
Interprocedural Data Flow DecompilationCristina Cifuentes�Department of Computer Science, University of TasmaniaGPO Box 252C, Hobart TAS 7001, AustraliaEmail: C.N.Cifuentes@cs.utas.edu.auAbstractTraditional compiler data ow analysis techniques are used to transform the intermediate representation of adecompiled program to a higher representation that eliminates low-level concepts such as registers and conditioncodes, and reintroduces the high-level concept of expression.Summary data ow information is collected on condition codes and registers, and is propagated across basicblocks and subroutine boundaries to �nd boolean and arithmetic expressions, register arguments, function returnregisters, actual arguments, and propagate data types whenever required. The elimination of condition codes isperformed by an extension of a reach algorithm. The elimination of registers and intermediate instructions isperformed by an extended copy propagation algorithm that is based on intra and interprocedural analysis of theprogram's control ow graph.The methods presented in this paper have been implemented in dcc, a prototype decompiler for the Intel i80286architecture. Experimental results have proved to reduce the number of intermediate instructions by over 75%on average for this particular CISC machine.1 IntroductionA decompiler is a software tool that attempts to reverse the compilation process by translating an input purebinary program to an equivalent target high-level language (HLL) program. The input program does not havesymbolic information within it, and the HLL used to compile this binary program does not need to be the sameas the target HLL produced by the decompiler.Although decompilers have not been greatly studied in the literature, there are a variety of applications thatcould bene�t from them, including the obvious maintenance of old code and recovery of lost source code, butalso the debugging of binary programs, migration of applications to a new hardware environment, veri�cation ofgenerated code by the compiler, and translation of code written in an obsolete language.The structure of decompilers is based on that of compilers; similar principles and techniques are used to performthe analysis of programs. In theory, the grouping of phases in a decompiler makes it easy to write di�erentdecompilers for di�erent machines and target languages, by writing di�erent front-ends for di�erent machines,and di�erent back-ends for di�erent target languages. Hence, the phases of our prototype decompiler, dcc, weregrouped into the following modules: the front-end; the machine dependent module, the UDM or universal decom-piling machine; the machine and language independent module, and the back-end; the target language dependentmodule. This prototype decompiler was designed for a CISC machine, the Intel i80286, and produces target C�This research was partly funded by Australian Research Council (ARC) Grant No.A49130261 while the author was with theQueensland University of Technology, Brisbane, Australia. 1

programs as output.The core of the decompilation analysis is done by the UDM in a two phase process: the data ow and the con-trol ow analysis. The former translates the intermediate code to a higher representation available in HLLs, byremoving all references to condition codes, registers, and low-level instructions not available in HLLs. The latterstructures the underlying control ow graph of each subroutine into a generic set of HLL constructs available inany imperative language, making minimal use of the goto statement[1, 2]. This paper concentrates on the dataow analysis phase.Conventional data ow analysis collects information about the way variables are used in a program, andsummarizes it in the form of sets. In decompilation, this information is used to transform and improve thequality of the intermediate code, preserving the meaning of the program as with standard compiler data owanalysis[3].1.1 Previous WorkLittle work has been done in the area of data ow analysis of a decompiler, mainly due to the limitations placed onmany of the decompilers available in the literature, including: decompilation of assembler source �les[4, 5, 6, 7],decompilation of object �les with symbolic debugging information[8], and the compiler speci�cation requirementsto build a decompiler[9, 10, 11]. Data ow analysis is essential when decompiling pure binary �les, as a greatamount of information is lost during the compilation and linking process.In the area of ag or condition code analysis, DeJean and Zobrist formulated an optimization of ag de�nitions bymeans of a reach algorithm[12]. This method was used in a program which translated microprocessor object codefor the i8085 into a behaviorally equivalent PL/1 program, and eliminated over 50% of the initial ag de�nitions;generating PL/1 programs that de�ned only the necessary ags used by a later condition.In the area of register elimination, a method of text compression was presented by Housel[4] for the elimina-tion of intermediate loads and stores. This method performed forward and backward substitution of registers inassignment instructions, if the result was not busy within the current basic block, and provided a reduction ofinstructions of up to 40% in assembly programs compiled with Knuth's MIXAL compiler. Hopwood described amethod of expression condensation to combine two or more intermediate instructions into an equivalent expres-sion by means of forward substitution. This method speci�ed 5 necessary conditions and 6 su�cient conditionsunder which forward substitution of a variable or register can be performed, and was based on variable usageanalysis[13]. No performance of the method was given.The above mentioned methods were used to decompile toy languages which did not have any type of interproce-dural information owing across subroutines, hence, there was no need to check for register arguments, functionreturn registers, or actual arguments, and how to incorporate this information in the analysis process. In addition,no mention to PUSH and POP instruction is given in those methods.2 Structure of a DecompilerFigure 1 illustrates the structure of a decompiler. Once the executable program has been loaded, the programis parsed to generate the control ow graph of the program and the low-level intermediate code. This low-levelintermediate representation is very similar to the assembler of the particular machine; that is, machine instruc-tions are mapped to assembler mnemonics. This means that the initial representation of the program is in termsof registers, condition codes, and o�sets from the stack.The semantic analysis phase checks the input code for known idioms, such as long variable addition, and HLLprologue code. In this way, useful information is saved, and the low-level instructions are modi�ed (wheneverneeded) into one low-level instruction that represents the idiom. Figure 2 describes the transformations involved

???????
?-cfgrelocated codecfgll intermediate codeLoaderData ow analysisControl ow analysisHLL code generationLow-level analysisParserll intermediate codehl intermediate code Assembler code generationassembler program

HLL program
binary program

structured cfghl intermediate codeFigure 1: Structure of a Decompiler. The boxes represent the di�erent stages of the decompiler, and the textnext to the arrows represents the intermediate representation owing between the stages.for two idioms found on the Intel architecture. In the �rst case, long variable addition, we now know that reg-isters dx and ax are temporarily used as a long register, and that local stack variables at o�sets -2 and -4 are along variable (i.e. its size is 4 bytes). On the second example, HLL prologue code, all HLL subroutines use theillustrated code on the Intel architecture; we now know that the subroutine is most likely a high-level routine,and that it uses 6 bytes of local variables. push bpadd ax, [bp-4] mov bp, spadc dx, [bp-2] sub bp, 6+add dx:ax, [bp-2]:[bp-4] enter 6,0Figure 2: Sample Idioms and their TransformationThe data ow analysis phase performs two di�erent analyses to improve the quality of the intermediate code. The�rst analysis eliminates the need for condition codes by transforming a group of instructions into one equivalenthigh-level instruction that preserves the meaning of the previous instructions. The second analysis removes all

temporarily used registers and regenerates high-level expressions. These analyses are the purpose of this paperand are explained in detail in Section 4.The control ow analysis phase structures each procedure's control ow graph into one that represents high-levelcontrol structures, such as while(), repeat..until(), if..then[..else], and loop, as explained in [1, 2]. Oncethis is done, the code generator can generate code from the control ow graph and the high-level intermediatecode, for the appropriate high-level language.We have been working on a decompiler for the Intel i80286 architecture running under the DOS operating system,that takes as input .exe or .com �les and produces C programs as output. This experimental decompiler hasbeen named dcc, it is operational, and implements all of the ideas expressed in this paper.The parsing phase of dcc classi�es the low-level intermediate instructions into two di�erent sets: the high-levelinstruction (HLI) set, which contains instructions that are likely to have been generated by a compiler, and thenon high-level instruction (NHLI) set, which includes all other instructions (e.g. instructions that are likely tohave been generated by hand-crafted assembly code, such as SAHF, and AAM). Instructions in the NHLI set areagged as being so, as well as the subroutine that uses these instructions. In this way, we do not attempt todecompile subroutines that are untranslatable into a higher order representation, but produce assembler for them.From the 110 low-level intermediate instructions in dcc, 28 belong to the NHLI set, and 6 other instructions aresometimes non high-level (i.e. depending on their arguments).dcc is part of a decompiling system that also checks for library and compiler signatures in order to eliminate theneed to decompile routines that are part of libraries, given that many of these routines are written in assemblerand are therefore hard or impossible to translate into C (or any other high-level language). dccSign generatesunique signatures for library code from di�erent compilers (Borland's Turbo C, Microsoft C, Borland's TurboPascal) and stores them in binary �les, one for each combination of compiler vendor, memory model, and versionof the compiler. The technique makes use of perfect minimal hashing, and thus is very e�cient to check whethera given routine belongs to a library or not, if it does, the routine is not analysed any further and it is replacedby its real name from the library. This technique is further explained in [14].3 Intermediate CodeThe initial intermediate representation given by the front-end is a mnemonic-type intermediate code which re-sembles an assembler language, henceforth called low-level intermediate language (LLIL). The main characteristicof this intermediate representation is that each instruction performs only one function, for example, an assigninstruction assigns the value of the right-hand side (rhs) to the left-hand side (lhs). Compound instructions inthe machine language are therefore translated into two or more LLIL instructions. For example, DIV di dividesthe combined value of registers dx:ax by di, and places the result in ax and the remainder in dx. In LLIL code,this instruction makes use of a temporal register, tmp, and is translated as follows:tmp = dx:axax = tmp / didx = tmp % diFor each intermediate instruction, the following bitsets of information are collected during parsing: ags de�ned,ags used, registers de�ned, and registers used.The LLIL code is transformed into a higher level representation which resembles a HLL, henceforth called high-level intermediate language (HLIL). This representation has the following 7 instructions:� asgn arithExp, arithExpThis instruction assigns an arithmetic expression to another arithmetic expression; normally an identi�er.An identi�er can be better described as a register, local variable, global variable or a parameter. A subroutine

that returns a value (i.e. a function), is also considered an identi�er in this context, as its invocation returnsa result in registers. The arithmetic expression represents a tree of binary operations such as addition,subtraction, multiplication, modulus, and, or, and xor. This instruction uses any identi�ers in the right-hand side (rhs), and de�nes the identi�er in the left-hand side (lhs).� jcond boolExpThis conditional jump instruction has a boolean expression associated with it, which determines whetherthe branch is taken or not. The target branch and the fall-through addresses are not part of the instructionas these have been coded in the graph (i.e. this is the last instruction of a basic block that has 2 out-edges).This instruction uses all identi�ers in the boolean expression.� jmp o�set� call procId farithExpg (zero or more actual arguments)The call instruction represents a subroutine call. The procedure identi�er (<procId>) is a pointer to theow graph of the invoked procedure. The actual parameter list is constructed during data ow analysis.This instruction uses all identi�ers present in the actual parameter list, and, in the case of a procedure,does not de�ne any identi�ers. If the subroutine called is a function, the function de�nes the registers thathold the returned value. In this case, the instruction is equivalent to an asgn <regs>, <procId> <actualparameters>.� ret [arithExp] (zero or one return expression)The return instruction determines the end of a procedure along a path. If there is nothing to return, itmeans the subroutine is a procedure. Otherwise it is a function, in which case, the returned identi�ers areused by this instruction.� push arithExpThe push instruction places the associated arithmetic expression or identi�er on a temporary stack. It usesthose identi�ers.� pop registerThe pop instruction takes the expression or identi�er at the top of the temporary stack and assigns it tothe identi�er on hand. It de�nes the identi�er with the expression at the top of the stack.The last two instructions are considered pseudo-high level instructions since they are eliminated from theintermediate code by the end of the data ow analysis. The transformation of LLIL code to HLIL code isdone implicitly while performing the data ow analysis. Flow of control HLL constructs, such as looping andconditional instructions, are determined by the control ow analysis phase.4 Data Flow AnalysisThis section describes the transformation of the intermediate code by performing code-improving optimizations.The aim of these optimizations is to eliminate all references to condition codes and registers as they do not exist inhigh-level languages, and to regenerate the high-level expressions available in the decompiled program; thereforetransforming the LLIL code into HLIL code. This section makes references to the control ow graph in Figure 3;a sample program which illustrates all optimizations that are described in this paper.In order to perform the data ow analysis, intraprocedural information is �rstly summarized for each instructionin the form of de�nition-use (du) chains; the set of live uses associated with each de�nition of an identi�er, anduse-de�nition (ud) chains; the set of reaching de�nitions associated with each use of an identi�er, for all agsand register identi�ers. Variables agged by the front-end as being register variables do not have a du-chain asthey represent local variables rather than temporary registers. In Figure 3, both si and di are agged as registervariables by the idiom analyzer of the front-end.

?XXXXXXXXXz

?
-�����9? ?�����9

XXXXXz B5B6 B7aNlshl
1 si = 202 di = 803 ax = si4 dx:ax = ax5 tmp = dx:ax6 ax = tmp / di7 dx = tmp % di8 dx = 39 dx:ax = ax * dx10 si = ax

���
11 [bp-6]:[bp-8] = 4000

38 ret
14 cmp [bp-6]:[bp-8], dx:ax15 jg B213 dx:ax = [bp-2]:[bp-4]12 [bp-2]:[bp-4] = 2000

B1
16 dx:ax = [bp-6]:[bp-8]17 dx:ax = dx:ax - [bp-2]:[bp-4]18 [bp-6]:[bp-8] = dx:ax19 cx = 420 dx:ax = [bp-6]:[bp-8]21 call aNlshl24 push [bp-6]:[bp-8]25 ax = si26 dx = 527 dx:ax = ax * dx28 push ax29 ax = 6630 push ax31 call printf32 ret 22 [bp-6]:[bp-8] = dx:ax23 jmp B4 B2B3B4 33 ch = 034 jcxz B735 dx:ax = dx:ax << 136 cx = cx - 137 jncxz B6

Figure 3: Flow Graph Before OptimizationFor all data ow analysis, registers that can be used as both word and byte registers (e.g. ax, ah, al) are treatedas di�erent registers in the analysis. For example, whenever register ax is de�ned, it also de�nes registers ah andal, but, if register al is de�ned, it de�nes only registers al and ax, but not register ah. This is needed so thatuses of part of a register can be detected and treated as a byte identi�er rather than an integer identi�er.While computing du and ud chains, dead register elimination is done in the intermediate code. This analysis isneeded even in binary code produced by an optimizing compiler given the nature of the LLIL, which performsone function per instruction, hence compound machine instructions are represented by several LLIL instructions.It is said that a register is dead if it is de�ned by an instruction and is not used before being rede�ned by asubsequent instruction. If the instruction that de�nes a dead register de�nes only this one register, it is saidthat the instruction is useless, and thus can be eliminated. On the other hand, if the instruction also de�nesother register(s), the instruction is still useful but should not de�ne the dead register any more. In this case, the

intermediate representation of the instruction is modi�ed to reect this fact. In the following code from basicblock B1, Figure 3, register dx is dead at instructions 7 and 9 from inspection of the du chains :6 ax = tmp / di ; du(ax)={9}7 dx = tmp % di ; du(dx)={}8 dx = 3 ; du(dx)={9}9 dx:ax = ax * dx ; du(ax)={10} du(dx)={}10 si = axSince instruction 7 de�nes only this register, it is redundant and can be eliminated. On the other hand, instruction9 de�nes not only dx but ax as well, hence the instruction is not dead but is modi�ed to reect the fact that dxis no longer de�ned by this instruction, simplifying the code to the following:6 ax = tmp / di ; du(ax)={9}8 dx = 3 ; du(dx)={9}9 ax = ax * dx ; du(ax)={10}10 si = axIf an instruction i is to be eliminated due to a dead register de�nition r de�ned in terms of other registers (i.e.r = f(r1; : : : ; rn); n � 1), the uses of these registers at instruction i no longer exist, and thus, the correspondingdu-chains of the instructions that de�ne the registers used at i are to be modi�ed so that they no longer have areference to i. This is done by checking the ud chain of i while performing dead register elimination.4.1 Elimination of Condition CodesIt is said that a condition code is dead if it is de�ned by an instruction and is not used before rede�nition.Since the de�nition of a condition code is a side e�ect of an instruction, eliminating dead ags does not make aninstruction redundant; therefore this analysis leads to removal of data ow information on the instructions. Inthe following code from basic block B1, Figure 3, the CF (carry) and ZF (zero) ags are dead at instruction 14 byinspection of their du chains:14 cmp [bp-6]:[bp-8], dx:ax ; def={ZF,CF,SF}; du(SF)={15}; du(CF,ZF)={}15 jg B2 ; use={SF}The simpli�ed code after removal of this information is the following:14 cmp [bp-6]:[bp-8], dx:ax ; def = {SF}; du(SF)={15}15 jg B2 ; use = {SF}The remaining condition codes are used by subsequent instructions, and are eliminated from the intermediaterepresentation after propagating the essence of the boolean condition: for a particular ag(s) use, we �nd theinstruction that de�ned the ag(s) and merge them according to the implicit boolean condition of the instructionthat uses the ag. In the following code from basic block B1, Figure 3, instruction 14 de�nes the SF ag whichis used at instruction 15:14 cmp [bp-6]:[bp-8], dx:ax ; def = {SF}; du(SF) = {15}15 jg B2 ; use = {SF}; ud(SF) = {14}Instruction 15 implicitly checks for a greater-than boolean condition, and instruction 14 compares the �rstidenti�er ([bp-6]:[bp-8]) against the second identi�er (dx:ax). If the �rst identi�er is greater than the secondidenti�er, the SF is set. It is obvious from these instructions that the condition propagated is greater than,therefore leading to the following HLIL code:15 jcond ([bp-6]:[bp-8] > dx:ax) B2

eliminating instruction 14 and thus eliminating all ag references.This propagation method works well on extended basic blocks, where the identi�ers of the boolean condition arepropagated to two or more conditions within the one extended basic block. The algorithm can be extended topropagate condition codes that are de�ned in two or more basic blocks (i.e. by doing an and of the individualboolean conditions), but it has not been required in practice, since it is almost unknown for even optimisingcompilers to attempt to track ag de�nitions across basic block boundaries[15].4.2 Elimination of Registers and Regeneration of Arithmetic ExpressionsThe regeneration of arithmetic expressions is based on the elimination of registers and the propagation of expres-sions via registers. Preliminary information on register arguments and function return registers is collected �rstsince the machine language does not provide us with this type of information.The register calling convention is used by compilers to speed up the invocation of a subroutine. It is an optionavailable in most contemporary compilers, and is also used by the compiler runtime support routines. Given asubroutine, register arguments translate to registers that are used by the subroutine before being de�ned in thesubroutine; i.e. upwards exposed uses of registers in the subroutine. In the following code from basic blocks B5and B6, Figure 3, subroutine _aNlshl, instruction 34 uses register cx which was partly de�ned at instruction 33,and instruction 35 uses registers dx and ax, neither of which were de�ned in that subroutine:33 ch = 034 jcond (cx = 0) B7 ; ud(ch)={33}; ud(cl)={}35 dx:ax = dx:ax << 1 ; ud(dx:ax)={}Information on registers used before de�nition in a subroutine is summarized by an intraprocedural live registeranalysis: a register is live on entrance to the basic block that uses it. Standard live register equations are used tosolve this problem. In our example, subroutine _aNlshl has the following LiveIn and LiveOut sets:Basic Block LiveIn LiveOutB5 fdx,ax,clg fdx,axgB6 fdx,axg fgB7 fg fgThe set of LiveIn registers summarized for the header basic block B5 is the set of register arguments used by thesubroutine; dx, ax, and cl. The formal argument list of this subroutine is updated to reect these two arguments:formal_arguments(_aNlshl) = (arg1 = dx:ax,arg2 = cl)It is said that the _aNlshl subroutine uses these registers. In general, any subroutine that makes use of registerarguments uses those registers, thus a CALL to one of these subroutines is also said to use those registers, as inthe following instruction:21 call _aNlshl ; use={dx,ax,cl}Functions return results in registers, and there is no machine instruction that speci�es which registers are beingreturned by the function in CISC machines. After function return, the caller uses the registers returned by thefunction before they are rede�ned (i.e. these registers are live on entrance to the basic block that follows thefunction call). This register information is propagated across subroutine boundaries, and is solved with a reachingand live register analysis. In the following code from basic blocks B2 and B3, Figure 3, instruction 22 uses registersdx and ax, which could have been rede�ned in the subroutine called at instruction 21 or at instruction 20:20 dx:ax = [bp-6]:[bp-8] ; def={dx,ax}; use = {}21 call _aNlshl ; def={}

; use={dx,ax,cl}22 [bp-6]:[bp-8] = dx:ax ; def={}; use={dx,ax}Summary information in the form of intraprocedural reaching de�nitions on subroutine _aNlshl leads to thefollowing ReachIn and ReachOut sets:Basic Block ReachIn ReachOutB5 fg fchgB6 fchg fcx,dx,axgB7 fcx,dx,axg fcx,dx,axgThis analysis states that the last de�nitions of registers cx, dx, and ax reach the end of the subroutine (i.e.ReachOut set of basic block B7). The caller subroutine uses only some of these reaching registers, thus itis necessary to determine which registers are upwards exposed in the successor basic block to the subroutineinvocation; this information is summarized in the form of an interprocedural live register analysis, to cater forregisters propagated across subroutine boundaries. Traditional live register equations are used for the call graphof the complete program, or the set of more precise live equations recently described by Srivastava and Wall in[16]. For the example of Figure 3, either set of equations produces the following results:Basic Block LiveIn LiveOutB1 fg fgB2 fg fdx,axgB3 fdx,axg fgB4 fg fgB5 fdx,ax,clg fdx,axgB6 fdx,axg fdx,axgB7 fdx,axg fdx,axgFrom the three registers that reach instruction 22 in basic block B3, only two of these registers areused (i.e. belong to LiveIn of B3): dx and ax, thus these registers are the only registers of in-terest once the called subroutine has been �nished, and are the registers returned by the function.This condition is formally expressed by the intersection of the ReachOut set of the function and theLiveIn set of the basic block following the CALL, to eliminate propagated registers across subroutines:ReachOut(B7) T LiveIn(B3) = fdx,axgOnce a subroutine has been determined to be a function and the register(s) that the function returns has beendetermined, this information is propagated to two di�erent places: the return instruction(s) from the functionand the instructions that CALL this function. In the former case, all return basic blocks have a ret instruction;this instruction is modi�ed to return the registers that the function returns. In our example, instruction 38 ofbasic block B7, Figure 3 is modi�ed to the following code:38 ret dx:axIn the latter case, any function invocation instruction (i.e. CALL instruction) is replaced by an asgn instructionthat takes as left-hand side the de�ned register(s), and takes the function call as the right-hand side of theinstruction, as in the following code:21 dx:ax = call _aNlshl ; def={dx,ax}; use={dx,ax,cl}The instruction is transformed into an asgn instruction, and de�nes the registers on the left-hand side.It is important to note that in the case of library functions whose return register(s) is not used, the call is nottransformed into an asgn instruction but remains as a CALL instruction (e.g. printf).

4.2.1 Extended Register Copy PropagationRegister copy propagation is the method by which a de�ned register in an assignment instruction, say ax = cx,is replaced in a subsequent instruction(s) that references or uses this register, if neither register is modi�ed afterthe assignment (i.e. neither ax nor cx is rede�ned). If this is the case, references to register ax are replacedby references to register cx, and, if all uses of ax are replaced by cx then ax becomes dead and the assignmentinstruction is eliminated. A use of ax can be replaced with a use of cx if the instruction ax = cx is the onlyde�nition of ax that reaches the use of ax and if no assignments to cx have occurred after the instruction ax = cx.The former condition is checked with ud chains, the latter condition is checked with an x-clear condition asdescribed later. For example, in the following code from basic block B1, Figure 3, after dead-register elimination:3 ax = si ; du(ax)={4}4 dx:ax = ax ; du(dx:ax)={5}; ud(ax)={3}5 tmp = dx:ax ; du(tmp)={6}; ud(dx:ax)={4}6 ax = tmp / di ; du(ax)={9}; ud(tmp)={5}8 dx = 3 ; du(dx)={8}9 ax = ax * dx ; du(ax)={10}; ud(ax)={6} ud(dx)={8}10 si = ax ; ud(ax)={9}the use of register ax in instruction 4 is replaced with a use of the register variable si, making the de�nition ofax in 3 dead. The use of dx:ax in instruction 5 is replaced with a use of si (from instruction 4), making thede�nition of dx:ax dead. The use of tmp in instruction 6 is replaced with a use of si (from instruction 5), makingthe de�nition of tmp dead at 5. The use of ax at instruction 9 is replaced with a use of (si / di) from instruction6, making the de�nition of ax dead. In the same instruction, the use of dx is replaced with a use of constant3 from instruction 8, making the de�nition of dx at 8 dead. Finally, the use of ax at instruction 10 is replacedwith a use of (si / di) * 3 from instruction 9, making the de�nition of ax at 9 dead. Since the register de�nedin instructions 3 ! 9 were used only once, and all these registers became dead, the instructions are eliminated,leading to the �nal code:10 si = (si / di) * 3Register copy propagation is not limited to asgn instructions only. As seen in Figure 4, two other HLIL instruc-tions also de�ne registers: CALL de�nes a register if the invoked subroutine is a function, and POP de�nes theregister associated with that instruction. Also, several instructions use registers: CALL uses any register argumentspassed to it, jcond uses any registers associated with its boolean conditional expression, ret uses any registers itreturns from a function, and PUSH uses all registers it pushes onto the stack. Since PUSH and POP rely on an extradata structure, the stack, a stack of expressions is used to cater for values pushed and popped from the stack.Note that the saving and restoring of registers by a subroutine at pre and postamble have been removed from theintermediate representation by the front-end (these registers are agged as being register variables within thatsubroutine), hence they are not considered true uses or de�nitions of registers. The front-end has also removed allPOP instructions that restore the stack after a subroutine call or during subroutine return, hence these de�nitionsof registers are not part of the HLIL code. Therefore, both PUSH and POP are used in conjunction with the spillingof a register, and are eliminated from the HLIL code in the following way: a PUSH copies the arithmetic expressionassociated with the register to the stack, and a POP translates to an asgn of the top of stack expression to theassociated register with the POP. In this way, pseudo-HLIL instructions are removed from the �nal representation.Most actual parameters to a subroutine are pushed on the stack before invocation to the subroutine. Since nestedsubroutine calls are allowed in most languages, the arguments pushed on the stack represent those arguments ofone or more subroutines, thus it is necessary to determine which arguments belong to which subroutine. Whenevera CALL instruction is met, the necessary number of arguments are popped from the stack, based on the �xed sizeof argument bytes restored by the subroutine (and summarized by the front-end). In the following code frombasic block B4, Figure 3, instructions 24, 28 and 30 PUSH the arguments for the printf call at instruction 31:

De�ne Useasgn (lhs) asgn (rhs)CALL (function) CALL (register arguments)POP jcondret (function return registers)PUSHFigure 4: High-Level Instructions that De�ne and Use Registers24 push [bp-6]:[bp-8]28 push (si * 5)30 push 6631 call printfWhen the call to printf is reached, information on this function is checked to determine how many bytes ofarguments the function call takes; in this case it takes 8 bytes. Expressions are popped from the stack, adding upthe size of their type, and are placed on the actual parameter list associated with the subroutine call using thecalling convention determined by the front-end. In this example, 3 expressions are popped from the stack withtype sizes of 2, 2, and 4, and are stored using the C calling convention, leading to the following code:31 call printf (66, si * 5, [bp-6]:[bp-8])In the case of register arguments, since these arguments are not pushed on the stack but remain in registers,when performing register copy propagation and reaching a CALL instruction that uses one or more registers, theexpression associated with this register(s) is placed on the actual parameter list of the invoked subroutine. Forexample, in the following code from basic blocks B2 and B3, Figure 3, the CALL at instruction 21 uses registersdx, ax, and cl:19 cl = 4 ; du(cl)={21}20 dx:ax = [bp-6]:[bp-8] ; du(dx:ax)={21}21 dx:ax = call _aNlshl ; ud(dx:ax)={20}; ud(cl)={19}The expressions associated with these registers are moved to the actual parameter list of _aNlshl in the orderde�ned by the formal argument list, leading to the following code:21 dx:ax = call _aNlshl ([bp-6]:[bp-8], 4)Instructions 19 and 20 are eliminated since they now de�ne dead registers.During the instantiation of actual arguments to formal arguments, data types for these arguments need to beveri�ed, as if they are di�erent, one of the data types needs to be modi�ed. Consider the following partial codefrom basic block B4, Figure 3:31 call printf (66, si * 5, [bp-6]:[bp-8])where the actual parameter list has the following data types: integer constant, integer, and long integer. Theformal argument list of printf has a pointer to a character string as the �rst argument, and a variable number ofunknown data type arguments following it1. We can only verify the type of the �rst argument in this case, leadingto a mismatch. Given that the data types used by the library subroutines must be right (i.e. they are trusted),it is safe to say that the actual integer constant must be an o�set into memory, pointing to a character string.By checking virtual memory, it is found that at location DS:0066 there is a string; thus, the integer constantis replaced by the string itself. For the next two arguments, since they have an unknown formal type, the typegiven by the caller is trusted, leading to the following code:1Formal argument information is summarized by the library signature generator[14] in the front-end and is available for librarycalls only.

31 call printf ("c * 5 = %d, a = %ld\n",si * 5, [bp-6]:[bp-8])Another case of type propagation is the conversion of two integers into one long variable, where the callee hasdetermined that one of the arguments is a long variable, but the caller has so far used the actual argument astwo separate integers.The transformations presented here modify the initial graph in Figure 3 into the equivalent graph of Figure 5. Inthis graph, all identi�ers are in terms of their local o�set from the stack or a register variable. These identi�ers arerenamed during code generation and are assigned arbitrary names according to their location: local or argument.
? - ?���������9XXXXXXXz�������9 XXXXXXz

?[bp-6]:[bp-8] = 4000[bp-6]:[bp8] = aNlshl ([bp-6]:[bp-8], 4) arg1 = arg1 << 1arg2 = arg2 - 1 ���jcond (arg2 <> 0) B6ret arg2 = arg2 & 0x00FFjcond (arg2 = 0) B7loc1 = 20loc2 = 80loc1 = (loc1 / loc2) * 3 B1 B2B4 B5B6 B7ret arg2
[bp-2]:[bp-4] = 2000jcond ([bp-6]:[bp-8] > [bp-2]:[bp-4]) B2[bp-6]:[bp-8] = [bp-6]:[bp-8] - [bp-2]:[bp-4]printf ("c * 5 = %d, a = %ld n",loc1 * 5, [bp-6]:[bp-8])Figure 5: Control Flow Graph After Code OptimizationHaving given all di�erent types of examples where register copy and type propagation is possible, we now presentthe set of necessary conditions for performing such propagation of registers and associated expressions. From thede�nition, the instruction that uses the register to be propagated must be able to uniquely identify the instructionthat de�ned that register, hence the uniqueness condition:� For a given register use, the corresponding register de�nition must be unique, as registers that are usedbefore being rede�ned translate to temporary registers that hold an intermediate result for the machine.Rede�nition of the involved registers cannot happen between the instructions. Even more important, the identi�ersassociated with the expression in the rhs of the de�ned register cannot be rede�ned along that path, hence therhs-clear path condition:� The identi�ers x in an expression that de�nes a register r (i.e. the rhs of the instruction) that satis�es theuniqueness condition are checked to have an x-clear path to the instruction that uses the register r. Therhs-clear condition for an instruction j that uses a register r which is uniquely de�ned at instruction i isformally de�ned as: rhs-cleari!j = \x2rhs(i)x-cleari!j

where rhs(i) is the rhs of instruction iand x is an identi�er that belongs tothe rhs(i)and x-cleari!j = 8<: True if x is not rede�nedalong the path i! jFalse otherwiseFigure 6 is the algorithm used for extended register copy propagation. In this algorithm, thepropagate(r,exp1,exp2) function propagates the use of register r in exp2 with exp1, and newRegArg(r,l)places register r in the actual argument list l.5 Experimental Resultsdcc is a prototype decompiler written in C for the DOS operating system and the i80286 architecture that runsunder DOS and Ultrix. dcc produces both C and assembler programs, its implementation is fully described in[2] and summarized in [17]. Compiler and library signatures were generated for several compilers, and dcc makesuse of them if identi�ed. At present, dcc determines base types (e.g. integers, longs) but is not able to determinecompound types such as arrays or structures.This section reports on results obtained from a test suite of .exe programs originally written in C and compiledunder DOS. These programs make use of base type variables and illustrate di�erent aspects of the decompilationprocess. The test suite was run in batch mode, generating the disassembly �le .a2, the C �le .b, the call graph ofthe program, and statistics on the reduction of intermediate code instructions. The statistics reect the percent-age of intermediate instruction reduction on all subroutines for which C is generated; subroutines which translateto assembler due to their low-level machine nature are not considered in the statistics. For each program, a totalcount on intermediate instructions before and after analysis, and a total percentage reduction is given.Figure 7 presents summary results of the 10 programs of the test suite. The �rst three programs deal with opera-tions on the di�erent three base types (byte, integer, long). The initial C programs had the same code, but theirvariables were de�ned of a di�erent type. The next four programs are benchmark programs from the Plum-Hallbenchmark suite; the suite is freely available on the network [18]. These programs were modi�ed to ask for thearguments to the program with scanf() rather than scanning for them in the argv[] command line array sincearrays are not supported by dcc. Finally, the last three programs calculate Fibonacci numbers, compute the cyclicredundancy check for a character, and multiply two matrixes. The latter program was used to illustrate howarray address computation is represented in dcc in terms of an expression, rather than being further analyzedand type propagated as an array.The total number of intermediate instructions before the analysis is 963, compared with the �nal 306 intermediateinstructions, which gives a reduction of instructions of 76.25%. This reduction of instructions is mainly due to theoptimizations performed during data ow analysis, particularly the elimination of registers across subroutines.The recognition of idioms in the LLIL code also reduces the number of instructions and helps in the determinationof data types such as long integers. Decompiled programs have the same number of user subroutines, plus anyruntime support routines used by the program, and any library functions not recognized by the library signature.Runtime routines are sometimes translatable into a high-level representation; assembler is generated wheneverthey are untranslatable.6 ConclusionsThe methods presented in this paper demonstrate how traditional data ow analysis techniques can be used in adecompiler to optimize the intermediate representation of the decompiled program, and transform it into a higher

procedure ExtRegCopyProp (p: subroutineRecord)initExpStk().for (all basic blocks b of subroutine p in postorder) dofor (all instructions j in b) dofor (all registers r used by instruction j) doif (ud(r) = {i}) then /* uniquely defined at instruction i */case (opcode(i))asgn: if (rhsClear (i, j))case (opcode(j))asgn: propagate (r, rhs(i), rhs(j)).jcond, push, ret: propagate (r, rhs(i), exp(j)).call: newRegArg (r, actArgList(j)).end caseend ifpop: exp = popExpStk().case (opcode(j))asgn: propagate (r, exp, rhs(j)).jcond, push, ret: propagate (r, exp, exp(j)).call: newRegArg (exp, actArgList(j)).end casecall: case (opcode(j))asgn: rhs(j) = i.push, ret, jcond: exp(j) = i.call: newRegArg (i, actArgList(j)).end caseend caseend ifend forif (opcode(i) == push) thenpushExpStk (exp(i)).elsif (opcode(i) == call) and (invoked routine uses stack arguments) thenpop arguments from the stack.place arguments on actual argument list.propagate argument type.end ifend forend forend procedure Figure 6: Extended Register Copy Propagation Algorithmlevel representation that is available in any imperative procedural language. Speci�cally, these methods aim atthe elimination of low-level concepts such as condition codes and registers from the intermediate representation,and to reintroduce the high-level concept of expression into the intermediate representation. This last featurecomprises not only simple boolean and arithmetic expressions, but expressions that involve function calls andparameter passing. Short circuit evaluated expressions are determined during the control ow analysis phase ofthe decompiler.In the �eld of condition code elimination, the method presented in this paper goes beyond the optimization ofag de�nitions, in that it not only determines which ag de�nitions are extraneous and therefore unnecessary,

Program Before After % Reductionintops 45 10 77.78byteops 58 10 82.76longops 117 48 58.97benchsho 101 25 75.25benchlng 139 28 79.86benchmul 88 12 86.36benchfn 82 36 56.10�bo 78 15 80.77crc 171 38 77.78matrixmu 84 11 86.90total 963 306 76.25Figure 7: Results for Test Suite Programsbut also determines which boolean conditional expression is represented by the combined set of instructions thatde�ne and use the ag. In this way, the target HLL program does not rely on the use and concept of ags, asany real HLL program does not.In the �eld of elimination of registers, this paper presents an extended register copy propagation algorithm whichworks well for the HLIL used and the propagation of expressions between instructions. This algorithm also elimi-nates the pseudo-intermediate instructions PUSH and POP. Two necessary conditions are presented for this methodto be applied. Extensions to the method make it feasible to determine actual parameters, and expressions oridenti�ers returned from functions.We are currently working on a RISC decompiler for the SPARC architecture and testing the extensibility ofboth data and control ow analyses. In particular, the higher optimization performed in RISC code will be testedagainst the reconstruction of high-level code. In regards to the intermediate language, as expected, a more generalLLIL language is required, although the choice of HLIL language remains the same. Also, better high-level dataabstraction (e.g. arrays) is needed { this is not a simple task. For further information refer tohttp://crg.cs.utas.edu.au/AcknowledgementsI would like to thank Professor John Gough for several discussions of live register analysis and compiler data owanalysis, and Vishv Malhotra for suggestions on how to improve this paper.A Graph-Theoretic TerminologyA basic block is a sequence of instructions that has a single entry point and a single exit point. These requirementsgive the basic block the property that, if one instruction is executed, then all other instructions are executed aswell.An extended basic block is a sequence of basic blocks B1; : : : ; Bn such that for 1 � i < n;Bi is the only predecessorof Bi+1, and for 1 < i � n;Bi has only a conditional jump instruction.A control ow graph G is a tuple (N;E; h), where N is the set of nodes, E is the set of directed edges, and h isthe root of the graph. A node n 2 N represents a basic block. A path from n1 to nm, represented n1 ! nm, is a

sequence of edges (n1; n2); (n2; n3); : : : ; (nm�1; nm).Let P= fp1; p2; : : :g be the �nite set of procedures of a program. A call graph C is a tuple (N;E; h), where Nis the set of procedures and ni 2 N represents one and only one pi 2 P, E is the set of edges and (ni; nj) 2 Erepresents one or more references of pi to pj, and h is the main procedure.A variable or register is de�ned when a new value is assigned to the variable/register. A variable or register isused when the value of the variable/register is used but not modi�ed.A du-chain for variable x at statement i is the set of statements j > i where x could be used, given that x isde�ned at statement i. There are known algorithms[19, 3, 20] to solve this backward-ow, any-path data owproblem (du-chains).A ud-chain for variable x at statement j is the set of statements i < j where x was de�ned, given that x was usedat statement j. There are known algorithms[19, 3, 20] to solve this forward-ow, any-path data ow problem.A path is X-clear if there is no de�nition of variable X along that path.B ExampleThis section illustrates an example of the decompilation of a simple C program. The sample program (seeFigure 10) was chosen not for its content but because it illustrates several of the concepts that were introducedin this paper. Figure 8 illustrates the LLIL code for the main() procedure of this program. All calls to libraryroutines were detected by dccSign, and thus not included in the analysis. Figure 9 is the �nal output fromdcc. This C program can be compared with the original C program in Figure 10. The decompiled program isfunctionally equivalent to the original C program, although it uses a di�erent looping construct: a while() ratherthan a for() loop. The rest of the code is the same, with the use of di�erent variable names. In this program, 52LLIL instructions were converted into 10 HLIL instructions by means of interprocedural data ow analysis (onlytype propagation between procedures was done in this example); this is equivalent to an 80.76% reduction on thenumber of intermediate instructions.References[1] C. Cifuentes. A structuring algorithm for decompilation. In Proceedings of the XIX Conferencia Latinoamer-icana de Inform�atica, pages 267{276, Buenos Aires, Argentina, 2-6 August 1993. Centro Latinoamericano deEstudios en Inform�atica.[2] C. Cifuentes. Reverse Compilation Techniques. PhD dissertation, Queensland University of Technology,School of Computing Science, July 1994.[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools, chapter 10, pages585{722. Addison-Wesley Publishing Company, 1986.[4] B.C. Housel. A Study of Decompiling Machine Languages into High-Level Machine Independent Languages.PhD dissertation, Purdue University, Computer Science, August 1973.[5] F.L. Friedman. Decompilation and the Transfer of Mini-Computer Operating Systems. PhD dissertation,Purdue University, Computer Science, August 1974.[6] D.A. Workman. Language design using decompilation. Technical report, University of Central Florida,December 1978.

main PROC FAR000 0004C2 55 PUSH bp001 0004C3 8BEC MOV bp, sp002 0004C5 83EC02 SUB sp, 2003 0004C8 56 PUSH si004 0004C9 57 PUSH di005 0004CA 1E PUSH ds006 0004CB B89400 MOV ax, 94h007 0004CE 50 PUSH ax008 0004CF 9A0B004901 CALL far ptr printf009 0004D4 59 POP cx010 0004D5 59 POP cx011 0004D6 16 PUSH ss012 0004D7 8D46FE LEA ax, [bp-2]013 0004DA 50 PUSH ax014 0004DB 1E PUSH ds015 0004DC B89900 MOV ax, 99h016 0004DF 50 PUSH ax017 0004E0 9A0400FD01 CALL far ptr scanf018 0004E5 83C408 ADD sp, 8019 0004E8 BE0400 MOV si, 4020 0004EB BF0100 MOV di, 1022 000510 83FF28 L1: CMP di, 28h023 000513 7EDB JLE L2024 000515 FF76FE PUSH word ptr [bp-2]025 000518 1E PUSH ds026 000519 B89C00 MOV ax, 9Ch027 00051C 50 PUSH ax028 00051D 9A0B004901 CALL far ptr printf029 000522 83C406 ADD sp, 6030 000525 5F POP di031 000526 5E POP si032 000527 8BE5 MOV sp, bp033 000529 5D POP bp034 00052A CB RETF035 0004F0 8BC7 L2: MOV ax, di036 0004F2 BA0700 MOV dx, 7037 0004F5 F7E2 MUL dx038 0004F7 8BF0 MOV si, ax039 0004F9 0376FE ADD si, [bp-2]040 0004FC 8BC6 MOV ax, si041 0004FE B104 MOV cl, 4042 000500 D3F8 SAR ax, cl043 000502 8BF0 MOV si, ax044 000504 8BC6 MOV ax, si045 000506 BB0A00 MOV bx, 0Ah046 000509 99 CWD047 MOV tmp, dx:ax ;Synthetic inst048 00050A F7FB IDIV bx049 MOD bx ;Synthetic inst050 00050C 8956FE MOV [bp-2], dx051 00050F 47 INC di052 JMP L1 ;Synthetic instmain ENDP Figure 8: Low-level Intermediate Code

/** Input file : testfile.exe* File type : EXE*/void main ()/* Takes no parameters.* High-level language prologue code.*/{int loc1;int loc2;int loc3;printf ("a = ");scanf ("%d", &loc1);loc2 = 4;loc3 = 1;while ((loc3 <= 40)) {loc2 = ((loc3 * 7) + loc1);loc2 = (loc2 >> 4);loc1 = (loc2 % 10);loc3 = (loc3 + 1);} /* end of while */printf ("a = %d\n", loc1);} Figure 9: Final C Programmain(){ int a, b, c;printf ("a = ");scanf ("%d", &a);b = 4;for (c = 1; c <= 40; ++c){ b = a + c * 7;b = b >> 4;a = b % 10;}printf("a = %d\n", a);} Figure 10: Original C Program

[7] D.L. Brinkley. Intercomputer transportation of assembly language software through decompilation. Technicalreport, Naval Underwater Systems Center, October 1981.[8] J. Reuter. URL: ftp//cs.washington.edu/pub/decomp.tar.z. Public domain software, 1988.[9] J. Bowen and P. Breuer. Decompilation techniques. Internal to ESPRIT REDO project no. 2487 2487-TN-PRG-1065 Version 1.2, Oxford University Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, March1991.[10] J. Bowen. From programs to object code and back again using logic programming: Compilation anddecompilation. Journal of Software Maintenance: Research and Practice, 5(4):205{234, 1993.[11] P.T. Breuer and J.P. Bowen. Decompilation: the enumeration of types and grammars. Transaction ofProgramming Languages and Systems, 16(5):1613{1647, September 1994.[12] D.M. Dejean and G.W. Zobrist. A de�nition optimization technique used in a code translation algorithm.Communications of the ACM, 32(1):94{104, January 1989.[13] G.L. Hopwood. Decompilation. PhD dissertation, University of California, Irvine, Computer Science, 1978.[14] M. Van Emmerik. Signatures for library functions in executable �les. Technical Report 2/94, Faculty ofInformation Technology, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia,April 1994.[15] K.J. Gough. Private communication, 1993.[16] A. Srivastava and D.W. Wall. A practical system for intermodule code optimization at link-time. Journalof Programming Languages, 1(1):1{18, March 1993.[17] C. Cifuentes and K.J. Gough. Decompilation of binary programs. Software { Practice and Experience,25(7):811{829, July 1995.[18] E.S. Raymond. Plum-hall benchmarks. URL: ftp//plaza.aarnet.edu.au/usenet/comp.sources.unix/volume20/plum-benchmarks.gz, 1989.[19] F.E. Allen and J. Cocke. A program data ow analysis procedure. Communications of the ACM, 19(3):137{147, March 1976.[20] C.N. Fischer and R.J. LeBlanc Jr. Crafting a Compiler, chapter 16, pages 609{680. Benjamin Cummings,2727 Sand Hill Road, Menlo Park, California 94025, 1988.

