Interprocedural Data Flow Decompilation

Cristina Cifuentes™
Department of Computer Science, University of Tasmania

GPO Box 252C, Hobart TAS 7001, Australia
Email: C.N.Cifuentes@cs.utas.edu.au

Abstract

Traditional compiler data flow analysis techniques are used to transform the intermediate representation of a
decompiled program to a higher representation that eliminates low-level concepts such as registers and condition
codes, and reintroduces the high-level concept of expression.

Summary data flow information is collected on condition codes and registers, and is propagated across basic
blocks and subroutine boundaries to find boolean and arithmetic expressions, register arguments, function return
registers, actual arguments, and propagate data types whenever required. The elimination of condition codes is
performed by an extension of a reach algorithm. The elimination of registers and intermediate instructions is
performed by an extended copy propagation algorithm that is based on intra and interprocedural analysis of the
program’s control flow graph.

The methods presented in this paper have been implemented in dcc, a prototype decompiler for the Intel 180286
architecture. Experimental results have proved to reduce the number of intermediate instructions by over 75%
on average for this particular CISC machine.

1 Introduction

A decompiler is a software tool that attempts to reverse the compilation process by translating an input pure
binary program to an equivalent target high-level language (HLL) program. The input program does not have
symbolic information within it, and the HLL used to compile this binary program does not need to be the same
as the target HLL produced by the decompiler.

Although decompilers have not been greatly studied in the literature, there are a variety of applications that
could benefit from them, including the obvious maintenance of old code and recovery of lost source code, but
also the debugging of binary programs, migration of applications to a new hardware environment, verification of
generated code by the compiler, and translation of code written in an obsolete language.

The structure of decompilers is based on that of compilers; similar principles and techniques are used to perform
the analysis of programs. In theory, the grouping of phases in a decompiler makes it easy to write different
decompilers for different machines and target languages, by writing different front-ends for different machines,
and different back-ends for different target languages. Hence, the phases of our prototype decompiler, dcc, were
grouped into the following modules: the front-end; the machine dependent module, the UDM or universal decom-
piling machine; the machine and language independent module, and the back-end; the target language dependent
module. This prototype decompiler was designed for a CISC machine, the Intel 180286, and produces target C

*This research was partly funded by Australian Research Council (ARC) Grant No.A49130261 while the author was with the
Queensland University of Technology, Brisbane, Australia.

programs as output.

The core of the decompilation analysis is done by the UDM in a two phase process: the data flow and the con-
trol flow analysis. The former translates the intermediate code to a higher representation available in HLLs, by
removing all references to condition codes, registers, and low-level instructions not available in HLLs. The latter
structures the underlying control flow graph of each subroutine into a generic set of HLL constructs available in
any imperative language, making minimal use of the goto statement[l, 2]. This paper concentrates on the data
flow analysis phase.

Conventional data flow analysis collects information about the way variables are used in a program, and
summarizes it in the form of sets. In decompilation, this information is used to transform and improve the
quality of the intermediate code, preserving the meaning of the program as with standard compiler data flow
analysis[3].

1.1 Previous Work

Little work has been done in the area of data flow analysis of a decompiler, mainly due to the limitations placed on
many of the decompilers available in the literature, including: decompilation of assembler source files[4, 5, 6, 7],
decompilation of object files with symbolic debugging information[§], and the compiler specification requirements
to build a decompiler[9, 10, 11]. Data flow analysis is essential when decompiling pure binary files, as a great
amount of information is lost during the compilation and linking process.

In the area of flag or condition code analysis, DeJean and Zobrist formulated an optimization of flag definitions by
means of a reach algorithm[12]. This method was used in a program which translated microprocessor object code
for the 18085 into a behaviorally equivalent PL/1 program, and eliminated over 50% of the initial flag definitions;
generating PL/1 programs that defined only the necessary flags used by a later condition.

In the area of register elimination, a method of text compression was presented by Housel[4] for the elimina-
tion of intermediate loads and stores. This method performed forward and backward substitution of registers in
assignment instructions, if the result was not busy within the current basic block, and provided a reduction of
instructions of up to 40% in assembly programs compiled with Knuth’s MIXAL compiler. Hopwood described a
method of expression condensation to combine two or more intermediate instructions into an equivalent expres-
sion by means of forward substitution. This method specified 5 necessary conditions and 6 sufficient conditions
under which forward substitution of a variable or register can be performed, and was based on variable usage
analysis[13]. No performance of the method was given.

The above mentioned methods were used to decompile toy languages which did not have any type of interproce-
dural information flowing across subroutines, hence, there was no need to check for register arguments, function
return registers, or actual arguments, and how to incorporate this information in the analysis process. In addition,
no mention to PUSH and POP instruction is given in those methods.

2 Structure of a Decompiler

Figure 1 illustrates the structure of a decompiler. Once the executable program has been loaded, the program
is parsed to generate the control flow graph of the program and the low-level intermediate code. This low-level
intermediate representation is very similar to the assembler of the particular machine; that is, machine instruc-
tions are mapped to assembler mnemonics. This means that the initial representation of the program is in terms
of registers, condition codes, and offsets from the stack.

The semantic analysis phase checks the input code for known idioms, such as long variable addition, and HLL
prologue code. In this way, useful information is saved, and the low-level instructions are modified (whenever
needed) into one low-level instruction that represents the idiom. Figure 2 describes the transformations involved

binary program

relocated code
Y

1l intermediate code

i =I Assembler code generation

| Low-level analysis |

1l intermediate code assembler program

¥ cfg

| Data flow analysis |

hl intermediate code
v cfg

| Control flow analysisl

hl intermediate code
v structured cfg

| HLL code generation |

Y

HLL program

Figure 1: Structure of a Decompiler. The boxes represent the different stages of the decompiler, and the text
next to the arrows represents the intermediate representation flowing between the stages.

for two idioms found on the Intel architecture. In the first case, long variable addition, we now know that reg-
isters dx and ax are temporarily used as a long register, and that local stack variables at offsets -2 and -4 are a
long variable (i.e. its size is 4 bytes). On the second example, HLL prologue code, all HLL subroutines use the
illustrated code on the Intel architecture; we now know that the subroutine is most likely a high-level routine,
and that it uses 6 bytes of local variables.

push bp
add ax, [bp-4] mov bp, sp
adc dx, [bp-2] sub bp, 6
U
add dx:ax, [bp-2]:[bp-4] enter 6,0

Figure 2: Sample Idioms and their Transformation

The data flow analysis phase performs two different analyses to improve the quality of the intermediate code. The
first analysis eliminates the need for condition codes by transforming a group of instructions into one equivalent
high-level instruction that preserves the meaning of the previous instructions. The second analysis removes all

temporarily used registers and regenerates high-level expressions. These analyses are the purpose of this paper
and are explained in detail in Section 4.

The control flow analysis phase structures each procedure’s control flow graph into one that represents high-level
control structures, such as while(), repeat..until(), if..then[..else], and loop, as explained in [1, 2]. Once
this 1s done, the code generator can generate code from the control flow graph and the high-level intermediate
code, for the appropriate high-level language.

We have been working on a decompiler for the Intel 180286 architecture running under the DOS operating system,
that takes as input .exe or .com files and produces C programs as output. This experimental decompiler has
been named dcc, 1t is operational, and implements all of the ideas expressed in this paper.

The parsing phase of dcc classifies the low-level intermediate instructions into two different sets: the high-level
instruction (HLI) set, which contains instructions that are likely to have been generated by a compiler, and the
non high-level instruction (NHLI) set, which includes all other instructions (e.g. instructions that are likely to
have been generated by hand-crafted assembly code, such as SAHF, and AAM). Instructions in the NHLI set are
flagged as being so, as well as the subroutine that uses these instructions. In this way, we do not attempt to
decompile subroutines that are untranslatable into a higher order representation, but produce assembler for them.
From the 110 low-level intermediate instructions in dcc, 28 belong to the NHLI set, and 6 other instructions are
sometimes non high-level (i.e. depending on their arguments).

dcc 1s part of a decompiling system that also checks for library and compiler signatures in order to eliminate the
need to decompile routines that are part of libraries, given that many of these routines are written in assembler
and are therefore hard or impossible to translate into C (or any other high-level language). dccSign generates
unique signatures for library code from different compilers (Borland’s Turbo C, Microsoft C, Borland’s Turbo
Pascal) and stores them in binary files, one for each combination of compiler vendor, memory model, and version
of the compiler. The technique makes use of perfect minimal hashing, and thus is very efficient to check whether
a given routine belongs to a library or not, if it does, the routine is not analysed any further and it is replaced
by its real name from the library. This technique is further explained in [14].

3 Intermediate Code

The initial intermediate representation given by the front-end is a mnemonic-type intermediate code which re-
sembles an assembler language, henceforth called low-level intermediate language (LLIL). The main characteristic
of this intermediate representation is that each instruction performs only one function, for example, an assign
instruction assigns the value of the right-hand side (rhs) to the left-hand side (lhs). Compound instructions in
the machine language are therefore translated into two or more LLIL instructions. For example, DIV di divides
the combined value of registers dx:ax by di, and places the result in ax and the remainder in dx. In LLIL code,
this instruction makes use of a temporal register, tmp, and is translated as follows:

tmp = dx:ax

ax = tmp / di

dx = tmp % di

For each intermediate instruction, the following bitsets of information are collected during parsing: flags defined,
flags used, registers defined, and registers used.

The LLIL code is transformed into a higher level representation which resembles a HLL, henceforth called high-
level intermediate language (HLIL). This representation has the following 7 instructions:

e asgn arithExp, arithExp
This instruction assigns an arithmetic expression to another arithmetic expression; normally an identifier.
An identifier can be better described as a register, local variable, global variable or a parameter. A subroutine

that returns a value (i.e. a function), is also considered an identifier in this context, as its invocation returns
a result in registers. The arithmetic expression represents a tree of binary operations such as addition,
subtraction, multiplication, modulus, and, or, and xor. This instruction uses any identifiers in the right-

hand side (rhs), and defines the identifier in the left-hand side (lhs).

e jcond boolExp
This conditional jump instruction has a boolean expression associated with it, which determines whether
the branch is taken or not. The target branch and the fall-through addresses are not part of the instruction
as these have been coded in the graph (i.e. this is the last instruction of a basic block that has 2 out-edges).
This instruction uses all identifiers in the boolean expression.

e jmp offset

e call procld {arithExp} (zero or more actual arguments)
The call instruction represents a subroutine call. The procedure identifier (<procld>) is a pointer to the
flow graph of the invoked procedure. The actual parameter list is constructed during data flow analysis.
This instruction uses all identifiers present in the actual parameter list, and, in the case of a procedure,
does not define any identifiers. If the subroutine called is a function, the function defines the registers that
hold the returned value. In this case, the instruction is equivalent to an asgn <regs>, <procld> <actual
parameters>.

e ret [arithExp] (zero or one return expression)
The return instruction determines the end of a procedure along a path. If there is nothing to return, it
means the subroutine is a procedure. Otherwise 1t 18 a function, in which case, the returned identifiers are
used by this instruction.

e push arithExp
The push instruction places the associated arithmetic expression or identifier on a temporary stack. It uses
those identifiers.

e pop register
The pop instruction takes the expression or identifier at the top of the temporary stack and assigns it to
the identifier on hand. It defines the identifier with the expression at the top of the stack.

The last two instructions are considered pseudo-high level instructions since they are eliminated from the
intermediate code by the end of the data flow analysis. The transformation of LLIL code to HLIL code 1s
done implicitly while performing the data flow analysis. Flow of control HLL constructs, such as looping and
conditional instructions, are determined by the control flow analysis phase.

4 Data Flow Analysis

This section describes the transformation of the intermediate code by performing code-improving optimizations.
The aim of these optimizations is to eliminate all references to condition codes and registers as they do not exist in
high-level languages, and to regenerate the high-level expressions available in the decompiled program; therefore
transforming the LLIL code into HLIL code. This section makes references to the control flow graph in Figure 3;
a sample program which illustrates all optimizations that are described in this paper.

In order to perform the data flow analysis, intraprocedural information is firstly summarized for each instruction
in the form of definition-use (du) chains; the set of live uses associated with each definition of an identifier, and
use-definition (ud) chains; the set of reaching definitions associated with each use of an identifier, for all flags
and register identifiers. Variables flagged by the front-end as being register variables do not have a du-chain as
they represent local variables rather than temporary registers. In Figure 3, both si and di are flagged as register
variables by the idiom analyzer of the front-end.

1st =20
2 di = 80
3 ax = si

4 dx:ax = ax

5 tmp = dx:ax

6 ax = tmp / di

7dx = tmp % di

8dx =3

9 dx:ax = ax * dx

10 si = ax

11 [bp-6]:[bp-8] = 4000
12 [bp-2]:[bp-4] = 2000
13 dx:ax = [bp-2]:[bp-4]
14 cmp [bp-6]:[bp-8], dx:ax

15 jg B2
T B2
16 dx:ax = [bp-6]:[bp-8]
17 dx:ax = dx:ax - [bp-2]:[bp-4]
18 [bp-6]:[bp-8] = dx:ax -Nlshl B5
19 cx =4
33ch =0
20 dx:ax = [bp-6]:[bp-8] 34 jexz BT
21 call _aNlshl
35 dxrax = dxrax << 1
22 [bp-6]:[bp-8] = dx:ax 36 cx = cx - 1
23 jmp B4 .
B4 / 37 jncxz B6
24 push [bp-6]:[bp-8] \ B7
25 ax = s1 38 ret
26 dx =5
27 dx:ax = ax * dx
28 push ax
29 ax = 66
30 push ax
31 call printf
32 ret

Figure 3: Flow Graph Before Optimization

For all data flow analysis, registers that can be used as both word and byte registers (e.g. ax, ah, al) are treated
as different registers in the analysis. For example, whenever register ax is defined, it also defines registers ah and
al, but, if register al is defined, it defines only registers al and ax, but not register ah. This is needed so that
uses of part of a register can be detected and treated as a byte identifier rather than an integer identifier.

While computing du and ud chains, dead register elimination is done in the intermediate code. This analysis is
needed even in binary code produced by an optimizing compiler given the nature of the LLIL, which performs
one function per instruction, hence compound machine instructions are represented by several LLIL instructions.
It is said that a register is dead if it i1s defined by an instruction and is not used before being redefined by a
subsequent instruction. If the instruction that defines a dead register defines only this one register, it is said
that the instruction is useless, and thus can be eliminated. On the other hand, if the instruction also defines
other register(s), the instruction is still useful but should not define the dead register any more. In this case, the

intermediate representation of the instruction is modified to reflect this fact. In the following code from basic
block B1, Figure 3, register dx is dead at instructions 7 and 9 from inspection of the du chains :

6 ax = tmp / di ; du(ax)={9}

7 dx = tmp % di ; du(dx)={}

8 dx = 3 ; du(dx)={9}

9 dx:ax = ax * dx ; du(ax)={10} du(dx)={}
10 si = ax

Since instruction 7 defines only this register, it is redundant and can be eliminated. On the other hand, instruction
9 defines not only dx but ax as well, hence the instruction is not dead but is modified to reflect the fact that dx
is no longer defined by this instruction, simplifying the code to the following:

6 ax = tmp / di ; du(ax)={93}
8 dx =3 ; du(dx)={9}
9 ax = ax * dx ; du(ax)={103}
10 si = ax

If an instruction ¢ is to be eliminated due to a dead register definition r defined in terms of other registers (i.e.
r = f(r1,...,rn),n > 1), the uses of these registers at instruction ¢ no longer exist, and thus, the corresponding
du-chains of the instructions that define the registers used at ¢ are to be modified so that they no longer have a
reference to ¢. This is done by checking the ud chain of ¢ while performing dead register elimination.

4.1 Elimination of Condition Codes

It is said that a condition code is dead if it is defined by an instruction and is not used before redefinition.
Since the definition of a condition code is a side effect of an instruction, eliminating dead flags does not make an
instruction redundant; therefore this analysis leads to removal of data flow information on the instructions. In
the following code from basic block B1, Figure 3, the CF (carry) and ZF (zero) flags are dead at instruction 14 by
inspection of their du chains:

14 cmp [bp-6]:[bp-8], dx:ax ;

>

def={ZF,CF,SF}

; du(SF)={15}
; du(CF,zF)={}

; use={SF}

>

15 jg B2

The simplified code after removal of this information is the following:

14 cmp [bp-61:[bp-8], dx:ax ; def = {SF}
; du(SF)={15}
15 jg B2 ; use = {SF}

The remaining condition codes are used by subsequent instructions, and are eliminated from the intermediate
representation after propagating the essence of the boolean condition: for a particular flag(s) use, we find the
instruction that defined the flag(s) and merge them according to the implicit boolean condition of the instruction
that uses the flag. In the following code from basic block B1, Figure 3, instruction 14 defines the SF flag which
is used at instruction 15:

14 cmp [bp-61:[bp-8], dx:ax ; def = {SF}
; du(SF) = {15}
15 jg B2 ; use = {SF}

>

; ud(SF) = {14}

Instruction 15 implicitly checks for a greater-than boolean condition, and instruction 14 compares the first
identifier ([bp-6]: [bp-8]) against the second identifier (dx:ax). If the first identifier is greater than the second
identifier, the SF is set. It is obvious from these instructions that the condition propagated is greater than,
therefore leading to the following HLIL code:

16 jcond ([bp-6]:[bp-8] > dx:ax) B2

eliminating instruction 14 and thus eliminating all flag references.

This propagation method works well on extended basic blocks, where the identifiers of the boolean condition are
propagated to two or more conditions within the one extended basic block. The algorithm can be extended to
propagate condition codes that are defined in two or more basic blocks (i.e. by doing an and of the individual
boolean conditions), but it has not been required in practice, since it is almost unknown for even optimising
compilers to attempt to track flag definitions across basic block boundaries[15].

4.2 Elimination of Registers and Regeneration of Arithmetic Expressions

The regeneration of arithmetic expressions is based on the elimination of registers and the propagation of expres-
sions via registers. Preliminary information on register arguments and function return registers is collected first
since the machine language does not provide us with this type of information.

The register calling convention is used by compilers to speed up the invocation of a subroutine. It is an option
available in most contemporary compilers, and is also used by the compiler runtime support routines. Given a
subroutine, register arguments translate to registers that are used by the subroutine before being defined in the
subroutine; i.e. upwards exposed uses of registers in the subroutine. In the following code from basic blocks B5
and B6, Figure 3, subroutine _aN1lshl, instruction 34 uses register c¢x which was partly defined at instruction 33,
and instruction 35 uses registers dx and ax, neither of which were defined in that subroutine:
33 ch =0
34 jcond (cx = 0) B7 ; ud(ch)={33}

; ud(cl)={2
35 dx:ax = dx:ax << 1 ; ud(dx:ax)={}
Information on registers used before definition in a subroutine is summarized by an intraprocedural live register

analysis: a register is live on entrance to the basic block that uses it. Standard live register equations are used to
solve this problem. In our example, subroutine _aN1shl has the following Liveln and LiveOut sets:

Basic Block | Liveln LiveOut
B5 {dx,ax,cl} | {dx,ax}
B6 {dx,ax} {}
B7 8 8

The set of Liveln registers summarized for the header basic block Bb5 is the set of register arguments used by the
subroutine; dx, ax, and c¢1. The formal argument list of this subroutine 1s updated to reflect these two arguments:

formal_arguments(_aNlshl) = (argl = dx:ax,
arg2 = cl)

It is said that the _aN1shl subroutine uses these registers. In general, any subroutine that makes use of register
arguments uses those registers, thus a CALL to one of these subroutines is also said to use those registers, as in
the following instruction:

21 call _alilshl ; use={dx,ax,cl}

Functions return results in registers, and there is no machine instruction that specifies which registers are being
returned by the function in CISC machines. After function return, the caller uses the registers returned by the
function before they are redefined (i.e. these registers are live on entrance to the basic block that follows the
function call). This register information is propagated across subroutine boundaries, and is solved with a reaching
and live register analysis. In the following code from basic blocks B2 and B3, Figure 3, instruction 22 uses registers
dx and ax, which could have been redefined in the subroutine called at instruction 21 or at instruction 20:
20 dx:ax = [bp-6]:[bp-8] ; def={dx,ax}

; use = {3}
21 call _alllshl ; def={}

; use={dx,ax,cl}
22 [bp-6]:[bp-8] = dx:ax ; def={}

; use={dx,ax}
Summary information in the form of intraprocedural reaching definitions on subroutine _aNlshl leads to the
following Reachln and ReachOut sets:

Basic Block | Reachln ReachOut
RN T
B6 {ch} {cx,dx,ax}
B7 {cx,dx,ax} | {cx,dx,ax}

This analysis states that the last definitions of registers cx, dx, and ax reach the end of the subroutine (i.e.
ReachOut set of basic block B7). The caller subroutine uses only some of these reaching registers, thus it
is necessary to determine which registers are upwards exposed in the successor basic block to the subroutine
invocation; this information is summarized in the form of an interprocedural live register analysis, to cater for
registers propagated across subroutine boundaries. Traditional live register equations are used for the call graph
of the complete program, or the set of more precise live equations recently described by Srivastava and Wall in
[16]. For the example of Figure 3, either set of equations produces the following results:

Basic Block | Liveln LiveOut
CIR Y 7
B2 {} {dx,ax}
B3 {dx,ax} {}
B | {) 0
B5 {dx,ax,cl} | {dx,ax}
B6 {dx,ax} {dx,ax}
B7 {dx,ax} {dx,ax}

From the three registers that reach instruction 22 in basic block B3, only two of these registers are
used (i.e. belong to Liveln of B3): dx and ax, thus these registers are the only registers of in-
terest once the called subroutine has been finished, and are the registers returned by the function.
This condition 1s formally expressed by the intersection of the ReachOut set of the function and the
Liveln set of the basic block following the CALL, to eliminate propagated registers across subroutines:

ReachOut(B7) [LiveIn(B3) = {dx,ax}

Once a subroutine has been determined to be a function and the register(s) that the function returns has been
determined, this information is propagated to two different places: the return instruction(s) from the function
and the instructions that CALL this function. In the former case, all return basic blocks have a ret instruction;
this instruction is modified to return the registers that the function returns. In our example, instruction 38 of
basic block B7, Figure 3 is modified to the following code:

38 ret dx:ax

In the latter case, any function invocation instruction (i.e. CALL instruction) is replaced by an asgn instruction
that takes as left-hand side the defined register(s), and takes the function call as the right-hand side of the
instruction, as in the following code:
21 dx:ax = call _aNlshl ; def={dx,ax}

; use={dx,ax,cl}

The instruction is transformed into an asgn instruction, and defines the registers on the left-hand side.

It is important to note that in the case of library functions whose return register(s) is not used, the call is not
transformed into an asgn instruction but remains as a CALL instruction (e.g. printf).

4.2.1 Extended Register Copy Propagation

Register copy propagation is the method by which a defined register in an assignment instruction, say ax = cx,
is replaced in a subsequent instruction(s) that references or uses this register, if neither register is modified after
the assignment (i.e. neither ax nor cx is redefined). If this is the case, references to register ax are replaced
by references to register cx, and, if all uses of ax are replaced by cx then ax becomes dead and the assignment
instruction is eliminated. A use of ax can be replaced with a use of c¢x if the instruction ax = c¢x is the only
definition of ax that reaches the use of ax and if no assignments to cx have occurred after the instruction ax = cx.
The former condition is checked with ud chains, the latter condition is checked with an z-clear condition as
described later. For example, in the following code from basic block B1, Figure 3, after dead-register elimination:

3 ax = si ; du(ax)={4}
4 dx:ax = ax ; du(dx:ax)={5}
; ud(ax)={3}
5 tmp = dx:ax ; du(tmp)={6}
; ud(dx:ax)={47}
6 ax = tmp / di ; du(ax)={93}
; ud(tmp)={5}
8 dx =3 ; du(dx)={8}
9 ax = ax * dx ; du(ax)={103}
; ud(ax)={6} ud(dx)={8}
10 si = ax ; ud(ax)={9}

the use of register ax in instruction 4 is replaced with a use of the register variable si, making the definition of
ax in 3 dead. The use of dx:ax in instruction 5 is replaced with a use of si (from instruction 4), making the
definition of dx:ax dead. The use of tmp in instruction 6 is replaced with a use of si (from instruction 5), making
the definition of tmp dead at 5. The use of ax at instruction 9 is replaced with a use of (si / di) from instruction
6, making the definition of ax dead. In the same instruction, the use of dx is replaced with a use of constant
3 from instruction 8, making the definition of dx at 8 dead. Finally, the use of ax at instruction 10 is replaced
with a use of (si / di) * 3 from instruction 9, making the definition of ax at 9 dead. Since the register defined
in instructions 3 — 9 were used only once, and all these registers became dead, the instructions are eliminated,
leading to the final code:

10 si = (si / di) * 3

Register copy propagation is not limited to asgn instructions only. As seen in Figure 4, two other HLIL instruc-
tions also define registers: CALL defines a register if the invoked subroutine is a function, and POP defines the
register associated with that instruction. Also, several instructions use registers: CALL uses any register arguments
passed to it, jcond uses any registers associated with its boolean conditional expression, ret uses any registers it
returns from a function, and PUSH uses all registers it pushes onto the stack. Since PUSH and POP rely on an extra
data structure, the stack, a stack of expressions is used to cater for values pushed and popped from the stack.
Note that the saving and restoring of registers by a subroutine at pre and postamble have been removed from the
intermediate representation by the front-end (these registers are flagged as being register variables within that
subroutine), hence they are not considered true uses or definitions of registers. The front-end has also removed all
POP instructions that restore the stack after a subroutine call or during subroutine return, hence these definitions
of registers are not part of the HLIL code. Therefore, both PUSH and POP are used in conjunction with the spilling
of a register, and are eliminated from the HLIL code in the following way: a PUSH copies the arithmetic expression
associated with the register to the stack, and a POP translates to an asgn of the top of stack expression to the
associated register with the POP. In this way, pseudo-HLIL instructions are removed from the final representation.

Most actual parameters to a subroutine are pushed on the stack before invocation to the subroutine. Since nested
subroutine calls are allowed in most languages, the arguments pushed on the stack represent those arguments of
one or more subroutines, thus it is necessary to determine which arguments belong to which subroutine. Whenever
a CALL instruction is met, the necessary number of arguments are popped from the stack, based on the fixed size
of argument bytes restored by the subroutine (and summarized by the front-end). In the following code from
basic block B4, Figure 3, instructions 24, 28 and 30 PUSH the arguments for the printf call at instruction 31:

Define Use
asgn (lhs) asgn (rhs)
CALL (function) | CALL (register arguments)
POP jcond
ret (function return registers)
PUSH

Figure 4: High-Level Instructions that Define and Use Registers

24 push [bp-6]: [bp-8]
28 push (si * 5)

30 push 66

31 call printf

When the call to printf is reached, information on this function is checked to determine how many bytes of
arguments the function call takes; in this case it takes 8 bytes. Expressions are popped from the stack, adding up
the size of their type, and are placed on the actual parameter list associated with the subroutine call using the
calling convention determined by the front-end. In this example, 3 expressions are popped from the stack with
type sizes of 2, 2, and 4, and are stored using the C calling convention, leading to the following code:

31 call printf (66, si * 5, [bp-6]:[bp-8])

In the case of register arguments, since these arguments are not pushed on the stack but remain in registers,
when performing register copy propagation and reaching a CALL instruction that uses one or more registers, the
expression associated with this register(s) is placed on the actual parameter list of the invoked subroutine. For
example, in the following code from basic blocks B2 and B3, Figure 3, the CALL at instruction 21 uses registers
dx, ax, and cl:
19 ¢l = 4 ; du(cl)={21}
20 dx:ax = [bp-6]:[bp-8] ; du(dx:ax)={21}
21 dx:ax = call _aNlshl ; ud(dx:ax)={20}

; ud(cl)={19}
The expressions associated with these registers are moved to the actual parameter list of _aN1lshl in the order
defined by the formal argument list, leading to the following code:

21 dx:ax = call _alNlshl ([bp-6]:[bp-8], 4)

Instructions 19 and 20 are eliminated since they now define dead registers.

During the instantiation of actual arguments to formal arguments, data types for these arguments need to be
verified, as if they are different, one of the data types needs to be modified. Consider the following partial code
from basic block B4, Figure 3:

31 call printf (66, si * 5, [bp-6]:[bp-8])

where the actual parameter list has the following data types: integer constant, integer, and long integer. The
formal argument list of printf has a pointer to a character string as the first argument, and a variable number of
unknown data type arguments following it'. We can only verify the type of the first argument in this case, leading
to a mismatch. Given that the data types used by the library subroutines must be right (i.e. they are trusted),
it is safe to say that the actual integer constant must be an offset into memory, pointing to a character string.
By checking virtual memory, it is found that at location DS:00686 there is a string; thus, the integer constant
is replaced by the string itself. For the next two arguments, since they have an unknown formal type, the type
given by the caller is trusted, leading to the following code:

1Formal argument information is summarized by the library signature generator[14] in the front-end and is available for library

calls only.

31 call printf ("c * 5 = %d, a = %ld\n",

si * 5, [bp-6]:[bp-8])
Another case of type propagation is the conversion of two integers into one long variable, where the callee has
determined that one of the arguments is a long variable, but the caller has so far used the actual argument as
two separate integers.

The transformations presented here modify the initial graph in Figure 3 into the equivalent graph of Figure 5. In
this graph, all identifiers are in terms of their local offset from the stack or a register variable. These identifiers are
renamed during code generation and are assigned arbitrary names according to their location: local or argument.

locl = 20

loc2 = 80

locl = (locl / loc2) * 3

[bp-6]:[bp-8] = 4000

[bp-2]:[bp-4] = 2000

jeond ([bp-6]:[bp-8] > [bp-2]:[bp-4]) B2

\ B2 B5

bp-6]:[bp-8] = [bp-6]:[bp-8] - [bp-2]:[bp-4 arg2 = arg2 & Ox00FF
%bﬁ-&%bﬁs]] _Eﬂ\%s}}l[([%p-]6]:%bg-8%,[4)p] jeond (arg2 = 0) B7

A B6 /

argl = argl << 1
printf ("¢ * 5 = %d, a = %ld n”, 8 8

.] arg2 = arg2 - 1
ret locl * 5, [bp-6]:[bp-8]) jeond (arg2 <> 0) B6

B7
ret arg2

Figure 5: Control Flow Graph After Code Optimization

Having given all different types of examples where register copy and type propagation is possible, we now present
the set of necessary conditions for performing such propagation of registers and associated expressions. From the
definition, the instruction that uses the register to be propagated must be able to uniquely identify the instruction
that defined that register, hence the uniqueness condition:

e For a given register use, the corresponding register definition must be unique, as registers that are used
before being redefined translate to temporary registers that hold an intermediate result for the machine.

Redefinition of the involved registers cannot happen between the instructions. Even more important, the identifiers
associated with the expression in the rhs of the defined register cannot be redefined along that path, hence the
rhs-clear path condition:

e The identifiers # in an expression that defines a register r (i.e. the rhs of the instruction) that satisfies the
uniqueness condition are checked to have an z-clear path to the instruction that uses the register r. The
rhs-clear condition for an instruction j that uses a register » which is uniquely defined at instruction ¢ is
formally defined as:

rhs-clear;_.; = ﬂ z-clear;_;
zerhs(i)

where rhs(é) is the rhs of instruction i

and z is an identifier that belongs to
the rhs(?)
True if x is not redefined
and z-clear;_.; = along the path ¢ — j

False otherwise

Figure 6 is the algorithm used for extended register copy propagation. In this algorithm, the
propagate(r,expl,exp2) function propagates the use of register r in exp2 with expl, and newReghrg(r,1)
places register r in the actual argument list 1.

5 Experimental Results

dcc is a prototype decompiler written in C for the DOS operating system and the 180286 architecture that runs
under DOS and Ultrix. dcc produces both C and assembler programs, its implementation is fully described in
[2] and summarized in [17]. Compiler and library signatures were generated for several compilers, and dcc makes
use of them if identified. At present, dcc determines base types (e.g. integers, longs) but is not able to determine
compound types such as arrays or structures.

This section reports on results obtained from a test suite of .exe programs originally written in C and compiled
under DOS. These programs make use of base type variables and illustrate different aspects of the decompilation
process. The test suite was run in batch mode, generating the disassembly file .a2, the C file .b, the call graph of
the program, and statistics on the reduction of intermediate code instructions. The statistics reflect the percent-
age of intermediate instruction reduction on all subroutines for which C is generated; subroutines which translate
to assembler due to their low-level machine nature are not considered in the statistics. For each program, a total
count on intermediate instructions before and after analysis, and a total percentage reduction is given.

Figure 7 presents summary results of the 10 programs of the test suite. The first three programs deal with opera-
tions on the different three base types (byte, integer, long). The initial C programs had the same code, but their
variables were defined of a different type. The next four programs are benchmark programs from the Plum-Hall
benchmark suite; the suite is freely available on the network [18]. These programs were modified to ask for the
arguments to the program with scanf () rather than scanning for them in the argv[] command line array since
arrays are not supported by dcc. Finally, the last three programs calculate Fibonacci numbers, compute the cyclic
redundancy check for a character, and multiply two matrixes. The latter program was used to illustrate how
array address computation is represented in dcc in terms of an expression, rather than being further analyzed
and type propagated as an array.

The total number of intermediate instructions before the analysis is 963, compared with the final 306 intermediate
instructions, which gives a reduction of instructions of 76.25%. This reduction of instructions is mainly due to the
optimizations performed during data flow analysis, particularly the elimination of registers across subroutines.
The recognition of idioms in the LLIL code also reduces the number of instructions and helps in the determination
of data types such as long integers. Decompiled programs have the same number of user subroutines, plus any
runtime support routines used by the program, and any library functions not recognized by the library signature.
Runtime routines are sometimes translatable into a high-level representation; assembler is generated whenever
they are untranslatable.

6 Conclusions

The methods presented in this paper demonstrate how traditional data flow analysis techniques can be used in a
decompiler to optimize the intermediate representation of the decompiled program, and transform it into a higher

procedure ExtRegCopyProp (p: subroutineRecord)

initExpStk().
for (all basic blocks b of subroutine p in postorder) do
for (all instructions j in b) do
for (all registers r used by instruction j) do
if (ud(r) = {i}) then /* uniquely defined at instruction i */
case (opcode(i))
asgn: if (rhsClear (i, j))
case (opcode(j))
asgn: propagate (r, rhs(i), rhs(j)).
jcond, push, ret: propagate (r, rhs(i), exp(j)).
call: newReghArg (r, actArgList(j)).
end case
end if
pop: exp = popExpStk().
case (opcode(j))
asgn: propagate (r, exp, rhs(j)).
jcond, push, ret: propagate (r, exp, exp(j)).
call: mnewRegArg (exp, actArgList(j)).
end case
call: case (opcode(j))
asgn: rhs(j) = i.
push, ret, jcond: exp(j) = i.
call: newReghArg (i, actArgList(j)).
end case
end case
end if

end for

if (opcode(i) == push) then
pushExpStk (exp(i)).
elsif (opcode(i) == call) and (invoked routine uses stack arguments) then
pop arguments from the stack.
place arguments on actual argument list.
propagate argument type.
end if
end for
end for
end procedure

Figure 6: Extended Register Copy Propagation Algorithm

level representation that is available in any imperative procedural language. Specifically, these methods aim at
the elimination of low-level concepts such as condition codes and registers from the intermediate representation,
and to reintroduce the high-level concept of expression into the intermediate representation. This last feature
comprises not only simple boolean and arithmetic expressions, but expressions that involve function calls and
parameter passing. Short circuit evaluated expressions are determined during the control flow analysis phase of
the decompiler.

In the field of condition code elimination, the method presented in this paper goes beyond the optimization of
flag definitions, in that it not only determines which flag definitions are extraneous and therefore unnecessary,

Program | Before | After | % Reduction
intops 45 10 77.78
byteops 58 10 82.76
longops 117 48 58.97
benchsho 101 25 75.25
benchlng 139 28 79.86
benchmul 88 12 86.36
benchfn 82 36 56.10
fibo 78 15 80.77
cre 171 38 77.78
matrixmu 84 11 86.90
total 963 306 76.25

Figure 7: Results for Test Suite Programs

but also determines which boolean conditional expression is represented by the combined set of instructions that
define and use the flag. In this way, the target HLL program does not rely on the use and concept of flags, as
any real HLL program does not.

In the field of elimination of registers, this paper presents an extended register copy propagation algorithm which
works well for the HLIL used and the propagation of expressions between instructions. This algorithm also elimi-
nates the pseudo-intermediate instructions PUSH and POP. Two necessary conditions are presented for this method
to be applied. Extensions to the method make it feasible to determine actual parameters, and expressions or
identifiers returned from functions.

We are currently working on a RISC decompiler for the SPARC architecture and testing the extensibility of
both data and control flow analyses. In particular, the higher optimization performed in RISC code will be tested
against the reconstruction of high-level code. In regards to the intermediate language, as expected, a more general
LLIL language is required, although the choice of HLIL language remains the same. Also, better high-level data
abstraction (e.g. arrays) is needed — this is not a simple task. For further information refer to
http://crg.cs.utas.edu.au/

Acknowledgements

I would like to thank Professor John Gough for several discussions of live register analysis and compiler data flow
analysis, and Vishv Malhotra for suggestions on how to improve this paper.

A Graph-Theoretic Terminology

A basic block 1s a sequence of instructions that has a single entry point and a single exit point. These requirements
give the basic block the property that, if one instruction is executed, then all other instructions are executed as
well.

An extended basic block is a sequence of basic blocks By, ..., By, such that for 1 < ¢ < n, B; is the only predecessor
of Bit1, and for 1 < i < n, B; has only a conditional jump instruction.

A control flow graph G is a tuple (N, E, h), where N is the set of nodes, E is the set of directed edges, and & is
the root of the graph. A node n € N represents a basic block. A path from njy to ng,,, represented n; — n,y,, is a

sequence of edges (n1,n2), (n2,n3), ..., (Mm—1, 7m).

Let P= {p1,pa2,...} be the finite set of procedures of a program. A call graph C is a tuple (N, E, h), where N
is the set of procedures and n; € N represents one and only one p; € P, E is the set of edges and (n;,n;) € E
represents one or more references of p; to p;, and h is the main procedure.

A variable or register is defined when a new value is assigned to the variable/register. A variable or register is
used when the value of the variable/register is used but not modified.

A du-chain for variable z at statement i is the set of statements j > ¢ where z could be used, given that z is
defined at statement 7. There are known algorithms[19, 3, 20] to solve this backward-flow, any-path data flow
problem (du-chains).

A ud-chain for variable z at statement j is the set of statements ¢ < j where z was defined, given that z was used
at statement j. There are known algorithms[19, 3, 20] to solve this forward-flow, any-path data flow problem.

A path is X-clear if there is no definition of variable X along that path.

B Example

This section illustrates an example of the decompilation of a simple C program. The sample program (see
Figure 10) was chosen not for its content but because it illustrates several of the concepts that were introduced
in this paper. Figure 8 illustrates the LLIL code for the main() procedure of this program. All calls to library
routines were detected by dceSign, and thus not included in the analysis. Figure 9 is the final output from
dcc. This C program can be compared with the original C program in Figure 10. The decompiled program is
functionally equivalent to the original C program, although it uses a different looping construct: a while() rather
than a for() loop. The rest of the code is the same, with the use of different variable names. In this program, 52
LLIL instructions were converted into 10 HLIL instructions by means of interprocedural data flow analysis (only
type propagation between procedures was done in this example); this is equivalent to an 80.76% reduction on the
number of intermediate instructions.

References

[1] C. Cifuentes. A structuring algorithm for decompilation. In Proceedings of the XIX Conferencia Latinoamer-
teana de Informdtica, pages 267-276, Buenos Aires, Argentina, 2-6 August 1993. Centro Latinoamericano de
Estudios en Informatica.

[2] C. Cifuentes. Reverse Compilation Techniques. PhD dissertation, Queensland University of Technology,
School of Computing Science, July 1994.

[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Technigques, and Tools, chapter 10, pages
585-722. Addison-Wesley Publishing Company, 1986.

[4] B.C. Housel. A Study of Decompiling Machine Languages into High-Level Machine Independent Languages.
PhD dissertation, Purdue University, Computer Science, August 1973.

[5] F.L. Friedman. Decompilation and the Transfer of Mini-Computer Operating Systems. PhD dissertation,
Purdue University, Computer Science, August 1974.

[6] D.A. Workman. Language design using decompilation. Technical report, University of Central Florida,
December 1978.

main PROC
000 0004C2
001 0004C3
002 0004C5
003 0004C8
004 0004C9
005 0004CA
006 0004CB
007 0004CE
008 0004CF
009 0004D4
010 0004D5
011 0004D6
012 0004D7
013 0004DA
014 0004DB
015 0004DC
016 0004DF
017 0004E0
018 0004ES5S
019 0004ES8
020 0004EB
022 000510
023 000513
024 000515
025 000518
026 000519
027 00051C
028 00051D
029 000522
030 000525
031 000526
032 000527
033 000529
034 00052A
035 0004F0
036 0004F2
037 0004F5
038 0004F7
039 0004F9
040 0004FC
041 0004FE
042 000500
043 000502
044 000504
045 000506
046 000509
047

048 00050A
049

050 00050C
051 00050F
052

main ENDP

FAR
55
8BEC
83EC02
56
57
1E
B89400
50
9A0B004901
59
59
16
8D46FE
50
1E
B89900
50
9A0400FDO1
83C408
BE0400
BF0100

83FF28 L1:

7EDB
FF76FE
1E
B89C00
50
9A0B004901
83C406
5F

5E
8BES
5D

CB

8BC7 L2:

BAO700
F7E2
8BFO
0376FE
8BC6
B104
D3F8
8BFO
8BC6
BBOAOO
99

F7FB

8956FE
47

PUSH
Mov
SUB
PUSH
PUSH
PUSH
Mov
PUSH
CALL
POP
POP
PUSH
LEA
PUSH
PUSH
Mov
PUSH
CALL
ADD
Mov
Mov
CMP
JLE
PUSH
PUSH
Mov
PUSH
CALL
ADD
POP
POP
Mov
POP
RETF
Mov
Mov
MUL
Mov
ADD
Mov
Mov
SAR
Mov
Mov
Mov
CWD
Mov
IDIV
MOD
Mov
INC
JMP

far ptr

far ptr

word ptr

far ptr

bp

bp, sp
sp, 2
si

di

ds

ax, 94h
ax
printf
cx

cx

S8

ax, [bp-2]
ax

ds

ax, 99%h
ax
scanf
sp, 8
si, 4
di, 1
di, 28h
L2
[bp-21]
ds

ax, 9Ch
ax
printf
sp, 6
di

si

sp, bp
bp

ax, di
dx, 7
dx

si, ax
si, [bp-2]
ax, si
cl, 4
ax, cl
si, ax
ax, si
bx, OAh

tmp, dx:ax
bx
bx
[bp-21, dx
di
L1

;Synthetic inst

;Synthetic inst

;Synthetic inst

Figure 8: Low-level Intermediate Code

/*

*# Input file : testfile.exe
* File type : EXE

*/

void main ()

/* Takes no parameters.

* High-level language prologue code.
*/

{
int locl;
int loc2;
int loc3;
printf ("a = ");
scanf ("%d4d", &locl);
loc2 = 4;
loc3 = 1;
while ((loc3 <= 40)) {
loc2 = ((loc3 * 7) + locl);
loc2 = (loc2 >> 4);
locl = (loc2 % 10);
loc3 = (loc3 + 1);
} /* end of while */
printf ("a = %d\n", locl);
¥

Figure 9: Final C Program

main()
{ int a, b, c;

printf ("a = ");
scanf ("%d", &a);

b =4;
for (c = 1; c <= 40; ++c)
{
b=a+c* 7;
b=>b > 4;
a="b% 10;
¥

printf("a = %d\n", a);

Figure 10: Original C Program

[7] D.L. Brinkley. Intercomputer transportation of assembly language software through decompilation. Technical
report, Naval Underwater Systems Center, October 1981.

[8] J. Reuter. URL: ftp//cs.washington.edu/pub/decomp.tar.z. Public domain software, 1988.

[9] J. Bowen and P. Breuer. Decompilation techniques. Internal to ESPRIT REDO project no. 2487 2487-TN-
PRG-1065 Version 1.2, Oxford University Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, March
1991.

[10] J. Bowen. From programs to object code and back again using logic programming: Compilation and
decompilation. Journal of Software Maintenance: Research and Practice, 5(4):205-234, 1993.

[11] P.T. Breuer and J.P. Bowen. Decompilation: the enumeration of types and grammars. Transaclion of
Programming Languages and Systems, 16(5):1613-1647, September 1994.

[12] D.M. Dejean and G.W. Zobrist. A definition optimization technique used in a code translation algorithm.
Commaunications of the ACM, 32(1):94-104, January 1989.

[13] G.L. Hopwood. Decompilation. PhD dissertation, University of California, Irvine, Computer Science, 1978.

[14] M. Van Emmerik. Signatures for library functions in executable files. Technical Report 2/94, Faculty of
Information Technology, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia,
April 1994.

[15] K.J. Gough. Private communication, 1993.

[16] A. Srivastava and D.W. Wall. A practical system for intermodule code optimization at link-time. Journal
of Programming Languages, 1(1):1-18, March 1993.

[17] C. Cifuentes and K.J. Gough. Decompilation of binary programs. Software — Praclice and FExperience,
25(7):811-829, July 1995.

[18] E.S. Raymond. Plum-hall benchmarks. URL: ftp//plaza.aarnet.edu.au/usenet/comp.sources.unix,/
volume20/plum-benchmarks.gz, 1989.

[19] F.E. Allen and J. Cocke. A program data flow analysis procedure. Communications of the ACM, 19(3):137-
147, March 1976.

[20] C.N. Fischer and R.J. LeBlanc Jr. Crafting a Compiler, chapter 16, pages 609—-680. Benjamin Cummings,
2727 Sand Hill Road, Menlo Park, California 94025, 1988.

