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Abstract—The complexity of HPC systems has increased
the burden on the developer as applications scale to
hundreds of thousands of processing cores. Moreover,
additional efforts are required to achieve acceptable I/O
performance, where it is important how I/O is performed,
which resources are used, and where I/O functionality is
deployed. Specifically, by scheduling I/O data movement
and by effectively placing operators affecting data volumes
or information about the data, tremendous gains can be
achieved both in the performance of simulation output and
in the usability of output data.

Previous studies have shown the value of using asyn-
chronous I/O, of employing a staging area, and of per-
forming select operations on data before it is written to
disk. Leveraging such insights, this paper develops and
experiments with higher level I/O abstractions, termed
“data services”, that manage output data from ‘source
to sink’: where/when it is captured, transported towards
storage, and filtered or manipulated by service functions
to improve its information content. Useful services include
data reduction, data indexing, and those that manage how
I/O is performed, i.e., the control aspects of data movement.
Our data services implementation distinguishes control
aspects – the control plane – from data movement – the
data plane, so that both may be changed separably. This
results in runtime flexibility not only in which services to
employ, but also in where to deploy them and how they use
I/O resources. The outcome is consistently high levels of I/O
performance at large scale, without requiring application
change.

I. INTRODUCTION

Scalability is a common challenge for the developers
of modern HPC applications, requiring careful code and
performance tuning for petascale compute tasks. With
data sizes increasing commensurately, data output is
becoming an almost equally challenging task, where the
conventional practice of storing data on disk, moving it
off-site, reading it into a workflow, and analyzing it to
produce scientific solutions becomes harder due to large

data volumes and limited backend speeds. In fact, even
the time required to move data to storage can become
an obstacle, since if output actions cause an application
to block on I/O, countless numbers of compute cores sit
idle waiting on output. In addition, science is affected
if it takes say, 500 seconds to output data, since that
makes it hard to justify writing data more than once per
hour, even if the science may benefit from more frequent
output.

We are exploring alternative ways of performing
output. Our approach goes beyond simply accelerating
output to also moving select data manipulation tasks
traditionally placed in an offline workflow ’into’ the
fast data path on the supercomputer. Suitable tasks
include those that reduce data without loss of scientific
validity, generate metadata (e.g., indexing) for easier
data access, or perform lightweight analysis tasks for
online validation of application ‘health’ via dashboards.
While previous work has demonstrated the utility of
this approach [35], [1], [4], [16], what remains lack-
ing are system abstractions and the underlying runtime
support for efficient I/O task representation, deployment,
execution, and management. This paper presents such
abstractions, termed ‘data services’, and uses them for
high performance output on petascale machines.

Data services are system-level abstractions that en-
capsulate methods for data movement and manipulation
on the fast path of data output. Data services are created
and deployed separately from application codes, thereby
separating changes made to application codes by science
users from changes made to I/O actions by developers or
administrators. Data services can be run asynchronously
from the large-scale simulations running on supercom-
puters, in order to decouple I/O actions and their per-
formance behavior from the those of the computations



performed by large-scale applications. Thus, science end
users can focus on their codes, and administrators or
developers can help create and manage I/O processes.

To make I/O processes manageable, data services are
associated with I/O so as to retain flexibility (1) in the
resources they consume, (2) in where services are run
(e.g., on compute nodes and/or on staging nodes), and
(3) in how and when they are run, including explicitly
scheduling their execution to avoid perturbing the petas-
cale simulation [2]. Flexibility in the levels of resources
dedicated to I/O ranges from ‘none’, where compute
nodes are used to run output actions, to cases in which a
substantial number of ‘fat nodes’ are used for staging
data and manipulating it prior to storing it on disk.
Flexibility in service placement includes placing certain
data reduction actions close to the source, even directly
on compute nodes via the SmartTap abstraction used
for capturing output data. Data produced by SmartTaps
can be fed to storage and/or to additional data services
placed on staging nodes, where data may be buffered,
annotated, or reorganized prior to moving it to storage.
Flexibility in how services are run is supported by output
scheduling methods that take into account supercomputer
interconnects with respect to perturbations of simulations
caused by output activities, and by backend-sensitive
methods that adapt to different storage characteristics
and behaviors. Examples of the latter are those that avoid
using storage targets already used by other parties or
more simply, that use the appropriate number of storage
targets to maximize throughput.

The data service abstraction makes it easier to develop,
deploy, and maintain per-site and per-run optimizations
of I/O processes. The abstraction also exploits the facts
that there exist many non-trivial I/O and data processing
tasks that can be done with few additional computa-
tional resources, on compute and/or on staging nodes,
and moreover, that performing such tasks can result in
performance gains when writing data and/or in usability
gains by increasing the information content of data
through annotation. Toward these ends, data services are
defined to differentiate between (1) data extraction, using
the SmartTap abstraction, (2) data processing via light-
weight computations associated with data services, and
(3) data storage using methods that take into account
storage system characteristics and behaviors, and (4) for
flexibility, the implementation of data services separates
data movement and manipulation – the data plane –
from how such actions are managed – the control plane.
Therefore, new scheduling methods for data extraction
or new techniques for how storage targets (or other
backends) are used can be deployed easily, without
changing data plane movement and processing actions.
The importance of this flexibility is demonstrated in this
paper with performance results on how and in which
fashion data is evicted to the storage system.

Data services are evaluated with representative petas-
cale codes running on the Cray ’Jaguar’ leadership
machine at Oak Ridge National labs. One explicit ex-
ample is the Gyrokinetic Toroidal Code (GTC)[33],
which is a 3-dimensional particle-in-cell code used to
study micro-turbulence in magnetic confinement fusion
from first principles plasma theory. As more complex
phenomenon are explored, the total number of ions being
modelled increases to trillions of total ions, resulting
in data rates of up to 100 TB/run. The data produced
by GTC is stored and processed through workflows
producing scientific understanding. As the size of the
data generated increases, however, it becomes increas-
ingly difficult to justify the time cost of storing all
data on disk and then eventually, reading it back into a
workflow module. A better use of resources is one that
employs data services to first move data to a temporary,
non-disk staging area and if needed, process it ‘in-
transit’ to make it more amenable for later analysis
and/or to quickly extract scientific insights from the GTC
code’s execution. Services applied to GTC output data
include data reduction and format conversion. Given the
enormous data volumes involved, however, this paper
demonstrates that the successful use of such data services
also requires the careful management of how data is
extracted via SmartTaps, how services are applied in
the staging area, and how data is moved to disk. For a
second petascale code with smaller volumes of output
data, the CHIMERA[23] multi-dimensional supernova
simulation, a more complex service indexing output data
is shown feasible, the intent being to improve the ease
with which workflows can later access and use output
data for detailed analysis.

Performance results attained with the GTC and
CHIMERA codes on Jaguar and Jaguarpf demon-
strate the power of the data services approach. Using
CHIMERA we observed that the performance impact of
data extraction at 8192 cores decreased from 37.84%
with pHDF5 to only 0.14% with the Datatap, while
using only 0.78% additional resources. At 65k cores
our evaluation of GTC restart output demonstrated a
reduction in overhead from 42.5% to only 10.9%. More-
over, evaluation of the data format conversion service
for CHIMERA showed that decoupling the processing
of the output from the application had a minimal impact
on application performance.

The remainder of this paper is structured as follows.
In Section II we discuss other research efforts similar
to data services and elaborate on the previous work
that laid the foundations for this paper. Section III
elaborates on the data service abstraction and describes
the salient features of our implementation. We evaluate
the performance benefits of the data service architecture
in Section IV using CHIMERA and GTC as example ap-
plications. We also evaluate the importance of managing



data output to disk in Section IV-D. We conclude with a
description of the contributions of this paper and describe
our future research direction we plan in Section V.

II. RELATED WORK

I/O performance is a significant topic of research with
many efforts at studying scalable implementations for
file systems. Filesystems like PVFS[18], [7], Lustre [8]
and GPFS [28] seek to provide a high performance
platform for I/O, offering scalability to hundreds of
thousands of clients. Due to the general applicability and
the traditional filesystem semantics for data and metadata
consistency, there is a high level of user burden when
optimization applications for these platforms. Given the
requirements of application portability, the task of op-
timization is complicated even further, requiring fine
grained tuning in order to achieve the best performance.
This coupling of the storage platform and the application
results in sub-optimal performance characteristics when
the underlying infrastructure changes. The data service
abstraction does not replace the traditional filesystem but
insulates the application from the filesystem allowing for
independent evolution of the control infrastructure. This
decoupling of the control plane increases the applicabil-
ity of optimization operations.

LWFS is a lightweight filesystem that resolves some
of the performance bottlenecks [24], [25] that closely
relates to our work on asynchronous lightweight data
movement for storage processing. LWFS is analogous
to the data extraction service but does not address the
processing of in-flight data in order to manage the over-
heads. The management infrastructure described here
can work in concert with the LWFS architecture and
data can be post-processed after storage as described in
[34].

PDIO[31] and DART[11] provide a infrastructure sim-
ilar to the Datatap in order to move data from the
compute nodes. The data service abstraction can be used
for both platforms and the functionality and performance
benefits of managing the data movement and in-line
processing can be realized for either system.

Past efforts into studying Active Disks[27], [26] ad-
dresses the same domain as data services. Active Disks
rely on data operations hosted near the storage target,
thus limiting the scope of problems that can be addressed
in this manner. In contrast the data service abstraction
is centered around a flexible approach to the location of
both data consumption targets (of which disks are only
one example) and data processing operations. This level
of flexibility also enables data services to utilize active
disk style functionality within the architecture.

Workflow systems such as Kepler[22], Pegasus [10]
amongst others [36], [32] approach the important task
of data processing as an offline task. One limitations of
such approaches is the reliance on stored data as input for

the processing pipeline. The advantage is that workflow
systems can be used for more complex operations than
a data service due to the significantly larger buffering
space provided by on-disk storage. Such systems can
still be part of the data service pipeline as post-storage
actions [34].

Map-Reduce [9] from Google is an alternate abstrac-
tion for data processing that has gained popularity in the
last few years. The Map-Reduce abstraction also pro-
vides an alternate view into massive scale data process-
ing. However, the focus for Map-Reduce is on processing
data from local storage instead of dealing with streaming
data generated from a running application. Many typical
data services, such as data reductions, can be cast into
the Map-Reduce framework and the programming model
can be used with some modifications for the development
of data services.

Our previous research on publish subscribe systems
[14] forms the foundation of our motivation for data
service. The evolution of ECho, EVPath [12], is used
as the data transport for the staging area as well pro-
viding a mechanism to create dynamic overlays for data
processing.

The Data Workspace described in LIVE [1] is the
immediate predecessor of the data service. LIVE did
not address the issues of scalability and the requisite
management of data processing and movement.

ADIOS [21] is a high performance API for componen-
tizing the I/O stack. It allows the scientific coder to place
a generic component call into the code, and then the
end user can at invocation time configure the particular
optimized component that is appropriate to the current
run-time conditions. This gives the end user much more
control, but also leaves much of the onus on the end
user to make decisions. This work extends the ADIOS
interface by providing more autonomic and richer data
services through the same componentized interface.

III. THE DATA SERVICE ABSTRACTION

A data service is a collection of actions on ‘in transit’
data, carrying out tasks like data extraction, data staging,
formatting, indexing, compression, and storage. A high
level depiction of the Data Service architecture appears
in Figure 1, which shows that conceptually, running a
Data Service has four distinct phases:

1) from bytes to structured data: writing and format-
ting output into buffers to create data items of well-
defined structure and memory layout;

2) controlling data movement: extracting data items
to maximize application performance;

3) online data processing: applying service codes to
output data while it is being moved; and

4) flexible data consumption: moving data out of the
petascale machine (e.g., to storage or the network)
sensitive to backend characteristics and behaviors.
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Fig. 1. High level view of the Data Service Architecture

In order to support customizable and configurable I/O
data movement and processing, each of these steps are
carried out in ways that are defined by control methods
associated with them. Examples include the scheduling
of data eviction from compute nodes and the controlled
movement of data to storage subsystems. Each of these
steps and their controls are explained next.

A. SmartTap: Structured Output Data

With the massive quantities of data generated by
petascale applications, it is not uncommon that only
a fraction of this data is actually required for scien-
tific analysis. Thus, producing and outputting the entire
data set and then later extracting a smaller portion for
post-processing can create an unnecessary performance
bottleneck. However, identifying “useful” data is highly
specific to each scientific undertaking, requiring in-depth
knowledge from the user as well as application hints
that enable this reduction. For example, for a molecular
dynamics application, a user may only be interested in
the characteristics of particles in a small bounding box.
Traditionally, this requires the application to provide the
functionality that allows output in a bounded space, thus
making it necessary for end users to change application
code. In contrast, data services allow end users to flexibly
associate such functionality with the data output process
itself. This begins with the data capture and formatting
steps performed by the SmartTap client module running
on compute nodes.

The first task of SmartTap is to deal with a neces-
sary prerequisite for applying operations to output data,
which is to represent such data in ways amenable for
processing. Concretely, this means that data must have
some well-defined structure or type and that services
are aware of these types. For Data Services, such type
information is first specified by end users when output

data is created, via the ADIOS [21] API now used
by a variety of petascale applications. Such specifica-
tions, then, are used by SmartTap to create in memory
buffers containing structured data, using an efficient self-
describing binary data format, termed FFS [13], [15].
The SmartTap implementation does so with high per-
formance and low overhead, by exploiting the dynamic
binary code generation capabilities provided by the COD
package [3], [5]. Since FFS formats are self-describing,
with FFS and COD, data services can be written and
used without a-priori knowledge of data structure and
memory layout. This makes it easy to write new services
and dynamically deploy them ‘into’ the data output
pipeline wherever and whenever needed, potentially even
while I/O is ongoing [30]. We note that we do not
propose FFS as a new standard binary data format, but
simply offer it as an efficient and compact, intermediate
binary format used by data services. Developers use FFS
when implementing data services, but these formats are
converted into standard forms for end users, e.g., when
storing data on disk using the HDF-5 data format.

Datatap internally uses FFS to encode data at client
side so that the data received by Datatap server contains
structure information which includes variable name, data
type, array rank/bound/offsets, etc. The overhead of
encoding data with FFS is negligible (cite some PBIO
paper). Datatap Servers can then use those informa-
tion when writing data to certain format. For example,
Datatap servers use those structure information to create
dataspace and hyperslabs when writing data to HDF5
file.

Some optimizations can be applied at Datatap servers
to speedup data formatting. One is that the data chunks
received from multiple compute nodes can be combined
to large sequential chunks to improve the performance of
writing data to file. The other optimization is that mul-



tiple Datatap servers can use parallel I/O for writing if
the the format support parallel I/O access. For example,
multiple Datatap servers can use pHDF5 API or ADIOS-
MPI method to write data to a single shared HDF5 file
or BP file.

A second task of SmartTap is to move output data to
downstream data services, for additional processing, for
storage, or both. SmartTap achieves this by asynchronous
use of RDMA, which implies that data movement is
under control of a SmartTap server, termed Datatap
server in Figure1. The advantages of this approach are
elaborated in [2], and additional discussions of server-
directed I/O for managing data movement appear in
[29], [17], [25]. Briefly, one reason for using server-side
I/O in petascale machines is that servers can address
the inevitable impedance mismatch between differently
sized compute vs. I/O partitions, using per-application
customized solutions for data movement and manipula-
tion. This also takes advantage of the fact that petascale
machines are typically configured with many compute
nodes vs. a smaller number of ‘fat’ nodes, the latter being
well-suited for running data services.

A final, optional task for SmartTaps is data annotation,
where richer meta-data can facilitate downstream data
analysis and help scientists gain insights into massive
datasets. Specifically, when output data is formatted
on compute nodes and again, when it is moved to
SmartTap servers, this provides opportunities to generate
interesting meta-data from raw output data and even
obtain select aggregated global characteristics. Here, the
role of the SmartTap is to generate per compute node
meta-data, whereas the server carries out aggregation
or summarizing actions. Useful and feasible operations
jointly performed in this manner include histograms,
bitmap indices, PDF, linear regression, etc. For these,
SmartTaps generate meta-data like min/max/sum values
(such lightweight client-side calculations have negligible
overhead [19], which are then attached as ‘attributes’ to
the data fetch requests sent to the server. The server reads
these attributes into temporary internal state and interacts
with other servers to calculate desired global values.

B. Controlled Data Movement

The task of extracting data into an output pipeline
can have significant overhead as data sizes increase.
Asynchronous data extraction can exhibit performance
penalties from perturbation on the interconnect shared by
the application. Unmanaged data output to disk is seen to
have high performance penalties due to inappropriate use
of the shared storage hardware. In response, SmartTap
servers not only execute functions that move data – in
the data plane, but they also control how data is moved
– in the control plane. Examples of the latter are the
scheduling methods for data extraction described in [2],
which extract data from compute nodes in ways tolerant

of and sensitive to how the application produces data and
how it uses the petascale machine’s interconnect. The
twin goals met by such scheduling are to minimize appli-
cation perturbation from interference due to blocking and
shared use of the interconnect while also maximizing the
throughput of data output. Results attained in our earlier
work show the extreme scale at which such interference
effects occur, starting with 1000+ node applications and
demonstrated for up to 10,000+ nodes. Results shown
in this paper demonstrate the equally important aspect
of controlling and customizing how data is evicted from
the staging area to disk (see SectionIV-D). For the data
services control plane, this means that it must enable
the use of alternative and potentially, application-specific
strategies both for scheduling (i) the data extraction
process and (ii) the way in which data is presented to
the storage backend (which in the case of Jaguar, is the
Lustre parallel file system).

C. Online Data Processing

As data moves from the generation point to the
eventual data consumer (e.g., to disk storage or to
an online data visualization), there is both a necessity
and an opportunity for in-transit processing. Necessary
processing services include those that convert data into
the standard forms required by backend, such as the
HDF-5 or NetCDF formats used in file systems. In our
earlier work [20], we observe that for some workloads,
it may cause unacceptable overhead to writing data into
HDF-5 format synchronously due to synchronization and
consistency maintenance. Performing data formatting
in data services ‘offloaded’ to the staging area can
help reduce these overheads. Other examples of data
services are those that seize opportunities for perfor-
mance improvements through data reduction, improve
the accessibility of output data through data indexing, or
perform tasks meaningful to applications like generating
histograms or validating output data.

The data services infrastructure supports the ‘in-
transit’ processing actions described above, but it does
not provide the services themselves. This is in recogni-
tion of the application-specific nature of most services.
The base support provided includes (i) the aforemen-
tioned formatting into structured data instead of using
raw byte streams, coupled with the runtime provision
of such type information to those services that need
it, (ii) the ability to efficiently associate meta-data with
output, as ‘attributes’ that can ‘tag’ typed data items,
and (iii) rapid inspection of attributes to guide service
actions. (iv) Data services themselves are implemented
as dynamically linked libraries or as COD-generated
codes placed into the SmartTap server’s address space
or into additional processes running on staging nodes.
Simple examples are services run in SmartTap servers
that calculate meta-data by first gathering all data fetch



Fig. 2. Total Execution Time for CHIMERA

requests from SmartTaps, then extracting the SmartTap-
computed partial values represented as ’attributes’ as-
sociated with such requests, and finally and as needed,
exchanging information with other servers to obtain
global values (e.g., min/max/sum values). More complex
services may be realized as multiple processes forming
an I/O pipeline, an example being the histogramming ser-
vice for the CHIMERA code described in SectionIV-C.

D. Flexible Data Consumption

Once processing is completed, data must be evicted to
backends like the disk, the network, or online data visu-
alizations (e.g., to the dashboard created for supervising
the GTC application). Using staging area resources, this
may involve creating the ‘right’ number of disk output
processes (e.g., to match the number of object stores used
by the file system), it may involve the use of additional
processes on staging area codes for data preparation
for visual display on dashboards, and/or it may require
careful admission control and message scheduling for
network backends[6]. With the data services architecture,
this involves creating, using, and connecting into an I/O
pipeline any number of data services placed into any
number of processes running on staging nodes. This is
done with the EVpath middleware [12] that underlies
data services and offers facilities for runtime service
creation, deployment (incl. connection), configuration,
and re-configuration[30].

IV. EXPERIMENTAL EVALUATION

A. Example Application Scenarios

1) CHIMERA: CHIMERA[23] is a multi-dimensional
radiation hydrodynamics code designed to study core-
collapse supernovae. We look at the periodic restart
output that is used for both checkpointing and post-
processing. The restart data consists of 80 scalar and
arrays. Global arrays are regularly distributed among a
2-D grid of MPI processes. In our experiments each
MPI process writes out approximately 930KB of data
in each I/O phase.CHIMERA uses the ADIOS API [21]
for I/O allowing multiple methods to be compared by
simply modifying a variable in the configuration file. The
data is defined as part of an external XML configuration
with both structure and meta information and enabling

(a) Total Execution Time Breakdown with Datatap

(b) Total Execution Time Breakdown with pHDF5

Fig. 3. Comparisons of execution time for CHIMERA

the use of structured FFS data for output purposes. We
have instrumented the application with specific calls to
ADIOS in order to provide phase information to the
underlying transport method, allowing us to customize
the behavior of the data transport.

We evaluated two aspects of the data service for
CHIMERA, viz. the extraction of data to the staging
area and the conversion of the intermediate FFS format
data to the HDF-5 format. Evaluation was performed at
application sizes ranging from 512 to 8192 cores. 5 test
runs are done at each size, with additional compute nodes
serving as the data staging area. In all experiments with
the Datatap we kept the ratio of compute nodes to staging
nodes at 512 to 1. The application ran for 400 iterations
and a restart output was done every 50 iterations.

The CHIMERA evaluations were performed on the
NCCS Cray XT4 Jaguar at Oak Ridge National Labs.
Each Jaguar node is a single socket, quad-core AMD
Opteron running at 2.1 GHz with 8 GB of memory (2
GB/core). The network interconnect is the Cray Seastar2
with low level access provided through the Portals API.
The compute nodes operating system is Compute Node
Linux (CNL).

2) GTC: Gyrokinetic Toroidal Code (GTC) [33] is a
3-dimensional particle-in-cell code used to study micro-
turbulence in magnetic confinement fusion from first
principles plasma theory. GTC is highly scalable and we
have performed evaluations on sizes from 16k processing
elements to 112k processing elements.



In order to study the largest I/O element we have only
studied the performance implications of the GTC restart
output. The GTC restart output is approximately 10%
of the overall problem sizes and provides a look at the
extremes of I/O performance. Similar to CHIMERA, we
use the ADIOS [21] library to perform I/O, providing us
with a unique opportunity to study the implications of
different methods for data extraction without modifying
the application code. Restart was performed every 10
iterations, and the application was run for a total of 100
timesteps. The performance of data extraction service
is compared to a special ADIOS method, NULL. The
NULL method does not perform any data output and
provides the base case for application runtime.

As described in [2] we instrumented GTC with pro-
grammatic hints to inform the data service controller
about transitions to a compute phase.GTC evaluations
were performed on the NCCS Cray XT5 Jaguarpf. Each
node is configured with two quad-core AMD Opterons
at 2.6 GHz with 16 GB of memory (2GB/core). Like
the Cray XT4 used for CHIMERA, the Cray XT5 also
uses the SeaStar2+ network interconnect programmed
through the Portals API.

As an example of managed data extraction we used
the PA Con 1 scheduler described in [2]. The scheduler
uses phase knowledge from the instrumented application
in order to reduce potential interference with intra-
application communication and additionally restricts the
number of concurrent data transfers. In our past evalu-
ations we found that the PA Con 1 scheduler had the
least impact on the application runtime.

B. Data Extraction Performance
To examine the impact on CHIMERA performance

caused by background data movement, we compare the
total execution time of the CHIMERA simulation with
Datatap I/O and pHDF5. For Datatap, the visible I/O
overhead is the total I/O blocking time in restart dumps
plus the time of one-time finalization (during which all
compute nodes block waiting for servers to fetch the
data).

As shown in Figure 2, data extraction with the Datatap
outperforms those with pHDF5. The time breakdown
(shown in Figure 3) reveals that the improvement of total
execution time is due to reduction of blocking I/O time
and that the computation (main loop time) is not affected.

In terms of cost/effectiveness, Table I shows that at
the scale of 8192 cores, the I/O overhead with pHDF5
is 37.84%. By using 16 additional compute nodes (64
cores in total) for staging, the I/O overhead is reduced
to 0.14%. The additional Datatap servers only cost
64/8192=0.78% additional resources.

In the past we have presented data extraction per-
formance with up to 2k processing cores [2] showing
significant performance benefits compared to traditional
POSIX output especially when using managed I/O.

TABLE I
VISIBLE I/O OVERHEAD

Overhead(%) 512 1024 2048 4096 8192
Datatap 0.0221 0.0248 0.0741 0.142 0.144
pHDF5 7.123 8.925 13.941 22.551 37.837
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Fig. 4. Data Extraction overhead for GTC on the Cray XT5

In Figure 4 we look at the percentage performance
overhead compared to a NULL data transport as we
scale from 16,384 to 114,688 processing cores. As
the number of processing cores increases from 16k to
65k, the performance overhead increases from 15.5% to
42.5%. Since Jaguarpf is a shared resource, we could
not complete a run for POSIX at 112k cores. We plan
to include the numbers for POSIX at 112k cores in the
final version of the paper. For data extraction using the
Datatap using a combination scheduling policy we found
that the performance overhead was as low as below 1%
at 16k cores to only 18.1% at 112k cores.

Figure 5 shows the distribution of blocking times for
one representative I/O output over all the nodes in the
system.

Although data extraction to the Datatap server pro-
vides a significant performance benefit compared to
traditional POSIX I/O, the importance of providing a
control infrastructure can be seen from the distribution
of blocking time. The unmanaged data stream completes
all transfers before the start of the next I/O phase, thus
almost 100% of the nodes show a blocking time of
less than 2 seconds. However the managed data transfer
limits the time periods in which data can be moved out
of the compute nodes. This results in a small number
of nodes (about 10%) taking longer than 10 seconds
blocking for the transfer to complete. A tiny fraction,
about 1% block waiting for transfer completion for
longer than 90 seconds. So despite the greatly reduced
perturbation impact from the managed stream, the overall
performance improvement is not as significant. This is
an example of a scenario where an independent control
plane that optimizes the data movement management for
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Fig. 5. Cumulative distribution of blocking time for a representative
I/O phase with 112k processing cores

individual application runs can be used for large gains
in performance.

C. Data Processing Performance

We evaluated the benefits of online data processing
using data formatting is for CHIMERA as an example.
The data formatting service produces HDF5 formatted
data output by utilizing the computational resources
of the staging area used for data extraction. Writing
data into HDF5 requires first decoding FFS serialized
data, combining local arrays into larger chunks, and
then writing data to HDF5 file. Figure 6 shows the
time breakdown of data formatting. Note that the FFS
decoding time shown in Figure 6 is the total time
of decoding 512 data chunks. Decoding one message
(930KB) takes 0.091 seconds on average. The time of
combining data chunks is about 0.25 seconds in total
within one dump. These two parts are constant among
all tests since the data size is kept unchanged.

Fig. 6. Data Formatting Time

However the time spent in pHDF5 API increase lin-
early with the total size of the output data. As shown in
Figure 7, the egress bandwidth increases only slightly as
we increase the number of Datatap servers. This is due to
the increase in nodes resulting in an equivalent increase
in the coordination and synchronization costs associated
with writing a HDF5 file as observed in our previous
work [21]. The ingress bandwidth, however, increases

more rapidly as we scale the overall application size. The
less than linear increase is due to the increased network
contention as more nodes are added into the cohort.

Fig. 7. Aggregate ingress and egress bandwidth. The egress bandwidth
is limited by both the processing complexity of the HDF5 conversion
and the utilizable filesystem bandwidth.

Another metric of interest is the total data processing
time, which is the time period from getting the first
request till finishing writing all data to HDF5 file. The
total data processing time at different scales is shown
in Figure 8. At the scale of 8192 compute cores, back-
ground processing on Datatap servers can be done in less
than 20 seconds, while the restart interval is about 400
seconds. This suggests that there is sufficient time for
background processing without blocking computation.

Fig. 8. Total Data Processing Time

D. Scheduled I/O Timing

To evaluate scheduled I/O, the system performance is
evaluated using different processor counts, stripe counts,
and stripe sizes using standard MPI-IO calls. To keep
these measurements consistent, the stripe sizes are set
so that no single process will cross a storage target
boundary during a single write. The stripe count varies
as indicated in the figure. The number of files generated
is based on the total number of storage targets, 672
on this machine, divided by the stripe count. Each file
is assigned a non-overlapping range of storage targets.
To achieve less interference, the processes assigned to
each storage target are serialized using MPI messages to
signal the next process it is safe to write.

For the first set of tests, the write size is slightly larger
than 128 MB. Figure 9 shows the average performance
for different process counts and stripe counts for these



tests. The ‘base’ case is a default stripe count and stripe
size to a single file. The error bars indicate the range
of performance values measured. The key observations
for this figure is that the maximum performance is
obtained using a stripe count of 1, but the best average
performance is obtained using a stripe count of 3.

In a second series of tests, the write size is increased
to slightly more than 768 MB per write, simulating the
notion of the SmartTap servers collecting the output from
several cores and then writing in a single, larger chunk.
As with before, the ‘base’ case is a default stripe count
and stripe size to a single file. Unlike before, figure 10
shows the best average and overall write performance
is obtained with a stripe count of 1. This difference
further motivates the need for managing the I/O more
than just using a staging area for optimal performance.
By exploiting this knowledge, fewer staging resources
can be employed to obtain the same or better overall
system performance.

V. CONCLUSION AND FUTURE WORK

Data Services have been presented as a useful ab-
straction for allowing end users to address the problems
that come from I/O at extreme scale. By decoupling
the management of the I/O transport and storage from
the application interface, portability and robustness can
be improved for most end users. Additionally, offering
storage as a service opens up the possibility for a greater
range of functionality within the I/O pipeline, including
indexing, selection, or map-reduce-type manipulations.

In particular, this work has demonstrated that the
separation of extraction, data manipulation, and man-
agement of the data fast path can offer significant per-
formance improvements. Scale measurements over 100k
processes show that, as expected, management issues
change as the scale of the problem increases. This work
demonstrates that using a combination of management
techniques, including asynchronous transport, in-transit
filtering of the data, and distributed synchronization,
our implementations of data services can perform at or
substantially better than the corresponding POSIX-based
implementation.

Fig. 9. 128 MB Writes

Fig. 10. 768 MB writes

This represents beginning work on the Data Service
abstraction, and a number of interesting directions ex-
ist. Careful exploration of what should or should not
be characterized as a data service (as opposed to a
true post-processing workflow) so that total throughput
guarantees can be maintained is one just direction. Run-
time mechanisms to autonomically specialize and adapt
the placement and routing of the I/O streams based on
the changing resource availability are another. Finally,
investigating the techniques for describing/programming
the Data Services for scalable, portable deployment
above 100k nodes will be a key space for innovation.
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