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Abstract�We present a no-reference image quality metric for
image interpolation. The approach is capable of detecting blurry
regions as well as ghosting artifacts, e.g., in image based render-
ing scenarios. Based on the assumption that ghosting artifacts can
be detected locally, perceived visual quality can be predicted from
the amount of regions that are affected by ghosting. Because the
approach does not require any reference image, it is very suitable,
e.g., for assessing quality of image-based rendering techniques in
general settings.

I. INTRODUCTION

Free-viewpoint navigation around real-world, dynamic scenes
has recently received considerable attention in computer
graphics as well as computer vision, either making use of re-
constructed scene geometry [1], [2], [3], [4], [5] or being based
on the input images alone [6], [7], [8]. In both approaches,
the quality of the rendered virtual image can safely assumed
to be lower than the input photos. Quality degradation in
image interpolation typically manifests itself in image blurring
and image ghosting, artifacts observers perceive as highly
distracting.

In geometry-assisted systems, artifacts come from inexact
reconstruction and/or camera calibration errors. Some of the
visual degradation can be corrected by advanced reprojection
techniques [9]. In purely image-based systems, the major
sources of error are occlusions/disocclusions of different depth
layers and inaccurate correspondences. The latter, in general,
leads to prominent ghosting artifacts in the interpolated image.
While those artifacts can be compensated for by correcting the
correspondence �elds [10], their correction in the novel views
remains a tedious and often subjective manual task.
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Fig. 1. Ghosting occurs in image interpolation when the corresponding
pixels from two or more original images I1; I2 are warped to different pixel
positions in the interpolated image Iint: At the left border of O the region
Afg is replicated and displaced by ~d1. The color values of Agh appear alpha-
blended from Afg and Abg . At the right border of O a similar displacement
~d2 occurs.

The identi�cation of various artifacts including blurriness,
blockiness and noisiness has been extensively studied in the
�eld of image/video compression and transmission and can
be applied to the analysis of interpolated images as well [11],
[12], [13], [14], [15]. However, only little research has been
devoted to image quality metrics tailored to the particularities
of free-viewpoint systems, i.e., detection of blurring and
ghosting where no ground-truth data is available. As a �rst
step in this direction, Stark and Kilner [16], [17] proposed
a quality assessment system for free-viewpoint video produc-
tion. Yet, the metrics used essentially measure the quality of
3D reconstruction in image space and are thus only applicable
to geometry-based free-viewpoint systems.

As main contribution, this paper presents a no-reference ob-
jective quality metric for purely image-based free-viewpoint
systems, focusing on the detection of ghosting artifacts where
no ground-truth reference images are available for comparison.
Our approach is based on the observation that ghosting occurs
when corresponding pixels from two or more original images
I1; I2 are warped to different pixel positions in the interpolated
image, Fig. 1. We validate the results of our ghosting detector
against the results of a user study. The user study evaluation
also con�rms that ghosting and blurring are perceived as the
most distracting artifacts in image interpolation.

The rest of this paper is organized as follows. After sum-
marizing the related work in Sect. II, we give a detailed
description of our ghosting detector in Sect. III. In Sect. IV,
we present the subjective quality evaluation study of our image
set. We compare the performance of our ghosting detector to
the subjective evaluation in Sect. V, before the paper concludes
in Sect. VI.

II. RELATED WORK

Image quality assessment methods have been thoroughly stud-
ied over the past two decades. The main focus has been on the
evaluation and improvement of image and video compression
methods, such as JPEG2000, or MPEG-2.

Quality metrics have been developed to measure the quality
of an image or video that has been altered due to compres-
sion or transmission over a communication channel. A good
overview over existing metrics is provided by Engelke and
Zepernik in [18]. Basically, metrics can be separated into three
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Fig. 2. The processing steps of the algorithm. Top row: the input image I (a) is smoothed and an edge detection is applied to get Iedge (b). A mask (c) is calculated to obtain the relevant patches of
I (d, bright regions). Bottom row: (from left to right): For each patch pi;j (e) the algorithm performs an edge detection to get ei;j (f) and the Laplacian operator p4

i;j (g) is applied to it. Connected
components in p4

i;j are grouped into sets C (h). For each group c 2 C the mean color value of the corresponding image pixels in I is calculated (i). Finally a least-squares problem is solved for each three
components in C (j). The red variables �1,�2 sum to 1, the 2-norm of the residual is small. The same holds for �3,�4.



Fig. 3. The three test scenes used for the subjective user study. Form each scene original and interpolated images were evaluated.

classes: Full-reference (FR), Reduced-Reference (RR) and No-
reference (RR) metrics.

Full-reference metrics compare a processed image and com-
pare it to the original image [12], [19]. Distorted videos are
evaluated in comparison to the original videos [20], [21], [22].

Reduced-reference metrics extract key features of the original
image and compare them to key features extracted from the
altered image. The key features are usually provided via an
ancillary channel [23] or are embedded in the image [24].

No-reference metrics evaluate only the altered image and apply
�lters or heuristics to it. Liu et al. [15] detect the blockiness
in compressed images and rely on the periodicity of artifacts
due to the DCT transform. Sheikh et al. [14] use natural
scene statistics in the wavelet domain to assess the image
quality to tackle the DWT coef�cient quantization introduced
by JPEG2000. A perceptual blur metric is introduced by
Marziliano et al. [12]. They measure the blurriness in terms
of edge width, i.e. the pixel distance between local extrema
around a detected edge pixel in gray-level images. Another
blurriness metric searches for phase distortion in the Fourier
spectrum[11]. Farias et al. [13] propose an artifact assessment
in videos by combining a blockiness,blurriness and noisiness
metric.

Only recently, quality measurements of free-viewpoint video
results have been addressed. Kilner et al.[17], [16] investigate
video errors caused by image rendering techniques and pro-
pose a reduced reference metric. They measured the pixel error
of an image from a new viewpoint to the images of adjacent
input cameras based on the Hausdorff-distance. However, their
metric is only applicable in free-viewpoint systems based on
geometric reconstruction. Our approach, in contrast, is purely
image-based and does not rely of any geometric proxy and
examines only the interpolated image itself.

III. THE GHOSTING METRIC

In order to assess image quality based on ghosting artifacts,
we make two assumptions. We assume that ghosting can be
detected locally, and that ghosting artifacts are only visible
in areas that contain strong object edges. In a �rst step, the
input image I is subdivided into small patches pi;j of surface
area d2. In our image set, we chose d = 15 pixels. Since

the most noticeable quality loss appears along object edges,
the algorithm detects only patches near edges. According to
our second assumption, object edges are usually predominant
edges. In order to �nd them, an edge detection is applied to a
low-pass �ltered version of the input image I , retaining only
the most prominent edges in Iedge, Fig. 2(b). In a second step,
a binary mask Imask is calculated from Iedge to determine
the relevant patches, Fig. 2(c). The mask image is d2 times
smaller than the input image I . A pixel Ii;j in Imask is set
to 1, if its corresponding patch pi;j contains at least d edge
pixels, Fig. 2(d).

After this preprocessing, the algorithm iterates over all se-
lected patches P and assigns a label li;j 2 L with L =
fghosting; crispg to each patch pi;j 2 P . In this classi�cation
step the algorithm performs edge detection on the patch pi;j

of the input image I to obtain an edge patch ei;j , Fig. 2(f).
To this edge patch the Laplacian operator is applied

p4
i;j = 4 � (ei;j ):

The Laplacian-transformed patch p4
i;j contains nonzero pixels

only in the 8-neighborhood of an edge pixel in ei;j , Fig. 2(g).
Hence, we assume that for each edge in ei;j there exist two sets
of connected pixels in p4

i;j , one set for each side of the edge.
The algorithm then groups each set c = fIx 1;y 1 ; : : : ; Ix m;y mg
of connected pixels into a set C = fc1; : : : ; cn g. Note that
the color values of the input image are stored for each set of
connected pixels, Fig. 2(h). Afterwards for each of the three
sets ca ; cb; cc; (a 6= b 6= c) of connected pixels in C, the mean
color values ~ma ; ~mb; ~mc 2 R3 are computed,Fig. 2(i), and a
least-squares problem is solved:

( ~ma ~mb) � ~� = ~mc

with
~� =

�
�1
�2

�
; 0 � �1; �2 � 1

If there is a ~� with �1+ �2 = 1 for three sets ca ; cb; cc and with
a small 2-norm of the residual, then the colors of ca and cb

can be blended into the colors of cc, Fig. 2(j). Hence ca ; cb; cc

are considered to belong to a ghosting artifact and the label
li;j of the patch is set as ghosting. This is due to the fact
that ghosting occurs when a surface area is repeated, slightly
shifted within the image, or blended with the background.
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Fig. 4. The results of the user studies are plotted for each image dataset. The �rst row shows the lab user study (a - c), the second row shows the internet
user study (d - f). The plot shows the mean opinion score for a given image in the dataset. The vertical bars for each data point mark the 95% con�dency
interval. The vertical line distinguishes the interpolated images from the original images.

The overall numerical quality g(I) of the image is �nally
computed as the percentage of patches labeled as ghosting
to the overall number of detected patches in the image:

g(I) =

P
pi;j2 P g(pi;j )

kPk
; 0 � g(I) � 1

where

g(pi;j ) =
�

1; li;j = ghosting
0; li;j = crisp :

IV. SUBJECTIVE EVALUATION

The presented metric has been evaluated against a subjective
user study. For this study a set of 20 images per scene has
been randomly assembled from 3 different scenes, Fig. 3,
consisting of 50 % images from a video camera and 50 %
rendered images from a novel viewpoint. The interpolated
images have been generated with the algorithm proposed by
Stich et al. [25]. The rendered images from a novel viewpoint
show quality alterations of different severity. In accordance
with the international recommendations for subjective video
quality assessment [26], the image set was presented to 15
human observers in a laboratory environment. The observers
were given the task to grade each of the presented images
with one of the following values according to the the ITU-
R quality scale: �excellent� (highest score), �good�, �fair�,
�poor�, �bad� (lowest score).

In a second step, an online evaluation system was set up and
advertised university-wide. Again the observers could grade
the images with the same scores. The online evaluation was
performed within a week, 61 students participated.

In both studies the results have been analyzed as proposed
by [26]. Fig. 4 shows for each dataset the mean opinion
score and the 95% con�dence interval per image for the lab
environment user study (a-c) and the internet user study (d-f).
Comparing for each dataset the plot for the lab environment
user study to the internet user study, it can be observed, that the
con�dence interval of the mean opinion score for most images
in the lab user study is broader than in the internet evaluation.
This can be explained by the small number of participants.
Furthermore it can be stated for both user studies, that the
mean opinion scores for interpolated images are lower than
for original images. This statement holds for the skateboarder,
�rebreather, and dancer image set. The difference is smaller
for the skateboarder since there are only few artifacts in the
shadow region which seem to have less impact on perceived
quality.

V. RESULTS

We have applied the algorithm described in Sect. III to
the presented image dataset which consists of 3 different
scenes with roughly 50% interpolated images and 50% original
images each. The image resolution of each image in the set
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Fig. 5. For each dataset the results of the proposed metric are compared to the results of the internet user study. For each image in the dataset the percentage
of patches containing ghosting (g(I)) is plotted against the mean opinion score for the image. The red line indicates the approximation by a logistic function.

was 960� 540 pixels, the evaluation time varied between 10
and 30 seconds on a PC. In order to predict a subjective
evaluation with the proposed metric, [26] suggests that their
result values have to be approximated by a logistic function
y = a�b

(a� b)�exp (� cx )+b , where x is the range of the metric,
y is the mean opinion score and a; b; c are the parameters
of the logistic function. In Fig. 5 such an approximation is
depicted for each dataset. In each graph the results of the
metric are approximated to the MOS values for each image
in the dataset. A data point represents an image of the data
set. The plots for the dancer, Fig. 5(a), the skateboarder,
Fig. 5(b), and the �rebreather, Fig. 5(c), dataset show a
reasonable approximation by a logistic function. Hence the
metric is capable of predicting a subjective value for an
image in these datasets. From these results we deduce, that
the proposed metric performs well on images which contain
ghosting artifacts on the outline of opaque objects.

VI. CONCLUSION

We have presented a versatile image quality metric which suc-
ceeds in detecting ghosting artifacts. The new metric is purely
image-based and can be classi�ed as no-reference metric. A
laboratory study based on the international recommendations
for subjective video quality assessment [26] and a university-
wide internet user study have been done to evaluate the
con�dence of the metric. Both studies are based on the same
image dataset, which consist of 3 different scenes, roughly
composed with 50% original and 50% interpolated images.
Best accuracy is achieved for scenes with opaque objects and
occlusion edges.

In the future, we want to extend our metric from still images to
interpolated image sequences with a short time span to inves-
tigate the temporal evolution of ghosting artifacts. Secondly,
we want to improve our metric towards non-opaque objects,
like foam and water to get more accurate statements about
their change of appearance during interpolation.
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