
Games for recursive typesSamson Abramsky and Guy McCuskerImperial College13 October 1994AbstractWe present results concerning the solution of recursive domain equationsin the category G of games, which is a modi�ed version of the categorypresented in [AJM94]. New constructions corresponding to lifting andseparated sum for games are presented, and are used to generate gamesfor two simple recursive types: the vertical and lazy natural numbers.Recently, the \game semantics" paradigm has been used to model the multi-plicative fragment of linear logic [AJ94], and to provide a solution to the fullabstraction problem for PCF [AJM94, HO94], where the intensional structureof the games model captures both the sequential and functional nature of thelanguage. In the light of these results, it is natural to ask whether recursive typescan be handled in this setting. Here we show that they can: for a wide class offunctors �, including all of the usual type constructors, the equation D ' �(D)has a (canonical) solution. In fact we solve this equation up to identity, and thesolution can be constructed in the usual way by iterating the action of the functoron (the object corresponding to) the empty type.1 Games and strategiesWe de�ne here a category of games and (equivalence classes of) history-free strate-gies which is almost identical to that used in [AJM94], which goes on to de�ne thelinear logic connectives 
 (tensor),( (linear implication), ! (the `of course' ex-ponential) and N (the `with' product). The co-Kleisli category for the comonad !is then a model of intuitionistic linear logic. We do not give the details of theseconstructions here, merely presenting those de�nitions which are essential to therest of the paper. In particular we de�ne (, since it is central to the de�nitionof the category. 1



1.1 GamesA game has two participants, Player (P) and Opponent (O). A play of the gameconsists of a �nite or in�nite sequence of moves, alternately by O and P. In thegames we consider, O always moves �rst.Before de�ning games, we need some notation for sequences and operations onsequences. We shall use s; t; : : : to range over sequences and a; b; : : : to range overthe elements of these sequences. We shall write as to mean the sequence whose�rst element is a and whose tail is s; and st for the concatenation of sequencess and t. jsj denotes the length of s, and si is the ith element of s. If S is a set,s � S is the restriction of s to elements of S, i.e. the sequence s with all elementsnot in S deleted. Finally, if S is a set of sequences, then Seven is the subset of alleven length sequences in S.A game is speci�ed by a structure A = (MA; �A; PA;�A), where{ MA is a set of moves.{ �A :MA ! fP;Og � fQ;Ag is the labelling function.The labelling function indicates if a move is by P or by O, and if a move isa question (Q) or an answer (A).We write fP;Og � fQ;Ag = fPQ;PA;OQ;OAg� = h�POA ; �QAA iMPA = ��1A (fPg � fQ;Ag)MOA = ��1A (fOg � fQ;Ag)MQA = ��1A (fP;Og � fQg)MAA = ��1A (fP;Og � fAg)and so on, and de�ne P = O; O = P;�POA (a) = �POA (a); �A = h�POA ; �QAA i:{ Let M~A be the set of all �nite sequences s of moves satisfying:1. O moves �rst: s = at) a 2MOA2. Alternation: (8i : 1 � i < jsj) [�POA (si+1) = �POA (si)]2



3. Bracketing condition:(8t v s)(jt �MAA j � jt �MQA j)where v is the pre�x ordering on sequences.Then PA, the set of valid positions of the game, is a non-empty pre�x-closedsubset of M~A .The bracketing condition ensures that when an answer is given, there is atleast one unanswered question in the position. We think of the answer asbeing to the most recently asked, as yet unanswered question, so that aquestion asked by Opponent must be answered by Player and vice versa.{ �A is an equivalence relation on PA satisfying:1. Preserves labels: s �A s0 ) ��A(s) = ��A(s0)Notice that this implies that if s �A s0 then jsj = js0j.2. Pre�x closure: st �A s0t0 ^ jsj = js0j ) s �A s03. Extendibility: s �A s0 ^ sa 2 PA ) (9a0)[sa �A s0a0]For example, a game forBool has one possible opening move �, which is a requestfor data, and �Bool (�) = OQ; there are then two possible responses for Player,tt and ff , with �Bool (tt ) = �Bool (ff ) = PA: The equivalence relation is justthe identity relation on the four possible positions of the game, namely �, �, �ttand �ff . A game for Nat can be de�ned similarly. Another important game isthe empty game I = (?;?; f�g; f(�; �)g), which turns out to be both a terminalobject in the category and the unit of the tensor product. It also plays a key rolein the construction of solutions to recursive equations in games, as we will see.The equivalence relation will play no part in the results presented here. It is,however, vital for the de�nition of !, which is in turn essential to the de�nition ofthe ordinary intuitionistic implication, which gives us our `function space' types.1.2 StrategiesA strategy for Player in a game A can be thought of as a function telling Playerwhat move to make in a given position. Since a position in which Player is aboutto move is always an odd-length sequence of moves, we can de�ne a strategy asa set of even-length positions thus: 3



A strategy for Player in a game A is a non-empty set � � P evenA such that � def=� [ dom(�) is pre�x-closed, wheredom(�) def= fsa 2 P oddA j (9b)[sab 2 �]gWe are interested only in history-free strategies, i.e. those strategies whose re-sponses depend only on the last move made, rather than on the whole position.A strategy � is history-free if it satis�es{ sab; tac 2 � ) b = c{ sab; t 2 �; ta 2 PA ) tab 2 �Note that history-free strategies are closed under directed unions.If � is a history-free strategy for a game A, we shall write � : A.We extend �A to a partial equivalence relation (i.e. a symmetric, transitive rela-tion), which we write as �, on strategies for A thus:� � � i�1. sab 2 �; s0a0b0 2 �; sa �A s0a0 ) sab �A s0a0b02. s 2 �; s0 2 �; sa �A s0a0 ) sa 2 dom(�) i� s0a0 2 dom(� )Proposition 11. � is a partial equivalence relation on strategies.2. � � � i�{ � � �; � � �{ (8s 2 �)(9t 2 � )[s �A t]{ (8t 2 � )(9s 2 �)[s �A t]The proof of these facts is straightforward, and is omitted. From now on we shallfreely write s � s0 for s �A s0 where it is clear what is meant from the context.
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1.3 Linear implicationWe de�ne the game A( B, given games A and B. We refer to A and B as thecomponent games.The game A( B is de�ned as follows:{ MA(B = MA +MB.{ �A(B = [�A; �B]{ PA(B is the set of all s 2M~A(B satisfying1. Projection condition: s �MA 2 PA and s �MB 2 PB. Here we use thenotation s �MA as a suggestive shorthand for the projection of s ontoits �rst component i.e. MA.2. Stack discipline: Every answer is in the same component as the corre-sponding question.{ s �A(B s0 i� s �MA �A s0 �MA; s �MB �B s0 �MB and(8i : 1 � i � jsj)[si 2MA () s0i 2 MA]Notice that an immediate consequence of the projection condition described aboveis the switching condition: if two successive moves are in di�erent components,i.e. one is in A and the other is inB, it is the Player who has switched components,i.e. the second of the two moves is a P-move. This is because when it is Opponent'sturn to move, the total number of moves so far played must be even, so that thenumbers of moves in the two components are either both even or both odd. Inthe former case, opponent can only play in B, and in the latter, only in A. Ineither case, a simple argument shows that this is the component where Playerlast moved.1.4 The category of gamesFirst, some notation: if � is a history-free strategy for a game A with � � � write[�] = f� j � � �g. Let Â be the set of all such equivalence classes.De�ne a category G:Objects : GamesMorphisms : [�] : A! B is a partial equivalence class [�] 2 \A( BIdentity For any game A, the identity morphism [idA] is the equivalence classof the \copycat" strategy, idA on the game A( A, de�ned byidA = fs 2 P evenA1(A2 j s � A1 = s � A2gWe use subscripts on the A's to distinguish the two occurences.5



Composition Here we de�ne the composition of strategies � : A ( B and� : B ( C. This construction is then lifted to equivalence classes, to give ade�nition of composition of morphisms.Given � : A( B and � : B ( C, de�ne their composition �; � : A( C by�; � = fs � A;C j s 2 (MA +MB +MC)�; s � A;B 2 �; s � B;C 2 �gevenFor a full proof that this is well-de�ned and associative, see [AJ94].Proposition 2 Composition is compatible with �:�; �0 : A( B; �; � 0 : B( C; � � �0; � � � 0 ) �; � � �0; � 0In the light of the above Proposition, we can now de�ne composition of morphismsvia composition of strategies: [�]; [� ] def= [�; � ] assuming the strategies � and �are of suitable types. This is the general pattern for de�ning constructions onmorphisms: �rst a concrete construction on strategies is given, then it is shownto be compatible with �.G as an autonomous category As in [AJM94], it is possible to de�ne thetensor product of two games, and extend this to morphisms so that it becomes abifunctor. The same can be done for linear implication, and G then becomes anautonomous category. This is not important for us here, but it will be informativeto see how linear implication acts on morphisms. Given � : A( B, � : A0 ( B 0,we de�ne �( � : (B ( A0)( (A( B 0) to befs 2 P even(B(A0)((A(B0) j s � A;B 2 �; s � A0; B 0 2 �gIt can be shown that this is indeed a well-de�ned history-free strategy, and thatthe action of( on strategies is compatible with �, so that it de�nes an action onmorphisms. This in fact makes linear implication into a bifunctor (�) ( (+) :Gop � G ! G, as expected.2 Solving recursive equations over gamesWe present here results concerning the solution of equations of the formG = �(G)where � is some endofunctor on the category of games. In fact, because ingeneral one needs to work with `functors' of mixed variance, we solve equationsof the form G = �(G;G) where � : Gop � G ! G in the style of, for example,[Pit93]. Our approach is similar to the I-categories and IP-categories of Edalatand Smyth [ES93, Eda93]. We de�ne two partial orders: one on games and one6



on strategies, the latter of which is used to give an order on each hom-set; and wespecify a collection of distinguished inclusion and projection morphisms betweencertain games which make G into an I-category. However, we have been unableto establish whether this is a complete I-category, and as such cannot use resultsfrom op. cit. directly; in fact the results here stand alone, and familiarity withI-categories is neither assumed nor necessary.2.1 The order on gamesHere we present the details of the `restriction' ordering on games, similar tothe usual treatment of information systems, and demonstrate that it is indeed acomplete partial order.Given two games A and B, write A E B i�{ MA �MB{ �A = �B �MA{ PA = PB \M~A{ s �A s0 i� s �B s0 and s 2M~AHere �B �MA denotes the restriction of the labelling function on B to the movesof A. So A E B means that A is a `full subgame' of B. The lopsidedness of thelast condition is important; it ensures that in B, no position of A is equivalentto a position not in A, thus allowing us to consider a strategy for A as a strategyfor B:Lemma 3 If � : A, � �A �, and A E B, then �, considered as a subset of PB,is a well de�ned history-free strategy for B, and � �B �.Proof � is clearly a history-free strategy for B. The crucial step is in the secondcondition for � �B �. Suppose sab; s0 2 � and sa �B s0a0. We must show thats0a0 2 dom(�). But since sab 2 �, we have sa 2M~A , so since A E B, sa �A s0a0,and so the fact that � �A � tells us that s0a0 2 dom(�). �Proposition 4 E de�nes a complete partial order on the objects of G, withleast element I. 7



Proof That E is a partial order with least element I is trivial. To see that it iscomplete, suppose � is a directed set of games. LetA� = (M;�; P;�)where M = [fMA j (MA; �A; PA;�A) 2 �g� = [f�A j (MA; �A; PA;�A) 2 �gP = [fPA j (MA; �A; PA;�A) 2 �g� = [f�Aj (MA; �A; PA;�A) 2 �gThe directedness of � easily gives us that this is a well-de�ned game. We shallshow that it is the least upper bound of �.Upper Bound Suppose A 2 �. Then MA �M by the de�nition of M , and itis easy to see that �A = � �MA.It is clear that PA � P \M~A . For the converse, suppose s 2 P \M~A . Thenfor some B 2 �, s 2 PB. Since � is directed, there exists a C 2 � such thatA;B E C. Then s 2 PC , and s 2M~A , so s 2 PA.The case of � is similar.Least Upper Bound Let D be any upper bound for �. Then for any A 2 �,MA �MD so M �MD. Similarly � � �D, so � = �D �M .Clearly P � PD. To see that P = PD \M~A� , suppose s 2 PD \M~A� . Thens 2M~A for some A 2 �, so s 2 PD \M~A , so s 2 PA, so s 2 P .The case of � is similar. �Lemma 5 If A E B and MA = MB then A = B.Proof MA = MB, so �A = �B � MA = �B. This means that M~A = M~B , soPA = PB \M~A = PB, and similarly �A = �B. �Lemma 6 If F is a function on games, then F is continuous with respect to Ei� F is monotone w.r.t. E and continuous on move sets (i.e. the action of F onmove sets preserves directed unions.)Proof This is a direct consequence of Lemma 5. �Using these results, together with the usual �xpoint theorem for CPOs, we canconstruct solutions to recursive equations G = �(G;G) whenever the action of� : Gop�G ! G on objects is continuous with respect to E. For linear implication,we have: 8



Proposition 7 The action of( on games is continuous with respect to EProof We shall consider continuity in the left argument only. By Lemma 6, wejust need to show that ( is monotone on games and continuous on move sets.For monotonicity, suppose A E B and C is any other game. We must show thatA( C E B ( C. For the �rst two conditions, notice thatMA(C =MA +MC �MB +MC =MB(Cand that�A(C = [�A; �C ] = [�B �MA; �C ] = [�B; �C ] � (MA +MC) = �B(C �MA(CFor the third condition, suppose s 2 PA(C . Then s 2 M~A(C � M~B(C becauseof the �rst two conditions, and s � MA 2 PA � PB; s � MC 2 PC , and the stackdiscipline for ( is satis�ed by s, so s 2 PB(C .Conversely, let s 2 PB(C\M~A(C . Then s �MC 2 PC and S �MB 2 PB\M~A =PA and the stack discipline is satis�ed by s, so s 2 PA(C .For the last condition, the left to right implication is trivial. So suppose s �B(Cs0 and s 2M~A(C . Then s �MB 2M~A and s �MB �B s0 �MB. Since A E B, weget s0 2M~A and s �MB �A s0 �MB. From this it easily follows that s �A(C s0.Continuity on move sets reduces to the set-theoretic statement that if � is a setof sets directed under �, SfA+ C j A 2 �g = S�+ C. �It can also be shown that tensor, the `of course' exponential and the `with' productof linear logic are continuous with respect to E, so we have solutions for equa-tions involving functors built up from these constructs. It remains to show thatthe solution thus constructed is the canonical solution, i.e. that it is a minimalinvariant [Fre91]. For this we need more structure on our category.2.2 The order on morphismsWe de�ne here a partial order on the set Â for a game A. It has not yet beenestablished whether this is in general a complete partial order, but we describethe completeness properties that it does have; these are enough for our purposes.For history-free strategies �; � : A, we de�ne� @�A � () � � � ^ � � � ^ (8s 2 �)(9t 2 � )[s �A t]This is clearly a preorder on those strategies � for which � � � , and Proposition 1tells us that the associated equivalence relation is �A. Therefore we obtain apartial order on Â, which we write as vA. It is easy to see that [f�g] is the leastelement of this order.Now suppose [�1] vA [�2] vA : : : is an !-chain in Â. Say that it is a strong chainif and only if there exist strategies �01; �02; : : : such that for each i 2 !, �0i � �iand �0i � �0i+1. 9



Proposition 8 If [�1] v [�2] v : : : is a strong !-chain in Â, then its v-leastupper bound Fi[�i] exists, and is given by [S�0i], for any chain �01 � �02 � : : :with �0i 2 [�i].Proof Let �01 � �02 � : : : be an !-chain with �0i � �i for each i. Then it is easyto see that Si �0i is a well-de�ned history-free strategy, and that Si �0i � Si �0i. Itjust remains to show that [Si �0i] is indeed the lub of the chain [�1] v [�2] v : : :.Let j 2 !, and suppose s 2 �j. Since �j � �0j, (9s0 2 �0j)[s �A s0] so(8s 2 �j)(9s0 2 [i �0i)[s �A s0]i.e. [�j] v [Si �0i], so it is an upper bound.Suppose [� ] is another upper bound. Let s 2 Si �0i. Then for some j 2 !,s 2 �0j, and �0j � �j, so (9s0 2 �j)[s �A s0]. But we know that [�j] v [� ], so(9t 2 � )[t �A s0 �A s]. So we have (8s 2 Si �0i)(9t 2 � )[s �A t] i.e. [Si �0i] v [� ],so it is the least upper bound. �2.3 Inclusions and projectionsGiven games A and B with A E B, de�ne a strategy inA;B : A( B as follows:inA;B def= fs j s � B = s � A 2 PAgDe�ne a strategy projB;A : B( A in the same way:projB;A def= fs j s � B = s � A 2 PAgSo inA;B and projB;A are both just idA considered as strategies for A ( Band B ( A respectively. Proposition 7 tells us that A ( A E A ( B andA( A E B( A, so applying Lemma 3 gives the following:Proposition 9 If A E B then inA;B and projB;A are well-de�ned history-freestrategies and inA;B � inA;B, projB;A � projB;A.So if A E B, we can de�ne a canonical inclusion morphism �A;B def= [inA;B] : A!B, and a canonical projection morphism pB;A def= [projB;A] : B ! A.The fact that inA;B and projB;A are really just idA considered as a strategy fora di�erent game also gives us: 10



Proposition 10 For games A and B with A E B,inA;B; projB;A = idAprojB1;A; inA;B2 = fs j s � B1 = s � B2 2 PAgWe extend E to Gop � G using the pointwise ordering, and de�ne the canonicalinclusion and projection for (A;B) E (A0; B 0) thus:�(A;B);(A0;B0) def= (pA0;A; �B;B0)p(A0;B0);(A;B) def= (�A;A0 ; pB0;B)We also extend the ordering on hom-sets of G, and with it the notion of a strongchain, to hom-sets of Gop � G using the pointwise ordering.2.4 Minimal invariant propertyGiven a functor � : Gop�G ! G, an invariant object for � is a game D equippedwith an isomorphism i : �(D;D) �= D.Such an invariant is said to be minimal if the function� : G(D;D)! G(D;D)given by �([�]) = i�([�]; [�])i�1has the identity morphism [idD] as its unique �xed point. We show here thatevery such functor which obeys certain properties has such a minimal invariant,and that in those cases the minimal invariant is the one constructed above. Sincewe are solving up to identity in those cases, the isomorphism i is in fact theidentity, which simpli�es matters.We say that � preserves inclusions and projections if, given (A;B) E (A0; B 0)in Gop � G, �(pA0 ;A; �B;B0) = ��(A;B);�(A0 ;B0) and �(�A;A0 ; pB0;B) = p�(A0 ;B0);�(A;B).Notice that this implies that � is monotone with respect to E.If � is monotone with respect to v, say that � is locally strong-continuous if forany strong chain ([�1]; [�1]) v ([�2]; [�2]) v : : : in a hom-set of Gop � G, the chain�([�1]; [�1]) v �([�2]; [�2]) v : : : is also a strong chain, and�(Gi f([�i]; [�i])g) = Gi f�([�i]; [�i])gWe are now in a position to state the main theorem:11



Theorem 11 Suppose � : Gop �G ! G is a functor which is{ continuous with respect to E{ locally strong-continuous, and{ preserves inclusions and projections.Then � has a minimal invariant D given by D = FEDn whereD0 = IDn+1 = �(Dn;Dn)and in fact �(D;D) = D.Proof De�ne the Dn as above. Then immediately D0 E D1, and if for somen we have that Dn E Dn+1, the monotonicity of � with respect to E tells usthat �(Dn;Dn) E �(Dn+1;Dn+1), i.e. Dn+1 E Dn+2; so by induction we have an!-chain with respect to E. Let D = FEDn. It follows that �(D;D) = D by theusual argument. We must now verify the minimal invariant property.De�ne a function � : G(D;D) ! G(D;D) by �([�]) = �([�]; [�]). We must showthat the unique �xpoint of � is [idD]. Let the inclusion and projection betweenDn and D be in and pn respectively. Then for any n,�(pn; in) = �(pn; in; pn; in)= �(in; pn); �(pn; in)= �(p(D;D);(Dn;Dn)); �(�(Dn;Dn);(D;D))by the de�nition of inclusions and projections in Gop �G= pn+1; in+1 since � preserves inclusions and projections.Then by Proposition 10, p0; i0 = [f�g], so �n([f�g]) = pn; in for each n 2 !. This,together with the fact that � is monotone with respect to v, tells us that wehave a chain [f�g] v �([f�g]) v �2([f�g]) v � � �By Proposition 10, for each n, projD;Dn; inDn ;D � projD;Dn+1 ; inDn+1 ;D and byProposition 2, projD;Dn; inDn;D 2 �n([f�g]), so this is in fact a strong chain, soby Proposition 8 it has a least upper bound given by [Sn(projD;Dn; inDn ;D)]. Thelocal strong-continuity of � together with the usual considerations now tell usthat this is a �xpoint for �. By Proposition 10, for each n 2 !,projD;Dn; inDn;D � idD12



For the other inclusion, suppose that s 2 idD. Then s 2 PD(D and so forsome n, s 2 PDn(Dn , and s is part of a copycat strategy, so by Proposition 10,s 2 projD;Dn; inDn;D. Therefore[[n (projD;Dn; inDn;D)] = [idD]and so [idD] is a �xpoint of � (the least �xpoint with respect to v).To see that this is the unique �xpoint of �, suppose that [�] is another �xpoint.Then [idD] v [�]. Suppose [�] 6v [idD]. Then for some sab 2 � we have that(:9tcd 2 idD)[sab � tcd]. Let sab be such a string of minimal length. Then forsome s0 2 idD, s � s0. By extendibility, sa � s0a0 for some a0, and s0a0a0 2 idD(where the two occurences of a0 are in di�erent components of D( D). So since[idD] v [�], there exists tcd 2 � with s0a0a0 � tcd. But then both sab and tcdare in �, and sa � s0a0 � tc, so since � � �, sab � tcd. This gives us thatsab � s0a0a0 2 idD, contradicting our assumption. So [�] v [idD], and therefore[�] = [idD]. �This completes the main theorem. Of course, for it to be useful, we must showthat the functors corresponding to the type constructors we wish to use satisfythe hypotheses of the theorem. This is indeed the case for all the constructorswhich have so far been translated into this setting. As before, we shall use linearimplication as an example. The continuity of ( with respect to E has alreadybeen established (Proposition 7), so it just remains to show that it is locallystrong-continuous and preserves inclusions and projections.Proposition 12 (�) ( (+) : Gop � G ! G is locally strong-continuous andpreserves inclusions and projections.Proof We must �rst show that( is monotone with respect to v. To this end,suppose that �; �0 : A ( B and �; � 0 : A0 ( B 0 with [�] v [�0] and [� ] v [� 0].Suppose s 2 � ( � , and let s1 = s � A;B and s2 = s � A0; B 0, so that s1 2 �and s2 2 � . So there exist t1 2 �0 and t2 2 � 0 with t1 � s1 and t2 � s2. Theninterleaving t1 and t2 in the same way as s1 and s2 are interleaved in s gives usa position t 2 �0 ( � 0 with t � s. So [�]( [� ] v [�0]( [� 0].We now turn to strong-continuity. Suppose we have two strong chains [�1] v[�2] v : : : and [�1] v [�2] v : : :, where for each i, �i : A( B and �i : A0 ( B 0.Without loss of generality, we can assume that �1 � �2 � : : : and �1 � �2 � : : :.Then from the de�nition of( as a concrete operation on strategies, it is not hardto see that �1 ( �1 � �2 ( �2 � : : :, so the chain produced by the applicationof ( is a strong one. Its least upper bound is therefore given by[i f�i( �ig =[i fs j s � A;B 2 �i; s � A0; B 0 2 �ig13



whereas applying( to the lubs of the original chains gives[i �i ( [j �j = fs j s � A;B 2 [i �i; s � A0; B 0 2 [j �jgBut the fact that the �i and the �j form subset chains tells us that these two setsare equal.To see that ( preserves inclusions and projections, suppose (A;B) E (A0; B 0).It su�ces to show that projA0 ;A ( inB;B0 = in(A(B);(A0(B0) and that inA;A0 (projB0;B = proj(A0(B0);(A(B) (for some constructs, the analogous statement willnot be true; in particular, when considering the exponential !, we only havethat ! inA;A0 � in !A; !A0 , but this is, of course, enough). But these are simpleconsequences of the facts that the inclusions and projections are (as sets) thesame as the identity strategies, and that the action of( on morphisms is de�nedby a concrete operation on sets which respects �; the functoriality of ( tells usthat we get a strategy which (as a set) is equal to an identity strategy, which istherefore the required inclusion or projection. �Notice that the proof of this result is simple given that the functor is de�nedby a concrete operation on strategies which, when we consider strategies as sets,preserves �. The same is true of all the constructs which have been de�ned ongames so far, and so similarly simple proofs can be given for these constructs.3 Lifting and separated sumWe give here simple constructions corresponding to the usual lifting and separatedsum operations on games. Lifting is, of course, a special case of the separatedsum, but we describe it separately because of its special properties; in particular,it has the structure of a strong monad, as is expected [Mog91].For lifting, the idea is to add to a game an initial protocol in which the Opponentasks a question, after which Player has only one available move, which is ananswer to the question. Once this answer has been given, play continues as ifthe original game had just begun. A strategy for Player may or may not havea response to the initial question. If it does not, it is the empty strategy andtherefore the bottom element of the domain. If it does, it corresponds to astrategy in the original, unlifted game.Given a game A = (MA; �A; PA;�A), de�ne A? = (MA? ; �A? ; PA? ;�A?) asfollows: MA? = f�; �g+MA�A? = [f� 7! OQ; � 7! PAg; �A]PA? = f�; �g [ f� � s j s 2 PAg14



s �A? s0 i� s = s0 = � ors = s0 = � ors = � � t and s0 = � � t0 and t �A t0It is clear how this can be generalised to give the separated sum of n games,A1 + A2 + : : : + An: there are n possible answers to the �rst question, onecorresponding to each component game. If the answer corresponding to Ai isgiven, play continues as in Ai.We now give a strategy �A : A ( A? and an operation (��) taking a strategy� : A( B? to a strategy �� : A? ( B? which make (�?; �;��) into a Kleislitriple.For a game A, �A : A( A? is de�ned by�A = f�g [ f� � s j � � s 2 PA(A? ^ s � A = s � A?gFor a strategy � : A( B?, the strategy �� : A? ( B?is de�ned by�� = f�; �B�Ag [ f�B �A �As j �Bs 2 �gWe now state without proof the facts that we need in order to make this a goodde�nition:Proposition 131. �� is compatible with � and hence de�nes an operation on morphisms.2. (�?; �;��) is a Kleisli triple in G.Because we have a Kleisli triple, we can make �? into a functor by de�ning itsaction on strategies in the usual way: if � : A( B, then �? def= (�; �B)� : A? (B?. It can be shown that �? : A? ( B? is given byf�; �B�Ag [ f�B �A �A �B s j s 2 �gAs usual, this is a concrete operation on the sets representing strategies, and itpreserves �, so it is reasonably simple to establish that the lifting functor satis�esthe hypotheses of Theorem 11. The action of separated sum on morphisms isde�ned in an analogous way. For the binary case, suppose � : A ( B and� : A0 ( B 0. If we denote the initial question of A + A0 as �A and the twopossible answers as a and a0, and similarly introduce moves �B, b and b0 forB +B 0, then � + � : A+A0 ( B +B 0 is given byf�; �B�Ag [ f�B �A abs j s 2 �g [ f�B �A a0b0s j s 2 �g15



Proposition 14 The functors �? and + are locally strong-continuous; theiractions on objects are continuous with respect to E, and their actions on mor-phisms preserve inclusions and projections.Notice that + is a bifunctor which is covariant in both arguments, so here we arereally talking about the family of functors A+ (�) and (�) + A for some gameA.It just remains to say what the tensorial strength for the lifting monad is. Givengames A and B, the strategy tA;B : A
B? ( (A
B)? is the obvious \copycat"strategy between these two games, bearing in mind that the set of moves of each isthe disjoint union of MA,MB and f�; �g. Veri�cation that this de�nes a tensorialstrength is straightforward, and is omitted.We can also give a characterisation of (�)? as the left adjoint to a certain functor.Let G? be the category whose objects are the empty game I and games which havea unique �rst move, and whose morphisms are equivalence classes of strategies� : A ( B which respond to the �rst move of B with the �rst move of A. Itis not hard to see that this is a well de�ned category: composition and identityare as in G. Then let U : G? ! G be the forgetful functor. It can be shown that(�)?, considered as a functor from G to G?, is left adjoint to U , and in fact G?is the Eilenberg-Moore category of algebras for (�)?.4 Examples: the natural numbersNow that lifting and separated sum have been de�ned, it is possible for us tode�ne the `vertical' and `lazy' natural numbers types by the recursive equationsNvert = (Nvert)? andNlazy = I+Nlazy. More precisely, we solve the equationsNvert = �vert(Nvert;Nvert) and Nlazy = �lazy(Nlazy;Nlazy), where thefunctors �vert;�lazy : Gop �G ! G are de�ned by�vert(A;B) = B? �vert([�]; [� ])= [�?]�lazy(A;B) = I +B �lazy([�]; [� ])= idI + [� ]for games A and B and strategies � and � of suitable types. These functorssatisfy the hypotheses of Theorem 11, so we obtain our solutions as the leastupper bounds of the sequences V0 E V1 E : : : and L0 E L1 : : : of games, whereV0 = L0 = I and Vi+1 = �vert(Vi; Vi) and Li+1 = �lazy(Li; Li), for all i 2 !.Consider the vertical natural numbers �rst. We have V1 = I?, V2 = I?? and soon. So the set of moves of Vi for a given i consists of i disjoint copies of f�; �g.Refer to these as �1; �1; �2; �2; : : :. The labelling function is the obvious one, andthe set of plays of Vi then consists of all pre�xes of �1 �1 �2 �2 : : : �i �i. The16



s!sn(0).....s2(0)....s(0)0Figure 1: Nvert: the vertical natural numbersequivalence relation on each Vi is just the identity relation. So the least upperbound of the chain V0 E V1 E : : : is the game Nvert whereMNvert = ![i=1f�i; �ig�Nvert = ![i=1f�i 7! OQ; �i 7! PAgPNvert = fs j s is a pre�x of �1 �1 �2 �2 : : :gs �Nvert s0 () s = s0So the strategies for Nvert are those of the formfs j jsj even and s is a pre�x of �1 �1 : : : �n �ngfor each n, which we call sn(0) (in particular, the empty strategy is called 0) andthe strategy fs j jsj even and s is a pre�x of �1 �1 �2 �2 : : :g, which we call s!(this is the only in�nite strategy). It is then easy to see that the order v on thesestrategies gives us the poset (Nvert;v) shown in �gure 1.The diagrams in this paper were produced using Paul Taylor's commutative diagram pack-age, for which the authors are grateful. 17



Now we come to the lazy natural numbers. We have L0 = I, L1 = I + I,L2 = I + (I + I) and so on. So for i 2 !, Li = I + (I + (I + : : :+ (I + I)) : : :),with i+ 1 occurrences of I. Suppose the initial question of a game A+ B is �,followed by answer - for A or % for B. Then the move set of Li is given byMLi = f�;-;%g+ (f�;-;%g+ (: : :+ f�;-;%g))with i copies of f�;-;%g. For convenience, refer to the leftmost copy asf�0;-0;%0g, the next as f�1;-1;%1g and so on. Of course �Li(�j) = OQ and�Li(-j) = �Li(%j) = PA for any j < i. The set of positions of Li is given byPLi = fs j s is a pre�x of �0 %0 �1 %1 : : :�i�1 %i�1g[f�0 %0 �1 %1 : : : �n�1 %n�1 �n -nj 0 � n < igThe equivalence relation is just the identity relation. So it is not hard to see thatthe least upper bound of the chain L0 E L1 E : : : is the game Nlazy whereMNlazy = [i2!f�i;-i;%ig�Nlazy = [i2!f�i 7! OQ;-i 7! PA;%i 7! PAgPNlazy = fs j jsj even and s is a pre�x of �0 %0 �1 %1 : : :g [f�0 %0 �1 %1 : : :�n�1 %n�1 �n -nj n 2 !gs �Nlazy s0 () s = s0Therefore a �nite strategy for this game is determined by the longest string itcontains, and there is only one in�nite strategy (consisting of all even lengthpre�xes of �0 %0 �1 %1 : : :). Furthermore, the ordering v coincides with thepre�x ordering on the longest strings. We denote by sn(?) the strategy whoselongest string is �0 %0 : : : �n %n and refer to the strategy whose longest string is�0 %0 : : :�n -n as sn(0). The in�nite strategy is denoted by s!. Then the poset(Nlazy;v) is as depicted in �gure 2, and is clearly the same as the traditionallazy natural numbers domain.
18
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