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Abstract

Stochastic topological models, and hidden
Markov models in particular, are a useful tool
for robotic navigation and planning. In previ-
ous work we have shown how weak odometric
data can be used to improve learning topologi-
cal models, overcoming the common problems
of the standard Baum-Welch algorithm. Odomet-
ric data typically contain directional information,
which imposes two difficulties: First, the cyclic-
ity of the data requires the use of special circular
distributions. Second, small errors in the head-
ing of the robot result in large displacements in
the odometric readings it maintains. The cumu-
lative rotational error leads to unreliable odomet-
ric readings. In the paper we present solutions
to these problems by using a circular distribu-
tion and relative coordinate systems. We validate
their effectiveness through experimental results
from a model-learning application.

INTRODUCTION

Probabilistic models are widely used within the Al com-
munity. Such models may allow continuous probabilities,
as demonstrated in work on Bayesian networks [7], hid-
den Markov models [5, 8], probabilistic clusters [2] and
stochastic maps [19], to name a few. However, the assump-
tion underlying all the above work is that continuous dis-
tributions arelinear — that is — distributions that assign
density to each point on the real line so that the area un-
der the density curve, integrated over the whole real lime, i
1.1 Such models do not take into account directional data,
which is inherentlycyclic. Under circular distributions the
density of any point on the real line is the same as that of
x + k& wherek is any integer and is some real number.

The need for circular distributions has long been realized
by statisticians [6], but the practice of using them has not
found its way into the computer science community and
to the machine learning community in particular. One of
the goals of this paper is to point out the usefulness of one
specific circular distribution in the context of roboticeda
provide a short tutorial on circular distributions.

Another special aspect of directional data is its sensitiv-
ity to errors. As most navigators, pilots and skippers have
experienced, a small angular deviation from the original
course causes a big displacement at the final location. This

Directional datais information consisting of magnitude
anddirection Such data is an integral part of important ap-
plications in various areas of computer science in generai
and artificial intelligence in particular. In computer ghap
ics, automatic production of pen-and-ink drawings and th
production of animation based on magnetic trackers dat
requires statistical manipulation of directional datacdg-
nitive science, modeling routes chosen by animals [4] re

problem is very prominent in mobile robots, where drifts
nd drags of the wheels and disalignment of both engines
nd floors can cause a robot to face in the wrong heading
with respect to its own odometric readings. Odometric in-
ormation is recorded by the robot along three dimensions;
ft consists of the changes along thand they axis as well

as a change in theeadingof the robot within a global co-
'ordinate system. In our previous work on learning topolog-

quires a_S|m|Iar k|_nd of statistical manlpulqt_lon. In thear ical models [17] we made several assumptions about the
of machine learning we often use probabilistic models forodometric data:

robot movement. Most aspects of robot movement (arm
movement as well as the whole body movement) can be e All odometric measures are normally distributed.
described in terms of location and heading change, requir-

ing the use and manipulation of directional data. 'Most often the distribution is Gaussian.



e All corridors are perpendicular to each other. and the odometric measures are all subject to error. The
e The robot, when collecting the data, is using the per-earning task is to deduce a model from the recorded obser-

pendicularity assumption, and is collecting the datavations and odometric information.
with respect to one global coordinate system. Our learning algorithm gets as an input an experience se-

This paper demonstrates the problematic aspects of thesiiencek of observations and odometric readings, and pro-
assumptions and introduces our solution to the problemgluces as outputaamm?, A, of the environment, such that
together with preliminary results that demonstrate the efthe likelihood,Pr(E|)), is locally maximized. Formally,
fectiveness of our solution. The rest of the paper is orgathe standaréimm is defined as atuple = (5, 0, A, B, m),
nized as follows: Section 2 describes our application andvhere:
motivates the need for circular distributions in the contex o ¢ _ {s1,..., sy} is afinite set ofV states;
of machine learning; Section 3 presents the von Mises dis-
tribution, which is a circular version of the normal distrib
tion; Section 4 discusses the problems faced due to heading
deviations and presents our solution to the problem; Sec-
tion 5 presents experiments and results to demonstrate thes 4 is a stochastic transition matrix, withl; ; =
usefulness of our approach; Section 6 concludes the paper. Pr(¢i+1 = sjlg: = si); 1 < i,j < N; ¢ is the state
at timet;
2 LEARNING TOPOLOGICAL MODELS e Bis an array of stochastic observation matrices, with
Bi,j,o = P?“(Vt[l] = O|qt = 5])- 1 S 2 S la 1§]§N7
o € 0y, V; is the observation vector at tinig
e 7 is a stochastic initial probability vector describing
the distribution of the initial state.

o 0 = Hi’:l O; is a finite set of observation vectors
length/; the ith element of an observation vector is
chosen from the finite sé&b;;

Hidden Markov modelsH{mMms), as well as their gener-
alization to models for partially observable Markov deci-
sion processesOMDP models), are a useful tool for rep-
resenting environments such as road networks and office
buildings, which are typical for robot navigation and plan- Odometric information gathered by the robot is not an in-
ning [1, 14, 18]. Previous work on planning with such mod- herent part of the topological model, but is used by the
els typically assumed that the model is manually providedlearning algorithm to better identify and distinguish stat
Manual acquisition of these models can be very tediougo facilitate the use of this information we augment the
and hard. It is desirable to learn such models automatistandard model with the odometric relation matrix:

cally, both for robustness and in order to cope with new and
changing environments. Sine®@mbpPmodels are a simple
extension oHMMs, they can, theoretically, be learned with ) _ def _

a simple extension to the Baum-Welch algorithm [15] for ~ metric relation between themyf;, = u(R;;[d]) is
learningHMMs. However, without a strong prior constraint the mean of thel™ component of the relation be-
on the structure of the model, the Baum-Welch algorithm  tweens; ands; and (o7;)? £ 52(R; j[d]), the vari-
does not perform very well: it is slow to converge, requires  ance, wherel < d < D. Furthermore,R is geo-
a great deal of data, and often becomes stuck in local max- metrically consistentfor each component, the rela-
ima. In previous work [16, 17] we demonstrated how the  tjgn R%(a, b) d:efﬂ(RM[d]) must satisfy the following
simple Baum-Welch algorithm can be enhanced withweak  properties for all states, b, ande:

local odometric information to learn better models faster, J _

under the assumption listed above. For the sake of com- © Ra,a) = 0;

pleteness, we briefly review the essentials of thisworkhere ¢ R(a,b) = —R*(b, a) (anti-symmetry)and
o Ri(a,c) = R¥(a,b)+ Ri(b,c) (additivity);

e Risarelation matrix, specifying for each pair of states,
s; ands;, the mean and variance of tii&dimensional

A robot moves through the corridors in an office environ-
ment. Low-level software provides a level of abstraction The odometric information recorded by the robot at time
that allows the robot to move through hallways from inter- ¢, consists of the change in theandy coordinates of the
section to intersection and turn ninety degrees to the lefpdometric readings when moving from state ; to state

or right. At each intersection, ultrasonic data interptieta  ¢:, as well as the change of the robot’s headthdietween

lets the robot observe, in each of the four cardinal directhese states.

tions, Whether there is an open space, a door, a wall, %n arbitrary initial model\, is assumed. Then an expecta-
something unknOV\_/n. The_ robot_ also has encoders on Son maximization algorithm [3] is executed as follows:
wheels that allow it to estimate its current pose (position

and orientation) with respect to its pose at the previous in-  2we discuss henemms rather thamomppmodels. Extension
tersection. Of course, the action and perception routines PomDrsis straightforward, but notationally more cumbersome.



A= b 4 However,we do not know in advance the angles between

n
\/\ SXy0> <xy0+180> states.The data is a sequence of measurements recorded at
_ _ ) ~ all the states. Westimatethe probabilities of the states in
Figure 1. Robot changes heading from stat® stateb. which they were recorded, and takevaighted meaof the
e E-step computes the state-occupation and transi-measurements in order to estimate the angular change be-

tion probabilities, v,(i) = Pr(g = s;|E, \) and tween every two states. Thus, we are facing the following
(i, 5) = Prg: = si,qr41 = 5;|E, \) resp’ectively problem:What is the interpretation of a “mean angle?

at each time in the sequence, givehand the current  As an example, suppose we want to estimate the heading

model, and change from state to stateb of Figure 1. We adopt the
e M-step finds a new model\ that maximizes convention of angles being expressed betweéR(0° and
Pr(E|A, 7, &). 180°. Also, suppose that the robot recorded two measure-

ments of angular distance from stat® stateh: —169° and

Introducing odometric information requires iterative up- .., - .
. . . .185°. The simple average between these measurements is
dates of the odometric relations between pairs of states, in

. . S an estimate of the mean heading chang&°®ofObviousl
the relation matrix,R. The updates need to maintain the 9 ge y

o this value does not even approximate the change of head-
properties listed above, although currently the update pro. . :
- . ing between the two states. The same problem arises if
cedure only satisfies the first two.

we use any other convention for expressing angles (8.g.
The learning task is further complicated by the special nato 360°). The problem lies in the fact that angles that are
ture of the heading reading and the rotational errors acabout180° away from the mean angle, indeed greatly de-
crued. The following section goes in more detail into theviate from this mean, while angles that deviate at#iif
special issues of handling the heading information. Theare actually very close to it. To capture this idea, the con-
rest of the paper deals with resolving the problems causedept ofcircular distributionis required. We provide a brief

by rotational errors. introduction to the concepts and techniques used for han-
dling directional data. In particular we concentrate on the
3 DIRECTIONAL DATA AND von Mises distributior— a circular version of the normal
DISTRIBUTIONS distribution. Further discussion can be found in the statis

tical literature [6, 10, 13]. Section 3.3 returns to show how
Suppose a robot is in state which is in location{z,y)  the theory is applied in our model and learning algorithm.
facing in directiond, as shown in figure 1. By turning
backwards, it transitions to stagand a respective change 3.1 STATISTICS OF DIRECTIONAL DATA

of heading of approximately-180° is recorded. Thus the pjrectional data in the 2-dimensional space can be
new recorded configuration of the robotis+ ¢1, y + €2, rgpresented as a collection of 2-dimensional vectors,
0 + 180° + e3), whereg; is the error due to inaccuracy in ((x1, Y1), - - - {xn, yn)), ON the unit circle, as shown in Fig-
both measurement and movement. In earlier work [17]yre 2 'The points can also be represented as the corre-
we treated all errors — in both locatiom,(y) and head-  g,4nding angles between the radii from the center of the
ing (¢) — as if they were normally distributed. However, . circle and the x axis{fy, .. ., 0,), respectively. The

the change in heading is different from changes andy,  gationship between the two representations is:

since angular measurements agelic. That is, a change ) )

in heading of° is the same as that éf+ 360°k, for any vi =cos(f), g =sin(f;),(1<i<n).
integerk. The vector mean of the points,(z, 7, is calculated as:

If we knew in advance, for every pair of states, the ap- __ 2izgcos(;) __ 2izysin(6;) 1

. ; : z = s U= @
proximate change in heading\@) between them, we ) n n )
small variancer2. We could have adopted a convention, terms of angled, and lengthz, where (except for the case
normalizing all angles to be within a cyclic range, e. g.* =¥ = 0): B
[—180°, 180°], (similarly we may use radians), and alwayg 7= arctan(g), 7= (72 + yz)é )
chosen to take as the angular change between two points z
min(|Af],360° — |Af]), and assigned it the correct sign. The angled is the mean angle, while the lengihis a
Such an approach of using a non-circular distributionis jus measure (betweehand1) of how concentrated the sample
tified when the estimation of a position is based only onangles are aroundl The closef is to 1, the more concen-
readings a-priory known to be taken near this position, (seérated the sample is around the mean, which corresponds to
for example work by Thrun et al [20] and Lu et al [12]). a smaller sample variance.
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Figure 2: Directional data represented as angles and as vectorsFigure 3: The von Mises distribution with mode 0 and various
on the unit circle. k values.

A function f is a density function of a continuontrcular “unwrapped” plot of the von Mises distribution for various

distributionifand onlyif: f(z) > 0 and [ f(z)dz =1.  values ofk wherey = 0.

A. S|mple_exz_;1mp_le of & circular Q'St”bu“_on '_5 thmﬁorlm We now describe how to estimate the parameteend &
circular distribution whose density function i(¢) =

: . ) 27 given a set of heading samples (anglgs. . .0,) from a
(whered is measured in radians). von Mises distribution [13]. We are looking for maximum

One way of deriving a circular version of an unlimited lin- likelihood estimates fop andk. The likelihood function
ear distribution is through “wrapping” it around a circum- for the data generated by a von Mises distribution with pa-
ference of the unit circle. If is a random variable on the rameters: andk is:

line with probability density functiory(x), the wrapped .

random variable:,, = [z mod 2] is distributed according " ek 2oy cos(Bimn)

to a wrapped distribution with the probability density func H Fu, W

tion: f, (8) = > f(6 + 27k). Applying this derivation

to the normal distribution results in a circular version of

the normal distribution, but estimating its parametersrfro The maximum likelihood estimate fory, 7, is:
sample data can be hard [6, 13]. An easier-to-estimate ciZ = arctan(%), wherey, T are as defined in equation 1.
cular version of the normal distribution was derived, by von
Mises [6, 13]. We use this distribution to model the robot
heading in this work, and it is described below.

The maximum likelihood estimate féris thek that solves
the equation:

Io(k) n i=1

If we don’'t know i and are only interested in estimating
i 1 k with respect to thesstimatep, by using trigonometric
' Fur(0) = SR ek oosf-n) manipulation and the definition @f (Equation 2), we can
mlo(k) substitute the right hand side of equation 3dwand ob-

wherel, (k) is the modified Bessel function of the firstkind t5iny that the maximum likelihood estimate fbris % that
and orde: o satisfies: L&) — g
I

To(k) :Z%(lk)zr _ o(h) | |
=it 2 However, if we do have a givem and want to find a max-
imum likelihood estimate for the concentratiégnof the

distribution, symmetrical around. The modeisaf = 1 maximum likelihood estimate for, % that satisfies:
while the antimode is & = p + w. We observe that the ra-

tio of the density at the mode to the density at the antimode

- n 2 n 2 n 2
is 2%, which indicates that the largéris, the more con- f1(k) _ 1 (Z COS(gi)) _|_(Z Sin(gi)) _(Z sin(u — gi)) .

centrated the density is about the mode. Figure 3 shows dn(k) ™\ \“= Y Py

32 THE VON MISESDISTRIBUTION L1 (k) IZCOS(GZ'_N) ‘ 3)

A circular random variablg], 0 < 6§ < 2, is said to have
thevon Mises distributiomvith parameterg: andk, where
0 < u < 2randk > 0, if its probability density function




The above estimation formulae agree with the IntUItlonthaTFmdmgk that satisfies this equation is done through the

the sample is more concentratédg larger) about the sam- use of a Iookup table listing values of the quotié\tﬁﬂ.
ple mean %) than about the true distribution meau)(

Th t of th " | how th Mi The above reestimation formulae agree with the maximum
€ rest of the section explains how the von Mises param ikelihood estimator formulae given in Section 3.1. Their

eters are incorporated into the Hidden Markov model, anq, ;o oneqs can be proved along the lines of the proof pro-

how the learning algorithm is adapted to learn these paranbided in our previous document [16]
eters. '

3.3 HANDLING ANGULAR ODOMETRIC 4 STATE-RELATIVE COORDINATE
READINGS SYSTEMS

To model the heading difference between each pair ofn our previous work we assumed that there is a sin-
states, the relation matrik, described in Section 2, is 3- gle global coordinate system within which the robot op-
dimensional, consisting of the componefts y, #). The  erates. Moreover, we assumed that the robot collects its
component; ;[0] represents the heading change of mov-data within a perpendicular corridor framework and that
ing from states; to s;, and is assumed to be distributed it takes advantage of this single perpendicular framework
according to the von Mises distribution. The notationwhile recording odometric information. This assumption
F‘?,j gef w(R; ;10]) represents the mean of the distribution may be troublesome in practice. The rest of the paper dis-
cusses the potential problems, presents a method for re-
laxing the assumptions and addressing the problems, and
demonstrates the effectiveness of the solutions through ex
periments and results.

for this heading change, Whi!{j e k(R; ;[0]) represents
the concentration parameter around the meafhe three
constraints described before for the component8 dide-
ally) hold for thed component as well.

Similarly, every observed relation item;, in the expe- 41 MOTIVATION

rience sequence, has a heading-change componéht, e tend to think about an environment as consisting of
which records the robot’s estimated change in heading b&andmarks fixed in a global coordinate system and corri-

tween the state at time¢,, and the statg; ;1. dors or transitions connecting these landmarks. However,
The reestimation formula for the von Mises mean parame!NiS View may be problematic when robots are involved.
ter of the heading change between staesnds; is: Conceptually, a robot has two levels in which it operates;

the abstractlevel, in which it centers itself through cor-
ridors, follows walls and avoids obstacles, and fieys-

Z [sin(re[0])&: (7, 7) — sin(re[0])&c (5, )] ical level in which motors turn the wheels as the robot
ﬁij:arctan f . moves. In the physical level many inaccuracies can oc-
. cur: unaligned wheels or unsynchronized motors can cause
Z cos(re[0])&: (4, 5) + cos(re[0])&: (5, 7)] I y

sidewards drift, an obstacle under a wheel can cause the
robot to slightly rotate around itself, or uneven floors may
The fraction denotes the ratio between the expected sineause the robot to slip in a certain direction. In addition,
and the expected cosine of the heading change from statbe odometric measuring instrumentation may be inaccu-
i to statej. Since the heading change frgjtto 7 is iden-  rate in and of itself. In the abstract level, corrective aics

tical in magnitude but opposite in direction to the headingare constantly executed to overcome the physical drift and
change fromi to j, the transitions frony to ; are also ac- drag. For example, if the left wheel is disaligned and drags
cumulated — with reversed signs. By takimg-tan of this  the robot leftwards, a corrective action of moving to the
ratio we get an estimate for the mean heading change itselfight is constantly taken in the higher level to keep the tobo

centered in the corridor.
To reestimate the concentration parameter, we need to find

7% such that: Such phenomena greatly effect the odometry recorded by
" the robot, if it is interpreted with respect to one global

=0

yad ot framework. For example, consider the robot depicted in
Okl _ Sio (i J) cos(ri[0] — 7 )] _ Figure 4. It drifts to the left-¢° when moving from one
[O[Efj] ZtT (i, ) state to the next, and corrects for it by moviag) to the

right to maintain itself centered in the corridor, moving

%In contrast,z andy are normally distributed and have their along the solid arrow. Let us assume that states are lo-
variancerather tharconcentratiorstored inR.
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Figure 4: The robot moves in a corridor along the solid arrow, Figure5: A path in a perpendicular environment, plotted based
correcting for drift in the direction of the dashed arrow. on odometric readings taken by the robot Ramona.

cated along the center of the corridor, which is aligned
with the y axis of the global coordinate system. The robot
steps back and forth in the corridor. Whenever it reaches
a state, its odometry reading changegbyy, 9) along the
(X,Y, heading) dimensions, respectively. As the robot
proceeds, the deviation with respect to thaxis becomes
more and more severe. Thus, after going through several
transitions, the odometric changes recorded between every
pair of states, with respect to a global coordinate system
become larger and larger (especially in tielimension).

I’:igure 6: Robot in states;, facing in the direction of thg axis.

Similar problems of inconsistent odometric changestem whose origin is anchored at the statgethe y axis is
recorded between pairs of states can arise along any of thedigned with the robot’s heading in stateand ther axis is
odometric dimensions. It is especially severe when suclperpendicular to it. This is depicted in figure 6. The robot
inconsistencies arise with respect to the heading, sirnse this in states; facing in the direction pointed to by theaxis.
can lead to confusion between tiie and theY” axes, as Its relationship to the state is described in terms of the
well as confusion between forwards and backwards moveeoordinate system shown in the figure. Its heading in each
ment (when the deviation in the heading is arogh8l or  state is denoted by the bold arrow.
180° respectively). An example of our robot view of a per- . . . .
fectly perpendicular office environment, based on its odo-TO supp_ortthls |nterpre_tat|on ofthe relatlor_1 matrix vyeahee

. . L . : to revisit the formulation of the geometrical-consistency
metric readings within a global coordinate system, is shown ) . .
- constraints stated in Section 2, as well as the update for-
in Figure 5. The data was collected by our robot Ramona .

. : . : mulae used when learning the model.
while moving along the corridors in an area of our depart-
ment, depicted in Figure 7. The consistency constraints have to reflect the coordi-
nate system with respect to which the odometry is repre-
. : : : sented. Since the heading measurement is independent of
lations of moving from state; to states; using a changing - . .
any specific coordinate system, only the constraints over

coordinate system which igspectiveto states;, as op- : .
. o t,we z and y components of the odometric relation need
posed to a global coordinate system anchored at the |n|t|e%

i z,y)
state. We formalize this idea and provide the update rule o l;%e redefme}g. we (ie?otedbjf_ ZT(GE b)bthti vtector
for the odometric information based on this approach inthe%é‘( a.p[2]), p(Ba p[y])). Let us defin€f., to be the trans-

rest of this section. We have implemented our solution, and rmation which maps afka, ya) Par represented with re-
. . . spect to the coordinate system of staf¢o the same pair
demonstrate its effectiveness throughout Section 5.

represented with respect to the coordinate system of state
42 LEARNING ODOMETRIC RELATIONSWITH b, (xb, yv), (note thatly, = 7, 1).

CHANGING COORDINATES More explicitly, as before, let? (a, b) be the mean change
As before, our experience sequereeonsists ofl’ pairs  in heading from state to stateb (recall thatu® (a,b) =
{re, V}) of recorded odometric relations and observation—z’ (b, a)). The transformatioff,, is defined as follows:
vectors. The odometric relations are still recorded with re 2
spect to the robot’s global coordinate system. However,[ ] ZTab<[
when learning the relation matrix from the odometric read-
ings, we interpret the entri; ; in the relation matrix?, as ' . .

We can now redefine the consistency constraints forthe

encoding the information with respect to a coordinate sys- ) .
g P Y andy components of the odometric relation:

A solution to such a situation is to model the odometric re-

xa]>:[l‘a C.OS(“G(G’ b)) — ya Sin(ﬂe(a, b)) ‘
Ya Tq 8111(”‘9 (a’ b)) + Yo COS(/,LG (a’ b))
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Figure 7: Model of a prescribed path through a true hallway
environment.

Figure 8: Learned topological model.

o ™) (a,a) = (0, 0); hallways from intersection to intersection and to turn tyne
o ﬂ(x,y)(a b) = —Tha (N(x,y)(b a)) (anti-symmetry) degrees to the left or right. Ultrasonic data interpretatio
b - b 1 . . . . .

(9} (9) (9} o let her perceive, in three directions — front, left and right
o pm¥ (a,¢) = pto V) (a, b))+ Tya (859 (b, ¢)) (additivity);  _ \yhether there is an open space, a door, a wall, or some-
The reestimation formulae for all the parameters except fofhing unknown. Doors and intersections constitstigtes
thez andy components of the relation matrix, remainas  When they are detected by Ramona, it stops and records its
before. However, the reestimation formulae for thand  observations, as well as its odometric change between the
y parameters are changed to reflect the relative coordinaterevious and the current state. All recorded measures as

systems used:? ; andﬂ?,j are reestimated as follows: well as the actions are, of course, subject to error.
=z re[z] =z re[z] The path Ramona followed consists of 4 connected corri-
. th(h]) [rt[y]] - Z& (, 1)7}i< [m[y]]) dors, which include 17 states, as shown in Figure 7. Black
[ﬁ;y] — =0 t=0 . dots represent the physical locations of states. Multiple
Hij fity . . states (depicted as numbers in the plot) associated with a
> (&0 + &) single location correspond to different orientations a th

t=0 robot at that location. The larger black circle, at the batto

These reestimation rules are guaranteed to satisfy the firgft corner, represents the starting position. The observa
two geometrical constraints, but not the additivity con-tions associated with each state are omitted for clarity. A
straint. Their correctness can be proved along the lines obrojection of the odometric readings that Ramona recorded
the correctness proofs for all other formulae [16]. along ther andy dimensions, is shown in figure 5.

5 EXPERIMENTSAND RESULTS To_statlst|_cally evalgate our algorithm, we use a S|mu_lated
office environment in which the robot follows a prescribed

The goal of this work is to use odometry to improve the path. It is represented as amm consisting of 44 states,
learning of topological models, while using fewer iteraiso  and the associated transition, observation, and odometric
and less data. We tested our algorithm in a simple robotdistributions. Figure 9 depicts thisMmm. Arrows repre-
navigation world. In earlier stages of this work, a strongsent transitions that have probabilidy2 or higher. Solid
assumption underlay our experiments: the corridors in theirrows represent the most likely transitions between the
environment are all perpendicular to each other, and thétates. We generated 5 data sequences from the model, each
agent was using this perpendicularity to reset its positiorof length 800, using Monte Carlo sampling. One of these
while accumulating the odometric readings. Here we havesequences is depicted in Figure 10. Again, observations are
updated the algorithm and dropped the assumption. The exemitted, and this is a projection of the odometry readings
periments demonstrate that the use of odometry, even withnto a global 2-dimensional coordinate system. For each
accumulated rotational error and without using the perpensequence we ran our algorithm 10 times. We also ran the
dicularity assumption, is still very beneficial. standard Baum-Welch algorithm, not using odometric in-
formation, 10 times on each sequence. For both algorithms
we started each run from a randomly picked initial model.

Our experiments use both real robot data and simulate

data. We ran our robot Ramona, a modified RWI BZl,g'2 RESULTS

along aprescribed directed path in our department corri- We used our algorithm to learn a topological model of the
dors. Low-level routines let Ramona move forward throughenvironment from the data gathered by Ramona. Figure 8
B — shows the topology of one typical learnedim. The bold
Bircle represents the initial state. The arrows semansics i

51 EXPERIMENTAL SETTING

“Hence, no decisions are executed by the robot, and the mod
is anHMM and not a completeoMDP.
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Figure 9: Model of a prescribed path through the simulated

) Figure 10: A data sequence generated by our simulator.
hallway environment.

as stated before. It is clear that the learned topology €orre
sponds well to the topology of the true environment. The
observation distributions learned are omitted from the fig- ’ T ctomecry
ure, but they too correspond well to the walls, doors and -
openings encountered along the path, while incorporating 10
the identification error resulting from noisy sensors. s T

Qdonetry Used

25

Traditionally, in simulation experiments, learned models 05 —0
are quantitatively compared to the actual model that gen-

erated the data. Each of the models induces a probabifjgure 11: AveragekL-divergence as a function of length.

ity distribution on strings of observations; the asymneetri

Kullback-Leibler divergence [11] between the two distri- we used the simple two-sample t-test. The models learned
butions is a measure of how far the learned model is fromusing odometric information have highly statistically -sig
the true model. We report our simulation results in termsnificantly (p >> 0.9995) lower averagexL divergence than

of a sampled version of theL divergence, as described by the others.

Juang and Rabiner [9]. It is based on generating sequenc
of sufficient length according to the distribution induced
by the true model, and comparing their likelihoods accord
ing to the learned model with the true model likelihoods. . o 2

We ignore the odometry information when applying the Ag_am, the t-test verifies the significance & 0.995) of
measure, thus allowing comparison between purely topot-hIS result.
logical models that are learned with and without odometry.To examine the influence of the amount of data on the qual-
Table 1 lists thexL divergence between the true and learned' of the leamed quels, we took one of the 5 sequences
model, as well as the number of runs until convergence WagSeq.#l) and used Its preflxes of length 100.t0 800 (the
reached, for each of the 5 simulation sequences under thceomplete sequence), in Increments .Of 100.’ as individual se-
two learning settings, averaged over 10 runs per sequencequences. _We ran the two al_gorlthmlc settings over each of
the 8 prefix sequences, 5 times repeatedly. We then used
The table demonstrates that thie divergence with respect the KL-divergence as described above to evaluate each of
to the true model for models learned using odometry, isthe resulting models with respect to the true model. For
about4-5 times smallethan for models learned without each prefix length we averaged tkie-divergence over the
odometric data. To check the significance of our resultss runs. Table 2 summarizes the results of this experiment.
It lists the mearxL-divergence over the 5 runs for each of
the prefixes, as well as the standard deviation around this

S . . . .

?n addition, the number of iterations required for con-
vergence when learning using odometric information is
smaller than required when ignoring such information.

Table 1. Average results of 2 learning settings with 5 training

sequences. mean. The plot in Figure 11 depicts tke-divergence as
Seq. # 1 > 3 Z 5 a function of the sequence length for each of the settings.
With KL 1.115| 1.100| 1.095| 1.139| 1.129 Both the table and the plot demonstrate that, in terms of the
Odo "Iter#| 69.7 | 81.8 | 843 | 52.4 | 112.9 KL-divergence, our algorithm, which uses odometric infor-
No KL || 5.575] 4499 | 4997 | 4491 5.791 mation, is robust in the face of data reduction. In contrast,
Odo Iter# || 120.4] 107.5] 116.2] 1133 ]| 1206 learning without the use of odometry is much more sensi-



Table 2: Average results with 8 incrementally longer sequences.

Seg. Length 800 700 600 500 400 300 200 100
With  MeankL || 1.136| 1.201| 1.191| 1.241 | 1.216 | 1.272 | 1.771 | 15.076
Odo Std. Dev. || 0.091| 0.083| 0.131| 0.082 | 0.036 | 0.085 | 0.510 | 12.884

No MeankL || 5.790| 6.249 | 8.354| 10.390| 11.490| 14.772| 20.044| 26.619
Odo Std. Dev. || 0.554| 0.937| 0.179| 0.460 | 0.422 | 1.280 | 0.904 | 0.460

tive to reduction in the amount of data. Again, we applied [6] E. G. Gumbel, J. A. Greenwood, D. Durand. The circular
the two-sample t-test, which verified the statistical digni
cance of these results.

6 CONCLUSIONS

Directional information which comes up in various appli-
cations of computer science in general and machine learn{8]
ing in particular, requires special treatment. Currentbsin
statistical models and applications are based on distribu-
tions that are either discrete or continuous along the reall[9]
line, rather than circular. It is important to be aware of the
need for circular distributions as well as of their existenc
Moreover, it would be useful to have widely used applica-[10]
tions such as Autoclass [2] support such distributions.

[7]

A problematic aspect of directional data which manifests[11]
itself when learning maps and models for robot navigation

is that of cumulative rotational errors. In the context of [12]
our work we have demonstrated that the use of relative co-
ordinate systems rather than global ones supports learning

relationship between states. The main point shown by thi

paper is that through correct treatment of directional data
odometric information which is weak and very noisy still

provides a significant leverage when learning a purely topo[14

logical map.
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