
To appear in Neural Information Processing Systems-92)

ORAL-Algorithms and Architectures

Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon

Babak Hassibi and David G. Stork
Ricoh California Research Center
2882 Sand Hill Road, Suite 115

Menlo Park, CA 94025-7022
stork@crc.ricoh.com

and

Department of Electrical Engineering
Stanford University
Stanford, CA 94305

ABSTRACT
We investigate the use of information from all second order derivatives of the error
function to perform network pruning (i.e., removing unimportant weights from a trained
network) in order to improve generalization and increase the speed of further training.
Our method, Optimal Brain Surgeon (OBS), is significantly better than magnitude-based
methods, which can often remove the wrong weights. OBS also represents a major
improvement over other methods, such as Optimal Brain Damage [Le Cun, Denker and
Solla, 1990], because ours uses the full off-diagonal information of the Hessian matrix H.
Crucial to OBS is a recursion relation for calculating H-1 from training data and structural
information of the net. We illustrate OBS on standard benchmark problems — the
MONK’s problems. The most successful method in a recent competition in machine
learning [Thrun et al., 1991] was backpropagation using weight decay, which yielded a
network with 58 weights for one MONK’s problem. OBS requires only 14 weights for
the same performance accuracy. On two other MONK’s problems, our method required
only 38% and 10% of the weights found by magnitude-based pruning.

INTRODUCTION
A central problem in machine learning is minimizing the system complexity
(description length, VC-dimension, etc.) consistent with the training data. In
neural networks this problem is usually cast as minimizing the number of
connection weights. It is well-known that without such elimination of
weights overfitting problems and thus poor performance on untrained

Hassibi and Stork

2

patterns result, i.e., poor generalization. On the other hand, if there are too
few weights, the network might not be able to learn the training data.

The question then becomes, which weights should be eliminated? How
should we adjust the remaining weights (if at all) for best performance?
How can this be done in a computationally efficient way?

Magnitude based methods [Hertz, Krogh and Palmer, 1991] eliminate
weights that have the smallest magnitude. This simple and naively plausible
idea unfortunately often leads to the elimination of the wrong weights —
small weights can be necessary for low error. Both Optimal Brain Damage
[Le Cun, Denker and Solla, 1990] and our Optimal Brain Surgeon use
instead a criterion of minimal increase in error on the training data. The
superiority of OBS lies in great part to the fact that it makes no restrictive
assumptions about the form of the network’s Hessian that OBD does —
assumptions that we find are invalid for many networks. Moreover, unlike
OBD, OBS does not demand (typically slow) retraining.

OPTIMAL BRAIN SURGEON
In deriving our method we begin, as do Le Cun, Denker and Solla [1990], by
considering a network trained to a local minimum in error. The functional
Taylor series of the error with respect to weights is:

δE = ∂E

∂w

T

⋅δw

≈0
1 24 34

+ 1
2

δwT ⋅ H ⋅δw + O(δw
3
)

≈0
1 24 34

 (1)

where H =
∂ 2E

∂w2
 is the Hessian matrix (containing all second order derivative

information) and the superscript T denotes vector transpose. For a network
trained to a local minimum in error, the first (linear) term vanishes; we also
ignore the third and all higher order terms. Our goal is then to set one of the
weights to zero (which will be called wq) to minimize the increase in error

given by Eq. 1. Eliminating wq can be expressed as:

δwq + wq = 0 or eq
T ⋅δw + wq = 0 (2)

where eq is the unit vector in weight space corresponding to (scalar) weight

wq. Our goal is then to solve:

Minq{Minδw{1
2

δwT ⋅ H ⋅δw} such that eq
T ⋅δw + wq = 0} (3)

To this end we form a Lagrangian from Eqs. 1 and 2:

L = 1
2

δwT ⋅ H ⋅δw + λ (eq
T ⋅δw + wq) (4)

where λ is a Lagrange undetermined multiplier. We take functional deriva-
tives, employ the constraints of Eq. 2, and use matrix inversion to find that
the optimal weight change and resulting change in error are:

Optimal Brain Surgeon

3

δw = −
wq

[H−1]qq

H−1 ⋅ eq and L =
1

2

wq
2

[H−1]qq

 (5)

Note that neither H nor H-1 need be diagonal (as is assumed by Le Cun et
al.); moreover, our method recalculates the magnitude of all the weights in
the network, by the left side of Eq.ּ5. Figure 1 illustrates the basic idea.

w
ei

g
h
t
1

weight 2

0

O
B

D

O
BS

w*
mag

E
rr

o
r

Figure 1: Error as a function of two weights
in a network. The (local) minimum occurs
at weight w*, found by gradient descent
learning. In this illustration, a magnitude
based pruning technique (mag) then removes
the smallest weight, weight 2; Optimal Brain
Damage before retraining (OBD) removes
weight 1. In contrast, our Optimal Brain
Surgeon method (OBS) removes weight 1
but also automatically adjusts the value of
weight 2 to minimize the error. The error
surface here is general in that it has different
curvatures (second derivatives) along
different directions, a minimum at a non-
special weight value, and a non-diagonal
Hessian (i.e., principal axes are not parallel
to the weight axes). The relative magnitudes
of the error after pruning (before retraining,
if any) depend upon the particular problem,
but to second order obey: E(mag)ּ≥
E(OBD)ּ≥ ּE(OBS), which is the key to the
superiority of OBS. We call our method
Optimal Brain Surgeon because in addition
to cutting out weights, it calculates and
changes the strengths of other weights
without the need for retraining.

Thus we have the following algorithm:
Optimal Brain Surgeon procedure

1. Train a “reasonably large” network to minimum error.

2. Compute H-1

3. Find the q that gives the smallest L ּ=ּwq
2/(2[H-1]qq) (cf. Eq.ּ5).

If this candidate error increase is much smaller than E, then
the qth weight should be deleted, and we proceed to step 4;
otherwise go to step 5.

4. Use the q from step 3 to update all weights (Eq.ּ5). Go to step 2.
5. No more weights can be deleted without large increase in E. (At

this point it may be desirable to retrain the network.)

COMPUTING THE INVERSE HESSIAN
The difficulty appears to be step 2 in the procedure, since inverting a matrix
of hundreds or thousands of terms seems computationally intractable. (In
fact, for very small problems the Hessian and its inverse can be calculated
explicitly by standard matrix methods; dramatic results on such toy problems

Hassibi and Stork

4

gives us confidence in our approach, but sheds little light on inverting H for
large, realistic problems.) We show here that for backpropagation nets the
Hessian has an interesting structure which permits its inverse to be
calculated efficiently and robustly, even for large problems.

input

hidden

output
vj

uji

i = ni

j = nj

X
u

X
v

Figure 2: Backpropagation net with ni inputs and nj hidden units. The input-to-
hidden weights are uji and hidden-to-output weights vj. The vectors Xv and Xu
refer to second derivative information (cf. Eqs.ּ13-14).

We use the standard terminology from backpropagation [Rumelhart, Hinton
and Williams, 1986], here for a single output network. (The generalization
to more output units is straightforward.) The error is:

E =
1

2P
(t[k]

k=1

P

∑ − o[k])2 (6)

where P is the total number of training patterns, [k] is a pattern index and t
and o are the teaching and network output signals. We use the notation of
Fig.ּ2 and after some tedious calculations find that the three types of second
derivatives (two intra- and one inter-weight-level) are:

∂ 2E

∂v j∂v j'

=
1

P
{f'

k=1

P

∑ (net[k])2 − (t[k] − o[k])f"(net[k])}o j
[k]o j'

[k] (7)

∂ 2E

∂v j∂u j' i'

=
1

P
{{{f'

k=1

P

∑ (net[k])2 − (t[k] − o[k])f"(net[k])}v j' f' (net j'
[k])oi'

[k]o j
[k]} −

(t[k] − o[k])f' (net[k])f' (net j'
[k])δ j j'oi'

[k]}

 (8)

∂ 2E

∂u ji∂u j' i'

=
1

P
{{f'

k=1

P

∑ (net[k])2 − (t[k] − o[k])f"(net[k])}v jv j' f' (net j
[k])f' (net j'

[k])oi
[k]oi'

[k] −

(t[k] − o[k])f' (net[k])v jf"(net j
[k])δ j j'oi

[k]oi'
[k]}

(9)

where all unsubscripted terms refer to the output unit, and δ is the Kronecker
delta. We need only ever evaluate these second derivatives after training,
when the actual output is approximately equal to the teaching signal. In this

limit of t[k]ּ=ּo [k] Eqs.ּ7-9 simplify to:

∂ 2E

∂v j∂v j'

=
1

P
f'

k=1

P

∑ (net[k])2 o j
[k]o j'

[k] (10)

Optimal Brain Surgeon (To appear in NIPS-5)

5

∂ 2E

∂v j∂u j' i'

=
1

P
f'

k=1

P

∑ (net[k])2 v j' f' (net j'
[k])oi'

[k]o j
[k] (11)

∂ 2E

∂u ji∂u j' i'

=
1

P
f'

k=1

P

∑ (net[k])2 v jv j' f' (net j
[k])f' (net j'

[k])oi
[k]oi'

[k] (12)

The remarkably elegant structure of Eqs. 10-12 permits us to calculate the
Hessian and its inverse simply. To see this we first define vectors of second
derivative information for the weight layers v and u (cf. Fig.ּ2):

[Xv
[k]]T = f' (net[k])o j=1

[k] ,K, f' (net[k])on j

[k]

 (13)

[Xu
[k]]T = f' (net[k])f' (net1

[k])v1
[k]oi=1

[k] , K, f' (net[k])f' (net1
[k])v1

[k]oni

[k], K,(
f' (net[k])f' (netn j

[k])vn j

[k]o1
[k], K, f' (net[k])f' (netn j

[k])vn j

[k]oni

[k]

 (14)

where for Xu we employ lexico-graphical ordering over the input and hidden

units. We concatenate these vectors to form a full vector of second
derivative information throughout the net (evaluated for a single pattern [k]):

X[k] =
Xv

[k]

Xu
[k]

 (15)

The dimensionality of X is equal to the total number of weights in the net.
The Hessian, evaluated at a local minimum, is then simply:

H =
∂ 2E

∂w2
=

1

P
X[k] ⋅X[k]T

k=1

P

∑ (16)

We can calculate the full Hessian by sequentially adding in successive
“component” Hessians (Eq.ּ16) as:

Hm+1 = Hm +
1

P
X[m+1] ⋅ X[m+1]T with H0 = αI and HP = H (17)

But Optimal Brain Surgeon requires the inverse of H (Eq.ּ5). This inverse
can be calculated using a standard matrix inversion formula [Kailath, 1980]:

(A + B ⋅C ⋅ D)−1 = A−1 − A−1 ⋅ B ⋅ (C−1 + D.A−1 ⋅ B)−1 ⋅ D ⋅ A−1 (18)

applied to each term in the analogous sequence in Eq.ּ17:

Hm+1
−1 = Hm

−1 −
Hm

−1 ⋅ X[m+1] ⋅ X[m+1]T ⋅ Hm
−1

P + X[m+1]T ⋅ Hm
−1 ⋅ X[m+1]T

with H0
−1 = α −1I and HP

−1 = H−1 (19)

and α (10-8 ּ≤ ּ α ≤ ּ10 -4) a small constant needed to make H0
-1 meaningful,

and to which our method is insensitive [Hassibi and Stork, 1993].

Equation 19 is a pivotal result, which permits the calculation of H-1 using a
single sequential pass through the training data 1ּ≤ּm≤ּּP.

We note that the approximations used for Eqs.ּ10-12 induce several very
nice computational properties in Eq.ּ19. The first is that because of the

Hassibi and Stork

6

approximation t[k]ּ=ּo [k], H -1 is being evaluated at the desired error
minimum, despite the possibility that the network has not been fully trained
to this minimum. Moreover, there are no singularities in the calculation of

H-1. Finally, Eq.ּ19 is an O (n2) calculation that may possibly admit efficient
O(n) parallel implementations in VLSI.

SIMULATION RESULTS
We applied OBS to three of the Monk’s problems and compared our results
to those of Thrun et al. [1991], whose backpropagation network
outperformed all other approaches (network and rule-based) on these
benchmark problems in an extensive machine learning competition.

training test
Accuracy # weights

100 100 58

100 100 14

 93.4 97.2 39

 93.4 97.2 4

BPWD

OBS
MONK 1

MONK 2

MONK 3

100 100 39

100 100 15

BPWD

OBS

BPWD

OBS

Table 1: The accuracy and number of weights found by backpropagation with weight
decay found by Thrun et al. [1991], and by OBS on three MONK’s problems.

Table 1 shows that for the same performance, OBS (without retraining)
required only 24%, 38% and 10% of the weights of the BP network, which,
we stress was already pruned by the most widely used method (Fig.ּ3). The
error increase L (Eq.ּ5) determined by OBS negligibly affected accuracy.

Figure 3: Optimal networks found by Thrun (left) and by OBS on MONKּ1, which is
based on logical rules. Solid (dashed) lines denote excitatory (inhibitory) connections;
bias units are at left. Weight decay cannot reduce the small weights without increasing E.

ANALYSIS AND CONCLUSIONS
Why is Optimal Brain Surgeon so successful at reducing excess degrees of
freedom? Or conversely, given this new standard in weight elimination, we
can ask: Why are magnitude based methods so poor? Consider again Fig. 1.
Starting from a the local minimum at w*, a magnitude based method deletes
the wrong weight, weight 2, and through retraining, weight 1 will increase.

Optimal Brain Surgeon (To appear in NIPS-5)

7

The final “solution” is weight 1ּ → ּlarge, weightּ2ּ=ּ0. This is precisely the
opposite of the solution found by OBS: weightּ1ּ=ּ0, weightּ2ּ → ּlarge.
Although the actual difference in error shown in Fig. 1 may be small, in
large networks, differences from many incorrect weight elimination
decisions can add up to a significant increase in error. But most importantly,
it is simply wishful thinking to believe that after the elimination of many
incorrect weights by magnitude methods that the net can “sort it all out”
through further training and reach a global optimum. Even gradual
magnitude methods such as weight decay have this drawback.

The approximation necessary for Optimal Brain Damage [Le Cun, Denker
and Solla, 1990] — that the diagonals of Hessian are dominant — does not
seem to hold on the problems we have investigated. There are typically
many off-diagonal terms that are comparable to their diagonal counterparts,
and explains the improvement of OBS over OBD [Hassibi and Stork, 1993].

We note in closing that our method is quite general, and subsumes previous
methods for weight elimination. In our terminology, magnitude based
methods assume isotropic Hessian (Hּ ∝ ּI); OBD assumes diagonal H;
FARM [Kung and Hu, 1991] assumes linear f(net) and only updates the
hidden-to-output weights. We have shown that none of those assumptions
are valid nor sufficient for optimal weight elimination.

Acknowledgements
Thanks to Greg Wolff for useful discussions and display software, and to T.
Kailath for constant encouragement and financial support of the first author.

REFERENCES
Hassibi, B. and Stork, D. G. (1993). Optimal Brain Surgeon (sub. for publ.).

Hertz, J., Krogh, A. and Palmer, R. G. (1991). Introduction to the Theory of
Neural Computation Addison-Wesley.

Kailath, T. (1980). Linear Systems Prentice-Hall.

Kung, S. Y. and Hu, Y. H. (1991). A Frobenius approximation reduction
method (FARM) for determining the optimal number of hidden units,
Proceedings of the IJCNN-91 Seattle, Washington.

Le Cun, Y., Denker, J. S. and Solla, S. A. (1990). Optimal Brain Damage, in
NIPS 2, D. S. Touretzky (ed.) 598-605, Morgan-Kaufmann.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
Internal representations by error propagation, Chapter 8 (318-362) in
Parallel Distributed Processing I D. E. Rumelhart and J. L. McClelland
(eds.) MIT Press.

Hassibi and Stork

8

Thrun, S. B. and 23 co-authors (1991). The MONK’s Problems — A
performance comparison of different learning algorithms, CMU-CS-91-
197 Carnegie-Mellon U. Department of Computer ScienceTech Report.

