
J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1A Unifying Type-Theoretic Frameworkfor ObjectsMartin Hofmann Benjamin PierceDepartment of Computer Science,University of Edinburgh,The King's Buildings,Edinburgh, EH9 3JZ, U.K.AbstractWe give a direct type-theoretic characterization of the basic mechanisms of object-orientedprogramming, including objects, methods, message passing, and subtyping, by introducingan explicit constructor for object types and suitable introduction, elimination, and equalityrules. The resulting abstract framework provides a basis for justifying and comparingprevious encodings of objects based on recursive record types (Cardelli, 1984; Cardelli,1992; Bruce, 1994; Cook et al., 1990; Mitchell, 1990a) and encodings based on existentialtypes (Pierce & Turner, 1994).1 IntroductionResearch on the foundations of object-oriented programming languages has pro-duced a series of increasingly ambitious attempts to capture the static typing prop-erties of well-behaved programs in conventional object-oriented languages (Cardelli,1984; Wand, 1987; Cook et al., 1990; Mitchell, 1990a; Cardelli, 1992; Bruce, 1994;Castagna et al., 1994; Pierce & Turner, 1994; Abadi, 1994; Abadi & Cardelli, 1994a;Abadi & Cardelli, 1994b; Fisher & Mitchell, 1994, etc.). These proposals have oftenfocused on encodings of high-level syntax for objects into more primitive construc-tions in various typed �-calculi, the semantics of objects being understood simplyas the semantics of their encodings. Our goal here is to use the tools of type the-ory to give a more direct account of objects and message passing, with the aim ofisolating high-level principles for reasoning about objects.An object in the sense of Smalltalk (Goldberg & Robson, 1983) can be thoughtof as a state of some hidden representation type together with a collection of meth-ods that are used to analyze or change the state. For example, take simple one-dimensional point objects with the operations set and get, where set is expressedin a functional style, returning an object with an updated state rather than modify-ing the state in-place. Such objects can be implemented by choosing a representationtype, say Int, a state, say 5, and two method implementations, sayset = fun(state:Int) fun(newX:Int) newXget = fun(state:Int) state



2 M. Hofmann and B. Pierceand packaging them together so that the state is protected from external accessexcept via the methods. Because we are mainly concerned here with the typingproperties of object-oriented features, this very simple example will su�ce for ourpurposes throughout the article. The applicability of these techniques to larger ex-amples and to objects with mutable state are discussed in Pierce and Turner (1994).Unlike the elements of ordinary abstract data types, di�erent point objects mayhave di�erent internal representations: every point comes with its own implement-ation of the set and get methods, appropriate to its internal representation type.Thus, another implementation of point objects might use the more interesting rep-resentation type {x:Int,other:Int}, the initial state {x=5,other=8}, and the follow-ing methods:set = fun(state:{x:Int,other:Int}) fun(i:Int) {x=i, other=state.other}get = fun(state:(x:Int,other:Int}) state.xThis exibility is central to the spirit of object-oriented programming.Although it isnot found in its most general form in some object-oriented languages (e.g. Smalltalkand C++ (Stroustrup, 1986), which do not allow multiple implementations of aclass), equivalent mechanisms like \virtual classes" are then used in its place. Thecrucial point is that when a message is sent to an object, the identity of the objectitself determines what code is executed in response. Thus, a program manipulatinga point object must do so \generically" | by calling the point's methods to analyzeand update its state as necessary | rather than concretely, by direct operations onthe state. In other words, it uses a uniform functionPoint'set : Point -> Int -> Pointthat, given a point, invokes its internal set method and packages the resultingconcrete representation into a new Point, and another functionPoint'get : Point -> Intthat uniformly invokes the internal get method of any point and returns the result-ing integer. One of our goals below will be to de�ne the word \uniform" rigorously.Intuitively, it means that the behavior of a message-sending function is completelydetermined by the implementation of the corresponding method of the object; inparticular, a message-sending function cannot involve a \typecase" on its argu-ment's representation.Our purpose is to study the mechanisms of encapsulation and message passing ina type-theoretic setting. In Sections 2 and 3, we introduce the basic constructionsof our abstract framework. We state a simple syntactic condition on object types,capturing the intuition that methods can only access the state of one object at atime, and show that this yields a natural de�nition of uniform method invocation.In Section 4, we extend this framework to include subtyping. Section 5 justi�esthe framework by showing that a simple encoding of objects in terms of existentialtypes satis�es our axioms. Section 6 shows that the more familiar encoding ofobject types as recursive records also satis�es the axioms; Section 7 discusses thespecial case of F-bounded quanti�cation. In Section 8 we use our abstract frameworkto sketch a high-level concrete syntax for object type declarations and message



A Unifying Type-Theoretic Framework for Objects 3passing operations. Section 9 extends the framework to mixed-variance methodsignatures, illustrating the correspondence between our approach and previouslystudied encodings of mixed-variance objects; here, recursive types turn out to beunavoidable. Section 10 o�ers concluding remarks.Appendices A through E develop the formal foundations of the type theoriesused in the body of the article. We begin in Appendix A with the typed �-calculusF !� (an extension of Girard's System F ! with subtyping), reviewing the standardtyping and subtyping rules and presenting a new equational theory generalizingthe one developed by Cardelli, Martini, Mitchell, and Scedrov (1994) for F�, thesecond-order fragment of F !� . Following the informal development in Section 3,Appendix B extends F !� with a predicate pos for testing the positivity of typeoperators and a polymorphic constant map that can be used to \map a given func-tion through a positive operator." Appendix C summarizes the typing, subtyping,and equational rules for the Object type constructor and its associated term con-structors. (These rules are introduced, by a series of re�nements, in the body of thearticle. The purpose of Appendix C is to collect the �nal versions in a single place.)Appendices D and E describe extensions of F !� with existential types and recursivetypes. For existential types we o�er an equational theory, which can be shown tobe sound in a standard PER model and which satis�es the laws in Appendix C.The extension with recursive types is more problematic: it appears di�cult to givea purely equational axiomatization from which, for example, the laws governingmap in Appendix B can be derived. Instead, we o�er an argument from semanticconsiderations.Our presentation is self-contained. However, basic familiarity with Girard's F !,type systems with subtyping, other type-theoretic treatments of objects, and basicterminology of category theory will be helpful. Background reading in these areascan be found in (Barendregt, 1992; Pierce et al., 1989; Cardelli et al., 1994; Barr &Wells, 1990; Fisher & Mitchell, 1994) and elsewhere in the references.2 MotivationThe representation type of an object is hidden from external view: its interface isjust the types of its methods. Type-theoretically, the interface can be modeled asa type operator with one argument, thought of as a type with one free variablethat stands for the hidden representation type. For example, the interface of pointobjects is described by the operatorPointM = Fun(X) {set: X->Int->X, get: X->Int}.For now, we leave unspeci�ed the \ambient type theory" in which our de�nitionsare embedded. In Sections 5 and 6, we will be using two extensions of the higher-order polymorphic �-calculus System F ! (Girard, 1972) with subtyping; these aresummarized in the appendices. The calculus under consideration will determine theprecise force of the equational constraints expressed by the diagrams.



4 M. Hofmann and B. PierceTo characterize the set of objects sharing a common interface, we introduce a newtype constructor Object, which turns an interface speci�cation (a type operator ofkind Type!Type, i.e. a map from types to types) into a type:� `M : Type!Type� ` Object (M ) : Type (K-Obj*)(We will alter this rule slightly later on; �nal versions of all the rules are givenin Appendix C. Rules that will be superseded by others appearing later are givennames ending with a *.) The type of point objects is Point = Object(PointM).Elements of an object type are created using the term constructor object. Givenan interface speci�cation M , a concrete representation type R, a collection m ofmethods, and an initial value s of the representation type, we use object to packagethem together into an element objectM (R; s; m) : Object (M ). For example, twopoint objects with di�erent representation types can be created as follows:m1 = {set = fun(state:Int) fun(i:Int) i, get = fun(state:Int) state}: PointM(Int)p1 = object_PointM(Int, 5, m1): Pointm2 = {set = fun(state:{x:Int,other:Int})fun(i:Int) {x=i, other=state.other},get = fun(state:(x:Int,other:Int}) state.x}: PointM({x:Int,other:Int})p2 = object_PointM({x:Int,other:Int}, {x=5,other=8}, m2): PointThe object constructor has the following typing rule.� `M : Type!Type � ` s : R � ` m : M (R)� ` objectM (R; s; m) : Object (M ) (T-Obj-I*)For the elimination of elements of object types, we might use an unpacking rulein the style of the existential elimination rule of Mitchell and Plotkin (1988). Butthis runs counter to the spirit of object-style programming, in which objects arenever \opened" but are acted on externally by sending messages to invoke theirinternal methods. We want to capture this mechanism directly.Since every point object must implement the set method, there should be auniform functionPoint'set : Point -> Int -> Pointthat, given a point, invokes its set method. More generally, for each operator Mrepresenting the interface of an object type, we introduce a term constant GMMdenoting the whole collection of uniform message-sending functions correspondingto this signature. � `M : Type!Type� ` GMM : M (Object (M )) (T-GM*)We call this the \generic method" for objects with interface M . Then



A Unifying Type-Theoretic Framework for Objects 5GM_Point : {set: Point->Int->Point, get: Point->Int}Point'set = GM_Point.set.Such uniform method invocation functions do not necessarily exist. For example,we might extend our �rst implementation of points with an equality methodeq = fun(state1:Int) fun(state2:Int) eqInt state1 state2(where eqInt : Int->Int->Bool is the equality function on integers), but we cannotexpect to be able to invoke this eq uniformly | that is, we cannot expect to writea functionPoint'eq : Point -> Point -> Boolthat calls the eq method of its �rst parameter and passes it the internal represent-ations of both parameters: such an invocation of the low-level eq function wouldonly be well typed when the two points passed as arguments to Point'eq happento have identical representation types, which is in general not the case.This example illustrates a well-known, inherent limitation of object-style encap-sulation (Reynolds, 1978; Cook, 1991). In most object-oriented languages, there isno way to write a method that has concrete access to the internal state of morethan one object at a time. This limitation can be modeled abstractly as a syntacticrestriction on M , capturing the intuition that the methods should all be unaryfunctions of the representation type. A unary operator M is one of the formM (X) = fl1:X!N1(X); : : : ; ln : X!Nn(X)gor, more simply, M (X) = X ! N (X)for N (X) = fl1:N1(X); : : : ; ln:Nn(X)g, where N1 through Nn contain X only inpositive positions. For example, we can express the signature of points asFun(R) R -> PointN(R)where PointN = Fun(R) {set: Int->R, get: Int}. The restriction to a single record-valued method is purely a matter of formal convenience; in practice, one could allowseveral methods here.Formally, a variable appears only positively in a type if every occurrence is onthe left hand side of an even number of arrows; for polymorphic types, recursivetypes, and type operators, some additional considerations apply. For the case ofF !� , positive occurrences are de�ned in Appendix B by induction on the structureof types. We write pos(N ) in formulas to assert that the parameter A only appearspositively in the body T of the operator N = Fun (A) T . Such operators are calledpositive.3 ObjectsWe will henceforth restrict our attention to objects with unary methods, using thepositive operator N rather than M = Fun (R) R! N (R) as the parameter to the



6 M. Hofmann and B. PierceObject type constructor. This entails a small modi�cation to our typing rules forthe object constructor and the generic method:� ` N : Type!Type� ` Object (N ) : Type (K-Obj)� ` N : Type!Type pos(N )� ` s : R � ` m : R!N (R)� ` objectN (R; s; m) : Object (N ) (T-Obj-I)� ` N : Type!Type pos(N )� ` GMN : Object (N ) ! N (Object (N )) (T-GM**)It might seem cleaner here to allow the formation of Object (N ) only when pos(N ).But formulating the rules in this way would require, in Section 4, that we be able toquantify over positive operators, since there we will need to consider object typesof the form Object (N ) where N is a variable. The study of a re�ned type theory inwhich this would be possible is an interesting topic for future research, but usingsuch a type theory would signi�cantly complicate our formal development withoutadding much insight.Next, we need a suitable axiomatization of the behavior of generic methods. Thisshould reect the intuition that a generic method should be a \packaged version"of the method that was originally used to build an object. More precisely, the resultof applying the generic method to a newly built object should be the same as theresult of applying the concrete method to the object's state and then \repacking"the result | i.e., the informal diagramObject (N )R N (Object (N ))N (R)-m -GMN6objectN (R; |; m) 6\repack"should commute, where objectN (R; |; m) stands for the packing function fun (x :R) objectN (R; x; m). Note that, for any given R and m, this speci�cation can besatis�ed trivially by setting Object (N ) = R and GMN = m; the force of the diagramlies in the fact that Object (N ) and GMN independent of R | a consequence of thetyping rules.In the case of our simpler implementation of points, this diagram can equivalentlybe written as a pair of equations(GM_PointN (object_PointN(Int,s,m))).set(i)= object_PointN(Int, (m s).set i, m)(GM_PointN (object_PointN(Int,s,m))).get= s,corresponding to the set and get methods, respectively, wherem = fun(s:Int) {set = fun(i:Int) i, get = s}.The arrow labeled \repack" in this case is the function



A Unifying Type-Theoretic Framework for Objects 7fun(r: {set:Int->Int,get:Int}){set = fun(i:Int) object_PointN(Int, r.set i, m),get = r.get}.This special case brings us to a technical cornerstone of the article: the observationthat, in the general case, this repacking function can be expressed using the idea of\mapping a function through a positive type operator."In higher-order polymorphic �-calculi like F ! and F !� , the action of a positivetype operator N on a function f : X!Y can be interpreted as \applying f toeach occurrence of X in N (X)" | that is, given an element n : N (X), decomposen, apply f to each component of type X, and use the results to rebuild an elementof N (Y ). For example, if N (X) = fa:X; b:Int; c:Bool! Xg, this procedure yieldsfa = f(n:a); b = n:b; c = fun (v:Bool) f(n:c v)g: fa:Y ; b:Int; c:Bool! Y g= N (Y )We will henceforth assume that the ambient type theory supports a predicatepos(N ) on elements N of Type!Type and an appropriate function mapN for everyN with pos(N ). Appendices B, D, and E show how pos(N ) and mapN can be de�nedfor the type theories under consideration.3.1 De�nition: A type theory extending F ! is said to include positivity if itprovides a predicate pos on operators of kind Type!Type and, for each N withpos(N ), there is a polymorphic functionmapN : All (X)All (Y ) (X!Y ) ! (N (X)!N (Y ))such that � ` N : Type!Type pos(N )� ` f : X!Y � ` g : Y!Z� ` mapN [X] [Z] (f ; g)= (mapN [X] [Y ] f) ; (mapN [Y ] [Z] g): N (X)!N (Z) (Eq-Map-Trans)� ` N : Type!Type pos(N ) � ` X : Type� ` mapN [X] [X] (id [X]) = id [N (X)] : N (X)!N (X) (Eq-Map-Id)where f ;g = �x: g(f(x)) denotes composition in diagrammatic order and id is thepolymorphic identity function.Using map, we can specify the behavior of generic methods for an arbitrarypositive operator N . Given a representation type R, a state s : R, and a concrete



8 M. Hofmann and B. Piercemethod m : R!N (R), we require that the diagramObject (N )R N (Object (N ))N (R)-m-GMN6objectN (R; |; m) 6mapN[R] [Object (N )]objectN (R; |; m)(Eq-Obj-Map*)commute, or equivalently that the following equation be satis�ed:GMN (objectN (R; s; m)) = mapN [R] [Object (N )] (objectN (R; |; m)) (m s): N (Object(N )):We close this section with several technical remarks. First, it is interesting to notethat by orienting this equation from left to right, we obtain a natural computationrule for objects. This suggests that a di�erent kind of semantics for our abstractcalculus | besides those developed in Sections 5 and 6 | could be obtained byadding this reduction to a standard operational semantics for F !� .Next, note that the diagram constrains only the behavior of those elements ofObject (N ) that lie in the image of the packing function objectN (R; |; m). Op-erationally this is su�cient, since every object occurring in a program must atsome stage have been constructed with the packing function. However, it may bedesirable to internalize this observation by imposing an additional �-like equation:� ` x : Object (N )� ` x = objectN (Object (N ); x; GMN ) : Object (N )We prefer to regard this axiom as optional, since it places a strong constraint onthe encodings we discuss below.Our map operator arises from the concept of functorial strength in categorytheory (Kock, 1970; Moggi, 1989): an endofunctor N : C!C on a cartesian closedcategory C is called \strong" if its action on morphisms can be internalized, i.e., ifthere exists a natural transformation mapX;Y : (X ) Y ) ! (N (X) ) N (Y )) thatcaptures the action of N .Finally, it is interesting to note that our abstract speci�cation of objects exactlyamounts to de�ning Object (N ) as a weakly terminal co-algebra for the functorN . Indeed, our encoding of objects using existential types in Section 5 corres-ponds exactly to the impredicative coding of weakly terminal co-algebras proposedby Wraith (1989). It is worth considering modeling objects by strongly terminalco-algebras instead. The introduction rule and generic method would remain un-changed in this case, but we would have, in addition, a coarser equality for objectsgiven by bisimulation equivalence. This intuition also underlies the categorical ap-proach to object semantics proposed by Reichel (1995).



A Unifying Type-Theoretic Framework for Objects 94 Objects and SubtypingNext, we extend our abstract characterization of objects and message passing toinclude another important concept from object-oriented programming languages:subtyping. The issues we must deal with are as follows:1. The �-calculus in which the model is expressed must be extended with sub-typing.2. The subtyping behavior of the Object type constructor must be speci�ed.For example, if we introduce a type of colored point objects whose interfaceincludes setC and getC methods in addition to set and get, then we want tobe able to consider every colored point as a point.3. The generic method of a given object type should be applicable to elementsof object types with more demanding speci�cations. Moreover, the fact thatsending a message is a kind of update operation must be reected in the typingof the generic method; for example, the generic method of points should beapplicable to colored points, and setting the x coordinate of a colored pointmust yield a colored point.4. The equational speci�cation of the generic method must be re�ned to take itsnew typing into account.We consider these issues in order.Various extensions of System F ! with subtyping have been proposed (Cardelli,1990; Bruce & Mitchell, 1992; Pierce & Turner, 1994; Compagnoni & Pierce, 1993;Ste�en & Pierce, 1994; Compagnoni, 1994); we choose the simplest (Ste�en &Pierce, 1994). The formulation of this system, called F !� , follows the pattern usedby Cardelli and Wegner to obtain F� from the pure polymorphic �-calculus (Girard,1972; Reynolds, 1974):� The typing relation � ` e : T is extended with a subtype relation � ` S � Tand a rule of subsumption:� ` e : S � ` S � T� ` e : T� For each kind K, we add a maximal element Top(K).� Binding occurrences of type variables in quanti�ers are decorated with sub-typing assumptions. In contexts, assumptions about type variables have theform A�T instead of A:K.� To keep the kind structure as simple as possible, type operators retain theform Fun (A:K) T rather than changing to Fun (A�S) T . This means that therule for checking the well-formedness of a type operator cannot simply extendthe context with the assumption A:K, but must use A�Top(K) instead:�; A�Top(K1) ` T2 : K2� ` Fun (A:K1)T2 : K1!K2



10 M. Hofmann and B. Pierce� We introduce a \pointwise subtyping" rule for operators:�; A�Top(K) ` S � T� ` Fun (A:K)S � Fun (A:K)TIntuitively, Fun (A:K)S is a subtype of Fun (A:K) T i� [U=A]S is a subtypeof [U=A]T for every U : K.� Because subtyping of operators is pointwise, we may promote the operator ina type application to any larger operator \in place":� ` S � T� ` S U � T UThe interesting case is when S is a variable, so that S U is not a �-redexwhile T U may be.The resulting calculus is summarized in Appendix A.Since the speci�cation of the generic method depends on the map operator inthe ambient �-calculus, we also need to consider the interaction between map andsubtyping. A natural requirement is that the two should commute:� ` N 0 � N pos(N 0) pos(N )� ` f : X!Y � ` n : N 0(X)� ` mapN 0 [X] [Y ] f n = mapN [X] [Y ] f n : N (Y ) (Eq-Map-Sub)i.e., N (X)N 0(X) N (Y )N 0(Y )-mapN 0 [X] [Y ] f -mapN [X] [Y ] f6� 6�This says precisely that, for each pair of positive operators N and N 0 such thatN 0 � N , the family of coercions f[[N 0(S) � N (S)]] j S : Typeg in the model formsa natural transformation.Moreover, we require that all positive operators be monotone with respect to thesubtyping relation:� ` N : Type!Type pos(N ) � ` S � T� ` N S � N T (S-Pos-Mono)In Appendices B, D, and E we show that Eq-Map-Sub and S-Pos-Mono hold forthe particular de�nitions of pos(N ) and mapN exhibited there.With these extensions of the base calculus, we are ready to deal with objecttypes. We want the Object constructor to be monotone in the subtype relation, sothatCPoint = Object(CPointN) < Object(PointN) = Point,whereCPointN = Fun(X) {set: Int->X, get: Int, setC: Color->X, getC: Color}.



A Unifying Type-Theoretic Framework for Objects 11This leads to the following subtyping rule for object types:� ` N 0 � N � ` N : Type! Type� ` Object (N 0) � Object (N ) (S-Obj)The monotonicity of the Object constructor captures the intuition that wheneverthe interface N 0 of an object type Object (N 0) is more re�ned than the interface Nof an object type Object (N ), elements of Object (N 0) should be allowed in contextswhere elements of Object (N ) are expected.Next, we consider generic methods. Observe that if we simply apply the genericset method of points to an element of CPoint (which is valid by the rule of sub-sumption), the result will be an element of Point, not of CPoint: in the presence ofsubtyping, our generic methods are insu�ciently polymorphic. More generally, sup-pose that N is a positive operator and N 0 � N . The application of GMN to an ele-ment of Object (N 0) should yield an element of N (Object(N 0)), not N (Object(N ))as above. This suggests a change in the type of GM:� ` N : Type!Type pos(N )� ` GMN : All (N 0�N ) Object (N 0) ! N (Object (N 0)) (T-GM)(c.f. (Cardelli & Wegner, 1985)). Note, here, that N 0�N does not imply that N 0 isalso positive.When GMN is applied to N itself, the original speci�cation should continue tohold: Object (N )R N (Object (N ))N (R)-m -GMN [N ]6objectN (R; |; m) 6mapN [R] [Object (N )]objectN (R; |; m)(Eq-Obj-Map)or, as an equational rule:� ` N : Type!Type pos(N )� ` s : R � ` m : R!N (R)� ` GMN [N ] (objectN (R; s; m))= mapN [R] [Object (N )] (objectN (R; |; m)) (m s): N (Object(N )) (Eq-Obj-Map)In fact, the examples below show that this special instance of the commutativityof object and map actually constrains their behavior in a much broader range ofsituations. We take this diagram as a basic axiom.The interaction between the subtype relation and the term constructors objectand GM is axiomatized by two rules like Eq-Map-Sub, which stipulate that theyshould commute when all the operators involved are positive.� ` N 0 � N pos(N 0) pos(N )� ` s : R � ` m : R! N 0(R)� ` objectN 0 (R; s; m) = objectN (R; s; m) : Object (N ) (Eq-Obj-Sub)



12 M. Hofmann and B. Pierce� ` N 00 � N 0 � N : Type!Type pos(N 0) pos(N )� ` GMN 0 [N 00] = GMN [N 00] : Object (N 00)!N (Object (N 00)) (Eq-GM-Sub)(More generally, we might require that every well-typed equation whose type-erasure is a syntactic identity should be provable in the equational theory; c.f. (Car-delli et al., 1994; Mitchell, 1990b).)4.1 Example: Mitchell's treatment of method specialization and inheritance vianatural transformations (1990a) includes a \coherence condition" between di�erentinstances of a given generic method. If N 00 � N 0 � N and pos(N ), then:Object (N 00)Object (N 0) N (Object (N 0))N (Object (N 00))6� 6�-GMN [N 0]-GMN [N 00]The commutativity of this diagram also follows from our laws.Proof: (This proof and those that follow depend on de�nitions and results fromthe appendices. Readers who wish to follow in detail should �rst familiarize them-selves with the material presented there.)By T-GM and Eq-Refl from Appendix A.8,� ` GMN = GMN : All (N 0�N ) Object (N 0) ! N (Object (N 0)):On the other hand, by S-Object, S-Arrow, and S-Pos-Mono,� ` Object (N 0) ! N (Object (N 0)) � Object (N 00) ! N (Object (N 0))and � ` Object (N 00) ! N (Object (N 00)) � Object (N 00) ! N (Object (N 0)):Eq-TApp now applies, yielding� ` GMN [N 0] = GMN [N 00] : Object (N 00) ! N (Object (N 0));as required. �4.2 Example: Eq-GM-Sub can be used to derive a similar kind of coherencebetween di�erent generic methods. If N 0 � N with pos(N ) and pos(N 0), then:Object (N 0)Object (N ) N (Object (N ))N 0(Object (N 0))6� 6�-GMN [N ]-GMN 0 [N 0]



A Unifying Type-Theoretic Framework for Objects 13Proof: Use Eq-GM-Sub with N 00 = N 0 to obtain� ` GMN 0 [N 0] = GMN [N 0] : Object (N 0) ! N (Object (N 0));which, by Eq-Subsumption (using S-Pos-Mono), gives� ` GMN 0 [N 0] = GMN [N 0] : Object (N 0) ! N (Object (N )):Now rename N 0 to N and N 00 to N 0 in the diagram from Example 4.1, yielding� ` GMN [N ] = GMN [N 0] : Object (N 0) ! N (Object (N )):The desired result follows by symmetry and transitivity. �4.3 Example: Similarly, we can combine Eq-GM-Sub and Eq-Obj-Map to char-acterize the behavior of the generic method when applied to some re�nement N 0 ofits own interface operator N :
RObject (N 0) N 0(R)N 0(Object (N 0))N (Object (N 0))-m

-GMN [N 0]6objectN 0 (R; |; m) 6mapN 0 [R] [Object (N 0)]objectN 0 (R; |; m)6�
5 Objects as PackagesWe now consider a speci�c encoding of objects, where existential types are used toachieve the hiding of the internal states of objects (Pierce & Turner, 1994; L�aufer& Odersky, 1994) (c.f. Danforth and Tomlinson (1988) and Bruce (1994); the latteris mainly based on recursive records, but existential types are used to implementhidden instance variables). The type Object (N ) is de�ned as an abstract type inthe sense of Mitchell and Plotkin (1988), with hidden representation A, a state oftype A, and an implementation of the methods of type A! N (A)Object (N ) = Some (A) fstate : A; methods : A ! N (A)gor, in more familiar notation:Object (N ) = 9A: A� (A! N (A)):The rules for existential types in F !� are summarized in Appendix D, followingCardelli and Wegner (1985) and Mitchell and Plotkin (1988). The de�nition of mapfor this calculus, a straightforward extension of the de�nition of map for pure F !� ,is also given in Appendix D.



14 M. Hofmann and B. Pierce5.1 De�nition: The type-theoretic encoding of objects in F !� using existentials isgiven by:Object (N ) = Some (A) f state : A; methods : A! N (A) gobjectN (R; s; m) = pack fstate= s; methods=mg as Object (N )hiding RGMN = fun (N 0�N )fun (x : Object (N 0))open x as [R; r] inmapN [R] [Object (N 0)]objectN 0 (R; |; r:methods)(r:methods r:state)5.2 Proposition: This encoding satis�es the object axioms summarized in Ap-pendix C.Proof: The typing and subtyping laws, K-Obj, S-Obj, T-Obj-I, and T-GM,follow directly from the de�nitions. The three equational laws are more interesting.Eq-Obj-Map follows by the rules Eq-TBeta, Eq-Beta, Eq-Abs, and Eq-Some-Beta.Eq-GM-Sub follows by Eq-Map-Sub, Eq-Open, Eq-Abs, Eq-Subsumption,and Eq-TBeta.Eq-Obj-Sub is derived as follows. We are given� ` N 0 � Npos(N 0) pos(N )� ` s : R� ` m : R! N 0(R):Let V = fstate : R; methods : R! N 0(R)gbody = fstate= s; methods=mg:Then � ` body = body : Vby Eq-Refl. By S-App, S-Arrow, and S-Rcd,� ` V � fstate : R; methods : R! N (R)g� ` V � fstate : R; methods : R! N 0(R)g:Now, by Eq-Pack,� ` pack body as Some (A) fstate : A; methods : A! N 0(A)g hiding R= pack body as Some (A) fstate : A; methods : A! N (A)g hiding R: Some (A) fstate : A; methods : A! N (A)g;i.e., � ` objectN 0 (R; s; m) = objectN (R; s; m) : Object (N ): 2



A Unifying Type-Theoretic Framework for Objects 15This encoding is interesting both because it works in a fairly simple calculus |pure F !� enriched with existential types | and because it avoids introducing thepossibility of non-termination in situations where �xed points are not strictly re-quired. One situation where �xed points at the value level are required is the mod-eling of inheritance, where the pseudovariable self is given meaning by taking a�xed point of a method-building function; a more detailed discussion of this pointcan be found in (Pierce & Turner, 1994; Hofmann & Pierce, 1994).6 Objects as Recursive RecordsNext, we show that a familiar encoding of objects as recursive records (Cardelli,1984; Cardelli, 1992; Bruce, 1994; Mitchell, 1990a, etc.) satis�es the speci�cationdeveloped in Sections 3 and 4 and summarized in Appendix C. This justi�es boththe abstract framework itself (by showing that a well-known construction is a spe-ci�c instance of it) and the encoding (by showing that some of its tricky aspects,e.g. the creation of objects, can be explained from general considerations).We extend pure F !� with a recursive type constructor �, which obeys the followingsubtyping laws (Amadio & Cardelli, 1993):� ` �(A)T : Type� ` �(A)T � [(�(A)T )=A]T (S-Fold*)�; B�Top(Type); A�B ` S � T� ` �(A)S � �(B)T (S-Mu*)This extension is summarized in Appendix E. (We give slightly more general ver-sions of S-Fold and S-Mu there.) We also assume the existence of a �xed-pointcombinator �x : All (A�Top(Type)) (A!A) ! A:This combinator can be de�ned using mixed-variance �-types (Amadio & Cardelli,1993); however, we prefer to consider it as a primitive, since the equation Eq-Fix-Sub in Appendix E is not provable syntactically for the encoding. The de�nitionsof positivity and map for the extended system appear in Appendix E.Our type constructor Object can be encoded in this calculus by takingObject (N ) = �(X) N (X);reecting the intuition that the extension of an object comprises the potentialresults of all methods applicable to it. This is analogous to the observation, capturedformally by the rule Eq-Eta in Appendix A.8, that the extension of a function isits input-output behavior.Now, Object (N ) is both a sub- and a supertype of N (Object (N )) by S-Mu.Therefore, the generic method can be implemented as an identity function:GMN = fun (N 0�N ) id [Object (N 0)]: All (N 0�N ) Object (N 0) ! Object (N 0)� All (N 0�N ) Object (N 0) ! N 0(Object (N 0))� All (N 0�N ) Object (N 0) ! N (Object (N 0)):



16 M. Hofmann and B. PierceThe top arrow GMN [N ] in the diagram corresponding to rule Eq-Obj-Map is nowinvertible. Therefore, Eq-Obj-Map is satis�ed i�� ` objectN (R; s; m)= mapN [R] [Object (N )] (objectN (R; |; m)) (m s): Object(N )where� ` N : Type!Type pos(N ) � ` s : R � ` m : R!N (R):In other words, the diagram can be read as a recursive speci�cation of the objectconstructor, which can be solved using the �xed point combinator:objectN (R; s; m) = obj swhere obj = �x [R!Object (N )]fun (f :R!Object (N ))fun (s:R)(fold : N (Object(N ))!Object (N ))(mapN [R] [Object (N )] f (m s)):(The function fold is actually an implicit coercion; we write it explicitly here as anaid to the reader.)For example, suppose we are given the representation type Int and the followingimplementation of the point methods:m = fun(s:Int) {get = s, set = fun(i:Int) i}: Int -> PointN(Int)Then by expanding the de�nitions of object and map_PointN and �-reducing, weobtain a function mkpoint mapping internal states to point objects as follows:mkpoint = fix [Int->Point]fun(mkp: Int->Point) fun(s:Int)(fold {get = s, set = fun(i:Int) mkp i})6.1 Proposition: The object laws in Appendix C are satis�ed by this encoding.Proof: The kinding, subtyping, and typing rules are established by straightfor-ward calculation, using S-Pos-Mono for the case of S-Obj. As in Proposition 5.2,the equational rules are more interesting.For Eq-Obj-Sub, we are given� ` N 0 � Npos(N 0) pos(N )� ` s : R� ` m : R! N 0(R):From Eq-Map-Sub and Eq-TApp, we obtain�; f :R!Object (N 0); s:R ` mapN 0 [R] [Object (N 0)] f (m s)= mapN [R] [Object (N )] f (m s): N (Object (N )):



A Unifying Type-Theoretic Framework for Objects 17Using Eq-Abs and Eq-Abs+ (A.8.2), we deduce� ` fun (f :R!Object (N 0)) fun (s:R)mapN 0 [R] [Object (N )0] f (m s)= fun (f :R!Object (N )) fun (s:R)mapN [R] [Object (N )] f (m s): (R!Object (N 0)) ! (R!Object (N )):From this we obtain the desired result using Eq-Fix-Sub and Eq-App.For Eq-GM-Sub, the result follows directly from the de�nition using Eq-TBetatwice plus Eq-Refl.Eq-Obj-Map follows from Eq-TBeta and Eq-Beta (several times), Eq-Fix,and Eq-Eta. �7 F-bounded Quanti�cationIf objects are modeled using recursive types, the higher-order quanti�cation in thetype of the generic method can be eliminated in favor of a specialized form ofsecond-order quanti�cation called F-bounded quanti�cation (Canning et al., 1989;Cook et al., 1990), where the type variable introduced by a quanti�er may appearfree in its bound.Cardelli and Mitchell have observed that F-bounded quanti�cation can be ex-pressed in terms of higher-order quanti�cation and recursive types (Abadi, 1992;Bruce, 1994): All (A � F (A)) S � All (G � F ) [(�(A)G(A))=A]S:Indeed, it follows from an observation by Abadi (1992) that, \in many models,"these two types denote the same collection.Using this correspondence, we can recast the type of our generic method asGMN : All (A � N (A)) A! N (A)to match the expected types of programs manipulating objects. It is interesting tonote that this also happens to be the simplest type of classes in the frameworkproposed by Cook, Canning, and Hill in (1990).8 High-Level SyntaxOne application of this abstract framework is that it yields a uniform syntax forcompactly declaring object types and their associated message-sending operations.For example, the declarationPoint = ObjectType(Rep) with set: Int->Rep, get: Intabbreviates the following set of declarations:PointN = Fun(Rep) {set:Int->Rep, get:Int}Point'set = fun(N<PointN) fun(p:Object(N)) (GM_PointN[N](p)).setPoint'get = fun(N<PointN) fun(p:Object(N)) (GM_PointN[N](p)).getSimilarly,



18 M. Hofmann and B. PierceCPoint = ObjectType(Rep) with set: Int->Rep, get: Int,setC: Color->Rep, getC: Colorstands forCPointN = Fun(Rep) {set:Int->Rep, get:Int,setC:Color->Rep, getC:Color}CPoint'set = fun(N<CPointN) fun(p:Object(N)) (GM_CPointN[N](p)).setCPoint'get = fun(N<CPointN) fun(p:Object(N)) (GM_CPointN[N](p)).getCPoint'setC = fun(N<CPointN) fun(p:Object(N)) (GM_CPointN[N](p)).setCCPoint'getC = fun(N<CPointN) fun(p:Object(N)) (GM_CPointN[N](p)).getCThis translation has been implemented in a prototype typechecker based on theencoding of objects with existential types given in Section 5 (Pierce & Turner,1994).9 Mixed VarianceIn this section, we consider extending our theory with mixed-variance signatures toaccount for binary methods. As we saw in Section 2, this cannot be accomplishedsimply by dropping the positivity requirement on N . We must deal with the factthat a binary method can be applied to objects with di�erent representation types.Our running example will be points with equality, described by the mixed-variancesignature:EqPointN(X) = {set:Int->X, get:Int, eq:X->bool}where the third method is used to compare two points for equality. Of course, inthe framework developed so far we could write an external equality function (asopposed to an equality method local to one of the points) using the get method ofboth points generically:eqPoint = fun(p:Point) fun(q:Point) eqInt (Point'get p) (Point'get q).But it may be desirable to package the equality test with the rest of the methods ofpoints. In this case, an implementation of the eq method must accept an arbitrarypoint as its second argument and interrogate it to obtain an integer coordinate.Our aim here is to give a formal account of this construction.As always, we �rst state our requirements in an abstract form and try to give asuitable axiomatization.We then observe that mixed-variance objects directly implypossible non-termination of programs; thus no encoding is possible in a stronglynormalizing type-theory like pure F !� . Finally, we show how recursive types maybe used in combination with an arbitrary encoding of covariant objects to implementmixed-variance objects.9.1 Mixed-Variance ObjectsIn general, let N : Type!Type be a mixed-variance type operator. We write N inthe form N = Fun (X) F X X for some binary operator F that is positive in itssecond argument. For example, the signature of points with equality is written



A Unifying Type-Theoretic Framework for Objects 19EqPointF = Fun(X) Fun(Y) {set:Int->Y, get:Int, eq:X->bool}.This technique of separating positive and mixed parts of an object signature formsthe basis of the following de�nition of mixed-variance objects.9.1.1 De�nition: We write mixed(F ) to indicate that F is positive in its secondargument: mixed(F ) i� pos(F X);where F X = Fun (Y ) FXY : Type ! Type. Notice that for a given N theremay be more than one such F ; for example, we always have the trivial F =Fun (X) Fun (Y ) N (X). However, the type of the method implementation dependson the chosen F . In the trivial case, we have FOR = NO, independent of R, so thatthe methods must always return proper objects, not bare elements of the represent-ation type. Such objects are completely degenerate, in the sense that the methodscannot modify the state. It is therefore better to push as much as possible of Ninto the positive part of F .The well-formedness rule for mixed-variance object types and the typing of theassociated generic method are straightforward generalizations of the ones in Sec-tion 3: � ` F : Type!Type!TypeMObject (F ) : Type (K-MObj)� ` F : Type!Type!Type mixed(F )� ` MGMF : MObject (F ) ! (F MObject (F ) MObject (F )) (T-MGM*)For example:MGM_EqPointF : EqPoint -> {set: Int->EqPoint,get: Int,eq: EqPoint->Bool},where EqPoint=MObject(EqPointF).In the introduction rule, it is not enough to implement the methods only withrespect to the representation type: a concrete equality method must be able to copewith a second argument whose implementation uses a di�erent representation type.Since, in a sense, MObject (F ) subsumes all other representation types, we can writethe rule this way:� ` F : Type!Type!Type mixed(F )� ` R : Type � ` s : R � ` m : R! (F MObject (F ) R)� ` mobjectF (R; s; m) : MObject (F ) (T-MObj-I)For example, point objects with equality can be created bymkeqpoint = fun(s:Int) mobject_EqPointF(Int, s, m),wherem = fun(s:Int){set = fun(i:Int) i,get = s,eq = fun(p:EqPoint) eqInt s (MGM_EqPointF p).get}



20 M. Hofmann and B. Pierceand tested for equality in expressions likeEqPoint'eq (mkeqpoint 5) (mkeqpoint 6),where EqPoint'eq is de�ned by projection from the generic method as in Section 8.As in the speci�cation of GM in Section 3, the observation that methods canonly manipulate other objects generically underlies the equational speci�cation ofMGM. If R is some representation type and m : R ! (F MObject (F ) R) is animplementation of the methods according to the above rule, then Eq-Obj-Map*generalizes to OR FOOFOR-m -MGMF6mobjectF (R; |; m) 6map(FO) [R] [O]mobjectF (R; |; m)(Eq-MObj-Map*)where O = MObject (F ) and, as before, FO = Fun (Y )FOY .In the case of point objects with equality, this implies that the generic equalitymethod applied to two points should yield the same result as the application of theconcrete equality method of the �rst object to the second object:(MGM_EqPointF (mkpoint x)).eq y = eqInt (MGM_EqPointF y).get x.This again reects the intuition that the generic method should not perform anycomputation of its own, but should simply invoke the local implementation.9.2 Mixed-Variance SubtypingThe typing of the generic method can now be extended to handle subtyping exactlyas in Section 4: � ` F : Type!Type!Type mixed(F )� ` MGMF : All (F 0�F ) MObject (F 0) ! (F MObject (F 0) MObject (F 0))(T-MGM)Following the development in Section 4, we generalize the diagram specifying thebehavior of the generic method to make it account for the more re�ned type:OR FOOFOR-m -MGMF [F ]6mobjectF (R; |; m) 6map(FO) [R] [O]mobjectF (R; |; m)(Eq-MObj-Map)where again O = MObject (F ).For example, the generic method for points with equality now has the type



A Unifying Type-Theoretic Framework for Objects 21MGM_EqPointF : All(F'<EqPointF)MObject(F') -> {set: Int->MObject(F'),get: Int,eq: MObject(F')->Bool}.Subtyping between object types must be de�ned by a more restrictive rule thanthe one we used in Section 4:� ` F 0 v F� ` MObject (F 0) � MObject (F ) (S-MObj)where� ` F 0 v F i� �; B1; B2�Top(Type); A1�B1; A2�B2 ` F 0A1A2 � FB1B2:That is, we require F 0 to be monotonically a subtype of F , not just pointwise. Tosee why this is necessary, considerEqCPointF = Fun(X) Fun(Y) {set: Int->Y, get: Int, eq: X->bool,setC: Color->Y, getC: Color}.If we allowed MObject(EqCPointF) � MObject(EqPointF), then we could break thetype system by creating an instance cp of MObject(EqCPointF)whose equality methodcalled the getC method of its argument, promoting cp to type MObject(EqPointF),and invoking its eq method with an instance of MObject(EqPointF) as argument (c.f.Cook et al (1990) and Bruce (1994)). This observation might lead one to wonderwhether there are any nontrivial subtyping relations between mixed-variance ob-ject types. Indeed, it seems that F 0 v F cannot hold when both F 0 and F arenon-constant in their �rst arguments. However, note that we do have, for example,EqPointF v PointF = Fun(X) Fun(Y) PointN(Y).The rules Eq-Obj-Sub and Eq-GM-Sub are extended as follows:� ` F 0 v F � ` F 00 � F 0 � ` F 00 � Fmixed(F ) mixed(F 0)� ` MGMF 0 [F 00] = MGMF [F 00]: MObject (F 00) ! (F MObject (F 00) MObject (F 00)) (Eq-MGM-Sub)� ` F 0 v F � ` s : R� ` m : R! (F 0 MObject (F 0) R)mixed(F ) mixed(F 0)� ` mobjectF 0 (R; s; m) = mobjectF (R; s; m) : MObject (F ) (Eq-MObj-Sub)9.3 Mixed Variance Implies Non-TerminationIt may surprise the reader to learn that an implementation of mixed-variance ob-jects satisfying the speci�cation Eq-MObj-Map can be used to solve �xed-pointequations on terms, even in the absence of explicit type- or value-level recursion inthe ambient type theory.



22 M. Hofmann and B. PierceLet � : D!D be a function whose �xed point we wish to calculate, and letF X Y = X!DO = MObject (F )g = MGMF [F ]: MObject (F ) ! MObject (F ) ! D:We can build an element of O using the type Top (or any other inhabited type) asrepresentation type and the functionm = fun (x:Top) fun (y:O) �(g y y): Top ! O ! D= Top ! F O Topas the concrete methodo = mobjectF (Top; top; m): O;where top is any element of Top. It follows from Eq-MObj-Map that (g o o) is a�xed point of �. To see this, observe that F is constant in its positive argument, so,by the second clause of De�nition B.6, map(FO) [U ] [V ] f is the identity functionon O!D no matter what f : U!V is. So we can calculate as follows:g o o= g (mobjectF (Top; top; m)) o= id [O!D] (m top o)= � (g o o):Thus, we cannot hope to �nd an implementation of mixed-variance signatures in astrongly normalizing system like F ! with existential types.It might be the case that an implementation could be given in F ! augmentedwith general recursion at the level of terms, without introducing recursive types.Indeed, in an earlier presentation of this work (Hofmann & Pierce, 1992), we gavean encoding of a slightly di�erent version of mixed-variance signatures in F ! exten-ded with a �xed-point operator at the level of values. Mixed-variance objects wereencoded as existential packages, with mixed-variance methods abstracted over poly-morphic functions representing the generic method. However, we found this solutioncontrived; moreover, it could not satisfactorily be extended with subtyping.9.4 Mixed Variance Objects via Recursive TypesOn the other hand, a natural implementation of mixed-variance objects can easilybe given in terms of recursive types. Suppose we are given an implementation of thecovariant object constructors Object , GM, and object that satis�es the requirementsset out in the previous sections. Now, letMObject (F ) = �(X) Object (FX):



A Unifying Type-Theoretic Framework for Objects 23Recall that mixed(F ) means just pos(F X). Next, letMGMF = fun (F 0�F ) GMF MObject(F 0) [F 0 MObject (F 0)]: All (F 0�F ) Object (F 0 MObject (F 0))! F MObject (F 0) Object (F 0 MObject (F 0))� All (F 0�F ) MObject (F 0) ! (F MObject (F 0) MObject (F 0)):Note that the bounded quanti�er in the type of the generic method refers to point-wise subtyping of type operators, as always | not to monotone subtyping. Finally,if R : Type and s : R and m : R! (F MObject (F ) R), then letmobjectF (R; s; m) = objectF MObject(F ) (R; s; m): Object (F MObject (F ))� MObject (F ):The required laws follow from the laws governing covariant objects.If we instantiate the covariant object constructors with the concrete implement-ation in terms of recursive types from Section 6, we obtainMObject (F ) = �(X) �(Y ) F X Y;which denotes the same regular tree as the familiar encodingMObject (F ) = �(X) F X Xproposed, for example, in (Cardelli, 1984; Cardelli, 1992; Bruce, 1994; Mitchell,1990a; Canning et al., 1989; Cook et al., 1990). On the other hand, the existentialencoding of objects of Section 5 leads to the implementationMObject (F ) = �(X) Some (A) fstate : A; methods : A! F X Agof mixed-variance objects, as suggested by one of the referees.10 ConclusionsWe have presented a direct, high-level axiomatization of objects and their typesin a higher-order polymorphic �-calculus with subtyping. This framework yieldsa natural high-level syntax for sending messages to objects and allows previouslystudied encodings of objects to be presented in a common setting.The object encodings using existential types and recursive types essentially coin-cide for positive method signatures. Extending these encodings to mixed-variancesignatures, on the other hand, seems to require recursive types. However, it mightbe argued that using mixed-variance signatures to allow binary methods is ratherunnatural in the �rst place. For one thing, by implying the presence of �xed points,it introduces the risk of non-termination even in simple situations like equalitymethods for points, making the task of proving total correctness unnecessarily dif-�cult. Moreover, the binary methods that can be supported in this way are not theones that are most often needed in practice, since they can only access the concreterepresentation of one of their arguments. It may be better to reject the idea ofbinary methods altogether and use ordinary abstract data types to achieve encap-sulation in situations where simultaneous access to the concrete state of more than



24 M. Hofmann and B. Pierceone datum is required. This perspective can be fully integrated with object-styleprogramming, as shown by Pierce and Turner (1993).We have dealt here only with the basic mechanisms of objects and subtyping (arelation between speci�cations of objects) and not with inheritance (a mechanismfor deriving the implementation of one class of objects by incrementally modifyingthe implementation of another class; c.f. Cook et al (1990)). It can be shown that,once the fundamental mechanisms of encapsulation and subtyping are accounted forand their interaction properly handled, inheritance, including features like self andsuper, arises as a collection of programming idioms completely within the resultingtype theory (Pierce & Turner, 1994). It would thus be a straightforward matterto extend the abstract framework developed here to include an implementation ofinheritance, using the ideas developed in (Cook, 1989; Kamin & Reddy, 1994; Cooket al., 1990; Bruce, 1994; Cardelli, 1992; Mitchell, 1990a; Pierce & Turner, 1994).Another application of our framework may lie in suggesting appropriate proofrules for the veri�cation of object-oriented programs. Here, existing work on imple-mentations of inheritance does not seem su�ciently abstract to yield useful high-level rules for reasoning about programs involving inheritance. Instead, the processwe have described here for objects and subtyping | �nding a direct axiomatizationand showing that existing implementations can be derived as instances of it | mustbe repeated for inheritance as well. Some preliminary results in this direction arereported in (Hofmann & Pierce, 1994).AcknowledgementsDavid N. Turner joined in many discussions and helped formalize the de�nitions ofpositivity and map in Section 5. Marcelo Fiore pointed out a relationship betweenterminal algebras and recursive types that led to the axiomatization of mixed-variance methods in Section 9. Phil Wadler posed the problem of relating the en-coding of objects using recursive records and the one using existential types. Mart��nAbadi, Eugenio Moggi, and Andre Scedrov supplied pointers to relevant literature.Terry Stroup and Zdzis law Sp lawski gave us helpful suggestions on earlier drafts.Two anonymous referees made numerous suggestions, which led to substantial re-working and improvement of both technical aspects and exposition.This research was mainly carried out at the University of Edinburgh's Lab forFoundations of Computer Science. Hofmann was supported by a European UnionHCM fellowship. Pierce was supported by a fellowship from the British Scienceand Engineering Research Council. Earlier versions of this paper appeared in theSymposium on Theoretical Aspects of Computer Science, 1994, and, under the title\An Abstract View of Objects and Subtyping (Preliminary Report)," as Universityof Edinburgh, LFCS technical report ECS-LFCS-92-226, 1992.



A Unifying Type-Theoretic Framework for Objects 25A Summary of F !�This appendix summarizes the syntax and typing rules of the typed �-calculus F !� ,an extension of Girard's system F ! (1972) with subtyping. The organizing ideasbehind the system are due to Cardelli, particularly to the 1988 paper, \StructuralSubtyping and the Notion of Power Type" (1988); the extension of the subtyperelation to type operators was invented by Cardelli and Mitchell (Cardelli, 1990;Mitchell, 1990a; Bruce & Mitchell, 1992; Abadi, 1992). Cardelli's sketch (1990)also suggests a more powerful treatment of operator subtyping, including bothmonotonic and antimonotonic subtyping in addition to pointwise subtyping; butthe metatheoretic properties of this extension are not well understood.The metatheory of pure F !� has been studied by Ste�en and Pierce (1994) andCompagnoni (1994). Simple models have been given by Cardelli and Longo (1991)and Compagnoni and Pierce (1993). A model for an extension of F !� with recursivetypes has been given by Bruce and Mitchell (1992).A.1 SyntaxA.1.1 De�nition: The sets of kinds, types, terms, and contexts are given by thefollowing abstract grammar:K ::= Type kind of typesj K1!K2 kind of type operatorsT ::= A type variablej Fun (A:K)T type operatorj T1 T2 application of a type operatorj Top(K) maximal type of kind Kj T1!T2 function typej All (A�T1) T2 universally quanti�ed typej fl1:T1; : : : ; ln:Tng record typee ::= x variablej fun (x:T ) e abstractionj e1 e2 applicationj fun (A�T ) e type abstractionj e [T ] type applicationj fl1 = e1; : : : ; ln = eng record constructionj e : l �eld selection� ::= � empty contextj �; x:T variable bindingj �; A�T type variable binding with bound



26 M. Hofmann and B. PierceA.1.2 Notation: The typing rules that follow de�ne sets of valid judgements ofthe following forms:` � context � is a well-formed context� ` T : K type T has kind K� ` T1 � T2 T1 is a subtype of T2� ` e : T term e has type TWe sometimes write � ` S � T to mean that both � ` S � T and � ` T � S.A.1.3 De�nition: The domain of a context �, written dom(�), is the set of typeand term variables bound by �. A type T is closed with respect to a context �if FTV(T ) � dom(�). A term e is closed with respect to � if FTV(e) [ FV(e) �dom(�). A context � is closed if1. � � �, or2. � � �1; A�T , with �1 closed and T closed with respect to �1, or3. � � �1; x:T , with �1 closed and T closed with respect to �1.A subtyping statement � ` S � T is closed if � is closed and S and T are closedwith respect to �; a typing statement � ` e : T is closed if � is closed and e andT are closed with respect to �.A.1.4 Convention: In the following, we assume that all statements under dis-cussion are closed. In particular, we allow only closed statements in instances ofinference rules. This convention replaces the usual side-conditions in rules such asT-Some-E and allows a context to be viewed as a partial function, justifying thenotation �(X) for the unique upper bound of X : dom(�).A.2 Conversion on TypesThe �>-conversion relation on type expressions is the least congruence (with respectto all of the type formers) containing the following rules:(Fun (A:K)T ) S =�> [S=A]TTop(K1!K2) S =�> Top(K2):The corresponding reduction relation is de�ned in the usual way, orienting theserules from left to right. When T has a �>-normal form, we write it as T !.A.3 Contexts ` � context (C-Empty)� ` T : K` �; A�T context (C-TVar)� ` T : Type` �; x:T context (C-Var)



A Unifying Type-Theoretic Framework for Objects 27A.4 Kinding � ` �(A) : K� ` A : K (K-TVar)�; A�Top(K1) ` T2 : K2� ` Fun (A:K1)T2 : K1!K2 (K-Abs)� ` S : K1!K2 � ` T : K1� ` S T : K2 (K-App)` � context� ` Top(K) : K (K-Top)� ` T1 : Type � ` T2 : Type� ` T1!T2 : Type (K-Arrow)�; A�T1 ` T2 : Type� ` All (A�T1)T2 : Type (K-All)` � context for each i, � ` Ti : Type� ` fl1:T1; : : : ; ln:Tng : Type (K-Rcd)A.5 Subtyping� ` U � S � ` S : K S =�> T� ` U � T (S-Conv)� ` A � �(A) (S-TVar)� ` T � T (S-Refl)� ` S � T � ` T : K � ` T � U� ` S � U (S-Trans)� ` S : K� ` S � Top(K) (S-Top)� ` T1 � S1 � ` S2 � T2� ` S1!S2 � T1!T2 (S-Arrow)�; A�U ` S2 � T2� ` All (A�U )S2 � All (A�U )T2 (S-All)fl1; : : : ;lng � fk1; : : : ;kmg for each ki = lj , � ` Si � Tj� ` fk1:S1; : : : ; km:Smg � fl1:T1; : : : ; ln:Tng (S-Rcd)�; A�Top(K) ` S � T� ` Fun (A:K)S � Fun (A:K)T (S-Abs)� ` S � T� ` S U � T U (S-App)



28 M. Hofmann and B. PierceA.6 Typing� ` e : S � ` S � T � ` T : K� ` e : T (T-Subsumption)` � context� ` x : �(x) (T-Var)�; x:T1 ` e : T2� ` fun (x:T1) e : T1!T2 (T-Arrow-I)� ` f : T1!T2 � ` a : T1� ` f a : T2 (T-Arrow-E)�; A�T1 ` e : T2� ` fun (A�T1) e : All (A�T1)T2 (T-All-I)� ` f : All (A�T1)T2 � ` S : K � ` S � T1� ` f [S] : [S=A]T2 (T-All-E)` � context for each i, � ` ei : Ti� ` fl1 = e1; : : : ; ln = eng : fl1:T1; : : : ; ln:Tng (T-Rcd-I)� ` e : fl:Tg� ` e : l : T (T-Rcd-E)A.7 Basic PropertiesProofs of the following can be found in Ste�en and Pierce (1994). Strictly speaking,the development there does not explicitly deal with record types, but this is astraightforward extension: proof-theoretically, the record constructor behaves justlike other simple constructors such as arrow.A.7.1 Proposition [Strong normalization of well-kinded types]: If � ` T :K, then T has a unique �>-normal form.A.7.2 De�nition [Promotion]: The promotion of a type A S1 : : :Sn in a well-formed context � is �(A) S1 : : :Sn. We write A S1 : : :Sn "� �(A) S1 : : :Sn.A.7.3 Proposition: The following algorithm is sound and complete for the rela-tion � ` S � T , when S and T are well-kinded.check(� ` S � T ) =check!(� ` S! � T !)check!(� ` S � T ) =if T = Top(Kind�(S))then trueelse if S = Tthen trueelse if S "� Uthen check!(� ` U ! � T )else if S = S1!S2 and T = T1!T2then check!(� ` T1 � S1)



A Unifying Type-Theoretic Framework for Objects 29and check!(� ` S2 � T2)else if S = All (A�U)S2 and T = All (A�U)T2then check!(�; A�U ` S2 � T2)else if S = fk1:S1; : : : ; km:Smg and T = fl1:T1; : : : ; ln:Tngthen fl1; : : : ;lng � fk1; : : : ;kmgand for each ki = lj, check!(� ` Si � Tj)else if S = Fun (A:K1) S2 and T = Fun (A:K1)T2then check!(�; A�Top(K1) ` S2 � T2)else false.A.8 Equational TheoryDeveloping a full-edged equational theory for F !� remains a matter for future re-search. For the sake of concreteness, we propose the following rules, which straight-forwardly generalize the equational theory for pure second-order quanti�cationstudied by Cardelli, Martini, Mitchell, and Scedrov (1994). All of the rules are soundin a standard PER model of F !� (see, for example, Compagnoni and Pierce (1993)).We do not aim for a minimal set of rules. To reduce clutter, we elide the evidentwell-kindedness premises; these can be �lled in by analogy with the typing rules inthe previous section. � ` e : T� ` e = e : T (Eq-Refl)� ` e = e0 : T� ` e0 = e : T (Eq-Symm)� ` e = e0 : T � ` e0 = e00 : T� ` e = e00 : T (Eq-Trans)� ` e = e0 : S � ` S � T� ` e = e0 : T (Eq-Subsumption)� ` e : Top(Type) � ` e0 : Top(Type)� ` e = e0 : Top(Type) (Eq-Top)� ` S0 � S � ` T � T 0 �; x:S ` b = b0 : T� ` fun (x:S) b = fun (x:S0) b0 : S0!T 0 (Eq-Abs)� ` f = f 0 : S!T � ` a = a0 : S� ` f a = f 0 a0 : T (Eq-App)�; A�U ` T � T 0�; A�U ` b = b0 : T� ` fun (A�U ) b = fun (A�U ) b0 : All (A�U )T 0 (Eq-TAbs)� ` e = e0 : All (A�U )V� ` S � U � ` S0 � U� ` [S=A]V � T � ` [S0=A]V � T� ` e [S] = e0 [S0] : T (Eq-TApp)



30 M. Hofmann and B. Piercefor all i; � ` ei = e0i : Ti� ` fl1 = e1; : : : ; ln = eng = fl1 = e01; : : : ; ln = e0ng : fl1:T1; : : : ; ln:Tng (Eq-Rcd)�; x:S ` b = b0 : T � ` a = a0 : S� ` (fun (x:S) b) a = [a0=x]b0 : T (Eq-Beta)� ` f = f 0 : S!T� ` fun (x:S) f x = f 0 : S!T (Eq-Eta)�; A�S ` b = b0 : T � ` U � S� ` (fun (A�S) b) [U ] = [U=A]b0 : [U=A]T (Eq-TBeta)� ` f = f 0 : All (A�S) T� ` fun (A�S) f [A] = f 0 : All (A�S) T (Eq-TEta)� ` fl1 = e1; : : : ; ln = eng : fl1:T1; : : : ; ln:Tng� ` fl1 = e1; : : : ; ln = eng : li = ei : Ti (Eq-Proj)� ` r : fl1:T1; : : : ; ln:Tng� ` r = fl1 = r: l1; : : : ; ln = r: lng : fl1:T1; : : : ; ln:Tng (Eq-Surj)A.8.1 Remark: It might appear that the rule Eq-TAbs should be generalized, byanalogy with Eq-Abs, to allow the comparison of type abstractions with di�erentupper bounds. Similarly, one might wish to generalize the rules Eq-Map-Sub andEq-GM-Sub in Appendix B to allow the direct comparison of two di�erent mappingfunctions or generic methods, instead of comparing particular instances. But forsuch equations even to typecheck, it would �rst be necessary to similarly generalizethe subtyping rule S-All, leading to a richer system, but one with a much moredi�cult metatheory. See Ste�en and Pierce (1994) for a related discussion.The rule Eq-TApp is closely related to the semantic concept of parametricity(c.f. (Cardelli et al., 1994)).A.8.2 Fact: The following more general version of Eq-Abs is derivable using Eq-Abs and transitivity:� ` S0 � S � ` T � T 0 �; x:S0 ` b0 = b : T �; x:S ` b : T� ` fun (x:S0) b0 = fun (x:S) b : S0!T 0 (Eq-Abs+)B PositivityIn the body of the article, we stipulated that the \ambient type theory" shouldcome equipped with a positivity predicate pos and an operator map satisfying thefollowing laws:� ` N : Type!Type pos(N ) � ` S � T� ` N S � N T (S-Pos-Mono)� ` N : Type! Type pos(N )� ` mapN : All (X)All (Y ) (X!Y ) ! (N (X)!N (Y )) (T-Map)



A Unifying Type-Theoretic Framework for Objects 31� ` N : Type!Type pos(N )� ` f : X!Y � ` g : Y!Z� ` mapN [X] [Z] (f ; g)= (mapN [X] [Y ] f) ; (mapN [Y ] [Z] g): N (X)!N (Z) (Eq-Map-Trans)� ` N : Type!Type pos(N ) � ` X : Type� ` mapN [X] [X] (id [X]) = id [N (X)] : N (X)!N (X) (Eq-Map-Id)� ` N 0 � N pos(N 0) pos(N )� ` f : X!Y � ` n : N 0(X)� ` mapN 0 [X] [Y ] f n = mapN [X] [Y ] f n : N (Y ) (Eq-Map-Sub)In this section, we show how such a pos and map can be de�ned for F !� .B.1 Remark: Of course, the requirement that a given type theory should includepositivity can always be satis�ed trivially by setting pos(N ) = false for all N .Furthermore, as we remark below, the following de�nitions of pos and map | whichessentially follow the prevailing type-theoretic \folklore" | are less complete thanone might wish, in the sense that they do not handle arbitrary operators containinghigher-order variables. However, they are strong enough to establish the positivityof many reasonable object interfaces.B.2 De�nition: Let T be a type that is closed in some context where a typevariable A is de�ned. De�ne the predicates posA(T ) (\A occurs only positively inT") and negA(T ) (\A occurs only negatively in T") simultaneously as follows:posA(A) = trueposA(T ) with A not free in T = trueposA(T1!T2) = negA(T1) and posA(T2)posA(All (B�T1)T2) = A not free in T1 and posA(T2)posA(fl1:T1; : : : ; ln:Tng) = posA(Ti) for all iposA(T ) in all other cases = falsenegA(A) = falsenegA(T ) with A not free in T = truenegA(T1!T2) = posA(T1) and negA(T2)negA(All (B�T1)T2) = A not free in T1 and negA(T2)negA(fl1:T1; : : : ; ln:Tng) = negA(Ti) for all inegA(T ) in all other cases = falseB.3 De�nition: If � ` N : Type!Type, we write pos(N ) to mean that N !, thenormal form of N , equals Fun (A)P and posA(P ).Notice, in particular, that pos(N ) is always false when N is a variable. Similarly,an application N (S) can only be marked posA or negA if A does not occur free inN or S. As we remarked in Section 3, a stronger calculus (c.f. (Cardelli, 1990))with positive and negative (monotone and antimonotone) operators seems cleaner



32 M. Hofmann and B. Piercein this respect, since it allows positivity/negativity to be ascribed to more typeexpressions. However, the present formulation is su�cient for our purposes.An occurrence of A in the bound of a quanti�er is never considered to be onlypositive or only negative: posA(All (B�T1)T2) and negA(All (B�T1)T2) can onlyhold when T1 has no free occurrences of A. This restriction is necessary becauseit is not the case, in this calculus, that applying map to a coercion function yieldsa coercion function. (To see what goes wrong, try extending the All case of thede�nition of lift below to handle the situation where A occurs in T1.) The sameobservation will apply to the bounds of existential quanti�ers.It is easy to check that every positive operator is also monotone in the subtyperelation, validating S-Pos-Mono:B.4 Lemma: Let � = �1; A�Top(Type); �2 and � = �1; �2, with A not free in�2, and suppose that � ` P : Type and � ` S � T .1. If posA(P ), then � ` [S=A]P � [T=A]P .2. If negA(P ), then � ` [T=A]P � [S=A]P .Proof: By simultaneous induction on the de�nitions of posA and negA. For eachpart, the �rst two cases are easy, the next three follow by straightforward use ofthe induction hypothesis, and the last one holds trivially. �B.5 Corollary: [Positivity implies monotonicity]1. If � ` N : Type!Type and pos(N ), then � ` S � T implies � ` N S � N T .2. If � ` N : Type!Type and neg(N ), then � ` S � T implies � ` N T � N S.B.6 De�nition: Fix a context �, a type variable A, two types X and Y , and afunction f : X!Y . Then the lifting of f through a type T , written liftA fT , isliftA fA = fliftA fS = id [S]when A is not free in SliftA fT1!T2 = fun (g : [X=A](T1!T2))fun (a : [Y=A]T1)liftA fT2 (g (lowerA fT1 a))liftA fAll(B�T1)T2 = fun (g : (All (B�T1) [X=A]T2))fun (B�T1)liftA fT2 (g [B])when A is not free in T1liftA ffl1 :T1; :::; ln :Tng = fun (g : [X=A]fl1:T1; : : : ; ln:Tng)fl1 = liftA fT1 (g : l1); : : : ; ln = liftA fTn (g : ln)gliftA fT = unde�ned in all other cases;



A Unifying Type-Theoretic Framework for Objects 33and the lowering of f through T , written lowerA fT , islowerA fA = unde�nedlowerA fS = id[S]when A is not free in SlowerA fT1!T2 = fun (g : [Y=A](T1!T2))fun (a : [X=A]T1)lowerA fT2 (g (liftA fT1 a))lowerA fAll(B�T1)T2 = fun (g : (All (B�T1) [Y=A]T2))fun (B�T1)lowerA fT2 (g [B])when A is not free in T1lowerA ffl1 :T1; :::; ln :Tng = fun (g : [Y=A]fl1:T1; : : : ; ln:Tng)fl1 = lowerA fT1 (g : l1); : : : ; ln = lowerA fTn (g : ln)glowerA fT = unde�ned in all other cases:Note that liftA fT is de�ned i� posA(T ), that lowerA fT is de�ned i� negA(T ), andthat liftA fT : [X=A]T ! [Y=A]TlowerA fT : [Y=A]T ! [X=A]T:Intuitively, liftA fT \maps f over elements of T" by destructing and rebuilding anelement of T , inserting a call to f at each occurrence of the variable A (all of whichare positive); lowerA fT does the same for negative occurrences of A. The changein sign of the occurrences of A accounts for the switch of X and Y in the typesof liftA fT and lowerA fT . More abstractly, liftA fT witnesses the fact that everypositive type operator induces a functor | i.e. a pair of maps, one on types andone on terms.B.7 Lemma: Suppose A is not free in �. Then the following equality rules for liftand lower are derivable:�; A�Top(Type); � ` T : Type posA(T ) � ` X : Type�; � ` liftA id[X]T = id [[X=A]T ] : [X=A]T![X=A]T (Eq-Lift-Id)�; A�Top(Type); � ` T : Type negA(T ) � ` X : Type�; � ` lowerA id[X]T = id [[X=A]T ] : [X=A]T![X=A]T (Eq-Lower-Id)�; A�Top(Type); � ` T : Type posA(T )� ` f : X!Y � ` g : Y!Z�; � ` liftA (f ;g)T = (liftA fT ; liftA gT ): [X=A]T![Z=A]T (Eq-Lift-Trans)�; A�Top(Type); � ` T : Type negA(T )� ` f : X!Y � ` g : Y!Z�; � ` lowerA (f ;g)T = (lowerA gT ; lowerA fT ): [Z=A]T![X=A] (Eq-Lower-Trans)



34 M. Hofmann and B. PierceProof: Each pair of rules is proved simultaneously, by induction on the structureof T . The -Id pair uses Eq-Eta, Eq-TEta, and Eq-Surj for the three inductivecases. The -Trans pair uses Eq-Beta, Eq-TBeta, and Eq-Proj. �B.8 Lemma: Suppose A is not free in �. If T and T 0 are normal forms of kindType in �; A�Top(Type); �, then the following rules are derivable:�; A�Top(Type); � ` T 0 � TposA(T 0) posA(T ) � ` f : X!Y�; �` liftA fT 0 = liftA fT : [X=A]T 0! [Y=A]T (Eq-Lift-Sub)�; A�Top(Type); � ` T 0 � TnegA(T 0) negA(T ) � ` f : X!Y�; � ` lowerA fT 0 = lowerA fT : [Y=A]T ! [X=A]T 0 (Eq-Lower-Sub)Proof: Both statements are proved by simultaneous induction on a successfulexecution of the algorithm check! applied to �; A�Top(Type) ` T 0 � T . We givethe argument just for Eq-Lift-Sub; the other is symmetric.When T = Top(Type), use Eq-Top, Eq-Eta, and Eq-Abs. When T = T 0, useEq-Refl.If T 0 "� U , then by the de�nition of promotion, T 0 has the form B U1 : : : Un.There are two cases to consider. If B = A, then since A : Type, we have n = 0,T 0 = A, and U = Top(Type). If B 6= A, then A is not free in T 0, since posA(T 0)implies that A does not occur in any of the Ui; since A is not free in � or �, ittherefore cannot be free in U . Thus, we see that posA(U ) and liftA fT 0 and liftA fUare the same identity function. In either case, we have�; � ` liftA fT 0 = liftA fU : [X=A]T 0! U(since A is not free in U ). By the induction hypothesis, �; � ` liftA fU = liftA fT :U ! [Y=A]T . The result follows by transitivity, using�; � ` [X=A]T 0 � U�; � ` U � [Y=A]Tand Eq-Subsumption.The following three structural cases use straightforward equality reasoning. The�nal case, where T is an abstraction, cannot occur because T is of kind Type. �B.9 De�nition [c.f. Coquand and Paulin-Mohring (1989)]: When pos(N ),mapN = fun (X) fun(Y ) fun (f :X!Y ) liftA fS: All (X)All (Y ) (X!Y ) ! (N (X)!N (Y ));where S is the �-normal form of N (A).B.10 Corollary: The de�nition of map satis�es the laws at the beginning of thissection.Proof: From B.7 and B.8, using Eq-Subsumption, S-Conv, and Eq-Abs todeal with the conversion to normal form in the de�nition of map. �



A Unifying Type-Theoretic Framework for Objects 35C Object TypesHaving de�ned pos and map, we can further enrich F !� with the high-level type con-structor Object and the term constructors object and GM. Their associated typing,subtyping, and equational rules (taken from the text) are as follows:� ` N : Type!Type� ` Object (N ) : Type (K-Obj)� ` N 0 � N � ` N : Type! Type� ` Object (N 0) � Object (N ) (S-Obj)� ` N : Type!Type pos(N )� ` s : R � ` m : R!N (R)� ` objectN (R; s; m) : Object (N ) (T-Obj-I)� ` N : Type!Type pos(N )� ` GMN : All (N 0�N ) Object (N 0) ! N (Object (N 0)) (T-GM)� ` N 0 � N pos(N 0) pos(N )� ` s : R � ` m : R! N 0(R)� ` objectN 0 (R; s; m) = objectN (R; s; m) : Object (N ) (Eq-Obj-Sub)� ` N 00 � N 0 � N : Type!Type pos(N 0) pos(N )� ` GMN 0 [N 00] = GMN [N 00] : Object (N 00)!N (Object (N 00)) (Eq-GM-Sub)� ` N : Type!Type pos(N )� ` s : R � ` m : R!N (R)� ` GMN [N ] (objectN (R; s; m))= mapN [R] [Object (N )] (objectN (R; |; m)) (m s): N (Object(N )) (Eq-Obj-Map)C.1 Remark: Observe that by Eq-TBeta and Eq-Beta, we have� ` objectN (R; s; m)= (fun (R) fun (s:R) fun (m:R! N (R) ) objectN (R; s; m)) [R] s m: Object (N )From this equivalence and the equational rules in Section A.8 (Eq-TApp in par-ticular), we may obtain a stronger version of Eq-Obj-Sub where R, s, and m arealso permitted to vary.D Existential TypesThe sets of F !� types and terms are extended with existentials as follows:T ::= : : :j Some (A�T1)T2 existentially quanti�ed typee ::= : : :j pack e as T1 hiding T2 packingj open e1 as [A; x] in e2 unpacking



36 M. Hofmann and B. PierceThe kinding, typing, and subtyping rules are extended as follows:�; A�T1 ` T2 : Type� ` Some (A�T1)T2 : Type (K-Some)�; A�U ` S2 � T2� ` Some (A�U )S2 : Type� ` Some (A�U )S2 � Some (A�U )T2 (S-Some)� ` T � Some (A�U1)U2 � ` S � U1 � ` e : [S=A]U2� ` pack e as T hiding S : T (T-Some-I)� ` e1 : Some (A�S1)S2 �; A�S1; x:S2 ` e2 : T� ` open e1 as [A; x] in e2 : T (T-Some-E)The equational theory is extended with the following rules (c.f. Martin-L�of's weak�-types (Smith et al., 1990)):� ` T � Some (A�U1)U2 � ` S � U1� ` e = e0 : [S=A]U2�; A�U1; x:U2 ` b = b0 : V� ` open (pack e as T hiding S) as [A; x] in b= [e0=x][S=A]b0: V (Eq-Some-Beta)� ` T 0 � Some (A�U1)U 02 � ` T � Some (A�U1)U2� ` T 0 � T� ` S0; S � U1 � ` V � [S0=A]U 02; [S=A]U 02� ` e0 = e : V�` pack e0 as T 0 hiding S0 = pack e as T hiding S : T (Eq-Pack)� ` e = e0 : Some (A�T1)T2�; A�S1; x:S2 ` b = b0 : T�` open e as [A; x] in b = open e0 as [A; x] in b0 : T (Eq-Open)� ` V : Type�; y:Some (A�S) T ` e; e0 : V�; A�S; x:T ` [(pack x as Some (A�S) T hiding S)=y](e = e0) : V�; y:Some (A�S) T ` e = e0 : V (Eq-Some-Ind)D.1 Remark: All of the above rules except for the \induction principle" Eq-Some-Ind are valid under the usual encoding of existential types in terms of uni-versal quanti�ers:Some (A�S) T = All (B) (All (A�S) T!B) ! B:Moreover, all the rules including Eq-Some-Ind are sound in the PER model, ifwe interpret the existential type as the sub-PER of the interpretation of the en-coding restricted to those elements semantically equal to an element interpreting



A Unifying Type-Theoretic Framework for Objects 37an expression of the form pack.... More precisely, we de�ne e[[Some (A�S)T ]]�e0 i�e[[All (B) (All (A�S) T!B) ! B]]�e0 and e[[All (B) (All (A�S) T!B) ! B]]��h: h x,where x : dom([[T ]]�[A R])) for some PER R � [[S]]�. It also seems possible tomodel an existential by the transitive closure of the union of all instances of itsbody. It is a matter for future research to inquire whether the equational theory ofexistential types can be axiomatized using only unconditional equations. Interest-ingly, Lemma D.5 can also be proven for the universal encoding of existentials.D.2 De�nition: The de�nitions of the predicates posA and negA (De�nition B.2)are extended as follows:posA(Some (B�T1)T2) = A not free in T1 and posA(T2)negA(Some (B�T1)T2) = A not free in T1 and negA(T2)D.3 Fact: These de�nitions validate the rule S-Pos-Mono for F !� extended withexistentials.Proof: Extend the proof of B.4 with an analogous case for existentials, usingS-Some. �D.4 De�nition: The de�nitions of the lifting and lowering of a function f througha type T (B.6) are extended as follows:liftSome(B�T1)T2 = fun (g : (Some (B�T1) [X=A]T2))open g as [B; x] inpack (liftT2 x)as Some (B�T1) [Y=A]T2hiding Bwhen A is not free in T1lowerSome(B�T1)T2 = fun (g : (Some (B�T1) [Y=A]T2))open g as [B; x] inpack (lowerT2 x)as Some (B�T1) [X=A]T2hiding Bwhen A is not free in T1D.5 Lemma: The rules listed at the beginning of Section B are derivable in theextended calculus.Proof: By extension of the previous inductive arguments, leading up to Corol-lary B.10. For Eq-Map-Id and Eq-Map-Trans, we use Eq-Some-Ind to \re-place" the variable g in the de�nition of lift and lower by an instance of pack. Theresult then follows by straightforward equality reasoning using Eq-Some-Beta.For Eq-Map-Sub, we use Eq-Pack and Eq-Open. �E Recursive TypesThe following extension of the basic F !� calculus with recursive types is somewhattentative. The rules are suggested by existing treatments of recursive types in lower-



38 M. Hofmann and B. Pierceorder calculi (Amadio & Cardelli, 1993), but a full study of recursive types in thissetting falls outside the scope of the present article.The set of F ! types is extended as follows:T ::= : : :j �(A:K)T least �xed pointThe inference rules are extended by the formation rule�; A�Top(K) ` T : K� ` �(A:K)T : K (K-Mu)and two subtyping rules | one for \unfolding" a recursive type and one for (�nitely)comparing two recursive types (c.f. (Amadio & Cardelli, 1993)):� ` �(A:K)T : K� ` �(A:K)T � [(�(A:K)T )=A]T (S-Fold)�; B�Top(K); A�B ` S � T� ` �(A)S � �(B)T (S-Mu)E.1 Remark: Note that we have the derived rule�; B�Top(K); A�B; D�Top(K); C�D` S(A;C) � S(B;D)�; B�Top(K); A�B ` �(C)S(A;C) � �(D)S(B;D) (S-Mu-Mono)which states that a type whose outer constructor is � is monotone in a free variableA if the body of the � is monotone in both A and the bound variable. This suggeststhe following extension of the de�nitions of pos and neg.E.2 De�nition: The de�nitions of the predicates posA and negA (B.2) are exten-ded as follows: posA(�(B)T2) = posA(T2) and posB(T2)negA(�(B)T2) = negA(T2) and posB(T2)The de�nition of the pos predicate still makes sense, since, for purposes of typenormalization, the � operator can simply be treated as a constant.E.3 Remark: Note that a type variable A appears positively in a type T = �(B)Fonly if both A and B appear only positively in F .E.4 De�nition: We introduce a value-level �xed-point combinator �x with thetyping rule �x : All (A�Top(Type)) (A!A) ! A (T-Fix)and (in addition to the equations implied by its typing), the equational rules� ` f : A!A� ` �x [A] f = f (�x [A] f) : A (Eq-Fix)� ` A0 � A� ` f 0 : A0!A0 � ` f : A!A� ` f = f 0 : A0!A� ` �x [A] f = �x [A0] f 0 : A (Eq-Fix-Sub)



A Unifying Type-Theoretic Framework for Objects 39which respectively characterize �x as a �xed point and describe its behavior withrespect to subtyping.E.5 Remark: These rules can be interpreted in the \cuper model" of Amadioand Cardelli (1993), realizing �x by �f: Fk : ! fk?. For Eq-Fix-Sub, we use theobservation that f = f 0 : A0!A implies fk = f 0k : A0!A (by nontrivial equalityreasoning), and then use continuity.Amadio and Cardelli actually exhibit a typed version of the usual Y combin-ator satisfying T-Fix and Eq-Fix. Interestingly, Eq-Fix-Sub does not seem tobe provable for this term. Our �x therefore constitutes a proper extension of theircalculus.E.6 De�nition: The de�nitions of the lifting and lowering of a function f througha type T (B.6) are extended as follows. To reduce clutter, we adopt the abbreviationS[U; V ] = [V=B][U=A]S.lift�(B)S =�x [�(B)S[X;B] ! �(B)S[Y;B]]fun (g : �(B) S[X;B] ! �(B)S[Y;B])(unfold : �(B)S[X;B] ! S[X;�(B)S[X;B]];(liftA fS[A;�(B)S[X;B]] : S[X;�(B)S[X;B]] ! S[Y; �(B)S[X;B]]);(liftB gS[Y;B] : S[Y; �(B)S[X;B]] ! S[Y; �(B)S[Y;B]]);(fold : S[Y; �(B)S[Y;B]] ! �(B)S[Y;B])when posA(S) and posB(S)lower�(B)S =�x [�(B)S[Y;B] ! �(B)S[X;B]]fun (g : �(B) S[Y;B] ! �(B)S[X;B])(unfold : �(B)S[Y;B] ! S[Y; �(B)S[Y;B]];lowerA fS[A;�(B)S[Y;B]] : S[Y; �(B)S[Y;B]] ! S[X;�(B)S[Y;B]]);(liftB gS[X;B] : S[X;�(B)S[Y;B]] ! S[X;�(B)S[X;B]]);(fold : S[X;�(B)S[X;B]] ! �(B)S[X;B])when negA(S) and posB(S)(The coercions fold and unfold and the explicit typings of lift and lower are includedonly for the convenience of the reader; in practice, they would be inferred by atypechecker.)E.7 Remark: In order to show that the extended de�nition of map still satis�esthe laws in Appendix B, we need some assumptions about the equational theory ofthe type system with recursive types. In domain-theoretic models of recursive types(and, as far as we know, in metric space models), the laws seem to hold becausethe solutions to the recursive equations de�ning lift and lower are unique, sincethe recursion we use de�nes the iterator of an initial algebra (the recursive typesinvolved are always positive).
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