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Abstract

We present results concerning the solution of recursive domain equations
in the category G of games, which is a modified version of the category
presented in [AJM94]. New constructions corresponding to lifting and
separated sum for games are presented, and are used to generate games
for two simple recursive types: the vertical and lazy natural numbers.

Recently, the “game semantics” paradigm has been used to model the multi-
plicative fragment of linear logic [AJ94], and to provide a solution to the full
abstraction problem for PCF [AJM94, HO94], where the intensional structure
of the games model captures both the sequential and functional nature of the
language. In the light of these results, it is natural to ask whether recursive types
can be handled in this setting. Here we show that they can: for a wide class of
functors @, including all of the usual type constructors, the equation D ~ (D)
has a (canonical) solution. In fact we solve this equation up to identity, and the
solution can be constructed in the usual way by iterating the action of the functor
on (the object corresponding to) the empty type.

1 Games and strategies

We define here a category of games and (equivalence classes of ) history-free strate-
gies which is almost identical to that used in [AJM94], which goes on to define the
linear logic connectives @ (tensor), —o (linear implication), ! (the ‘of course’ ex-
ponential) and & (the ‘with’ product). The co-Kleisli category for the comonad !
is then a model of intuitionistic linear logic. We do not give the details of these
constructions here, merely presenting those definitions which are essential to the
rest of the paper. In particular we define —o, since it is central to the definition
of the category.



1.1 Games

A game has two participants, Player (P) and Opponent (O). A play of the game
consists of a finite or infinite sequence of moves, alternately by O and P. In the
games we consider, O always moves first.

Before defining games, we need some notation for sequences and operations on
sequences. We shall use s,t,... to range over sequences and a, b, ... to range over
the elements of these sequences. We shall write as to mean the sequence whose
first element is a and whose tail is s; and st for the concatenation of sequences
s and t. |s| denotes the length of s, and s; is the ith element of s. If S is a set,
s | S is the restriction of s to elements of 5, i.e. the sequence s with all elements
not in S deleted. Finally, if S is a set of sequences, then S°V*" is the subset of all
even length sequences in S.

A game is specified by a structure A = (M4, A4, Pa,~4), where

— M, is a set of moves.

— A My — {P,O} x{Q, A} is the labelling function.
The labelling function indicates if a move is by P or by O, and if a move is
a question (Q) or an answer (A).
We write

(PO} x {Q, A} = {PQ,PA,0Q,04}
A= (A28

My A2 {PY < {Q, A}

M7 = 2'({0} x {Q, A}

M7 = AP0} x {Q}

M3 = M({P,0} x {A}

D NN

and so on, and define

=0, O=P

Mi(a) = MP(a), Aa = (M2 AF).

— Let M% be the set of all finite sequences s of moves satisfying:

1. O mowves first:
s=at=ac MY

2. Alternation:

(Vie 1 << |s]) [X)7 (si41) = M5O (s1)]



3. Bracketing condition:
(V Es)(|t T ME] < [t 1 M)
where C is the prefix ordering on sequences.

Then P4, the set of valid positions of the game, is a non-empty prefix-closed
subset of M.

The bracketing condition ensures that when an answer is given, there is at
least one unanswered question in the position. We think of the answer as
being to the most recently asked, as yet unanswered question, so that a
question asked by Opponent must be answered by Player and vice versa.

— R24 is an equivalence relation on P4 satisfying:

1. Preserves labels:
srg s = Ni(s) = Ni(s)
Notice that this implies that if s &4 s’ then |s| = |s
2. Prefix closure:

i

sty SUN|s| =8| = sma s
3. Extendibility:
sy 8 Asa € Py= (Jd)[sa =~y s'd]

For example, a game for Bool has one possible opening move *, which is a request
for data, and Apool (*) = OQ); there are then two possible responses for Player,
ttand ff, with Apool (tt) = ABool (ff) = PA. The equivalence relation is just
the identity relation on the four possible positions of the game, namely e, *, xtt
and *ff . A game for Nat can be defined similarly. Another important game is
the empty game I = (&, 3, {e}, {(€,€)}), which turns out to be both a terminal
object in the category and the unit of the tensor product. It also plays a key role
in the construction of solutions to recursive equations in games, as we will see.

The equivalence relation will play no part in the results presented here. It is,
however, vital for the definition of !, which is in turn essential to the definition of
the ordinary intuitionistic implication, which gives us our ‘function space’ types.

1.2 Strategies

A strategy for Player in a game A can be thought of as a function telling Player
what move to make in a given position. Since a position in which Player is about
to move is always an odd-length sequence of moves, we can define a strategy as
a set of even-length positions thus:



A strategy for Player in a game A is a non-empty set o C P§'*" such that & def

o Udom(o) is prefix-closed, where
dom(c) & {sa € P3| (3b)[sab € o]}

We are interested only in history-free strategies, i.e. those strategies whose re-
sponses depend only on the last move made, rather than on the whole position.
A strategy o is history-free if it satisfies

~ sab,tace o =b=c
— sab,t € o,ta € Py = tabe o
Note that history-free strategies are closed under directed unions.

It o i1s a history-free strategy for a game A, we shall write o : A.

We extend a4 to a partial equivalence relation (i.e. a symmetric, transitive rela-
tion), which we write as &, on strategies for A thus:

o=~ 7 iff
1. sabe€ o,8'd'l € 17,80 4 s'a' = sabry s'a'V

2. se€o,ser,sary s'd = sa € dom(o)iff s'a’ € dom(7)

Proposition 1

1. = is a partial equivalence relation on strategies.
2. o~ 7 iff
- RO, TRT

(
(

Vseo)(Iter)s~aut
Vier)(ds € o)ls~at

The proof of these facts is straightforward, and is omitted. From now on we shall
freely write s & s’ for s &4 s’ where it is clear what is meant from the context.



1.3 Linear implication

We define the game A — B, given games A and B. We refer to A and B as the

component games.

The game A — B is defined as follows:
~ Ms—p =My + Msp.
A—B = [Aa, AB]

— Py_.p is the set of all s € M$__ 5 satisfying

1. Projection condition: s | My € P4 and s | Mg € Pg. Here we use the
notation s [ M4 as a suggestive shorthand for the projection of s onto
its first component i.e. My.

2. Stack discipline: Every answer is in the same component as the corre-
sponding question.

- s~ .8 il ST Mymyss | My,s| Mgprpgs' | Mg and
(Vi:1 <i<|s])[s; € My = si € My

Notice that an immediate consequence of the projection condition described above
is the switching condition: if two successive moves are in different components,
i.e.oneisin A and the other is in B, it is the Player who has switched components,
i.e. the second of the two movesis a P-move. This is because when it is Opponent’s
turn to move, the total number of moves so far played must be even, so that the
numbers of moves in the two components are either both even or both odd. In
the former case, opponent can only play in B, and in the latter, only in A. In
either case, a simple argument shows that this is the component where Player
last moved.

1.4 The category of games

First, some notation: if o is a history-free strategy for a game A with o & o write
[c] = {7 | 7 = o}. Let A be the set of all such equivalence classes.

Define a category G:
Objects : Games

Morphisms : [o]: A — B is a partial equivalence class [o] € A—~B

Identity For any game A, the identity morphism [1d4] is the equivalence class
of the “copycat” strategy, id4 on the game A —o A, defined by

idA:{SEPj‘lle_%A2 |SrA1:SrA2}

We use subscripts on the A’s to distinguish the two occurences.



Composition Here we define the composition of strategies ¢ : A — B and
7 : B — (. This construction is then lifted to equivalence classes, to give a
definition of composition of morphisms.

Given 0 : A — B and 7 : B — (, define their composition o;7: A — C by
o;7r={sAC|se€(Ms+ M+ M), s A Bea,s|B,CeT}even

For a full proof that this is well-defined and associative, see [AJ94].

Proposition 2 Composition is compatible with =:

oc,00 tA—oB 17,7":B—-oC,orxd, a1t =>0orxo 7

In the light of the above Proposition, we can now define composition of morphisms
. .. . def . :

via composition of strategies: [o];[7] = [o; 7] assuming the strategies o and T

are of suitable types. This is the general pattern for defining constructions on

morphisms: first a concrete construction on strategies is given, then it is shown

to be compatible with ~.

G as an autonomous category As in [AJM94], it is possible to define the
tensor product of two games, and extend this to morphisms so that it becomes a
bifunctor. The same can be done for linear implication, and G then becomes an
autonomous category. This is not important for us here, but it will be informative
to see how linear implication acts on morphisms. Giveno: A — B, 7: A" — B,

we define 0 — 7: (B — A’) — (A — B’) to be

{s € PEha) iy | s TABEOs A B €7}

It can be shown that this is indeed a well-defined history-free strategy, and that
the action of —o on strategies is compatible with =2, so that it defines an action on
morphisms. This in fact makes linear implication into a bifunctor (=) —o (+) :
G°® x G — @, as expected.

2 Solving recursive equations over games

We present here results concerning the solution of equations of the form G = ®(G)
where @ is some endofunctor on the category of games. In fact, because in
general one needs to work with ‘functors’ of mixed variance, we solve equations
of the form G = ®(G, () where @ : G°P X G — G in the style of, for example,
[Pit93]. Our approach is similar to the I-categories and IP-categories of Edalat
and Smyth [FS93, Eda93]. We define two partial orders: one on games and one



on strategies, the latter of which is used to give an order on each hom-set; and we
specify a collection of distinguished inclusion and projection morphisms between
certain games which make G into an I-category. However, we have been unable
to establish whether this is a complete I-category, and as such cannot use results
from op. cit. directly; in fact the results here stand alone, and familiarity with
I-categories is neither assumed nor necessary.

2.1 The order on games

Here we present the details of the ‘restriction’ ordering on games, similar to
the usual treatment of information systems, and demonstrate that it is indeed a
complete partial order.

Given two games A and B, write A < B iff

- My C Mp
— A=A [ My
C Py=Pyn M®

~ s~y s iff s~ps’and s € MY

Here A\g | M4 denotes the restriction of the labelling function on B to the moves
of A. So A <4 B means that A is a ‘full subgame’ of B. The lopsidedness of the
last condition is important; it ensures that in B, no position of A is equivalent
to a position not in A, thus allowing us to consider a strategy for A as a strategy

for B:

Lemma3 Ifo: A o~y 0, and A 1B, then o, considered as a subset of Pg,
is a well defined history-free strategy for B, and o ~p 0.

Proof o is clearly a history-free strategy for B. The crucial step is in the second
condition for o &g 0. Suppose sab, s’ € o and sa ~p s'a’. We must show that
s'a’ € dom(o). But since sab € o, we have sa € MY, so since A 4 B, sa a2, s'd’,
and so the fact that o ~4 o tells us that s'a’ € dom(o). [ ]

Proposition 4 < defines a complete partial order on the objects of G, with
least element [.



Proof That <is a partial order with least element [ is trivial. To see that it is
complete, suppose A is a directed set of games. Let

A" = (M, A\ P, ~)
where

= (M4 | (M4, A4, Pa,a) € A}
A | (M, da, Pa,ey) € A}
= U{Pa [ (Ma, 4, Pa,ma) € A}
= (Hmal (M4, X4, Pa,m4) € A}

The directedness of A easily gives us that this is a well-defined game. We shall
show that it is the least upper bound of A.

v e =
I

%
|

Upper Bound Suppose A € A. Then M4 C M by the definition of M, and it
is easy to see that Ay = A | My4.

It is clear that P4 € PN M%. For the converse, suppose s € P N M. Then
for some B € A, s € Pg. Since A is directed, there exists a ' € A such that
A, B<C. Then s € Py, and s € M¥, s0 s € Py.

The case of & is similar.

Least Upper Bound Let D be any upper bound for A. Then for any A € A,
My C Mp so M C Mp. Similarly A C Ap, so A= Ap | M.

Clearly P C Pp. To see that P = Pp N Mff*, suppose s € Pp N Mff*. Then
5 € MY for some A€ A,sos€ PpbNM%, sos€ Py s0s€P.

The case of & is similar. [ |

Lemmab I A<Band M4y = Mg then A =8.

Proof M, = Mg, so Ay = Ag | M4y = Ag. This means that M% = Mg, SO
Py = PFPgn Mj) = Pp, and similarly ~4 = ~p. |

Lemma 6 If F'is a function on games, then F' is continuous with respect to <
iff F'is monotone w.r.t. < and continuous on move sets (i.e. the action of F' on
move sets preserves directed unions.)

Proof This is a direct consequence of Lemma 5. |

Using these results, together with the usual fixpoint theorem for CPOs, we can
construct solutions to recursive equations (¢ = ®(G, ) whenever the action of
® : G°?xG — G on objects is continuous with respect to <. For linear implication,
we have:



Proposition 7 The action of —o on games is continuous with respect to <

Proof We shall consider continuity in the left argument only. By Lemma 6, we
just need to show that —o is monotone on games and continuous on move sets.
For monotonicity, suppose A < B and (' is any other game. We must show that
A — C 4B — (. For the first two conditions, notice that

Mioc =Ms+Mc C Mg+ Mo = Mp_oc
and that
M—c = [Aa, Ac] = [As | Ma,Ac] = [Ag, Ac] | (Ma+ Mce) = Ap—oc | Ma—c

For the third condition, suppose s € P4_oc. Then s €¢ M% ., C My . because
of the first two conditions, and s | My € P4 C Pg, s | Mgy € Po, and the stack
discipline for —o is satisfied by s, so s € Pg_,¢.

Conversely, let s € PB_ocﬁMi)_oc. Then s | Mg € Poand S | Mg € PsNM% =
P4 and the stack discipline is satisfied by s, so s € Py_.¢.

For the last condition, the left to right implication is trivial. So suppose s ~p_.¢
s'and s € M% .. Thens | Mg € M% and s | Mg ~p s' | Mp. Since A < B, we
get s € M% and s | Mp ~4 s' | Mp. From this it easily follows that s ~4_,¢ s'.

Continuity on move sets reduces to the set-theoretic statement that if A is a set

of sets directed under C, J{A+C | A€ A} =UA+C. |

It can also be shown that tensor, the ‘of course’” exponential and the ‘with’ product
of linear logic are continuous with respect to <. so we have solutions for equa-
tions involving functors built up from these constructs. It remains to show that
the solution thus constructed is the canonical solution, i.e. that it is a minimal
invariant [Fre9l]. For this we need more structure on our category.

2.2 The order on morphisms

We define here a partial order on the set A for a game A. It has not yet been
established whether this is in general a complete partial order, but we describe
the completeness properties that it does have; these are enough for our purposes.

For history-free strategies o,7 : A, we define
olaT = orRoATRTA(VsEo)(IteT)sryt]

This is clearly a preorder on those strategies o for which ¢ &~ o , and Proposition 1
tells us that the associated equivalence relation is ~4. Therefore we obtain a
partial order on A, which we write as C 4. It is easy to see that [{€}] is the least
element of this order.

Now suppose [o1] C4 [02] E4 ... is an w-chain in A. Say that it is a strong chain

if and only if there exist strategies o}, g}, ... such that for each ¢ € w, o/ ~ o,

! !
and o C o .



Proposition 8 1If [o7] C [o3] C ... is a strong w-chain in A, then its C-least
upper bound |;[o;] exists, and is given by [Uo!], for any chain of C o) C ...
with ¢! € [o].

Proof Let o7 C o) C ... be an w-chain with o] & o; for each ¢«. Then it is easy
to see that |J; o} is a well-defined history-free strategy, and that J; o} ~ |J; 0. It
just remains to show that [|J; o/] is indeed the lub of the chain [o7] C [o5] E .. ..

Let j € w, and suppose s € 0;. Since 0; ~ d}, (s’ € 0%)[s =4 '] s0
(Vs € 0;)(3s" €| Jol)[s ma ]

i.e. [o;] C [U; o], so it is an upper bound.

Suppose [7] is another upper bound. Let s € (J;o!. Then for some j € w,
s € 0}, and o} = 0, so (Is' € 0j)[s =4 s']. But we know that [o,] T [7], so
(It € 7)[t ma 8’ ~4 s]. So we have (Vs € U;00)(Ft € 7)[s m4 t] ie. [U; 0l C [7],
so 1t is the least upper bound. [ |
2.3 Inclusions and projections

Given games A and B with A 4 B, define a strategy ing g : A — B as follows:

inA7Bd:ef{5|3[B:5[AEPA}

Define a strategy projp 4 : B — A in the same way:
. def
projp, = {s|s| B=s] A€ P4}

So inap and projp , are both just ids considered as strategies for A — B
and B —o A respectively. Proposition 7 tells us that A — A < A — B and
A—o Ad B — A, so applying Lemma 3 gives the following:

Proposition 9 If A < B then iny p and projp 4 are well-defined history-free
strategies and ing p ~ iny g, Projp 4 R Projp 4-

Soif A < B, we can define a canonical inclusion morphism ¢4 p def [inap|: A —
B, and a canonical projection morphism pg 4 dof [projg 4] : B — A.

The fact that ing p and projp 4 are really just ida considered as a strategy for
a different game also gives us:

10



Proposition 10 For games A and B with A < B,

inA7B;projB7A = 1idyu

projp, 4;inam, = {s|s[Bi=s] By € P4}

We extend < to G°P x G using the pointwise ordering, and define the canonical
inclusion and projection for (A, B) < (A, B') thus:

def

L(A,B),(4',B") (Para,tB,B7)

def
p(AlvB/)v(AvB) = (LAvA/7pB/7B)

We also extend the ordering on hom-sets of G, and with it the notion of a strong
chain, to hom-sets of G°? x G using the pointwise ordering.

2.4 Minimal invariant property

Given a functor @ : G°P X G — @, an invariant object for ® is a game D equipped
with an isomorphism ¢ : (D, D) = D.

Such an invariant is said to be minimal if the function
S Q(D,D) — Q(D,D)

given by

8([o]) = i@([o], [o])i™"
has the identity morphism [idp] as its unique fixed point. We show here that
every such functor which obeys certain properties has such a minimal invariant,
and that in those cases the minimal invariant is the one constructed above. Since
we are solving up to identity in those cases, the isomorphism 2 is in fact the
identity, which simplifies matters.
We say that ® preserves inclusions and projections if, given (A, B) < (A", B)
in G X G, ®(para,tBB) = taa,B)ou,py and ®(iaa,pBB) = Pa(ar,B’),a(4,B)-
Notice that this implies that ® is monotone with respect to <.
If ® is monotone with respect to C, say that ® is locally strong-continuous it for
any strong chain ([o1], [m1]) E ([o2],[72]) C ... in a hom-set of G°? x G, the chain
O ([o1],[m1]) E ®([o2],[m2]) E ... is also a strong chain, and

O[], [=)}) = L{@([ed, [=])}

We are now in a position to state the main theorem:

11



Theorem 11 Suppose ® : G°P x G — G is a functor which is

— continuous with respect to <
— locally strong-continuous, and

— preserves inclusions and projections.

Then @ has a minimal invariant D given by D = ||4 D, where

DO — ]
Dyyr = ®(D,,D,)

and in fact ®(D, D) = D.

Proof Define the D, as above. Then immediately Dy < Dy, and if for some
n we have that D, < D, .y, the monotonicity of ® with respect to < tells us
that ®(D,,, Dy) Q ®(Dyg1s Dyg1), ive. Dygr < Dyyo; so by induction we have an
w-chain with respect to <. Let D = | |4 D,. It follows that ®(D, D) = D by the
usual argument. We must now verify the minimal invariant property.

Define a function ¢ : G(D, D) — G(D, D) by 6([o]) = ®([o], [c]). We must show
that the unique fixpoint of ¢ is [idp]. Let the inclusion and projection between
D, and D be 12, and p, respectively. Then for any n,

O(puiin) = @(pniin; Pniin)
= O(in,pn); (P in)
= ®(pw,0),(Dn.0n)); P(t(D,,0,),(D,)
by the definition of inclusions and projections in G°° x G

= ppt1;tpe1  since @ preserves inclusions and projections.

Then by Proposition 10, po; o = [{€}], so 6"([{€}]) = pn;tn, for each n € w. This,
together with the fact that ® is monotone with respect to C, tells us that we
have a chain

{l Cé([{e}) E & ([{e}])E -

By Proposition 10, for each n, projp, p ;inp, p C PTOJp pyyys 10D,41,D and by
Proposition 2, projp, p ;inp, p € 6"([{c}]), so this is in fact a strong chain, so
by Proposition 8 it has a least upper bound given by [, (projp p ;inp,,p)]. The
local strong-continuity of ® together with the usual considerations now tell us
that this is a fixpoint for 6. By Proposition 10, for each n € w,

projp p,;inp,n € idp

12



For the other inclusion, suppose that s € idp. Then s € Pp_op and so for
some n, s € Pp__,p,, and s is part of a copycat strategy, so by Proposition 10,
s € projp p,;inp, p. Therefore

[U(proip p,:inp,.p)] = [idp]

n

and so [idp] is a fixpoint of ¢ (the least fixpoint with respect to C).

To see that this is the unique fixpoint of §, suppose that [o] is another fixpoint.
Then [idp] C [o]. Suppose [o] £ [idp]. Then for some sab € o we have that
(m3ted € idp)[sab ~ ted]. Let sab be such a string of minimal length. Then for
some s’ € idp, s & s'. By extendibility, sa & s'a’ for some o', and s'a’a’ € idp
(where the two occurences of a’ are in different components of D — D). So since
[idp] C [o], there exists ted € o with s'a’a’ =~ ted. But then both sab and ted
are in o, and sa &~ s'a’ & tc, so since o &~ o, sab & tced. This gives us that
sab ~ s'a’a’ € idp, contradicting our assumption. So [o] C [idp], and therefore
[o] = [1dp]. [
This completes the main theorem. Of course, for it to be useful, we must show
that the functors corresponding to the type constructors we wish to use satisty
the hypotheses of the theorem. This is indeed the case for all the constructors
which have so far been translated into this setting. As before, we shall use linear
implication as an example. The continuity of — with respect to < has already
been established (Proposition 7), so it just remains to show that it is locally
strong-continuous and preserves inclusions and projections.

Proposition 12 (=) — (+) : G°®* x G — G is locally strong-continuous and
preserves inclusions and projections.

Proof We must first show that — is monotone with respect to . To this end,
suppose that o,0’ : A — B and 7,7" : A’ — B’ with [0] C [0'] and [r] C [7'].
Suppose s € ¢ —o 7, and let sy = s [ A,B and s, = s | A’, B’, so that s; € ¢
and s; € 7. So there exist #; € ¢’ and t; € 7/ with ¢; ~ s; and {3 &~ s5. Then
interleaving ¢; and t, in the same way as s; and s, are interleaved in s gives us
a position t € ¢’ —o 7/ with t & s. So [¢] —o [7] C [¢'] — [7'].

We now turn to strong-continuity. Suppose we have two strong chains [oq] C
[o2) C ... and [ry] C [r] C ..., where for each ¢, 0; : A — B and 7, : A’ — B’
Without loss of generality, we can assume that o0y C oy C...and 1 C 75 C ...
Then from the definition of — as a concrete operation on strategies, it is not hard
to see that o7 — 71 C 09 —o 75 C ..., so the chain produced by the application
of —o is a strong one. Its least upper bound is therefore given by

U{Ui—on} :U{S |s|A,Beo;, s| A,B e}

7 7

13



whereas applying —o to the lubs of the original chains gives
Uai — UT]‘ ={s|s]ABEe€ Uai, s A,B ¢ UT]‘}
i j i j

But the fact that the o; and the 7; form subset chains tells us that these two sets
are equal.

To see that — preserves inclusions and projections, suppose (A, B) < (A, B').
It suffices to show that Proj 4 —° inpp = in(a—oB) (4B and that ing4 4 —o
Projpip = PTOJ(4'—oB/),(4—oB) (for some constructs, the analogous statement will
not be true; in particular, when considering the exponential !, we only have
that !ing 4/ &~ inig 14/, but this is, of course, enough). But these are simple
consequences of the facts that the inclusions and projections are (as sets) the
same as the identity strategies, and that the action of — on morphisms is defined
by a concrete operation on sets which respects C; the functoriality of —o tells us
that we get a strategy which (as a set) is equal to an identity strategy, which is
therefore the required inclusion or projection. [ |

Notice that the proof of this result is simple given that the functor is defined
by a concrete operation on strategies which, when we consider strategies as sets,
preserves C. The same is true of all the constructs which have been defined on
games so far, and so similarly simple proofs can be given for these constructs.

3 Lifting and separated sum

We give here simple constructions corresponding to the usual lifting and separated
sum operations on games. Lifting is, of course, a special case of the separated
sum, but we describe it separately because of its special properties; in particular,
it has the structure of a strong monad, as is expected [Mog91].

For lifting, the idea is to add to a game an initial protocol in which the Opponent
asks a question, after which Player has only one available move, which is an
answer to the question. Once this answer has been given, play continues as if
the original game had just begun. A strategy for Player may or may not have
a response to the initial question. If it does not, it is the empty strategy and
therefore the bottom element of the domain. If it does, it corresponds to a
strategy in the original, unlifted game.

Given a game A = (M4, A4, Pa,~4), define A_ = (M4, , A4, ,Pa,,~4,) as

follows:

MAJ_ = {O,.}—I—MA
A, = [{or—0Q,e+— PA} A4
Pa. = {es}Ufows|se Py)
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It is clear how this can be generalised to give the separated sum of n games,
A1+ Ay + ...+ A,: there are n possible answers to the first question, one
corresponding to each component game. If the answer corresponding to A; is
given, play continues as in A;.

We now give a strategy n4 : A — A_ and an operation (—*) taking a strategy
o: A — B_ to a strategy 0*: A_ — B_ which make (—_,n —*) into a Kleisli
triple.

For a game A, n4 : A —o A_ is defined by
na={efU{oes|oesec Pyq Ns[A=s]A_}
For a strategy o : A — B_, the strategy 0*: A_ — B_is defined by
0" ={e,0opos} U{opose45|0ps €}

We now state without proof the facts that we need in order to make this a good
definition:

Proposition 13

1. —* is compatible with ~ and hence defines an operation on morphisms.
2. (——,n,—") is a Kleisli triple in G.

Because we have a Kleisli triple, we can make —_ into a functor by defining its
action on strategies in the usual way: if 0: A — B, then o_ dof (osmB)* + A —
B_. 1t can be shown that o_ : A_ — B_ is given by

{E,OBOA}U{OB 04 @4 0B S | s & O'}

As usual, this is a concrete operation on the sets representing strategies, and it
preserves C, so it is reasonably simple to establish that the lifting functor satisfies
the hypotheses of Theorem 11. The action of separated sum on morphisms is
defined in an analogous way. For the binary case, suppose 0 : A — B and
7 : A — B'. If we denote the initial question of A + A" as o4 and the two
possible answers as a and o, and similarly introduce moves og, b and b for

B+ B, theno+7: A+ A" — B+ B'is given by

{e,0p04} U{ogosabs|seco}U{ogosats|ser}
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Proposition 14 The functors —_ and + are locally strong-continuous; their
actions on objects are continuous with respect to <, and their actions on mor-
phisms preserve inclusions and projections.

Notice that + is a bifunctor which is covariant in both arguments, so here we are
really talking about the family of functors A + (—) and (—) 4+ A for some game
A.

It just remains to say what the tensorial strength for the lifting monad is. Given
games A and B, the strategy t4p: A® B_ — (A ® B)_ is the obvious “copycat”
strategy between these two games, bearing in mind that the set of moves of each is
the disjoint union of M4, Mp and {o, e}. Verification that this defines a tensorial
strength is straightforward, and is omitted.

We can also give a characterisation of (—)_ as the left adjoint to a certain functor.
Let G_ be the category whose objects are the empty game [ and games which have
a unique first move, and whose morphisms are equivalence classes of strategies
o : A — B which respond to the first move of B with the first move of A. It
is not hard to see that this is a well defined category: composition and identity
are as in G. Then let U : G_ — G be the forgetful functor. It can be shown that
(—)_, considered as a functor from G to G_, is left adjoint to U, and in fact G_
is the Eilenberg-Moore category of algebras for (—)_.

4 Examples: the natural numbers

Now that lifting and separated sum have been defined, it is possible for us to
define the ‘vertical” and ‘lazy’ natural numbers types by the recursive equations
Nyert = (Nyert)_ and Nlazy = ]+Nlazy' More precisely, we solve the equations

Nyert = q)vert(Nvertvaert) and Nlazy = q)lazy(NlazyaNlazy)a where the
functors ®yart, (I)lazy : G°P x G — @ are defined by

Pyert(4,B) = B- Pyertlol, [T])= [-]
CI)laZy(A,B) = [+ B q)lazy([a],[r]): id; + [7]

for games A and B and strategies ¢ and 7 of suitable types. These functors
satisfy the hypotheses of Theorem 11, so we obtain our solutions as the least
upper bounds of the sequences Vo < V3 < ... and Ly < Ly ... of games, where
Vo =Lo=1and Vi1 = Oyt (Vi, Vi) and Ly (Li, L), for all ¢ € w.

Consider the vertical natural numbers first. We have V; = I_, V5 = [__ and so
on. So the set of moves of V; for a given ¢ consists of ¢ disjoint copies of {o,e}.
Refer to these as 01, 1,05, 05, .... The labelling function is the obvious one, and
the set of plays of V; then consists of all prefixes of o; 1 0, @5 ... 0; 8;. The

= (I)lazy
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Figure 1: Nyept: the vertical natural numbers

equivalence relation on each V; is just the identity relation. So the least upper
bound of the chain V5 < V; < ... 1is the game Nyt where

My = | J{oi, e}
=1

vert
)\Nvert - g{oi = 0@, 8; —~ PA}
PNvert = {S | sis a preﬁX of 01 @] O @5 .. }
5 RN s = s=3s

vert
So the strategies for Nyept are those of the form
{s ] |s| even and s is a prefix of o; e;...0,e,}

for each n, which we call s7(0) (in particular, the empty strategy is called 0) and
the strategy {s | |s| even and s is a prefix of oy e; 03 ...}, which we call s¥
(this is the only infinite strategy). It is then easy to see that the order C on these
strategies gives us the poset (Nyapt, C) shown in figure 1.

The diagrams in this paper were produced using Paul Taylor’s commutative diagram pack-
age, for which the authors are grateful.
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Now we come to the lazy natural numbers. We have Lo = I, [, = [ + 1,
Ly=1T+({+1)andsoon. Soforicw, Li=T+{U+{UT+...+I+1))...),
with ¢ + 1 occurrences of I. Suppose the initial question of a game A + B is o,
followed by answer "\ for A or /" for B. Then the move set of L; is given by

Mp, = {0\, 1+ ({o. o 7+ (o + {0, )

with 7 copies of {o,\,}. For convenience, refer to the leftmost copy as

{00, N0, 0}, the next as {o1,\\1, 1} and so on. Of course Ar,(0;) = OQ and
AL, () = A, (/) = PA for any j < i. The set of positions of L; is given by

P, = {s|sisaprefixofoy /901 1 ...021 i1}
U{og /001 /1 - 0n-1 o1 00 | 0 <n <1}

The equivalence relation is just the identity relation. So it is not hard to see that
the least upper bound of the chain Ly < [y < ... is the game Nlazy where

MNlazy = ig}{oiv \iv /2}
Magy Z'LEJW{Oi = 0Q,\i— PA, Ji— PA}
Mgy {s ] |s| even and s is a prefix of oy /907 1 ...} U

{oo /001 /1. 0nc1 st 0p Nl 0 € w}

! !

S AN S — S=S
lazy

Therefore a finite strategy for this game is determined by the longest string it
contains, and there is only one infinite strategy (consisting of all even length
prefixes of oy /9 o1 /1 ...). Furthermore, the ordering C coincides with the
prefix ordering on the longest strings. We denote by s"(—) the strategy whose
longest string is oy o ... 0, /", and refer to the strategy whose longest string is
09 /0 ...0, N\ as s"(0). The infinite strategy is denoted by s¥. Then the poset
(Nlazy7 C) is as depicted in figure 2, and is clearly the same as the traditional

lazy natural numbers domain.
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Figure 2: Nlazy: the lazy natural numbers
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