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We address the problem of tomogram reconstruction in frequency-domain optical-coherence tomography. We
propose a new technique for suppressing the autocorrelation artifacts that are commonly encountered with the
conventional Fourier-transform-based approach. The technique is based on the assumptions that the scatter-
ing function is causal and that the intensity of the light reflected from the object is smaller than that of the
reference. The technique is noniterative, nonlinear, and yields an exact solution in the absence of noise. Results
on synthesized data and experimental measurements show that the technique offers superior quality recon-
struction and is computationally more efficient than the iterative technique reported in the literature. © 2008
Optical Society of America
OCIS codes: 110.4500, 170.3880, 110.6955, 180.1655.
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. INTRODUCTION
ptical-coherence tomography (OCT) is an efficient inter-

erometric imaging modality that is well-suited for nonin-
asive three-dimensional imaging of biological specimens.
ypically, one can achieve a penetration depth in tissue of
p to several millimeters, with a micrometer-range axial
esolution. Primarily, there are two types of OCT depend-
ng on the mechanism by which the optical signal is de-
ected: (i) time-domain OCT (TDOCT) and (ii) frequency-
omain OCT (FDOCT). To acquire the depth information,
DOCT requires a scanner (mechanical displacement of a
eference arm) whereas FDOCT can acquire the same in-
ormation in a single exposure without scanning [1]. This
dvantage comes from the fact that the inverse Fourier
ransform of the spectral interference pattern contains
he information about the axial sample structure (the in-
erse scattering theorem) [1–3]. The primary medical ap-
lications of FDOCT are tissue imaging, dermatology, and
phthalmology [4–6]. The first medical images for mea-
uring intraocular distances [1] were obtained in 1995
nd the first in vivo FDOCT measurements of the human
etina were reported in 2002 [7].

FDOCT has some weaknesses that limit its perfor-
ance. The conventional Fourier transform approach

ields the zero-order term of the source, the zero-order
erm of the sample—also known as the autocorrelation
oise, and a complex-conjugate ambiguity term of the ob-

ect. The complex-conjugate ambiguity can be eliminated
y placing the zero-delay plane outside the sample or by
sing phase-shifting techniques [8–13]. The zero-order
erm of the source can be suppressed by subtracting the
easured source spectrum. The artifacts that cannot be

uppressed by the Fourier transform approach are due to
he autocorrelation. The artifacts reduce the signal-to-
oise ratio (SNR) and resolution. They are also disturbing
1084-7529/08/071762-10/$15.00 © 2
ecause they are superimposed on the structure of inter-
st, and may lead to an erroneous interpretation of the
pecimen morphology. For example, in retinal imaging
he artifacts arise due to the strong correlation between
he waves reflected from the inner limiting membrane
nd the retinal pigment epithelium and appear as new
orphological structures within the area corresponding

o the vitreous of the eye. The artifacts can be kept below
he shot noise level by optimally selecting the optical
ower and exposure time [14]. However, the price to pay
or this type of strategy is a decrease in the overall SNR—
he effective optical energy being well below the accept-
ble safety threshold.
Alternatively, the artifacts can be suppressed by em-

loying sophisticated reconstruction techniques. For ex-
mple, the inverse problem can be reformulated within
he framework of phase retrieval and an approximate so-
ution can be computed by employing conventional Fienup
r Gerchberg–Saxton iterative algorithms [15,16]. The
ignal can also be modeled as the impulse response of a
ational minimum-phase transfer function with con-
traints on the poles and zeros. The reconstruction prob-
em is then equivalent to one of linear system identifica-
ion for which iterative [17] or analytic solutions [18] are
vailable. Ozcan et al. [19] have proposed an iterative
echnique based on a minimum-phase assumption—their
econstruction technique is similar to that of Fienup [15],
auschke [16], and Quatieri and Oppenheim [17].
In this paper, we exploit an important property of the

DOCT measurements that enables exact reconstruction.
e do not assume a rational Fourier transform model but

equire that the zero-phase delay plane should lie outside
he sample—this is indeed the case in many standard
DOCT systems. Our technique is noniterative and hence
etter suited for real-time imaging applications.
008 Optical Society of America
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The organization of the paper is as follows. In Section
, we describe the acquisition of the FDOCT signal and
lso specify the signal model. Section 3 contains a charac-
erization of the artifacts in the conventional Fourier-
ased reconstruction. In Section 4, we present the new
echnique for exact reconstruction; the connections to ho-
omorphic signal processing [20,21] are established in
ection 5. Sampling issues and implementation details
re given in Section 6. In Section 7, we demonstrate the
erformance of our technique on synthesized as well as
xperimental data and compare it with the other tech-
iques reported in the literature.

. FDOCT SIGNAL ACQUISITION AND
ODEL

n Fig. 1 we show a standard Michelson interferometric
etup for making FDOCT measurements. The output of a
roadband light source is split into two beams that are di-
ected towards the two arms of an interferometer: (i) the
eference arm, which contains a broadband mirror that re-
ects light and creates the reference signal, and (ii) the
bject arm, which reaches the specimen. The light that is
eflected from scatterers within the specimen contributes
o the measured signal. The reference and object-arm sig-
als are coupled into a single-mode fiber and directed to-
ards a spectrometer to obtain a spectral decomposition
s a function of the wavelength �. The depth information
f the object is encoded as a spectral fringe pattern. In-
reasing the source bandwidth has the effect of increasing
he axial resolution, provided that the bandwidth of the
pectrometer is not exceeded. The accessible depth range
ithin the specimen is also inversely proportional to the

pectrometer resolution. For three-dimensional imaging
t is necessary to scan the sample laterally.

Let a�z� denote the amplitude of the light field gener-
ted due to scattering by the object, as a function of depth
. The spectrometer measurements are mapped onto the
avenumber k=2� /�, resulting in the signal

I�k� = S�k��aRej2kr +�
−�

+�

a�z�ej2k�r+n�z�z�dz�2

. �1�

e have used the same notations as those used in [[22],
hapter 12], namely, 2r is the path length in the refer-
nce arm; 2z is the path length in the object arm relative

Fig. 1. Schematic of the FDOCT setup.
o the reference plane; n�z� is the refractive index as a
unction of depth in the sample; aR is the amplitude of the
ave reflected by the mirror (without loss of generality,
e set aR=1); a�z� is the amplitude of the backscattered
ave; and S�k� is the power spectrum of the light source.
S�k� can be measured by completely blocking the object

rm; indeed when a�z�=0, we have that I�k�=S�k�. From
q. (1), note that we have access to the optical path-

ength differences between the reference and object arms,
hich is what we are interested in. The refractive index
�z� is generally not known a priori; a standard simplifi-
ation is achieved by making a zeroth-order approxima-
ion: n�z�=n; i.e., a constant refractive index. This as-
umption is widely used and holds if the light sources
ave moderate bandwidth. Further, substituting �
−2kn, Eq. (1) takes the standard form

I��� = S����1 +�
−�

+�

a�z�e−j�zdz�2

, �2�

hich is the one that we shall consider. The FDOCT in-
erse problem can now be formulated explicitly as the
ask of computing a�z� given I��� and S���.

. CONVENTIONAL FOURIER-BASED
ECONSTRUCTION TECHNIQUE
eveloping the squares in Eq. (2), we obtain that

I��� = S����1 +�
−�

+�

a�z�e−j�zdz +�
−�

+�

a*�z�ej�zdz

+�
−�

+��
−�

+�

a�z�a*�z��e−j��z−z��dzdz�� . �3�

e identify the following terms in Eq. (3).

• 	−�
+�a�z�e−j�zdz, also known as the Müller fringe term;

• 	−�
+�a*�z�ej�zdz, the conjugate of the Müller fringe

erm; and
• 	−�

+�	−�
+�a�z�a*�z��e−j��z−z��dzdz�, which is the Fourier

ransform of the autocorrelation raa�z�, accounts for the
utual interference of all elementary waves.

Typically, a�z� is one-sided; i.e., a�z�=0 for z�z0. Under
he assumption that the zero-delay plane is located out-
ide the object, we have that z0�0. In our subsequent de-
elopments, without loss of generality, we assume that
�z� is real.
The standard reconstruction approach is to compute

he inverse Fourier transform of I���. The tomogram in
his case comprises a�z�, a�−z�, and raa�z�. There is no
verlap between a�z� and a�−z� because we assumed that
0�0. raa�z� is symmetric about z=0 and overlaps with
�z� and a�−z�. The overlap can be reduced—although not
ully eliminated—by increasing z0. However, this would
ause the interference fringes in the power spectrum to
ove closer, requiring a higher-resolution spectrometer.
his would also reduce the accessible depth, and the SNR,

or a given spectrometer resolution. The best resolution,
NR, and maximal access in the axial direction are ob-
ained for z =0.
0
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. EXACT RECONSTRUCTION
et A���=	−�

+�a�z�e−j�zdz, where a�z�� �L1�L2��R�. Re-
riting Eq. (2), we have that

I��� = S����1 + A�����1 + A*����. �4�

he autocorrelation term is a consequence of the multipli-
ative interaction between A��� and A*���. We propose to
onvert it to an additive one by considering the logarithm
f I���. Thus, we have that

log I��� − log S��� = log�1 + A���� + log�1 + A*����. �5�

he right-hand side of Eq. (5) has some nice properties
hat enable exact recovery of a�z� from 
1+A���
2. This
ey result is presented in the form of the following
heorem:

Theorem 1. If a�z�� �L1�L2��R� vanishes for z�0�z0

nd a�z�↔
F

A��� such that 
A��� 
 ���1∀�, then 
1
A���
2 completely specifies a�z� almost everywhere (a.e.).

Proof. Our proof is constructive. First, we need the fol-
owing lemmas.

Lemma 1. If a�z�� �L1�L2��R� vanishes for z�0�z0

nd a�z�↔
F

A��� such that 
A��� 
 ���1∀�, then the in-
erse Fourier transform of log�1+A���� vanishes over z
0�z0 almost everywhere.

Proof. By employing a Taylor series expansion, we have
hat

log�1 + A���� = �
n=1

�

�− 1�n−1
An���

n
for 
A���
 � 1, ∀ �.

�6�

ince 
A��� 
 ���1∀�, log�1+A���� is bounded and well-
efined. The Fourier transform converts convolutions to
ultiplications so that

�7�

ince a�z� vanishes for z�0�z0, the left-hand side of Eq.
7) also vanishes for z�0�z0, almost everywhere. �

Similarly, it can be shown that the inverse Fourier
ransform of log�1+A*���� vanishes for z�z0	0 almost
verywhere.

Lemma 2. If a�z�� �L1�L2��R� vanishes for z	z0	0

nd a�z�↔
F

A��� such that 
A��� 
 ���1∀�, then the in-
erse Fourier transform of log�1+A*���� vanishes over z
z0	0 almost everywhere.

Proof. The proof is similar to that of Lemma 1. �

Having established lemmas 1 and 2, we continue with
he proof. We know that

log
1 + A���
2 = log�1 + A���� + log�1 + A*����. �8�

pplying the inverse Fourier transform on both sides, we
ave that
c�z� = F−1�log
1 + A
2
�z� = F−1�log�1 + A� + log�1 + A*�
�z�.

�9�

he functions F−1�log�1+A�
�z� and F−1�log�1+A*�
�z�
ave nonoverlapping support (by applying lemmas 1 and
). This property is illustrated in Fig. 2. Now, define

w�z� = �
0, z � − z0

z

2z0
+

1

2
, − z0 � z � z0

1, z � z0

. �10�

e therefore have that

F−1�log�1 + A�
�z� = F−1�log
1 + A
2
�z�w�z� a.e. �11�

pplying the Fourier transform on both sides, we have
hat

log�1 + A���� = F�F−1�log
1 + A
2
w
�z�, �12�

⇒A��� = exp�F�F−1�log
1 + A
2
�z�w
���� − 1, �13�

o that a�z� can be computed as a�z�=F−1�A
�z� a.e. �

emarks
1. Theorem 1 is also applicable in the anticausal case

here a�z� vanishes over z�z0 ,z0�0, provided that w�z�
n Eq. (10) is replaced by w�−z�. However, it is not appli-
able if a�z� vanishes over z�z0�0.

2. From Eq. (6), note that, as 
� 
 → +�, log�1+A���� de-
ays as A��� and the higher-order terms An��� decay
aster than A���. Therefore, the inverse Fourier trans-
orm of log�1+A���� is well-defined in the classical sense.

similar result holds for log�1+A*����.
3. The definition of w�z� ,z� �−z0 ,z0� is arbitrary since

oth a�z� and a�−z� vanish over that region, but a smooth
�z� is preferred as it avoids ringing artifacts in practical

mplementations.
In some cases, it is of interest to recover complex a�z�

ecause it may be useful in characterizing the absorption
roperties of the specimen. To illustrate that Theorem 1 is
pplicable in this case as well, we consider a�z� shown in
igs. 3(a) and 3(d). In Figs. 3(c) and 3(f), we show that
�z� is exactly recovered by applying Theorem 1. Compar-

ng this with the conventional Fourier-based reconstruc-

ig. 2. Figure to illustrate the property that F−1�log�1+A�
�z�
nd F−1�log�1+A*�
�z� have nonoverlapping support.
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ions shown in Figs. 3(b) and 3(e), we note that the auto-
orrelation artifacts are suppressed to a large extent.

. EXACT RECOVERY AND HOMOMORPHIC
IGNAL PROCESSING
he proof of Theorem 1 implicitly involves operators that
re nonlinear in the conventional sense, but which satisfy
generalized principle of superposition. To explain fur-

her, we first provide a few definitions related to the cep-
trum. For a detailed treatment of cepstrum see [20]. Our
ormulation is in the continuous-space and frequency do-
ains, whereas the often-used one is a discrete-space,

iscrete–continuous-frequency domain formulation.

. Definition of Cepstrum

et f�z��L2�R� and f�z�↔
F

F���. The complex cepstrum of
�z� is defined as

ĉf�z� =
1

2�
�

−�

+�

log F���ej�zd�. �14�

ig. 3. Complex-function retrieval by application of Theorem 1.
nd (e) are the estimates obtained by using the conventional F
ashed circles); (c) and (f) are the estimates obtained by applyin
ˆf�z� exists and has finite energy if log F����L2�R�. The
eal cepstrum is defined as the inverse Fourier transform
f log 
F���
; i.e.,

cf�z� =
1

2�
�

−�

+�

log
F���
ej�zd�. �15�

rom Eqs. (14) and (15), the following property can be
erified:

cf�z� =
ĉf�z� + ĉf

*�− z�

2
. �16�

. Homomorphic Operators
et T be an operator/system that maps f1�z� and f2�z� into
�f1
�z� and T�f2
�z�, respectively. T is said to satisfy the
eneralized principle of superposition if it satisfies the fol-
owing properties under a given set of bivariate opera-
ions �� , � , � , � 
:

T�f1 � f2
�z� = �T�f1
 � T�f2

�z� �linearity�, �17�

T�c � f 
�z� = �c � T�f 

�z� �scaling property�, �18�

d (d) are the real and imaginary parts of a�z� (ground truth); (b)
-transform technique (note the autocorrelation artifacts in the
rem 1.
(a) an
ourier
1 1
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here c is a scalar. Such a system is said to be homomor-
hic with respect to the input and output operations �

nd � , respectively, and is denoted by T�� , � 
. A homo-
orphic system T�� , � 
 is equivalent to a cascade of

hree homomorphic systems [20]: D�� , + 
 ,L�+, + 
, and
−1�+, � 
 (see Fig. 4), where the operator D�� , + 
 is re-

erred to as the characteristic system associated with the
nput operation �, D−1�+, � 
 is the inverse characteristic
ystem associated with the output operation � , and where
�+, + 
 is a linear system in the usual sense. The charac-

eristic system and its inverse for the special case of �

� �* are shown in Fig. 5.

. FDOCT and Homomorphic Equivalence
o establish the stated equivalence, we summarize the
echnique embedded in Theorem 1 below:

1. Background subtraction in the logarithm domain:
given I��� and S���, compute log I���−log S���.

2. Inverse Fourier transformation: c�z�=F−1�log I
−log S
�z�.

3. Selection of the causal component: c+�z�=c�z�w�z�.
4. Fourier transformation: C+���=F�c+
���.
5. Exponentiation: A���=exp�C+����−1.
6. Inverse Fourier transformation: a�z�=F−1�A
�z�.

If we include the acquisition of I��� and S��� as the 0th
tep, then the operations in steps 4–6 form the inverse
haracteristic system shown in Fig. 5(b), corresponding to
he operations in steps 0–2, which form the characteristic
ystem shown in Fig. 5(a). The function c�z� is the real
epstrum of F−1�I /S
���. The multiplication in step 3 is
quivalent to L�+, + 
 in Fig. 4 and is referred to as “lift-
ring”. The function c+�z� is the complex cepstrum of
−1�1+A
�z� and is identical to the causal part of cf�z� in
q. (16). Thus, our technique has a one-to-one equiva-

ence with the homomorphic system T�*, * 
. By this
quivalence we have formally shown that the FDOCT re-
onstruction problem is essentially the same as deconvo-

ig. 4. (a) A homomorphic system and (b) its canonical
epresentation.

ig. 5. (a) Characteristic system D�*, + 
 for convolution and (b)
ts inverse D−1�+, 
.
*
ution. In the popular flavor of homomorphic deconvolu-
ion [20], the higher-order cepstral coefficients that
epend on the measurements are separated from the
ower-order ones coming mainly from the smoothing ker-
el. Deconvolution is achieved by retaining only the
igher-order cepstral coefficients. In our technique, we
ave essentially performed deconvolution to separate a�z�
nd a�−z�by virtue of the property that their cepstra do
ot overlap.

. SAMPLING AND ALIASING ISSUES
et the discrete measurements along the wavelength axis
e denoted by �I�m
�� ,m�Z
, where 
� is the sampling
tep. It is reasonable to assume that a�z� has a compact
upport; i.e., a�z�=0 for z�R\ �z0 ,z0+zsupp�. For alias-free
econstruction of I��� from I�m
��, 
� must satisfy
he bandpass sampling theorem condition 
�� �B
1� / �2�z0+zsupp��, where B is the largest integer such that
�z0 /zsupp. Uniformly spaced measurements on the
avenumber axis can be obtained by a spline interpola-

ion [23]. Let a set of N such samples be denoted by
I�k� , k=0,1,2, . . . ,N−1
. Consider the periodized version
f I�k� given by

Ip�k� = �
n=−�

+�

I�k + nN�, �19�

hich is the Fourier transform of the sampled spatial-
omain function. This framework enables the use of dis-
rete Fourier transform (DFT) for implementation.

The homomorphic technique involves the logarithm
nd exponential operations that can be a potential source
f aliasing in finite length implementations. Aliasing can
e reduced to an acceptable level by oversampling the
easurements. The upsampler can be efficiently imple-
ented by using a zero-padded fast Fourier transform

FFT) or by using B-splines [23]. In Fig. 6, we show the
liasing error in a synthesized scattering function for two
ases: (i) no oversampling, and (ii) oversampling by a fac-
or of 2. Oversampling by a mere factor of 2 suppresses
he aliasing errors to an acceptable level. The amount of

ig. 6. (Color online) Spatial-domain aliasing as a function of
he oversampling factor.
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liasing is also a function of the ratio between the maxi-
um of the scattering function and the source intensity.
s max� 
A���
 approaches unity, the aliasing errors in-
rease for a fixed oversampling factor. Define the peak ra-
io as max� 
A��� 
 :1. We conduct simulations to measure
he aliasing error as a function of the oversampling factor
nd the peak ratio. To quantify the aliasing error, we de-
ne the signal-to-aliasing-error ratio as

� = 10 log10� �
l=0

N−1

a2�l
z�

�
l=0

N−1

�a�l
z� − â�l
z��2� , �20�

here 
z is the sampling step, a�l
z� is the ground truth,
nd where â�l
z� is an estimate of a�l
z�. We show a plot
f � versus the oversampling factor as a function of the
eak ratio in Fig. 7. If the peak ratio is less than 20%, � is
ufficiently large and, therefore, no oversampling is nec-
ssary. For larger peak ratios, oversampling by a factor of
is necessary; beyond this factor, there is no appreciable

mprovement in �. In practice, the peak ratio is around
% or less and upsampling by a factor of 2 seems to be
ufficient. The associated computation cost comprises an
-point FFT and a 2N-point FFT after padding zeros.
In the above experiment we have not made any as-

umptions about the decay of a�z�. In practice, as z in-
reases, a�z� decays at a rate determined by the specimen.
f a�z� decays quite fast, then the aliasing components
ill have little overlap with a�z� and oversampling may
ot even be necessary.

ig. 8. Tomograms of a synthesized multilayer specimen: (a) gr
ation artifacts), (c) homomorphic reconstruction, and (d) iterativ
. PERFORMANCE COMPARISON
n this section, we compare the performances of the three
echniques—the standard Fourier, the iterative [19], and
he homomorphic—on synthesized and experimental
ata.

. Synthesized-Data Performance
n Fig. 8, we show a synthesized multilayer specimen and
he tomograms reconstructed by the three techniques
entioned above. The autocorrelation artifacts are promi-
ent in the standard Fourier reconstruction whereas the
omomorphic technique yields artifact-free reconstruc-
ion. The iterative technique gave nearly identical results

ig. 7. (Color online) Signal-to-aliasing error ratio as a function
f the oversampling factor.

ruth, (b) standard Fourier reconstruction (notice the autocorre-
struction.
ound t
e recon
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fter 30 iterations. To quantify the artifact suppression,
e introduce a new metric called the average signal-to-
rtifact ratio,

� = 10 log10� 1

L�
l=1

L Var�al


Var�al − âl

� , �21�

here L is the number of lateral scans; al
�al�i� , i=1,2, . . . ,N
 , l=1,2, . . . ,L, are the scattering

unctions corresponding to L scans; âl is an estimate of al;
nd where Var�·
 is the sample variance operator, acting
n the elements of its vector argument. The value of � is
5.34 dB for the conventional Fourier technique, 117.7 dB
or the iterative technique, and 102.5 dB for the homo-
orphic technique. The processing times (in MATLAB)

re 0.16, 18.84, and 1.52 s. Recall that, in the absence of
easurement noise, the accuracy of the homomorphic

echnique is limited only by aliasing. From these results
e conclude that the homomorphic technique gives the

ig. 9. Tomograms of a two-layered glass specimen obtained by
iques. The subplot (d) shows the standard deviation along sca
tandard deviation profiles in the dashed boxes, we note that the
orphic techniques. The iterative technique has a performance

nferior to that of the homomorphic technique.
est trade-off between computational efficiency and re-
onstruction accuracy.

. Computational Complexity
he computational load of the standard technique is the

east—one N-point FFT per scan, where N is the sequence
f measured spectral values. In the homomorphic tech-
ique, the computations comprise two N-point FFTs for
psampling, 2
2N logarithms, 2N additions, a 2N-point

nverse FFT, a 2N-point FFT of which N elements are ze-
os, 2N exponential operations, and a 2N-point inverse
FT. Thus, the total computation per scan comprises

hree N-point FFTs, 4N logarithms, 2N exponential op-
rations, and 2N additions. The computational load of the
terative technique is the highest. It comprises a N-point
FT, N-point FFT of a sequence which contains N /2 con-
ecutive zeros, N arc-tangent operations, and N complex
ultiplications. The computational load is further scaled

) conventional Fourier, (b) iterative, and (c) homomorphic tech-
a function of depth for the three techniques. By comparing the
orrelation is significantly suppressed by the iterative and homo-
s superior to that of the conventional technique, but somewhat
the (a
ns as
autoc
that i
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y the number of iterations. Thus, the homomorphic tech-
ique offers the best trade-off between accuracy and com-
utational load.

. Experimental-Data Performance
he experimental setup is the same as the one used for
xtended depth-of-focus applications [24]. The light
ource is a Ti-Sapphire laser with �0=800 nm and 
�
135 nm. The beam is collimated by a lens having a focal

ength of 8.2 mm and split in reference and sample arms.
n the sample arm, the beam passes through an axicon
B=2.5° �. It is then focused by an achromatic lens system
aving a focal length of 177 mm into a thin annulus in the
ocal plane of the sample objective (10
 Zeiss Neofluor,
umerical aperture=0.3). An identical objective is used
or coupling the reference and scattered sample light into
he detection fiber. The power at the sample is approxi-
ately 3 mW. The axial resolution is 3 �m in air and the

ateral resolution is 1.3 �m. The integration time is 43 �s
nd the line rate is 5 kHz.
We demonstrate our method on two specimens: (i) a

wo-layered glass sample and (ii) a mouse pancreas ad-
inistered with 15% sucrose—such specimens are used in

he study of diabetes. The measurements are processed
y the three techniques, with some quality-enhancing

ig. 10. (Color online) 3D visualization of a segment of a mou
econstructions. The x step is 0.8 �m and the y step is 1.5 �m. The
he horizontal plane at the top corresponds to the zero-delay re
stimating the background by averaging the scans. The tomogra
ndicated. The simulations are carried out in MATLAB 7.4 on a
odifications as described below. In the conventional
echnique, the Fourier transform is applied after sub-
racting the measured source spectrum. This operation,
ommonly known as background subtraction, is a stan-
ard preprocessing step and yields tomograms with
igher contrast. In the iterative technique background
ubtraction cannot be done in the spectral domain be-
ause it destroys the minimum-phase property that is
rucial for the technique. Therefore, we first reconstruct
he tomogram without background subtraction. We pro-
ess the source spectrum by the iterative technique. The
inimum-phase source response thus obtained is sub-

racted from the reconstructed tomogram. In the homo-
orphic technique background subtraction is done in the

og-spectral domain (step 1 of Subsection 5.C). Since this
peration enhances the out-of-band measurement noise,
e suppress it by convolving the reconstructed tomogram
ith the source response. Thus, in all three techniques

he smoothing effect of the source on the tomogram is pre-
erved.

In Fig. 9, we show the tomograms of the two-layered
lass specimen obtained by the three techniques. The it-
rative technique converged in about 30 iterations. The
utocorrelation introduced by the Fourier transform is
learly visible in Fig. 9(a); it is suppressed by the iterative

creas: (a) standard Fourier, (b) iterative, and (c) homomorphic
er of scans in the x and y directions is 1500 and 150, respectively.
e. The two horizontal lines are probably due to inaccuracies in
onstruction times, excluding the file access operations, are also
osh 2.66 GHz dual-core Intel Xeon system.
se pan
numb
ferenc
m rec

Macint
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nd homomorphic techniques [cf. Figs. 9(b) and 9(c), re-
pectively]. Since this particular specimen has horizontal
ayers, an empirical way to further compare the recon-
truction quality of the three techniques is to compute the
tandard deviation as a function of the depth index; the
rofiles thus obtained are shown in Fig. 9(d). We observe
hat the homomorphic technique has efficiently sup-
ressed the autocorrelation terms to the level of the mea-
urement noise. The performance of the iterative tech-
ique is superior to that of the standard Fourier
echnique but is somewhat inferior to that of the homo-
orphic technique.
In Fig. 10, we show the three-dimensional tomograms

f a thin slice of a mouse pancreas containing some
angerhans’ islets. The islets are cell clusters and consti-
ute the endocrine part of the pancreas. The volumes
hown are of size 1500
150
1024, and they are ren-
ered using the OsiriX medical image processing software
25]. The tomogram reconstruction times are also indi-
ated. The intense reflection due to the moisture on the
pecimen surface gives rise to a strong autocorrelation in
he conventional reconstruction [cf. Fig. 10(a)]; it is sup-
ressed to a large extent by the iterative and homomor-
hic techniques [cf. Figs. 10(b) and 10(c), respectively].
ome distortions are still remaining and this may be due
o a model mismatch, possibly caused by detection nonlin-
arities and/or measurement noise. Let us next compare
igs. 10(b) and 10(c). The iterative technique introduces
ome spurious distortions, which is not the case with the
omomorphic technique. In terms of processing times, the
omomorphic technique is much faster than the iterative
echnique. It takes only a few minutes (in MATLAB) to
rocess a few hundred scans whereas the iterative tech-
ique takes a few hours. Thus, our technique provides a
ood trade-off between the quality of reconstruction and
omputational complexity.

. CONCLUSIONS
e showed that exact signal reconstruction is possible

rom frequency-domain measurements. Our technique is
oniterative, nonlinear, and offers an exact solution in the
bsence of noise, provided that the zero-delay plane is
utside the specimen. We have also established an
quivalence with homomorphic signal processing. By
eans of performance analysis on synthesized and ex-

erimental data, we have shown that our technique is su-
erior to the iterative and conventional Fourier-transform
echniques. Given the homomorphic reconstruction tech-
ique, the object can be placed very close to the zero-delay
lane without introducing autocorrelation distortion. This
onfiguration yields higher sensitivity and increases the
ccessible depth in the specimen. The homomorphic tech-
ique can also make a big difference in microscopy appli-
ations where the glass slide that is used to cover the
pecimen causes a strong autocorrelation. The potential
onbiological applications are in multilayer optical stor-
ge, document security, object identification, fault detec-
ion, etc. In these applications, full-field OCT [26] is used
s it is more economical and enables faster imaging. The
ignal model is the same as that in Eq. (2) except that the
unctions are two-dimensional. It must be noted that
ince our technique requires a causal scattering function,
t is not suitable for full-range reconstruction. Multidi-

ensional extensions of the technique are also promising
or digital holography [27,28].
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