFPP)
[6]: for any objects A and B, and any morphisms f: A — OA and g : OB — B thereis a
unique morphism & : A — B such that

A / OA

h Oh

B oB
g

commutes. We will not go into the applications of this property in the present paper, ex-
cept to mention that it supports guarded recursive definitions [1, 6, 18] and is an important
part of a proposed axiomatisation of interaction categories [18].

Apart from O there are two other delay functors: the initial delay § and the propagated
delay A. These are the same as the operators used by Milner [29, 30] to construct CCS from
SCCS, and they can also be used to construct asynchronous processes in the synchronous

13

framework of SProc. However, when analysing asynchronous problems it is much more
convenient to work in a different category, ASProc, which we will define shortly. For this
reason, we will give only the basic definitions of the delay functors here, and not dwell on
their properties.

The functors § and A are defined on objects by

Tsa € 1+ 34

Ssa X {¥o|(n<w)A(o€ Sq)}

Saa B ogayy

Sa A def {e}U{ar ¥ ag ¥ az...| (n; < w) A (arazas... € S4)}

and on morphisms by transition rules.

a,b a,b
s f &g o f 0 g N

Both of these functors are monads. Full details can be found elsewhere [1, 6, 18].

3.2 The Interaction Category ASProc

The theory of interaction categories is not restricted to the synchronous model of con-
currency which underlies the category SProc. There is also a category of asynchronous
processes, ASProc, which we will now define. In this context, asynchrony means the ca-
pacity to delay; in particular, an asynchronous process can delay in some of its ports while
performing observable actions in others. Because we do not wish to distinguish between
processes which differ only in the amount by which they delay at certain points, we now
consider processes to be labelled transition systems modulo observation equivalence (weak
bisimulation) [30] rather than strong bisimulation.

In CCS there is a single silent action, 7, which is used by all processes to represent
delay. In the typed framework of interaction categories we no longer have a global set of
actions, so it is necessary to specify a silent action 74 in each type A. Thus an object
of ASProc contains an extra piece of information compared to an object of SProc. This
enables observation equivalence classes of typed processes to be defined: when considering
processes of type A, the action 74 is used as the silent action in the standard definition of
observation equivalence.

The approach we will take to defining operations on asynchronous processes is to define
them by labelled transition rules, and then check that they are well-defined on observation
equivalence classes.

The definition of ASProc in this section is slightly different from the original definition
[4], where an action was taken to be a set of labels and the silent action was @. The
definition used here emphasises the essential difference between ASProc and SProc, namely
the introduction of 74 and the use of observation equivalence.

3.3 ASProc as a Category

An object of ASProc is a triple A = (¥ 4,74,54), in which ¥4 is a set of actions, 74 € ¥4

is the silent action, 54 C"?"/ ObAct(A)* is a safety specification, and ObAct(A) ef
Y4 — {74} is the set of observable actions of A.

A process with sort ¥ and silent action 7 € ¥ is an observation equivalence class of
synchronisation trees with label set 3.

14

A process P of type A, written P : A, is a process P with sort X4 and silent action 74
such that obtraces(P) C 54, where

allobtraces(P) def {e} U{ao | P=%Q, 0 € allobtraces(Q)}
obtraces(P) ef {o € allobtraces(P) | ¢ is finite}
infobtraces(P) ef {o € allobtraces(P) | o is infinite}

Just as in SProc the morphisms are defined via the object part of the x-autonomous
structure. Given objects A and B, the object A ® B has

def
EA@B = EAXEB

def
TaeB = (T4,7B)

Sies = {0 € ObAct(Sanp)” |olA € S4,01B € S5}

where, for a € ObAct(X 4gB),

oA % { fst(a) if fst(a) # 74

€ otherwise

and for ¢ € ObAct(X4gB)*, 0] A is obtained by concatenating the individual a[A. The
projection o[B is defined similarly. Notice that taking ragp = (74,7B) means that a
process with several ports delays by simultaneously delaying in its individual ports.

The duality is trivial on objects: AL def 4.

A morphism p: A — B of ASProc is a process p such that p: A — B.

Ifp:A— Band g: B — C, then the composite p;g: A — (' is defined by labelled
transitions.

(avTB) p/ q (TBvC) /
(?) (il)
P~y g g i

pig By g
The first two rules allow either process to make a transition independently, if no commu-
nication is required. The third rule allows the processes to communicate by performing
the same action in the port B. Any of the actions a, b, ¢ can be 7; if 6 = 75 in the third
rule, then two simultaneous independent transitions are made.

It is necessary to prove that composition is well-defined on observation equivalence
classes, but we will not give the details here.

As in SProc, it is straightforward to prove that if f: A — Band g: B — C, then f;g
satisfies the safety specification necessary to be a morphism A — C'.

Although ASProc is a category of asynchronous processes, the identity morphisms are
still synchronous buffers. As a candidate identity morphism, a synchronous buffer seems
likely to work, given the definition of composition; of course, once it has been shown to
be an identity, no other choice is possible.

The identity morphism id4 : A — A is defined as in SProc: id4 def g [S4_oa Where the
process id with sort X 4 is defined by

a €y
id 2% id.

15

Just as in SProc, if P is a process with sort ¥ and § C"®?"¢ ¥* then the process P|S, also
with sort X, is defined by the transition rule

P—a>Q a €S

PIS — QI(5/a).

3.4 ASProc as a x-Autonomous Category
Ifp:A—Candqg:B—Dthenp®q: A9 B — C® D and pt : C+ — AL are defined

by transition rules. The rules for @ illustrate the asynchronous nature of ASProc; the two
processes can make transitions either independently or simultaneously.

(a,c) (b,d)

p—D q——4q
a,78),(c,T T4,0),(7c,d
p®q((B):(D))p/®q p@q((A)(C))p®q/
a,c b,d a,c
p()p/ q()q/ p()p/
a,b),(c,d c,a
p®q(()i))p’®q’ pJ_()p/J_

The tensor unit [is defined by

n, & {71} 5; {e}.

The morphisms expressing the symmetric monoidal closed structure are defined as in
SProc, by combining identities.

Proposition 5 ASProc is a compact closed category.

3.4.1 Non-determinism

It turns out that ASProc has only weak biproducts. The construction of an addition on
the homsets can still be carried out, but it yields 7.P 4+ 7.¢). This is not surprising, as the
CCS operation + is not well-defined on observation equivalence classes. In later sections
we will often construct processes by means of guarded sums such as a.P + b.Q), which can
be given direct definitions in terms of labelled transitions.

3.5 Time

In ASProc, the delay monads § and A are less meaningful than in SProc, since delay is
built into all the definitions. But the unit delay functor O is still important. On objects
it is defined by

def
Yoa = {¥}+Za
def
oA = TA
Soa € {}U{so|o e Sal.

If f:A— Bthen Of : OA — OB is defined by the transition Of Lox) f.
Proposition 6 O is a functor, and has the UFPP.

Proof: As in SProc. 0

16

4 Specification Structures for Deadlock-Freedom

4.1 The Synchronous Case

We shall now describe a specification structure D for SProc such that SProcp will be a
category of deadlock-free processes, closed under all the type constructions described above
(and several more omitted in this introductory account). This specification structure has
a number of remarkable features:

e The typing rule for composition in SProcp will be a compositional proof rule for
plugging together deadlock-free processes while preserving deadlock-freedom. Rules
of this kind are known to be difficult to obtain [17].

e The concepts and techniques used in defining this specification structure and veri-
fying that it has the required properties represent a striking transfer of techniques
from Proof Theory (Tait-Girard proofs of Strong Normalization [21]) to concurrency.
This is made possible by our framework of interaction categories and specification
structures.

We begin with some preliminary definitions. Firstly we define a binary process combinator
p g by the transition rule

pNg—p'nq.
Note that p Mg is the meet of p and ¢ with respect to the simulation pre-order [30].
Let ST be the set of processes labelled over £. We define, for p € ST.:

pl = Vsel*qeSTep—>qg=3acL,reSTr.q — 1.

We read p| as “p is deadlock-free”, i.e. it can never evolve into the nil process.

An important point is that we need to restrict attention to those objects of SProc
whose safety specifications do not force processes to deadlock. The object A is progressive
if

Vs € S4.da € Yy.50 € 54.
By considering just the progressive objects, we can be sure that there are deadlock-free
processes of every type.

Finally, the key definition:

p—q=(ngl.
We can think of p — ¢ as expressing the fact that “p passes the test ¢”; but note that _ — _
is symmetric so the réles of p and ¢, tester and testee, can be interchanged freely.

Now we lift this symmetric relation to a self-adjoint Galois connection on sets of pro-
cesses in a standard fashion [14]:

p—U = VeelU p—y
U+ {plp— U}

Since (—)* is a self-adjoint Galois connection, it satisfies

Uttt = ot

We are now ready to define the specification structure D on the subcategory of SProc
which consists of just the progressive objects.

PA = {UCSTy, |VpeU (p: A)A(p|),U#2,U=0U}.

17

(Compare with the definition of candidats in [20], and with Linear Realizability Algebras

[8])-

UoVv € {poqlpelqevitt
Usv ¥ (rtgvi)t
U—-v ¥ waovh

The Hoare triple relation is defined by means of a satisfaction relation between processes
and properties. If p: A and U € PA then

pEU <<= pelU
and
U{f}V = [fEU—-V.

Proposition 7 These definitions yield a specification structure D on SProc; all the type
structure on SProc described in Section 3 can be lifted to SProcp.

We illustrate the proof of this proposition by sketching the verification of the key case for
composition, i.e. the cut rule:

UiptV. V{gtw p:(AU)—(B,V) q:(BV)—(C, W)
Up; q}W piq:(AU)— (C,W)

To verify U{p; ¢}W we must show that, for all » € U and s € W', r@ s — p; ¢, i.e. that
((r@s)M(p;q))]. By some elementary process algebra,

(ros)N(p;q)=(r;p)T(q;s)

where we regard r as a morphism r : I — A and s as a morphism s : ' — [I. Thus it
suffices to prove that
(r;p) = (g;5)

which holds since r € U,p € U — V implies 7:p € V and similarly s € WL, g eV — W
implies that ¢;s € V*.

It can be shown that in general, U ® V is properly included in U » V', and hence in
SProcp the operations of ® and > are distinct. Thus the specification structure leads to
a category which, as a model of linear logic, is less degenerate than the original SProc.

4.2 The Asynchronous Case

The category SProcp allows synchronous problems to be analysed for deadlock-freedom,
but there are also many asynchronous systems which we would like to verify. The obvious
approach to reasoning about asynchronous deadlock-freedom is to use the delay operators
of SProcp to represent asynchrony, and then proceed as before. However, experience
has shown that when this is done the only deadlock-free behaviours which the types can
guarantee to exist are those in which all the processes in the system delay. Hence we
need a version of the specification structure D over ASProc. This section describes the
construction, and illustrates it with an application to the dining philosophers problem.
When we try to define a specification structure for deadlock-freedom over ASProc, two
complications arise which were not present in the synchronous case. The first is to do with
divergence, or livelock. Suppose there are morphisms f: A — B and g : B — (', each of

18

which runs forever but only does actions in B. Then even if f and g do not deadlock each
other, the result of composing them is a morphism which does no observable actions at
all—under observation equivalence this is the same as the nil process, which is deadlocked.
This shows that when dealing with asynchronous processes, it is insuflicient simply to
guarantee that processes can always communicate with each other when composed. The
second technical problem is that because convergence of a process will mean the ability
to continue performing observable actions, there are no convergent processes of type I in
ASProc, and hence no properties over I. This means that the asynchronous deadlock-free
category will have no tensor unit; in order to retain the ability to use the *-autonomous
structure in calculations, a different object will have to be used instead. We will not
discuss this issue in the present paper.

To solve the first problem we can adapt Hoare’s solution of a similar problem [22].
He considers processes with one input and one output, which can be connected together
in sequence. This is actually quite close to the categorical view in some ways: these
processes have the “shape” of morphisms and can be composed, although there are no
identity processes. More to the point, he is interested in conditions on processes which
ensure that connecting them together does not lead to divergence. Restating the question
in the categorical framework, if f: A — B and g : B — (', what is the condition that f;g¢
does not diverge? Hoare’s solution is to specify that f should be left-guarded or g right-
guarded. Left-guardedness means that every infinite trace of f should contain infinitely
many observable actions in A; similarly, right-guardedness means that every infinite trace
of g should contain infinitely many observable actions in C'. If f is left-guarded it has
no infinite behaviours which only involve actions in B, so no matter what g does there
can be no divergent behaviour of f;g¢. Symmetrically, if ¢ is right-guarded then f ;g
does not diverge. If a process is to be a morphism in a category, it must be composable
both on the left and on the right; this means that it needs to be both left-guarded and
right-guarded. Requiring that a morphism be both left- and right-guarded, i.e. that every
infinite trace must contain infinitely many observable actions in both ports, amounts to a
specification of fairness. What we need for deadlock-freedom is a category in which all the
morphisms are fair in this sense. This issue only arises in the asynchronous case, since in
a synchronous category it is impossible for an infinite trace of a process to have anything
other than an infinite sequence of actions in each port.

4.2.1 The Category FProc

The category FProc (fair processes) has objects A = (X 4,74, 54, Fa). The first three com-
ponents of an object are exactly as in ASProc. The fourth, Fy, is a subset of ObAct(A)¥
such that all finite prefixes of any trace in F4 are in S4. The interaction category opera-
tions on objects are defined as in ASProc, with the addition that

J P

Fasp & {s€ObAct(A® B)” | s|A€ Fa,sB € Fg)
Fo,u def {xs|s € Fa}.

A process in FProc is almost the same as a process in ASProc, except that there now has
to be a way of specifying which of the infinite traces of a synchronisation tree are to be
considered as actual infinite behaviours of the process. This is done by working with pairs
(P,Tp) in which P is an ASProc process and @ # Tp C infobtraces(P). Ounly the infinite
traces in Tp are viewed as behaviours of P, even though the tree P may have many other
infinite traces. There is a condition for this specification of valid infinite traces to be
compatible with transitions: if P==-@Q then Tp 2 {as| s € Tp}.

19

A process of type A in FProc is a pair (P,Tp) as above, in which P is a process of

type (X4,74,94) in ASProc, and Tp C Fy. Equivalence of processes is defined by
def
(P, Tp) = (Q.Tg) = (P=Q)A(Tp=Tg)

where the relation & is observation equivalence; thus equivalence in FProc is a refinement
of equivalence in ASProc.

As usual, a morphism from A to B is a process of type A — B. The identity morphism
on A in FProc is (ida, Fly—o4) where id4 is the identity on (¥ 4,74, 54) in ASProc. It will
often be convenient to refer to FProc processes by their first components, and just consider

the second components as extra information when necessary; thus the process (P, Tp) may
simply be written P.
def

For composition, if (f,Tf) : A — B and (¢,7T,) : B — C then (f,T%);(9,1,) =
(f19,T},,) where

T, def {s € infobtraces(f ; g) |
JteTs,uel,t|/A=s[At[B =ulB,ulC = s[C]}.

It is straightforward to check that if 7y C IF'4_op and T, C F'g_oc then T}, C Fu_oc.

The functorial action of @ is defined by (f,1%) @ (g,1}) def (f®g,Tgy) where, for
f:A—=Candg: B— D,

Tag dof {s € infobtraces(f ® g) |
Sf(A,C) € Tf,S[(B,D) cT1y,s¢€ FagB—ocaD}-

This definition discards the infinite behaviours of f ® ¢ which correspond to unfair inter-
leavings. Effectively, this means that we are assuming the existence of a fair scheduler for
parallel composition; keeping the treatment of fairness at the level of specifications, we do
not say anything about how such a scheduler might be implemented.

FProc inherits the x-autonomous structure of ASProc, because all the structural mor-
phisms, being essentially identities, are fair and the abstraction operation does not affect
fairness. The exception to this is that there is no tensor unit: ObAct(/) = @, so it is not
possible to define F7.

Proposition 8 FProc is a compact closed category without units.

The definition of FProc is very close to the definition of a specification structure over
ASProc—additional properties (the fairness specifications) are defined at each type, and
satisfaction of these properties by processes is defined. However, FProc does not actually
arise from a specification structure. The reason is the assumption of fair interleaving in the
definition of ®. When a specification structure 5 is defined over a category C, functors on
C are lifted to Cg by checking that their actions in C preserve the Hoare triple relations.
By contrast, the ® functors on FProc and ASProc have different actions on morphisms.
The specification structure for deadlock-freedom can now be defined over the progres-
sive subcategory FProc,, of FProc, which now consists of those objects for which every
safe trace can be extended to a valid infinite trace. The definitions are very similar to those
for SProc. The essential difference is that convergence of a process means the ability to
keep doing observable actions. Furthermore, the choice of next action should not commit

the process to a branch of behaviour which can lead only to a disallowed infinite trace. If
P : Athen P| means

20

e whenever P==() there is @ € ObAct(A) and a process R such that Q== R, and
there is ¢t € infobtraces(R) such that sat € Tp.

The definition of equivalence of FProc processes P and (), requiring P ~) and Tp =Ty,
permits the possibility that although P and) are not observation equivalent it is only
the presence of branches corresponding to invalid infinite traces which causes observation
equivalence to fail. However, if a process is convergent then there is no branch along
which all infinite traces are invalid, so this situation does not arise. In the specification
structure for deadlock-freedom over FProc, a property is a set of convergent processes
and satisfaction is membership, just as in the synchronous case. This means that all the
deadlock-free processes considered are convergent, and the equivalence behaves well for
them. It is not, however, possible to require that FProc should consist only of convergent
processes, because convergence in itself is not preserved by composition. It is only when
convergence is combined with satisfaction of suitable deadlock-free types that composition
works.
Given P and @ of type A in ASProc, P11 () is defined exactly as in SProc:

pP—2.pP Q-1+

PiQ - Png.
If P and () have type A in FProc and Tp N1y # @, then P () can be converted into an
FProc process of type A by defining Tpng def Tp NTg. Orthogonality is now defined by

P-Q ¥ TpnTy#oand (PNQ)|.

It is extended to sets of processes exactly as in the synchronous case. For each object A,
Pp A is again the set of L1-invariant sets of convergent processes of type A. Satisfaction
is membership, and all of the operations on properties are defined exactly as before.

The proof that D satisfies the composition axiom is similar to the proof in the syn-
chronous case, but is complicated by the presence of silent actions. If f : A — B and
g : B — C in FProc, communication between f and g when f ;g is formed can include
periods in which the common action in B is 75. This means that several cases arise in the
proof, depending on whether f and g are delaying or performing observable actions, and
fairness is crucial in dealing with them. Details of the proof can be found in [18].

The proof that identity morphisms satisfy the correct properties is the same as in the
synchronous case. Hence

Proposition 9 D is a specification structure over FProcy,.

The asynchronous deadlock-free category is called FProcp. For each type A there is a pro-
cess maxy which has every non-deadlocking behaviour allowed by the safety specification

of A. It is defined by
a € ObAct(A)

a
max4 —— maxy/,

with Tihax, = £4. Note that a process maxy could be defined in this way for any FProc
object A; maxy is simply the process which exhibits every behaviour permitted by the
safety specification S4. In general maxy might have deadlocking behaviours, but because
we are working in FProc,,, every safe trace can be extended indefinitely and so maxy
never terminates.

The process maxy is orthogonal to every convergent process of type A: writing Proc(A)
for the set of all convergent processes of type A, we have maxs — Proc(A4). In fact,

21

Proc(A)J‘ = {maxs}. Proc(A) is a valid property over A, as is {max4}, and they are
mutually related by (—)J‘. The deadlock-free type (A, {maxa}) specifies an input port,
because it forces all possible actions to be accepted. The type (A, Proc(A)) specifies an
output, because any selection of actions is allowed. From now on, we denote Proc(A) and
{max4} by out4 and in4 respectively, so that inj = outy and outj = ing4. It is not hard
to prove

Proposition 10 out, p outp = out4oB.

If P: Ain FProc and P | then P = outy and so P : (A,outy) in FProcp. Combined with
the previous result, this gives

Proposition 11 If P: Ay -5 A, in FProc and P, then in FProcp,

P :(Aj,outy,) g -9 (A, outy,).

This result is very useful for applications, as we shall see in the next section. Another
useful fact is that if the safety specification of A is such that in every state there is a
unique allowable next action, then ing = out 4.

4.3 Constructing Cyclic Networks

The deadlock-free categories SProcp and FProcp are not compact closed, which means
that the categorical structure no longer supports the construction of arbitrary process
networks. Any non-cyclic structure can be constructed, using the fact that the category
is *-autonomous, but additional proof rules are needed to form cycles.

Suppose that P : (7,U)9(X,V)s (XL, VL)in FProcp. There is an obvious condition
that forming P by connecting the X and X+ ports should not cause a deadlock: that every
trace s of P with s|X = s| X1 can be extended by an action (@, ,z) of P. The action x
could be Tx, as it is permissible for the sequence of communications between the X and
X< ports to pause, or the action tuple @ could be 7, but not both. Again, to obtain
P :(7,U) in FProcp it is also necessary to ensure that the specification U can still be
satisfied while the communication is taking place.

The possibility of divergence does not have to be considered separately. It is conceivable
that P could have a non-deadlocking infinite behaviour in which no observable actions
occur in 7, but the corresponding behaviour of P would be unfair because it would neglect
the ports in 7. Thus it is sufflicient to state a condition which guarantees that forcing X
and X1 to communicate does not affect the actions available in the other ports. This
condition can be expressed in terms of ready pairs. The definition of readies(P) for an
FProc process P of type A is

initials(P) ' {a € ObAct(4) | 3Q.P=%Q}
readies(P) %' {(s,X)] 3Q.[(P=3Q) A (X = initials(Q))]}.

The condition cycle(P) is now

e For every (s, A) € readies(P) such that s| X = s| X1, and every action (a,z,y) € A,
there is z € ¥x such that T x,ox- # (T,2,2) € A.

This leads to a proof rule for cycle formation.

P:(2,U)s (X, V) (X5 V) cycle(P)
P:(7,U0)

22

This rule illustrates one of the main features of our approach—the combination of type-
theoretic and traditional verification techniques. Typically, the construction of a process
will be carried out up to a certain point by means of the linear combinators, and its
correctness will be guaranteed by the properties of the type system. This phase of the
verification procedure is completely compositional. However, if cyclic connections are to
be formed, some additional reasoning about the behaviour of the process is needed. The
nature of this reasoning is embodied in the above proof rule. The rule is not compositional,
in the sense that the internal structure of P must be examined to some extent in order to
validate the condition cycle(P), but the departure from compositionality is only temporary.
Once the hypotheses of the proof rule have been established, the result is that P has a
type, and can be combined with other processes purely on the basis of that type.

5 The Dining Philosophers

The problem of the dining philosophers [22] provides a good example of working with the
category of asynchronous deadlock-free processes. OQur analysis of it will make use of the
proof rule for cycle formation, introduced in the previous section, and thus illustrates the
combination of type-theoretic arguments with more traditional reasoning. The example
itself is well-known in the concurrency literature, but it is worth reviewing the scenario
here before plunging into an analysis.

In a college there are five philosophers, who spend their lives seated around a table.
In the middle of the table is a large bowl of spaghetti; also on the table are five forks, one
between each pair of philosophers. Each philosopher spends most of his time thinking,
but occasionally becomes hungry and wants to eat. In order to eat, he has to pick up
the two nearest forks; when he has finished eating, he puts the forks down again. The
problem consists of defining a concurrent system which models this situation; there are
then various questions which can be asked about its behaviour. One is about deadlock-
freedom: is it possible for the system to reach a state in which nothing further can happen,
for example because the forks have been picked up in an unsuitable way? Another is about
fairness: do all the philosophers get a chance to eat, or is it possible for one of them to be
excluded forever? The reason for looking at the dining philosphers example in this paper
is to illustrate techniques for reasoning about deadlock-freedom, but because of the way
in which the asynchronous deadlock-free category has been constructed, fairness has to be
considered as well.

A philosopher can be modelled as a process with five possible actions: eating, picking
up the left fork, putting down the left fork, picking up the right fork, and putting down
the right fork. Calling these actions e, lu, ld, ru, rd respectively, a CCS definition of a
philosopher could be P = [u.ru.e.ld.rd.P. There is no action corresponding to thinking: a
philosopher is deemed to be thinking at all times, unless actually doing something else. In
ASProc a philosopher has three ports: one for the eating action and one each for the left

and right forks. The type of the fork ports is X, defined by Yy def {u,d, 7x} and with Sx
requiring u and d to alternate, starting with u. The type of the eating port is ¥ defined
by Xy def {e, 7y} and with Sy allowing all traces. The philosopher process can be typed
as P: X1 oY X.

A fork has four actions, lu, ld, ru and rd. For the usage of these names by the fork
to match their usage by the philosophers, the necessary convention is that if a fork does
the action [u, it has been picked up from the right. A possible definition of a fork is
K = lu.ld.K + ru.rd. K and it can be typed as K : X+ o X.

Five philosophers and five forks can be connected together in the desired configuration,

23

Figure 1: Process Configuration for the Dining Philosophers

illustrated in Figure 1, by using the compact closed structure of ASProc, as usual. The
next step is to transfer everything to FProc and then to FProcp.

To construct the P and K processes in FProc, fairness specifications must be added to
the types X and Y, and the acceptable infinite behaviours of P and K must be specified.
This will be done in such a way that P and K satisfy the appropriate fairness specifications.
For both X and Y the fairness specification can simply be all infinite traces. This means
that there is no fairness requirement on the actions within a port, but only between ports.
For the types of the philosopher and the fork, Fx-oyox consists of the infinite traces
whose projections into the three ports are all infinite, and similarly Fy-ox-

To convert the ASProc process P into an FProc process, it is sufficient to take Tp =
infobtraces(P). It is then clear that Tp C Fx-oyxgx because the behaviour of P simply
cycles around all the available actions. Also, P is convergent because its behaviour consists
of just one infinite branch. However, K has unfair infinite behaviours—for example, there
is an infinite trace in which the ru and rd actions never appear. Thus Tk must be defined
in such a way as to eliminate these undesirable infinite traces, and this can easily be done
by taking Ty = Fy-ox- Then K is convergent, because any of its finite behaviours can
be extended to a fair infinite behaviour by choosing a suitable interleaving from that point
on. This approach means that this section is not addressing the issue of how fairness
can be achieved in the dining philosophers problem—to do that, the implementation of
a fair scheduler would have to be considered. As already stated, this problem has been
introduced as an example of compositional reasoning about deadlock-freedom; fairness only
appears in the minimal possible way needed for the categorical approach to be applicable.

Typing the philosopher and fork processes in FProcp requires suitable properties over
the types X and Y. For Y, outy can be used. Because Y has only one observable
action, outy = out{. Similarly for X, the set outx can be used, and because the
safety specification of X is such that in each state there is only one action available,
outx = out}. Because K : X1 X in FProc and K is convergent, K |= outy— poutx and
so K : (X, outy) (X, outy) in FProcp. Similarly, P : (X,outx)" 5 (Y,outy) (X,outy)
in FProcp. These typings mean that any number of philosophers and forks can be con-
nected together in a line, and the resulting process is guaranteed to be deadlock-free.

24

Interestingly, this applies not only to the “correct” configuration in which philosophers
and forks alternate, but also to other possibilities such as a sequence of forks with no
philosophers.

The interesting step of the construction consists of completing the cycle by connecting
the X and X1 ports at opposite ends of a chain in which forks and philosophers alternate.
Because FProcp is not compact closed, the proof rule of the previous section must be used.
First of all, some traditional analysis based on reasoning about the state of the system is
useful. For the moment, the e actions can be ignored as they do not have any impact on
deadlocks in this system. The following cases cover all possibilities for a state.

1. If there is P; such that both adjacent forks are down, it can pick up the left fork.

2. If there is P; whose right fork is up and whose left fork is down, it can either put
down the right fork (if it has just put down the left fork) or pick up the left fork (if
its neighbour has the right fork).

3. If all forks are up and some P; has both its forks, it can put down the left fork.

4. If all forks are up and every P; has just one fork, they all have their left forks, and
there is a deadlock.

The last case is the classic situation in which the dining philosophers may deadlock—each
philosopher in turn picks up the left fork, and then they are stuck. In terms of ready sets,
there is a state in which every possible next action has non-matching projections in the
two X ports.

In Hoare’s formulation of the dining philosophers problem [22] the philosophers are not
normally seated, but have to sit down before attempting to pick up their forks. This means
that the possibility of deadlock can be removed by adding a footman, who controls when
the philosophers sit down. The footman ensures that at most four philosophers are seated
at any one time, which means that there is always a philosopher with an available fork
on both sides; in this way, the deadlocked situation is avoided. However, implementing
this solution involves a major change to the system: there is a new process representing
the footman, the philosopher processes have extra ports on which they interact with the
footman, and consequently their types need to be re-examined. It is more convenient to
use an alternative approach, which will now be described.

One of the philosophers is replaced by a variant, P’, which picks up the forks in the
opposite order. So P’ = ru.lu.e.rd.ld.P" in CCS notation. Intuitively, this prevents the
deadlocking case from arising, because even if the four Ps each pick up their left fork, P’
is still trying to pick up its right fork (which is already in use) and so one of the Ps has a
chance to pick up its right fork as well. The check that there are no deadlocks takes the
form of a case analysis, as before.

1. If all the forks are up and some philosopher has both its forks, it can put one of
them down, whether it is P or P’.

2. If all the forks are up and every philosopher has just one, either they all have their
left fork or all the right. If they all have their left fork, then P’ can put down its left
fork. If they all have their right fork, then any P can put down its right fork.

3. If two adjacent forks are down, then the philosopher in between them can pick one
of them up, whether it is P or P’.

4. Otherwise there is the configuration v — phil; — d — phil, — u — phil,.

25

If phil, is P and has its right fork, it can put down the right fork.
If phil, is P and doesn’t have its right fork, it can pick up the left fork.
o If phil, is P’ and has its right fork, it can pick up the left fork.

If phil, is P’ and doesn’t have its right fork, then phil, must be P and has its
left fork. Then if phily’s right fork is down, phil, can pick it up. If the right
fork is up and phil,; has it, it can put down the left fork. Otherwise, phil,
is P and has its left fork. Continuing this argument for each phil, with ¢+ > 4
leads eventually to either a possible action, or cyclically back to = 1 and the
deduction that phil, has its left fork. In the latter case, since phil, is P, it
can pick up its right fork.

To recast this argument in terms of checking the condition on the final cyclic connection,
suppose that the final connection is between the P’ process and the fork on its right.
Each case of the argument either produces a communication between P’ and this fork, or
produces a communication elsewhere in the cycle, which means that there is an action of
the system in which the two ports to be connected both delay. This shows that the cycle
condition is satisfied, and the proof rule can be applied.

Acknowledgements

We would like to thank Rick Blute, Robin Cockett, Phil Scott and David Spooner for their
detailed reviews of this paper.

References

[1]

S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and foun-
dations of typed concurrent programming. In M. Broy, editor, Deductive Pro-
gram Design: Proceedings of the 1994 Marktoberdorf International Summer School,
NATO ASI Series I': Computer and Systems Sciences. Springer-Verlag, 1995. Also
available as theory/papers/Abramsky/marktoberdorf.ps.gz via anonymous ftp to
theory.doc.ic.ac.uk.

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,
51:1-77, 1991.

S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn, S. J.
Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Proceedings of the
First Imperial College Department of Computing Workshop on Theory and Formal
Methods, pages 57-70. Springer-Verlag Workshops in Computer Science, 1993.

S. Abramsky. Interaction Categories and communicating sequential processes. In
A. W. Roscoe, editor, A Classical Mind: Fssays in Honour of C. A. R. Hoare, pages
1-15. Prentice Hall International, 1994.

S. Abramsky. Proofs as processes. Theoretical Computer Science, 135:5-9, 1994.

S. Abramsky. Interaction Categories I: Synchronous processes. Paper in preparation,
1995.

S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543 — 574, June 1994.

26

[8]

[13]

[14]
[15]
[16]

[19]

[20]

[21]

S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction.
Information and Computation, 111(1):53-119, 1994.

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended
abstract). In M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Com-
puter Software. International Symposium TACS 94, number 789 in Lecture Notes in
Computer Science, pages 1-15, Sendai, Japan, April 1994. Springer-Verlag.

A. Asperti and G. Longo. Categories, Types and Structures : An introduction to
category theory for the working computer scientist. Foundations of Computing Series.
MIT Press, 1991.

M. Barr. #-autonomous categories and linear logic. Mathematical Structures in Com-
puter Science, 1(2):159-178, July 1991.

G. Berry and P.-L. Curien. Theory and practice of sequential algorithms: the kernel
of the applicative language CDS. In J. C. Reynolds and M. Nivat, editors, Algebraic
Semantics, pages 35-84. Cambridge University Press, 1985.

R. Blute. Linear logic, coherence and dinaturality. Theoretical Computer Science,
115(1):3-41, 1993.

P. M. Cohn. Unwersal Algebra, volume 6. D. Reidel, 1981.
R. L. Crole. Categories for Types. Cambridge University Press, 1994.

J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall Inter-
national, 1980.

W. P. de Roever. The quest for compositionality—a survey of assertion based proof
systems for concurrent programs, Part I: Concurrency based on shared variables. In
Proceedings of the IFIP Working Conference, 1985.

S. J. Gay. Linear Types for Communicating Processes. PhD thesis, University of
London, 1995. Available as theory/papers/Gay/thesis.ps.gz via anonymous ftp
to theory.doc.ic.ac.uk.

G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Col-
lected Papers of Gerhard Gentzen. North-Holland, 1969.

J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1-102, 1987.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

N. D. Jones and F. Nielson. Abstract interpretation. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 4. Oxford
University Press, 1995. To appear.

G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal of
Pure and Applied Algebra, 19:193-213, 1980.

D. C. Kozen and J. Tiuryn. Logics of programs. In van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 789-840. North Holland, 1990.

27

[26]

[27]

[28]

[29]

[33]

S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, Berlin,
1971.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

J. McKinna and R. Burstall. Deliverables: A categorical approach to program de-
velopment in type theory. In Proceedings of Mathematical Foundation of Computer
Science, 1993.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

P. W. O’Hearn and R. D. Tennent. Relational parametricity and local variables. In
Proceedings, 20th ACM Symposium on Principles of Programming Languages. ACM
Press, 1993.

A. M. Pitts. Relational properties of recursively defined domains. In 8th Annual
Symposium on Logic in Computer Science, pages 86-97. IEEE Computer Society
Press, Washington, 1993.

R. Soare. Recursively Fnumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1987.

J. B. Wells. Typability and type checking in the second-order A-calculus are equiv-
alent and undecidable. In Proceedings, Ninth Annual IEFEE Symposium on Logic in
Computer Science. IEEE Computer Society Press, 1994.

28

