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ABSTRACT

In many applications, such as inverse dithering, it is necessary to increase the pixel bit-depth of images by expanding q -bit
integer values to m -bit integer values  ( qm > ). This paper describes a simple and efficient method that uses bit replication,
instead of conventional multiplication, to achieve this expansion. First, we show that the optimal number of repetitions is
given by }/{ceiling qm  and that the method is equivalent to multiplication by the ideal gain when qm /  is an integer. We
then demonstrate that, in the case where qm /  is not an integer, truncating the fraction bits to the right of the decimal point
will lead to zero average error. The paper also includes two suggestions for implementing the bit-replication process, both of
which have a vast complexity advantage over a multiplier. Two examples are given at the end to illustrate the bit-replication
process in action.
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1. INTRODUCTION

There are several applications where the set of values within a particular range needs to be operated on at a larger, or higher-
precision, range. An important example is an inverse-dithering system. When a digital image is dithered to a lesser number of
displayable levels, the bit-depth of its pixel values is decreased. This has the effect of reducing the storage space required
even though the perceptual quality of the image is largely preserved [1]. The goal of inverse dithering is to reconstruct from
the dithered image the original image with a larger pixel bit-depth. Several approaches have been suggested, including
adaptive algorithms [2][3], wavelet decomposition [4], and MAP estimation [5]. These approaches differ widely. However,
when extended to multi-level-to-multi-level inverse dithering, they all require the essential step of expanding the pixel values
in the dithered image from a lower bit-depth to their original bit-depth for subsequent processing.

In this bit-depth-increase step, a q -bit integer input level iL  with values from the range

}12,,2,1,0{ −∈ q
iL K (1)

is scaled to a m -bit integer output level Lo  with values from the range

}12,,2,1,0{ −∈ m
oL K . (2)

This can be achieved by performing a multiplication by an ideal gain,
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followed by rounding to the nearest integer:

}{Round io LGL ×= . (4)



Note that while a q -bit integer represents q2  integer values, it only represents 12 −q  intervals.  Therefore the gain used in
pixel-depth increase is not simply a case of left shifts followed by zero padding.  In this paper we will show that
multiplication by the ideal gain can be closely approximated by another simple implementation, that of bit replication.  We
will also determine the optimal number of bits to replicate for minimum error.

2. SERIES EXPANSION

For any real numbers a  and b , where b  is not equal to 0 or 1, the follow expression is valid:
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This expression can itself be used to expand the rightmost term further:
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Recursively repeating this expansion N  times results in the series:
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In our case, using a m= 2  and b q= 2 , the ideal gain can be expressed as
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From this, we define the approximate gain to be
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and the gain-error to be
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For the purpose of analysis, let us assume that the output level Lo can be a real number (instead of an integer) and the
rounding operation is unnecessary. The data scaling will therefore be implemented as follows:

L G Lo i= ×$ . (11)

Under these assumptions, the gain-error E  is proportional to the error in the output level.

3. BIT REPLICATION

We can show that multiplication by the approximate gain Ĝ  can be implemented simply as a replication of the input level
bits.  Since each term in Ĝ is a power of 2, multiplication is equivalent to a shift of the input.  Note also that the shifts



corresponding to successive terms differ by q spaces, which is the same as the number of bits in the input.  This means that
there is no overlap of bits and no addition is necessary.  Consider the example of converting a 3-bit input ( 3=q ) to an 8-bit
output ( 8=m ). In Figure 1 the values of the 3 input bits are “A”, “B”, and “C” as shown. If the sum was carried out to 5
terms or repeat periods ( 5=N ), the output value would have the bit values as indicated. This bit replication extends into the
fraction bits to the right of the decimal point.

Figure 1. Example of scaling a 3-bit input value to 8 bits
using the approximate gain Ĝ  with 5=N .

The weighting of the bit values in this representation is shown in Figure 2.  Multiplying an input by the approximate gain will
result in a real number with an integer part and a fraction part.  Although the goal is to generate a m -bit integer output value,
it may be useful to keep additional fraction bits for intermediate computations of the output value for higher accuracy.

In the next sections two aspects of the bit-replication process will be optimized in terms of minimizing the error. First,

the optimal value of N is determined. Then for cases where the last repeat periods have both integer and fraction bits (as in
the third period of Figure 1) the contribution of the fraction bits to the accuracy of the output level is found.

4. OPTIMIZATION OF REPEAT PERIODS

The optimal number of repeat periods N  can be determined simply by solving for the value of N  that minimizes E . E  is
zero exactly once when 0=− Nqm , so the optimal value should be

qmN /= . (12)

The problem is that N can only take on integer values so this result will only occur when q  is an exact multiple of m .
However, if this condition does hold, the error is identically zero, and bit replication yields a perfectly scaled output level.

Figure 2. Representation of a real number with binary digits.
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For the case where ( )qm /  is not an integer, the solution for the optimum N  is more involved. In Figure 3 E  is plotted as a
function of N . The graph reveals two candidate integer values for optimum N  on either side of the point ( )qm / : LON  is
the nearest integer less than ( )qm /  and HIN  is the nearest integer greater than ( )qm / . Since the denominator of E  is
constant with respect to N , we can consider the equivalent problem of minimizing the function

12 −= − Nqmβ . (13)

For qmN /< , β  increases monotonically with decreasing N  because the exponent ( )Nqm −  becomes increasingly
positive.  This exponent is a positive integer, so the smallest β  can be is 1.

For qmN /> , β  increases monotonically with increasing N  because the exponent ( )Nqm −  becomes increasingly
negative. ( E  asymptotically approaches )12/(1 −q .) The exponent ( )Nqm −  is a negative integer, so 1<β .

Therefore, of the two candidates, LON  and HIN , the value of N  that minimizes E  is HIN . This is the nearest integer
larger than the non-integer value ( )qm / , or equivalently,

}/{ceiling qmN = . (14)

5. CONTRIBUTION OF FRACTION BITS

Consider the case of 5=q  and 8=m . The optimal number of repeat periods is

2}5/8{ceiling ==N (15)
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Figure 3. Absolute error as a function of N .



For a 5-bit input, the output is as shown in Figure 4. There are 2 fraction bits for this particular example. In all cases, the
number of fraction bits due to repeating bits by the optimum N periods is

mNqb −= . (16)

Note that there are no fraction bits for the error-free case where ( )qm /  is an integer.

In the following, we derive the average contribution of the fraction bits over all possible input levels. Since the fraction bits
are simply the b  least significant bits of each input level iL , they will take on the values }12,,2,1,0{ −bK  in a periodic
fashion as iL  increases. Note that there will be bq −2 complete periods in the range of Li . The average contribution of the
fraction bits over all iL  is therefore the same as the average contribution over one single period.

Let the value of the fraction bits be i and the contribution of the fraction bits to the output be F . We can then write
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and the average contribution of the fraction bits to the output is therefore given by
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the above expression simplifies to
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Next, we derive the average output error due to the gain-error over all possible input levels. Using the change of variables
mNqb −= , we can rewrite the gain-error to be
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Figure 4. Scaling a 5-bit number to an 8-bit number with 2=N  repeat periods.
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For each input level iL , the output error e  is iLE × .  The average output error is then given by
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For our example of 5=q  and 8=m , the contribution of the fraction bits F  and output error e  are plotted in Figure 5.

It is very interesting to note that for all cases,

Fe = . (23)

By this we can conclude that zero average error can be achieved by always truncating the fraction bits! Using our example of
5=q  and 8=m again, the output error is plotted in Figure 6 for the cases of no fraction bits used, one fraction bit used, and

both fraction bits used.  The average errors are 0.000, 0.25, and 0.375 ( = (1-2-2)/2 ) respectively.

6. IMPLEMENTATION

We have proved that multiplication of a q -bit input level Li  by the ideal gain
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Figure 5. Output error as a function of input,
and the contribution of fraction bits to the output value.



can be achieved with zero average error by simply replicating the input bits from the most significant part of the m -bit
output register to the least significant part.  Using additional fraction bits for intermediate computation can only increase
average error.

The most straightforward hardware implementation of this bit replication method is the wired approach as illustrated in
Figure 7.  In this figure we use the case of 3=q  and 8=m  as an example.  “A”, “B”, and “C” represent input bit values.

Another implementation can use shift registers as depicted in Figure 8.  The input register performs a circular shift left into an
output shift register as shown.  The operation is complete after m  shifts.
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Figure 7. Wired implementation.
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Either case has a tremendous complexity advantage over a multiplier.

7. EXAMPLES

We will end this article by using two examples to illustrate the bit-replication process in action. The first example is the case
of 5=q  and 8=m .  In Table 1, we show, for each possible input level, the actual output level and its difference from the
ideal output level.  Note that the average error over all possible input levels is zero.  Table 2 shows the case of 4=q  and

12=m .  In this case, qm /  is an integer, so the bit-replication gives the exact answer and the error is zero for all input levels.
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Figure 8. Shift-register implementation



Input L i Output L o Ideal Error
00000 ( 0 ) 00000000 ( 0 ) 0.00    0.00    
00001 ( 1 ) 00001000 ( 8 ) 8.23    -0.23    
00010 ( 2 ) 00010000 ( 16 ) 16.45    -0.45    
00011 ( 3 ) 00011000 ( 24 ) 24.68    -0.68    
00100 ( 4 ) 00100001 ( 33 ) 32.90    0.10    
00101 ( 5 ) 00101001 ( 41 ) 41.13    -0.13    
00110 ( 6 ) 00110001 ( 49 ) 49.35    -0.35    
00111 ( 7 ) 00111001 ( 57 ) 57.58    -0.58    
01000 ( 8 ) 01000010 ( 66 ) 65.81    0.19    
01001 ( 9 ) 01001010 ( 74 ) 74.03    -0.03    
01010 ( 10 ) 01010010 ( 82 ) 82.26    -0.26    
01011 ( 11 ) 01011010 ( 90 ) 90.48    -0.48    
01100 ( 12 ) 01100011 ( 99 ) 98.71    0.29    
01101 ( 13 ) 01101011 ( 107 ) 106.94    0.06    
01110 ( 14 ) 01110011 ( 115 ) 115.16    -0.16    
01111 ( 15 ) 01111011 ( 123 ) 123.39    -0.39    
10000 ( 16 ) 10000100 ( 132 ) 131.61    0.39    
10001 ( 17 ) 10001100 ( 140 ) 139.84    0.16    
10010 ( 18 ) 10010100 ( 148 ) 148.06    -0.06    
10011 ( 19 ) 10011100 ( 156 ) 156.29    -0.29    
10100 ( 20 ) 10100101 ( 165 ) 164.52    0.48    
10101 ( 21 ) 10101101 ( 173 ) 172.74    0.26    
10110 ( 22 ) 10110101 ( 181 ) 180.97    0.03    
10111 ( 23 ) 10111101 ( 189 ) 189.19    -0.19    
11000 ( 24 ) 11000110 ( 198 ) 197.42    0.58    
11001 ( 25 ) 11001110 ( 206 ) 205.65    0.35    
11010 ( 26 ) 11010110 ( 214 ) 213.87    0.13    
11011 ( 27 ) 11011110 ( 222 ) 222.10    -0.10    
11100 ( 28 ) 11100111 ( 231 ) 230.32    0.68    
11101 ( 29 ) 11101111 ( 239 ) 238.55    0.45    
11110 ( 30 ) 11110111 ( 247 ) 246.77    0.23    
11111 ( 31 ) 11111111 ( 255 ) 255.00    0.00    

average error   0.00    

Table 1: The Input Levels, the Output Levels, and the Errors
for the Case of 5=q  and m = 8



Input L i Output L o Ideal Error
0000 ( 0 ) 000000000000 ( 0 ) 0.00  0.00
0001 ( 1 ) 000100010001 ( 273 ) 273.00  0.00
0010 ( 2 ) 001000100010 ( 546 ) 546.00  0.00
0011 ( 3 ) 001100110011 ( 819 ) 819.00  0.00
0100 ( 4 ) 010001000100 ( 1092 ) 1092.00  0.00
0101 ( 5 ) 010101010101 ( 1365 ) 1365.00  0.00
0110 ( 6 ) 011001100110 ( 1638 ) 1638.00  0.00
0111 ( 7 ) 011101110111 ( 1911 ) 1911.00  0.00
1000 ( 8 ) 100010001000 ( 2184 ) 2184.00  0.00
1001 ( 9 ) 100110011001 ( 2457 ) 2457.00  0.00
1010 ( 10 ) 101010101010 ( 2730 ) 2730.00  0.00
1011 ( 11 ) 101110111011 ( 3003 ) 3003.00  0.00
1100 ( 12 ) 110011001100 ( 3276 ) 3276.00  0.00
1101 ( 13 ) 110111011101 ( 3549 ) 3549.00  0.00
1110 ( 14 ) 111011101110 ( 3822 ) 3822.00  0.00
1111 ( 15 ) 111111111111 ( 4095 ) 4095.00  0.00

average error   0.00

Table 2: The Input Levels, the Output Levels, and the Errors
for the Case of q=4 and m=12.


