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Abstract

Reusing the products of the software development process is an

important way to reduce software costs and to make programmers and

designers more e�cient. Object-oriented programming permits the reuse

of design as well as programs. This paper describes two techniques

for reusing design and how these reusable designs are developed. Ab-

stract classes are reusable designs for components, while frameworks

are reusable designs for entire applications or subsystems. These two

techniques are related since frameworks almost always contain abstract

classes. Although the most widely used frameworks are for user inter-

faces, this paper draws its examples from a framework for the virtual

memory subsystem of an operating system.

1 Introduction

Experienced programmers reuse design. Therefore, a popular goal of software

engineering is to develop tools and techniques to assist design reuse. The

central problem with reusing design information is how to capture and express

it [BR87]. Any design notation supports an abstraction that ignores some

details of a problem and emphasizes others. This paper describes design

techniques that emphasize objects and the interfaces between them.
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In particular, this paper describes two kinds of reusable object-oriented

designs: abstract classes and frameworks. An abstract class is an incompletely

speci�ed class that is designed to be a template for subclasses, rather than a

template for objects [GR83, WJ90]. An abstract class is a relatively small-scale

design. A framework is a larger-scale design. It describes how a program is

decomposed into a set of interacting objects. A framework is used to represent

an entire application or subsystem [Deu89, WJ90]. Abstract classes are well-

known inside the object-oriented programming community, but frameworks are

not. Neither are yet understood in the wider software engineering community

as an important way to reuse design.

In a recent paper, Mary Shaw argues that \software engineering" will not be

a true engineering discipline until it codi�es a large body of design information

and creates reference materials that engineers can use to solve routine design

problems quickly and reliably [Sha90]. We believe that frameworks are one of

the most promising approaches for making software engineering a reality. The

purpose of this paper is to show how object-oriented frameworks can be used

to codify design knowledge for a particular application domain.

Since frameworks describe large-scale designs, any example will be large.

Since frameworks codify design knowledge for a particular application domain,

understanding a framework always requires understanding a little about its

application domain. The main example of this paper is taken from the virtual

memory system of the Choices operating system [RC89, Rus90]. Choices is a

framework for operating system construction being developed at the University

of Illinois.

The rest of this paper is presented as follows. Section 2 de�nes abstract

classes and frameworks. Section 3 gives some background on virtual memory.

Sections 4-6 describe the Choices virtual memory framework. Section 7 relates

some of our experiences with the framework. The paper concludes by describing

the process of developing frameworks.

2 Object-Oriented Programming and Reuse

The programming language features that characterize object-oriented program-

ming languages are well-known and have been widely discussed. These features

are data abstraction, polymorphism caused by late-binding of procedure calls,

and inheritance. Although these features make it easier to reuse software, the

major reason that object-oriented systems have been so successful at software

reuse is a change in the way systems are designed. Design is reused, not just

code, and a mature design is considered to be one that is easy to reuse and

customize.

Data abstraction is an integral part of object-oriented programming. An
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object encapsulates both state and behavior. The only way to interact with an

object is through its operations. In other words, the only way to determine an

object's state is by its behavior. Usually the behavior (a set of operations) and

the state associated with an object is de�ned by its class. A class is a template

for the objects that are its instances.

The design-level view of a class di�ers from the implementation-level view

by focusing entirely on the class's public operations. Public operations are

those operations that are designed to be used by other objects. Thus, the

design-level view of a class does not de�ne state or private operations (those

operations used solely by the class itself), although most of the public oper-

ations will eventually be implemented by accessing the state or by invoking

private operations.

Polymorphism (the ability for a single variable or procedure parameter

to take on values of several types) is another integral part of object-oriented

programming. Polymorphism is achieved as a result of late-binding of pro-

cedure calls. The procedure to call in response to invoking an operation on

an object is a function of the class of the object. Thus, a variable can take

on the value of any object that implements the appropriate set of operations,

i.e., the variable can take on objects of several classes. Polymorphism makes

programs more reusable and reduces the number of di�erent interfaces. The

kind of polymorphism provided by object-oriented languages leads naturally

to a subtype relationship between types[CW85].

Most object-oriented languages provide class inheritance. Class inheritance

lets one class, a subclass, inherit all the attributes (i.e., the operations and

state) of another class, the superclass. Inheritance can have many uses|code

reuse, type checking, and categorizing components. This paper concentrates

on its role in reusing designs (in abstract classes) and de�ning interfaces (in

frameworks).

2.1 Abstract Classes

Abstract classes, the �rst of the two design techniques described in this paper,

illustrate the power of inheritance to express designs. An abstract class is a

class with at least one operation left unimplemented. Because some operations

are unimplemented, an abstract class has no instances and is used only as a

superclass. Thus, it is designed to be used as a template for specifying sub-

classes rather than objects. Although an abstract class lacks implementations

for some of its operations, it can implement other operations in terms of the

unimplemented operations. Classes that are not abstract are concrete classes.

A concrete subclass of an abstract class will provide an implementation for any

operation that needs one, and will inherit the implementations of the other
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operations.

For example, a File is an object with read, write, and size operations. File

could have subclasses like UnixFile and NetworkedFile. Di�erent kinds of �les

will have completely di�erent algorithms for reading and writing the �les, so

class File will not implement these operations. However, these operations can

be used to implement other operations. If the size operation gives the number

of blocks in a �le then any �le can copy itself to another �le using the copy

operation, implemented as follows:

File::copy( File aFile ) f

char bu�er[BlockSize];

for (int i=0; i++; i<= this {> size()) f

this {> read(bu�er);

aFile {> write(bu�er);

g

g

A subclass of File that de�nes read, write and size will be able to use copy.

Assuming that a subclass UnixFile of File does not rede�ne copy, copying a

UnixFile to a NetworkedFile will invoke the read and size operations on the

UnixFile and the write operation on the NetworkedFile. Thus, a function in a

superclass can call a function implemented in a subclass.

Abstract classes have three kinds of operations. The read operation is an ex-

ample of an abstract operation, which is not implemented by the abstract class

but is left to subclasses to de�ne. The abstract class provides a speci�cation

that all subclasses are to follow. Statically typed object-oriented programming

languages check the syntactic part of the speci�cations, though a complete

speci�cation includes behavioral constraints like pre and postconditions and

class invariants. Ei�el[Mey88] is the only commercial object-oriented language

that provides any support for recording or checking the behavioral part of the

speci�cations

1

, and dynamically typed languages like Smalltalk do not even

check the syntactic part.

The copy operation is an example of a template operation, which is an

abstract algorithm de�ned in terms of one or more abstract operations. The

subclass specializes the template operations by implementing the abstract

operations. Thus, template operations are partially implemented.

A base operation is one that is fully implemented. For example, every

�le might have a variable that describes its owner, with functions owner and

1

Ei�el provides pre and post conditions and class invariants that can be checked at run

time. There are no tools for checking them statically, so their main use is for testing and

documentation.
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setOwner to access it. While base operations are useful, the abstract operations

and template operations are usually more important parts of a design.

It is important to recall that abstract classes are a design technique, not a

programming language feature. Most object-oriented programming languages

provide no direct support for abstract classes. Programmers must rely on the

documentation or a careful reading of the program (reverse engineering) to

determine whether a class is abstract. For example, Smalltalk programmers

indicate abstract operations by giving them an implementation that invokes

the subclassResponsibility operation. However, Smalltalk performs little static

analysis of programs, so it is easy for programmers to omit this important

information. Early versions of C++ had no support for abstract classes, but

recent versions allow abstract operations to be declared as \pure virtual"[ES90],

and Ei�el lets them be declared as \deferred"[Mey88].

2.2 Frameworks

An abstract class is a design for a single object. A framework is the design of a

set of objects that collaborate to carry out a set of responsibilites. Thus, frame-

works are larger scale designs than abstract classes. Peter Deutsch emphasizes

that the most important part of a framework is the part that describes how a

system is divided into its components[Deu87, Deu89]. Frameworks also reuse

implementation, but that is less important than reuse of the internal interfaces

of a system and the way that its functions are divided amoung its components.

This high-level design is the main intellectual content of software and is far

more di�cult to create or re-create than code. Frameworks are a way to reuse

this high-level design.

Frameworks are similar to other techniques for reusing high-level design,

such as templates [VK89] or schemas [KRT89, LH87]. Like abstract classes,

frameworks are expressed in a programming language, but the other ways of

reusing high-level design usually depend on a special purpose design notation.

As a result, these other techniques have the potential to be more 
exible and

powerful than frameworks. On the other hand, they are still under develop-

ment, while there are several successful and widely used frameworks.

Frameworks usually provide the design of only part of a program, such as

its user interface, though application speci�c frameworks sometimes describe

an entire program. We use the term ensemble to refer to an instantiation of

a framework, i.e., to a set of objects working together to carry out a set of

responsibilities. An object-oriented system is (by de�nition) composed of a set

of objects. These objects are only an ensemble if they follow the pattern decreed

by a framework. A framework describes the architecture of an ensemble; the

kinds of objects in the ensemble and how they interact. It describes how a
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particular kind of program, such as a user interface or network communication

software, is decomposed into objects. It is represented by a set of classes

(usually abstract), one for each kind of object.

Like abstract classes, frameworks reuse both design and code. Some aspects

of a design, such as the kinds of objects, are easily described by code. Other

aspects are not described well by code, such as invariants maintained by objects

in an ensemble. The fact that some aspects of a framework are not expressed

well as code makes frameworks harder to understand than abstract classes.

Any design notation will emphasize some details of a program at the ex-

pense of others. A framework concentrates on describing the objects that

make up the program and how they interact. Data
ow is deemphasized, but

communication paths between objects are emphasized. Although frameworks

provide abstract algorithms, the users of a framework usually ignore the details

of these algorithms and concentrate on designing and combining objects.

The concept of a framework is harder to understand than that of an abstract

class. Abstract classes can be de�ned either by how to recognize them (i.e.,

\a class that has some operations unimplemented") or how to use them (i.e.,

\a class that is a template for subclasses, not objects"). Unfortunately, there

is no simple way to tell whether a set of classes is a framework, so frameworks

tend to be de�ned by how they are used. We will �rst de�ne frameworks by

example, and will �nish this section with a more precise de�nition.

The �rst widely used framework, developed around 1980, was the Smalltalk-

80 user interface framework calledModel/View/Controller (MVC) [Gol84, KP88,

LP91]. MVC showed that object-oriented programming was well-suited for

implementing graphical user interfaces. It divides a user interface into three

kinds of components; models, views and controllers. These objects work in trios

consisting of a view and controller interacting with a model. A model is an

application object, and is supposed to be independent of the user interface. A

viewmanages a region of the display and keeps it consistent with the state of the

model. A controller converts user events (mouse movements and key presses)

into operations on its model and view. For example, controllers implement

scrolling and menus. Views can be nested to form complex user interfaces.

Nested views are called subviews.

Figure 1 shows a picture of the user interface of one of the standard tools

in the Smalltalk-80 environment, the �le tool. The �le tool has three subviews.

The top subview holds a string that is a pattern that matches a set of �les, the

middle subview displays the list of �les that match the pattern, and the bottom

subview displays the selected �le. All three subviews have the same model|a

FileBrowser. The top and bottom subviews are instances of TextView, while the

middle subview is an instance of SelectionInListView. As shown by Figure 2, all

three views are subviews of a StandardSystemView. Each of the four views has
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Figure 1: The Smalltalk-80 File Tool

its own controller.

Class View is an abstract class with base operations for creating and ac-

cessing the subview hierarchy, transforming from view coordinates to screen

coordinates, and keeping track of its region on the display. It has abstract and

template operations for displaying, since di�erent kinds of views require di�er-

ent display algorithms. TextView, SelectionInListView, and StandardSystemView

are concrete subclasses of View that each have a unique display algorithm.

As a user moves the mouse from one subview to another, controllers are

activated and deactivated so that the active controller is always the controller

of the view managing the region of the display that contains the cursor. Class

Controller implements the protocol that ensures this, so a subclass of Controller

automatically inherits the ability to cooperate with other controllers.

Class Object provides a dependency mechanism that views can use to detect

when the model's state changes. Thus, any object can be a model. Later

versions of Smalltalk-80 have added a Model class that provides a more e�cient

version of the dependency mechanism[PS88].

The �le tool is a typical Model/View/Controller application that does not

need new subclasses of View or Controller. The ensemble that makes up its user

interface consists entirely of objects from classes that are a standard part of

the Smalltalk-80 class library. The Smalltalk-80 class library contains several

dozen concrete subclasses of View and Controller. However, when these are not

su�cient, new subclasses can be built to extend the user interface.

Model/View/Controller has spawned many other user interface frameworks.

MacApp is a popular commercial user interface framework designed speci�cally
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Figure 2: Subview Hierarchy in File Tool

for implementing Macintosh applications [Sch86]. Recently there have been

several user interface frameworks from universities, such as the Andrew Toolkit

from Carnegie Mellon University [PHK*88], InterViews from Stanford [LVC89],

and ET++ from the University of Zurich [WGM88, WGM89]. Each of these

frameworks improves the state of the art in user interface framework design in

some way, building on the lessons of earlier systems.

Frameworks are not limited to user interfaces, but can be applied to any area

of software design. They have been applied to VLSI routing algorithms [Gos90],

to structured drawing editors [VL89, Vli90], code optimization [JM91], and

psychophysiological experiments [Foo88]. Frameworks do not even require an

object-oriented programming language. The Genesis database system compiler

is a framework for database management systems [Bat88, BBR*89] as well as

a tool for specifying how ensembles are con�gured in the framework [BB91].

Genesis does not use an object-oriented language but rather a macro processor

and conditional compilation to implement an object-oriented design in C.

The important classes in a framework, such as Model, View, and Controller

of Model/View/Controller, are usually abstract. Like Model/View/Controller,

a framework usually comes with a component library that contains concrete

subclasses of the classes in the framework. Like the �le tool example, a

framework is typically used by con�guring or connecting objects from these

prede�ned concrete classes. Ideally, an ensemble can be created entirely from

classes in the component library. In practice, no component library is perfect
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or complete, and it is often necessary to derive new concrete subclasses of

the abstract classes in the framework. Although a good component library

is a valuable addition to a framework, the essence of a framework is not the

component library, but the model of interaction and control 
ow among the

objects of an ensemble.

Frameworks were informally de�ned earlier as a set of objects and how

they interact. All the object-oriented frameworks mentioned in this paper are

speci�ed by informal documentation and a set of (usually) abstract classes that

represent the objects. These classes give an operational speci�cation of how

objects in the framework interact. It would be better to formally describe the

invariants that the objects are maintaining and the constraints on operation

sequences, but the formal speci�cation of object-oriented systems is not mature

enough for that yet.

Given a speci�cation language for describing the behavior of a set of objects,

a framework would be a function from a set of objects to constraints on their

behavior. These constraints would specify not only the syntactic interface of

each object (i.e., its type) but also the shared invariants and the legal operation

sequences. For example, the Model/View/Controller framework would be a

function from the three objects in a MVC trio

� to syntactic constraints like \the view has a function image from the state

of the model to an image",

� to invariants like \the image on the screen inside a view's bounding box

is its function image applied to the state of the model",

� and to operation sequences like \whenever the controller changes the state

of the model, it performs the changed operation on it, which performs

the update operation on the view, which will redraw the screen."

Note that a framework can de�ne both an invariant and an outline of

the algorithm for maintaining it. The message sequence above describes how

Model/View/Controller ensures that the invariant above is maintained. We

will see this intermingling of invariants and algorithms again in the framework

for virtual memory.

Frameworks rely on unde�ned properties of the objects, such as the function

from the state of the model to the image. A framework is �lled out by

selecting objects according to how they de�ne these properties. The objects

in a framework often place additional constraints on each other. For example,

views (controllers) often use specialized operations to read (change) the state

of a model.

The major problem with expressing frameworks in a programming language

is that it is hard to learn the constraints that the framework imposes on
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its components by reading a program. The major advantage of expressing

a framework as a program is that the algorithms and data structure of the

program are automatically reused by every instantiation of the framework.

There is usually an abstract class for each component in the framework. The

algorithms and data structures that are reused are usually de�ned by these

abstract classes. Each subclass of the abstract class de�nes a kind of component

that �ts into the framework, and they inherit much of their implementation

from their abstract superclasses. This makes it much easier to develop a library

of components that can be mixed and matched within the framework.

Ideally, a framework would be described both operationally and in terms of

the constraints that it places on its components. This would not only provide

code reuse, but make it easier to learn how objects in the framework interact.

Work is being done to develop ways of describing the constraints formally

[HHG90]. In the meantime, frameworks are being successfully described infor-

mally. The description of the Choices virtual memory framework in this paper

shows how a framework can be described informally.

A framework reuses analysis, design, and code. It reuses analysis because

it describes the kinds of objects that are important and how a large problem

should be broken down into smaller problems. It reuses design because it

contains abstract algorithms and describes the component interfaces that the

programmer must implement and the constraints that any implementation

must satisfy. It reuses code because it makes it easy to develop a library of

compatible components and because the implementation of a new component

can inherit most of its implementation from an abstract superclass. All of these

are important, though in the long run it is probably the analysis and design

reuse that provide the biggest payo� [BR87].

2.3 Choices

Choices is an operating system framework developed at the University of

Illinois at Urbana-Champaign [CRJ87]. Choices was designed using the object-

oriented paradigm and is implemented in an object-oriented language (C++).

Choices is composed of interlocking frameworks for

� process management [RJC88],

� virtual memory management [RC89],

� �le systems [MLRC88, MCRL89], and

� networking [ZJ90].

Over the last few decades, the number of computing environments has

been growing rapidly. Often the needs of one class of system runs in direct
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opposition to another. For example, while AI programs demand large (virtual)

address spaces, real-time embedded system constraints often lead to abandon-

ing virtual memory altogether. Similarly, the memory management system for

a hierarchical shared memory multiprocessor usually di�ers substantially from

that for a small desktop workstation.

Choices is motivated by the realization that, despite all this diversity,

computer users want to port applications from one environment to another,

expect that what they learn about one operating system will be applicable to

the next, and would like machines to interoperate.

One solution to the problem of con
icting requirements is to provide a

family of operating systems that can be recon�gured to meet nearly any re-

quirement. The need for a family of operating systems has been known for a

long time [HFC76]. Just as automobile companies o�er a wide selection of car

sizes, engines, and colors to choose from, a family of operating systems would

provide a set of components that could be rearranged in many con�gurations.

Customers who want \drag racers" could combine \stock" components with a

few customized components to build what they want. Choices is an attempt

to construct such an operating system family.

Choices supports shared memory multiprocessors, real-time programming,

a Unix-compatible programming environment, the ability to override almost

any operating system function, and an object-oriented interface between ap-

plications and the operating system. Of course, it does not support all these

features at once, since some of them are incompatible. Instead, it o�ers an

array of features that can be selected on a per-operating system or, in some

cases, per-user basis. In spite of this 
exibility, the performance of Choices is

similar to that of comparable operating systems [RMC90].

This paper describes the virtual memory framework of Choices, and uses

it as an example of how object-oriented programming permits the reuse of

design. The virtual memory framework provides an abstract design of a virtual

memory system that can be customized to make a particular concrete virtual

memory system. A framework hides the parts of the design that are common

to all instances, and makes explicit the pieces that need to be customized.

A framework is most valuable when the part of the design that is hidden is

the part that programmers �nd hardest to understand. The virtual memory

framework hides the details of how the operating system manages the sharing

of physical memory among logical address spaces. In particular, it hides the

details of synchronization among user processes and system processes managing

memory, so programmers can be much less concerned about causing deadlock

or interference. Hiding these concerns lets programmers deal with virtual

memory more abstractly, which in turn makes it easier to experiment with

virtual memory.
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3 Virtual Memory

Understanding any framework requires understanding the problem domain for

which that framework is designed. For the reader unfamiliar with virtual

memory, this section will give a quick overview. Others may wish to skip

this section. Those wishing more detail should refer to a suitable operating

systems text [PS85, BS88, Tan87].

Most computers support the distinction between the memory referenced by

a program and the physical (real) memory of the computer. Each program is

given a logical address space in which to execute. Separate logical address

spaces are used to protect one program from another, and to protect the

operating system from malicious or aberrant programs.

Although a number of techniques have been used in the past, paging is

currently the most popular way to provide separate logical address spaces.

Paging divides physical memory into identically sized units or frames and

logical memory into similar units called pages. The pages of a logical address

space are arbitrarily mapped to physical memory frames.

Paging requires some sort of hardware support for the translation of logical

addresses (the addresses generated by a program) to physical addresses (the ad-

dresses used by the hardware). Each time a processor accesses memory to fetch

an instruction or data, the logical address is translated to a physical address

by the address translation unit (see Figure 3). The precise implementation

of the translation function used by the address translation unit is hardware

dependent, so the details di�er widely from one machine to another. However,

the translation function is usually implemented by some form of \page table"

indexed by the page number.

Since each program has its own address space, each has its own translation

function and, therefore, its own table. The address translation unit is switched

between these tables as di�erent programs are run. Di�erent tables for di�erent

programs will map the same logical addresses (pages) in di�erent address spaces

to di�erent physical addresses (frames).

Paging simpli�es protection and sharing of memory as well. By placing

access rights in the page table, the hardware can check if a process is allowed

certain access to an address during translation. For example, a read-only bit in

a page table could prevent a program from accidentally writing over its code.

Sharing can be provided by having the page tables for di�erent programs map

pages in di�erent logical address spaces to the same physical memory frames.

Paging makes it easy to relocate programs in a multiprogramming environ-

ment. It does not necessarily allow programs to be larger than the amount

of physical memory available on the computer. Virtual memory is a logical

memory technique that provides the illusion of having more memory than is
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Figure 3: Paging and Address Translation
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actually on the computer by using physical memory as a cache for data on

(much larger) disk or other secondary storage. The page table describes what is

in the physical memory cache of virtual memory and where in that cache it can

be found. The only thing necessary to support virtual memory is the ability for

the page table to trap access to an invalid page. This is usually accomplished

though a valid-bit associated with each page that indicates whether the physical

memory cache contains the data for that page.

A page fault occurs when physical memory does not contain the data ad-

dressed by a program (the valid-bit is not set), or when the attempted access

does not match that allowed by the page table (for example, writing a read-only

address). The address translation unit detects a page fault while translating a

logical address to a physical address and interrupts the processor. A page fault

interrupt is handled by the operating system. If the fault was caused by an

invalid access then an appropriate exception handling routing is invoked. If the

page fault was caused by a \cache miss" (physical memory does not contain

the requested data) then the operating system brings the missing data into

memory, updates the page table, and restarts or resumes the operation that

caused the page fault. If physical memory is full of data already being cached

then the operating system must �rst free space by moving some data back to

secondary storage and updating page tables to cause new page faults if those

data are later accessed. This is usually called page replacement.

4 The Choices Virtual Memory Framework

The problem of operating system support for virtual memory can be divided

into two sub-problems: representing the logical data to be cached in physical

memory, and maintaining this caching. The �rst problem is traditionally the

�le system's responsibility rather than the virtual memory system's, but the

notion of persistent data is common to both.

Paralleling these two sub-problems, an application programmer's view of

the Choices virtual memory system is based on two kinds of objects: memory

objects and domains. A memory object represents a set of data, such as a disk

or �le. A domain represents a complete logical (virtual) address space. In

the Choices model, a virtual address space maps virtual addresses to data in

memory objects. Each memory object is assigned a range of addresses within

the total address space. Addresses that fall within a given range refer to

data in the corresponding memory object. Domains encapsulate the function

of caching logical data in physical memory. They abstract page tables and

physical memory management, hide the details of page faults, and ensure

consistency of information about the location of data.

The Choices virtual memory model is similiar in design to that of other
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modern operating systems including Mach[RTY*87], CHORUS[RAN88], and

V[Che88]. Figure 4 shows an application programmer's view of the Choices

virtual memory system. Each domain has one or more processes that execute

within it. A memory object can belong to any number of domains. A process

can have its own private address space, share an address space with other

processes, or share part of its address space (in the form of shared memory

objects) with other processes.

MemoryObject

All logical storage abstractions are subclasses of the abstract class MemoryOb-

ject, including physical memory, disks, and �les. A memory object is an array

of logical \units", which are equal-sized �xed length blocks of bytes. Units

correspond to disk blocks or physical memory frames, although it is often useful

to have the unit size of a memory object be di�erent from the block size of

the underlying hardware. A memory object implements four operations, read,

write, numberOfUnits, and sizeOfUnits. These allow the user to read and write

a number of units from/to the memory object and learn the characteristics of

the unit array. The numberOfUnits operation returns the length of the array,

and the sizeOfUnits operation returns the number of bytes in each unit.
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The �le system of Choices also uses the MemoryObject class hierarchy

extensively. It might seem odd that an important part of the virtual memory

framework is also important in other parts of an operating system, but one of

the main advantages of object-oriented programming is factoring out common-

ality. Both the �le system and virtual memory system rely on the read and

write operations of MemoryObject. The virtual memory system uses them to

obtain data to �ll the cache, while the �le system uses them to ful�ll higher level

�le read and write requests. Reusing an abstraction from the virtual memory

system within the �le system is an example of how well-designed abstractions

can simplify a large system.

Domain

A Domain maps a virtual address space onto a set of non-overlapping memory

objects. A typical process will access several memory objects. There will be

one for its program, one for its local variables, one for its shared variables, one

for its stack, and one for each �le that it references. The process's domain

maps the process's address space onto these memory objects. A domain also

associates a protection with each memory object. For example, a program

memory object could be read-only and shared by other domains, while the

local variable memory object is writable and private and the shared variable

memory object is writable and shared.

A domain can ensure that its memory objects are non-overlapping because

it is the domain, not the memory object, that determines the location of the

memory object in the virtual address space. This is important because it allows

memory objects to be moved around in the domain without being noti�ed.

Since memory objects can grow, it might be necessary to move them to ensure

that their address ranges do not overlap.

2

Domains have operations to add and remove memory objects (add, remove),

to �nd the memory object at a particular logical address (lookUp), and to

handle a page fault (repairFault). Each domain contains a page table and

updates the page table as memory objects are removed and as data are read

in to physical memory in response to a page fault and written out for page

replacement.

Design Issues

A domain and a memory object are both complex objects, but they are complex

in di�erent ways. A domain has a well-de�ned structure with several kinds of

components, which implement di�erent virtual memory policies and di�erent

2

Memory objects can be moved only if they contain position independent (relocatable)

information. Text �les are a good example.
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kinds of address translation units. Domains are not used as building blocks to

make larger objects, but are always top-level objects. Moreover, class Domain

is concrete and has never been subclassed.

In contrast, memory objects have less structure than domains, but can be

used as building blocks to make high-level memory objects. MemoryObject is an

abstract class with many subclasses. Instances of some of the subclasses modify

other memory objects. Since there are so many kinds of memory objects, a

\memory object" is more of an interface than an implementation.

The next two sections describe the structure of memory objects and do-

mains in more detail. Domain and MemoryObject represent two di�erent ways

that object-oriented programming allows the reuse of design. MemoryObject

is a typical abstract class, while Domain illustrates how a framework describes

how an ensemble is customized by replacing its components.

5 Memory Objects

Memory objects form the foundation of the Choices virtual memory and per-

manent storage management framework. Some memory objects access disks

or physical memory directly, but most are complex ensembles of other simpler

memory objects.

Much of the customization of Choices is done by combining existing kinds

of memory objects to make new ensembles. It is unlikely that a �nite set of

classes will be able to e�ciently describe every kind of memory object that

could ever be needed. Inheritance, however, makes it easy to extend the

framework by adding a new class of memory object to the component library

as the need arises. The rules the framework de�nes for connecting together

new and existing classes into new ensembles further aids in customization. For

example, a domain allows any new memory object ensembles to be used as a

backing storage.

5.1 Disk

Class Disk is a primitive memory object that is equivalent to a device driver in

a conventional operating system. A Disk is rarely used directly. Rather, it is

usually referred to by some other memory object that uses it for storage. Even

though there might be multiple indirections involved, Disks form the eventual

sources and sinks of almost all data in Choices. The read and write operations

of Disk read and write physical blocks on the disk. The sizeOfUnits operation

gives the size of a disk block, and the numberOfUnits operation returns the

number of blocks on the disk.
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To make Choices more portable, Disk is an abstract class. Di�erent kinds of

hardware disk interfaces require di�erent subclasses of Disk. Each subclass en-

capsulates the device controller, interrupt management mechanism, etc., for a

particular computer that Choices is targeted to. A framework for constructing

new Disk classes is currently being designed[Kou91].

5.2 MemoryObjectView

To be useful, large memory objects like disks must be partitioned into smaller

memory objects like �les. Class MemoryObjectView provides a view of a part

of a larger memory object. Since most memory objects simply provide dif-

ferent interpretations of underlying memory objects, MemoryObjectView is the

superclass of most memory object classes in the Choices component library. A

MemoryObjectView must know the memory object on which it is stored and

must know how to translate from a block number in the view to a block

number in the memory object on which its data are stored. The read and

write operations are easy to implement and do not perform any actual I/O.

They simply translate the requested block number and forward the operation

to the memory object on which the �le is stored.

There are two primary subclasses of memory object view. ContiguousView

provides a view of a contiguous subrange of the underlying memory object.

Thus, in addition to a reference to its source, it needs two pieces of information

about its location, the starting block and the size. Its n'th block can be found

by adding n to the number of the starting block. ContiguousView is a concrete

class and has never been subclassed. Its most frequent use is in the construction

of new memory object ensembles (see Section 5.3).

The other primary subclass of MemoryObjectView is DiscontiguousView.

DiscontiguousView is an abstract class specifying a set of units from the memory

object being viewed, but not a continguous set. Concrete subclasses provide

a function that maps from the unit numbers of the DiscontiguousView to the

underlying memory object. For example, a Unix �le uses i-node tables and

indirect blocks to map logical block numbers (blocks in the view) to underlying

physical block numbers (blocks in the source). It will often read several blocks

from its memory object before it can �nd the data block to read or write. For

a further discussion on how the Choices memory object hierarchy was used to

implement several versions of the Unix �le system, see[MCRL89].

5.3 Customizability

The simplest and most common way to customize the Choices virtual mem-

ory system is by creating new kinds of memory objects. Inheritance makes
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programming new classes easier, but polymorphism avoids the creation of new

classes by letting new memory object ensembles be built from existing classes.

Most uses of memory objects, including those in the implementation of Domain

and MemoryObjectView, depend only on the memory object interface and not

on any particular subclass. This means that any memory object can be placed

in the address space of a program or viewed by a MemoryObjectView.

One possible application of this polymorphism is the ability to have many

di�erent �le systems, each with its own format. In fact, it is possible to format

a �le like a foreign �le system and use it with software that was written for the

foreign �le system. Likewise, since the source of a MemoryObjectView is simply

another MemoryObject, any memory object can be broken into �les, not just

disks. Finally, networked �le systems, special �le systems for database manage-

ment systems, even special archival �le systems that compress the component

�les, can all be implemented as classes derived from MemoryObjectView and

treated like any other memory object.

The virtual memory system can be customized even without creating new

classes. For example, Unix uses a special contiguous swapping area on the disk

as backing store for each process, which makes paging a lot faster than if the

�le system were used. The same e�ect can be achieved in Choices by using a

memory object mapped to a contiguous region of the disk (a ContiguousView).

Thus, the Choices virtual memory system can mimic this aspect of Unix

without creating new classes. On the other hand, it is also easy to page to

a user �le, since a domain can use any memory object.

It is important to distinguish between reuse by inheritance and reuse by

connecting objects together to form a new ensemble. The top half of Figure 5

shows part of the memory object class hierarchy. The concrete leaf classes

inherit the implementation of their abstract superclasses. In contrast, the

bottom half of Figure 5 shows how complex memory objects can be built from

existing classes using polymorphism. It shows the memory object ensemble

representing the executable part of a compiled program. The base of this

ensemble is the object (an instance of MultimaxDisk) representing the disk. The

disk is broken into partitions by a ContiguousView. One of these partitions is

further decomposed into �les by an object in BSDInode, which is a subclass

of DiscontiguousView. This memory object corresponds to an a.out �le in a

Unix system. An executable program �le consists of several parts, including

not only the program text but also initialized data and symbol tables. The

program text is a contiguous subsection of the �le, and so can be selected

by another ContiguousView. Complex memory objects are implemented as an

ensemble of simpler memory objects, not by inheritance, so it is easy for them

to share the state of the disk or of an intermediate memory object.
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6 Domains

The design of class Domain is quite di�erent from that of MemoryObject. A

Domain delegates to its components the responsibility for managing a page

table, implementing the paging policies, and allocating physical memory. These

components are instances of subclasses of AddressTranslation, MemoryObject-

Cache, and PhysicalMemoryManager, respectively. AddressTranslation and Mem-

oryObjectCache are both abstract classes. Each of these classes is the root of

a class hierarchy of components. Domain is concrete. A programmer builds a

customized domain by changing its components, not by subclassing Domain.

The design of class Domain is complicated by the fact that a memory object

can be shared by several domains. Each memory object must keep track of the

physical addresses where its pages are cached in primary memory. This is

because a unit of a memory object should never be cached in physical memory

more than once. If a Domain kept this physical address information, it would

have to coordinate it with all other Domains.

MemoryObjectCache keeps track of which units of a memory object are

stored in physical memory (i.e., are cached) and where. This is machine-

independent information. AddressTranslation, on the other hand, represents the

machine-dependent page table that the address translation unit uses. A set of

MemoryObjectCaches in a domain and the AddressTranslation for that Domain

contain redundant information; the MemoryObjectCaches represent a mapping

from logical to physical addresses in a way that is easy for a programmer to

manipulate while an AddressTranslation represents it in a way that is possible

for the hardware to use.

One of the invariants of the virtual memory framework is that the mapping

of the AddressTranslation is always a subset of the mapping of the set of

MemoryObjectCaches. Another invariant is that a domain is a map of an address

space to a non-overlapping set of memory objects. Likewise, the one-to-one

mappings of caches to memory objects and domains to address translations

are invariant. The interactions of all the Choices virtual memory components

are shown graphically in Figure 6.

6.1 Memory Object Caches

AMemoryObjectCachemaps the data of a memory object into physical memory.

It can cache all, part or none of a memory object's data, and keeps track of

the physical address of each unit that has been cached.

The main operations on a cache are cache, release, and protect. The cache

operation ensures that a particular unit is in the cache, while the release

operation removes a unit from the cache. The cache operation always returns
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the physical address of the unit, even if the unit was already cached, so it can

be used to �nd the physical address of a previously cached unit. Each unit is

given a protection level when it is cached; protect sets the maximumprotection

level of a unit, and can change the protection of an already cached unit.

These are all abstract operations. The most commonly used concrete

subclass is PagedMemoryObjectCache, which implements cache by allocating

physical memory for the unit and reads the unit from the memory object in

page frame sized quantities. Similarly, release removes a unit from the cache

by deallocating the physical memory and writing the unit back to its memory

object if it has been changed.

MemoryObjectCache has a few template operations like releaseAll and pro-

tectAll. These are never rede�ned by subclasses and are not as important as

the three main abstract operations.

Di�erent kinds of caches implement cache in di�erent ways. A conventional

cache will obtain physical memory, read a unit of data from disk and put it

into that memory, and update its internal mappings to show that the data

is now present. Thus, caches must be able to communicate with a physical

memory manager (a PhysicalMemoryManager), and a disk or backing store (a

MemoryObject). Section 7 will describe how some other subclasses of Memory-

ObjectCache implement cache.

6.2 Address Translations

Each domain has its own page table. Although the page table is logically part

of the domain, its format is machine dependent. To keep the implementation

of Domain host architecture independent, the page table has been split from

Domain into a separate object of class AddressTranslation.

The abstract operations of AddressTranslation are addMapping, removeMap-

ping, and changePermission. These correspond to the three abstract operations

of MemoryObjectCache, since putting a unit in the cache requires adding a

mapping for its location in physical memory, releasing a unit from the cache

requires removing its mapping, and changing the protection level of a unit in

a cache is the same as changing the permission in an AddressTranslation (a

page table). Note that only domains communicate directly with page tables,

so caches return the physical memory location when they cache a unit and let

the domain update the page table.

A physical address is represented by an object of class Frame. Thus, a page

table is a mapping from virtual addresses to frames, and a cache is a mapping

from unit numbers to frames. A frame is only used by one cache at a time, but

it will be used by more than one page table if its memory object is shared by

several domains. It keeps track of the page table and the cache that uses it.
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This makes it easy to notify all page tables that use a frame when the frame

is removed from its cache, i.e.,when it is deallocated.

6.3 Physical Memory Manager

A physical memory manager (an instance of class PhysicalMemoryManager) has

two public operations, allocate and free. Caches use these operations to acquire

and dispose of physical memory (frames).

The major design decision for a physical memory manager is what to do

when there is no physical memory to allocate. The current design relies on

the fact that there is a process that periodically releases units from caches,

thus deallocating physical memory. This process ensures that there is always

physical memory available. Thus, the physical memory manager blocks when

it runs out of physical memory.

PhysicalMemoryManager is a concrete class and has never been subclassed.

It would be easy to make it abstract and it is easy to imagine useful subclasses.

Subclasses could provide more robust handling of running out of physical

memory. They could also manage hierarchical physical memory. However,

we have not needed any of these features yet, and so have not yet made

PhysicalMemoryManager abstract.

6.4 Abstract Virtual Memory Algorithms

An important part of most frameworks are the abstract algorithms that de�ne

operation sequences. The most complex abstract algorithm in the virtual

memory framework is the one for responding to page faults. A page fault occurs

whenever the computer accesses an address that is not mapped by the page

table. The page fault handler (an Exception[CRJ87]) will perform a repairFault

operation on the current domain. The repairFault operation will determine the

cache corresponding to the address at which the page fault occurred and will

then ask that cache to cache the data (using cache), giving it information about

the kind of access that faulted (read, write, execute) and the address relative

to the start of the cache. The cache operation returns the physical address of

the data, so the domain can update its page table (i.e., the AddressTranslation).

The domain then returns to the fault handler, which will restart the instruction.

In addition to repairFault, Domain implements add, remove, and locate. Each

domain has an array of memory objects and their starting addresses. locate

returns the memory object managing particular address along with the o�set

into that memory object. The add method adds a memory object to the array.

The add operation does not have to update the page table because it will

be updated by a page fault the �rst time that an address is accessed that is
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assigned to the memory object. However, the remove operation, which deletes

the binding of an address range to a memory object, must update the page

table to remove all mappings belonging to the memory object.

Note that these abstract algorithms di�er from template methods in that

they can be customized by changing the components of the domain, while

template methods are customized by creating a new class.

6.5 Customizing Domains

Domains are customized by changing their components. The two main ways

that they are customized is by changing AddressTranslation (to port the virtual

memory system to a new machine) and by making new kinds of caches. Most

new caches are subclasses of PagedMemoryObjectCache, which is a concrete

class that implements the standard virtual memory algorithms. The new cache

classes reuse the standard virtual memory algorithms, but usually extend the

cache function, as described in the next section. Domain and PhysicalMemory-

Manager have not yet needed to be subclassed.

7 Applications of the VM Framework

Recently there have been a number of proposals for using address translation

hardware to implement operating system and programming language features

that traditionally are not part of the responsibility of the virtual memory

system. These include proposals for using address translation hardware for

garbage collection[AEL88, BDS91, Sha87] and for distributed programming[LH86].

If a feature is normally expensive because it requires checking some condition

regularly, it can often be made inexpensive by translating the condition into a

protection or validity check that can be performed by the address translation

unit. Techniques that use address translation hardware have prompted interest

in making virtual memory management systems more customizable[AL91].

Section 5 showed how the virtual memory framework can be customized

using memory objects. Section 6 discussed the details of how the virtual

memory framework is put together and showed how AddressTranslation makes

the system portable. This section will describe several advanced applications

of the Choices virtual memory framework. Two of these|distributed shared

memory and garbage collection|are well-known, the third is new.

7.1 Distributed Shared Memory

Distributed shared memory is a way to let programs designed for shared mem-

ory work in a distributed computing system by emulating the shared memory
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across a network[LH86]. This is done by treating each page of data separately

and automatically moving them from machine to machine as needed. When a

process accesses a non-resident page, it causes a page fault. The page is then

copied from another machine, the page tables on that machine invalidated, and

the page tables on the �rst machine updated. When a page is only being read,

it can have multiple copies on di�erent machines. However, as soon as one

machine attempts to write to the page, those copies must be invalidated and

recopied from the newly written copy.

Distributed shared memory is currently implemented in Choices by Dis-

tributedMemoryObjectCache, a subclass of MemoryObjectCache, and by sub-

classes of PageRecord [JC89, SMC90]. A PageRecord is used to represent the

state associated with a unit of a memory object, such as its current location,

whether it is cached in physical memory, and whether it is being fetched from

another processor.

In retrospect, it would probably be better to implement distributed shared

memory by subclassing MemoryObject, not MemoryObjectCache. MemoryObject

is simpler and easier to change. Moreover, caches deal mostly with physical

memory, while memory objects represent logical memory. PageRecords primar-

ily describe logical memory, and so are more naturally a part of a memory

object.

A distributed memory object would be shared by many machines by having

a local version of the object exist on each machine. Each local version would

know about its peers on the other machines. Since it is a memory object like

any other, when a page fault occurs, the distributed memory object will be

requested to fetch the data. The di�erence is that a distributed memory object

will, when the page is not resident locally, contact one of its peers on another

machine and request the page be removed from that machine and transferred

to the �rst machine. If the second machine later attempts to access those data,

it will in turn fault and request the page back. If the memory object is shared

by more than two machines then the other machines may be informed of the

new location of the page so that they will know how to respond to a page fault

as well.

7.2 Garbage Collection

Another interesting use of virtual memory hardware is for garbage collection.

Appel, Ellis and Li proposed a real-time garbage collection algorithm that

is fairly e�cient, does not require special hardware, does not impose many

restrictions on the mutator

3

, and works well with multiprocessors [AEL88].

Earlier real-time garbage collection algorithms were either much less e�cient

3

The mutator is the application program allocating new cells and modifying existing ones.
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or required special hardware support, so this algorithm has attracted a lot of

interest.

Their algorithm is a copying garbage collector, which means that the garbage

collector copies all the non-garbage cells from an old memory region to a new

region, leaving the garbage behind. Incremental copying garbage collectors are

usually ine�cient because they require each access by the mutator of a cell

to check whether the cell is in the old region or the new region. The new

algorithm uses the address translation unit to check whether a cell is in the old

region or the new region. The pages in the new region are divided into those

pointing to cells in the new region and those pointing to cells in the old region.

A page that points to cells in the old region can be made to point to cells in

the new region by examining each cell in the old region. If the cell has been

copied then it will have a pointer to its new location in the new region, and

its old address can be replaced by its new one. If the cell has not been copied

then it can be copied to the new region and a forwarding pointer can be left

behind from its old location to its new one.

Mutators will only access pages in the new region. Pages that only point

to pages in the new region are safe to access, but those that point to pages

in the old region are not. The page table only permits access to safe pages,

so accessing an unsafe page causes a page fault. The page fault will make the

page safe by copying to the new region all objects in the old region to which

the page points.

This garbage collection technique is especially well suited to a multiproces-

sor. It is not necessary to wait until a page is accessed to copy it. Instead, a

processor can be assigned to convert unsafe pages into safe pages. Thus, the

application program can have very little garbage collection overhead.

This algorithm has been implemented in Choices by de�ning a subclass

of MemoryObjectCache called GarbageCollectableCache. A pair of GarbageCol-

lectableCaches represents the old region and the new region. Only the new

region is in the address space of the mutator. Initially all of the pages in the

new region are unsafe, but each page fault invokes the cache operation of the

GarbageCollectableCache, which makes the page safe. Eventually all the pages

are safe, and garbage collection is over. Another class, GarbageCollectorManag-

er, is responsible for keeping track of which cache is the new region and which is

the old region, for initiating garbage collection, for managing the process that

does garbage collection in the background, and for allocating pages for new

objects. The mutator interacts directly only with the GarbageCollectorManager,

though it interacts indirectly with the GarbageCollectableCache by causing page

faults.

The current version of this algorithm in Choices is as simple as possible, and

does not implement multiple generations, a separate space for large objects,
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or any other extra feature. GarbageCollectableCache has a little more than 100

lines of code and 45 lines of header �le, while GarbageCollectorManager has

about 40 lines of code and 20 lines of header �le. There is an additional 170

lines of code and 80 lines of header �le that is pure garbage collector, i.e., it

could be used in a conventional copying collector.

7.3 Futures

A future is a value in the process of being computed [Hal85]. It is a parallel

programming construct that combines a process with a synchronization mech-

anism. A future can be assigned to a variable, passed as an argument to a

procedure, and treated just like any other value. If a process needs the value

of the future, it will block until the future's value has been computed. In

order to achieve this, there is a lock associated with each future. Accessing the

value of the future requires checking the lock and blocking the current process

until the value of the future has been computed. Once the value of the future

\arrives", the future is treated just like any other object, and all processes that

are waiting for the future are unblocked. Likewise, a new process that requests

the value of the future need not block.

Multilisp lets a program use futures anywhere it uses other kinds of values,

and lets the programmer replace any value with a future [Hal85]. This makes

futures easy to use but hard to implement e�ciently. Each access of any object

must determine whether the object is a future and, if so, whether its value has

been computed. Thus, all object accesses are slow because of futures.

In contrast, a Concurrent Smalltalk future (called a cbox) is distinct from

other values [YT86]. Its only operation is receive, which waits for its value to

be computed and then returns the value. This eliminates the need for checking

whether an object is a future by giving futures a unique interface, but prevents

a procedure that was written for a sequential program from being used with

futures.

The Choices virtual memory system makes it possible for futures to be

used like any other kind of value and still be e�cient [Lad89]. Futures are

implemented by de�ning a subclass of MemoryObjectCache, FutureCache. A

future cache contains a collection of futures, one for each page. Instead of

�lling the cache by reading from a memory object, a future cache �lls itself

by waiting for the future's process to �nish. Thus, FutureCache rede�nes the

cache operation.

A future of type T consists of space for an object of type T and a lock. Pages

holding futures in the process of being computed are marked as invalid in the

page table, so that any access of those futures causes a page fault. Processes

that cause a page fault because they accessed a future block on the lock for
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that future. When a future's value is computed, all processes waiting for the

future are unblocked and then pages holding the future are marked as valid in

the page table.

Creating a future requires allocating its space and starting a process to

compute its result. When the process is �nished, it marks the pages holding

the future as valid and unblocks the processes waiting for the future. Although

each future is allocated a separate page in the FutureCache, it would waste

physical memory to give each small future its own frame. Physical memory

is more scarce than virtual memory, so small futures share physical memory

frames and the future cache will map several pages to the same frame.

A future's process must be able to store into the future when its value

is computed. On the other hand, a process using the future must trap if it

tries to use the future. Both processes are user processes and are part of the

same domain, so it is impossible to have one of them trap when it accesses the

address of the future, but not the other. This is solved by giving the future two

addresses, one that is writable and the other that is not. The future process is

the only process given the writable address. The FutureCache ensures that the

memory object that stores the futures can be accessed using either address.

This design makes futures 
exible without making the entire system less

e�cient. Programs that use futures su�er a performance penalty only when

they actually access an un�nished future, since there is no explicit check in

the program for futures. Since the page containing the value is marked valid

once it has been computed, there is no penalty at all to access a future's value

a second time. Likewise if the value is never accessed until after it has been

computed, there is no cost other than the overhead the future computation

process imposes on the system. Likewise, programmers can use a pointer to a

future anywhere they could use a pointer to any other object. No change to

the compiler or run-time system is necessary to implement futures in Choices;

it is entirely an operating system function.

FutureCache de�nes three operations for a total of 70 lines of C++, and was

the only addition to the kernel. There are also several hundred lines of library

routines that run in user space to create a future and to assign it a value.

7.4 Experience with the Virtual Memory Framework

The Choices project has received several bene�ts from frameworks. A common

set of classes gives the project members a common vocabulary. The frameworks

make it easier to try out new ideas, so research on operating system topics is

more productive. Choices is easy enough to use that students have used it for

class projects.

An important bene�t of frameworks is that they help coordinate people
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working on the same project. One way that they do this is by providing

standard interfaces that are widely reused. Thus, the di�erent projects that

reuse the virtual memory framework have all been compatible with each other

because they have reused the interfaces provided by the framework.

A second way frameworks help coordinate a project is by providing a way

to divide work. Not only can work be divided according to which framework it

will use, but it can be divided into those improving, extending, or developing

frameworks and those using them for a particular application. The Choices

project has usually had a single person in charge of each framework, but each

framework has many users. Although everyone has to use the virtual memory

system, the real users of the virtual memory framework are those who have

extended it (half a dozen) or ported it (another half a dozen). Each of the

projects described in section 7 was done by someone other than the framework

designer.

A use of a framework validates it when the use does not require any

changes to the framework, and helps improve the framework when it points

out weaknesses in it. For example, the implementation of futures did not

require changing any existing classes, but just added one new class with three

functions to the kernel. On the other hand, other projects required revising the

framework. The garbage collector required several changes to existing class-

es, though these were mostly design oversights. Distributed shared memory

required the most changes.

The Choices virtual memory framework, like all the other parts of Choi-

ces, has changed several times. Usually the virtual memory framework was

reorganized to simplify it and to make it easier to understand and reuse. We

could argue that any virtual memory feature can be added to Choices since, at

worst, the implementation of Domain could be replaced. However, any feature

that requires replacing Domain shows that the virtual memory framework has

serious 
aws. A good framework should be designed to be extended easily

using polymorphism and inheritance. If a framework cannot be extended to

solve a particular problem in its problem domain then it has failed.

Change was almost always motivated by trying to reuse the framework. It

is only after a framework has been used several times that it is possible to tell

what kinds of extensions are di�cult. For example, experience porting Choices

has led to a desire for a framework for device controllers to make it easier to

implement primitive memory objects, like Disk. Similarly, the virtual memory

applications described earlier imply that MemoryObjectCache needs to be easy

to change, and suggest that we need to extend the framework to describe the

state of each unit of the memory object.

A framework is improved by pushing on the boundaries of the problems that

it solves best. Choices addresses the problems in the design of a conventional
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virtual memory system, but we haven't used it to provide user customizable

paging (other than selecting from choices built into the kernel), implementing

a virtual machine operating system, or several other features. Some of these

applications will be harder to implement than we think they should be, which

will cause us to improve the framework. Thus, the Choices virtual memory

framework will continue to improve as it is used.

8 The Process of Framework Design

One of the most common observations about framework design is that iteration

is essential [JF88, Wir90]. Batory et. al. emphasize that the development of

their framework took much longer than expected and attributed this to the

di�culty of domain analysis [BBR*89]. Our experience supports theirs.

The question remains: Why is iteration necessary? Clearly, a design is

iterated only because its authors did not know how to do it right the �rst

time. Perhaps this is the fault of the designers: they should have spent more

time analyzing the problem domain, or they were not skilled enough. Lack

of experience with the problem domain certainly contributed to the length of

time that it took to design the Choices virtual memory framework. None of the

people on the Choices project had ever developed a complete operating system,

and most of them learned object-oriented design while working on the Choices

project. However, lack of experience is not the only reason for iteration.

The main reason that framework design iterates is because frameworks

are supposed to be reusable; all software requires iteration before it becomes

reusable. This follows from the general observation that software never has a

desirable property unless the software has been carefully examined and tested

for it. The ultimate test for whether software is reusable is to reuse it. It is

not possible to reuse software until it is written and working, so iteration is

inevitable. The only exception is that software that is a reimplementation of

existing reusable software might not need iteration. This is because the new

software is really a version of the old, and the iteration took place when the

old version of the software was designed.

A second reason that framework design iterates is that a framework makes

explicit the parts of a design that are likely to change (like cache in caches) and

the parts that are not likely to change (like the separation of the cache from the

data that is in the cache). Features that are likely to change are implemented

by abstract operations so that they can be changed by replacing a component

of the framework. Interfaces among objects and shared invariants are harder

to change. Experience gained by using a framework is one of the most common

ways of learning what must be easy to change.

A third reason that framework design iterates is that both frameworks and
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abstract classes are usually designed by generalizing from concrete examples. A

framework is a theory about how to solve problems in a particular application

domain; its range of applicability depends heavily on the examples on which

it is based. Each example that is considered makes the framework or abstract

class more general and reusable. Abstract classes are small, so it is easy to

generate lots of examples (i.e., concrete classes) on paper and reduce the

chance of iteration. Frameworks are large, so it is too expensive to look at

many examples, and paper designs are not su�ciently detailed to evaluate the

framework. Thus, a better notation for describing frameworks would probably

let more of the iteration take place during the design of the framework.

A common mistake is to start using a framework while its design is still

iterating. The more an immature framework is used, the more it changes.

This will cause the applications that use it to change, too. It is better to

�rst use the framework for some small pilot projects to make sure that it is

su�ciently 
exible and general. If it is not, these projects will be good test

cases for the framework developers. A framework should not be used widely

until it has proven itself, because the more widely a framework is used, the

more expensive it is to change it.

The best frameworks are the work of many people. Multiple points of view

are needed to learn what is likely to change. Users test the reusability of the

framework and provide examples for generalization. The dialog between users

and providers of a framework plays an important role in its development. Al-

though the Choices virtual memory framework had a single main author, users

of the framework helped �nd many weaknesses and suggested improvements.

This does not mean that frameworks should be designed by committee.

A good framework has a conceptual integrity that is usually achieved only

by a single person or a small group. However, frameworks arise out of a

community of domain experts, and it is not possible for someone who is not

closely connected with the application domain to design a good framework.

Because frameworks require iteration and deep understanding of an appli-

cation domain, it is hard to create them on schedule. Thus, framework design

should never be on the critical path of an important project. This suggests

that they should be developed by advanced development or research groups,

not by product groups.

On the other hand, framework design must be closely associated with the

application developers. The purpose of a framework is to make it easier to

develop applications. Framework design requires expertise in the application

domain. Building applications with a framework shows which parts of the

framework need to be improved. Thus, the designers of a framework should

collaborate closely with application developers.

This tension between framework design and application design leads to two
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models of the process of framework design. One model has the framework

designers also design applications, but they divide their time into phases when

they extend the framework by applying it and a phase when they revise the

framework by consolidating earlier extensions [Foo91]. The other model is to

have a separate group of framework designers. The framework designers test

their framework by using it, but also rely on the main users of the framework

for feedback.

The �rst model ensures that the framework designers understand the prob-

lems with their framework, but the second model ensures that framework

designers are given enough time to revise the framework. The �rst model

works well for small groups whose management understands the importance of

framework design and so can budget enough time for revising the framework.

It is essentially the way Choices was developed. The second model works well

for larger groups or for groups developing a framework for users outside their

organization, but requires the framework designer to work hard to communicate

with the framework users. This seems to be the model most popular with

industry. For example, it was the model used by Apple to develop MacApp.

A compromise is to develop a framework in parallel with developing several

applications that use it. Although this will not bene�t these �rst applications

much, the framework developers usually help more than they hurt. The bene�ts

usually do not start to show until the third or fourth application, but this

approach minimizes the cost of developing a framework while providing the

feedback that the framework developer needs.

9 Conclusion

Object-oriented programming is not a panacea. It provides a way to express a

design so that it can be instantiated, customized, and extended. However, the

hard part of building a reusable design is understanding the problem domain.

Object-oriented programming makes it easier to express and communicate a

design, but developing new designs always has been and always will be hard.

Object-oriented programming has not been studied much by the software

engineering community as a way to reuse design, and there are many topics

that deserve attention. These include

� the development of particular frameworks,

� the development of notation for expressing design-level concepts such as

abstract classes and frameworks, and

� tools for facilitating the iteration that seems to be an inevitable part of

the design of frameworks.
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The design of particular frameworks is important both intellectually and

commercially. Framework design requires a deep understanding of the problem

domain, so a framework contains a great deal of intellectual content. A good

framework is valuable, because it can help programmers develop applications

quickly and reliably. Thus, we believe that software researchers should put

more emphasis on developing frameworks for new application domains and on

improving existing frameworks.

Current object-oriented languages do not express design-level concepts like

abstract classes and frameworks as well as they should. Statically typed

languages can describe the static interfaces between objects, i.e., the set of

operations that one can perform on the other, but not the dynamic interfaces,

i.e., the order of these operations. One promising approach to describing

dynamic interfaces is contracts [HHG90].

Since iteration is so important, framework design would be easier if it were

easier to make iterative changes. Most of the changes to frameworks seem to

fall into about a dozen categories [JF88, OJ90]. It seems feasible to provide

tools to automate these kinds of changes. This would make it easier to change

frameworks when weaknesses are discovered, but would not make it any easier

to spot weaknesses or to decide how to �x them. These essential activities of

design require human creativity and insight and are not likely to be automated

in the foreseeable future.

Object-oriented programming is a practical way to express reusable designs.

It deserves the attention of both the software engineering research community

and practicing software engineers. There are many open research problems

associated with better ways to express and develop reusable object-oriented

designs, but design techniques such as abstract classes and frameworks have

already shown themselves to be useful.
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