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Abstract. This paper presents a semantic recommender method aneémdpst
a personalized access to digital cultural heritage thraaghext-aware user pro-
filing. Given annotation knowledge-bases, explicit baockagd knowledge in the
form of ontologies, a user model capturing the user’s befead context, the
system produces recommendations. Ontology-based us@ingrean be used
to reduce cold-start, sparsity and over-specializati@blems. In addition, we
present a recommendation retrieval method that is basetheowdctor space
model and uses indices that enable fast and scalable imptation of the sys-
tem.

1 Introduction

Digital cultural heritage collections contain mutuallyérrelated data that are provided
for users through digital libraries. Semantic web techgi@s have enabled semanti-
cally interlinking of such collections [25,14] and made gibte to not only search
individual collections, but also to browse, visualize aadammend objects across het-
erogeneous collections.

Recently, ubiquitous systems have gained popularity andr&evitnessing an in-
creasing number of users accessing web-based digitacesrusing mobile devices.
This opens up new possibilities for digital libraries theggerve descriptions of physi-
cal collections, such as museum databases, archaeolagibales and tourist informa-
tion catalogues. In addition to digital access to cataldgrentent, ubiquitous systems
can guide the users to find objects in physical environments.

Recommender systems are able to assist the user to find totitahare likely of
interest for the user [1, 27]. Unlike search systems, recentar systems enable infor-
mation access without an explicit query given by the useis iBrparticularly important
in ubiquitous user scenarios, where the usability of theitaaevices often limits the
user’s willingness to perform complicated search taskseEislly, personalized recom-
mender systems that compare the user’s profile to referdraracteristics, and predict



the relevance that a user would give to an object they had etatgen, are beneficial
and reduce the need of interaction with the device. Howewimimizing the user inter-
action imposes the problems of automatically matching éhevant content according
to the user’s profile and context.

In ubiquitous scenarios it is possible to limit the recomdeions according to
user’s context information. In addition, user’s behavian be tracked to adapt the pro-
file that can further limit the possible objects offered fbe tuser. However, recom-
mender systems suffer from the following problems [27, 5]:

1. Cold-start. Many of the users visiting museums are first-time visitors @éueir user
profiles have limited data about the particular museum beisiged. Therefore,
users cannot immediately benefit from the recommendermystdess it can gen-
eralize over similar contexts and content. In addition, tisers must be able to
manually construct and edit the profile.

2. Sparsity. The descriptions of the cultural heritage objects origirfedm heteroge-
neous collections and can be described with different &iras, vocabularies and
levels of granularity. The limitation in interlinking cardd to poor recommenda-
tions. Therefore, the recommendation methods should leetalilenefit from se-
mantic background information that provides richer intdihg and reduces spar-
sity.

3. Over specialization. The user profiles are constructed based on the features of the
objects in the collections. This can lead to over speciatinavhere users are rec-
ommended the objects that are too similar to the ones thehasealready seen in
the past. Therefore, the recommendation method must be@bleneralize over
similar but not necessarily equal features.

In this paper we demonstrate how background knowledge, rsni@asoning,
query expansion and context aware user profiling can be wsedercome the above
problems. The rest of the paper is organized as follows. ¢tige 2 we will present
an overview of the Smartmuseum recommender system. Se&&tilmscribes the con-
tent creation and storage. Section 4 presents the user ammbtiiext models, and the
method to construct the models for user profiling. Sectioafthés the recommendation
method. Finally, we discuss the contributions, relatedkeord future work.

2 Smartmuseum Recommender System

Smartmuseum is a system for enhancing on-site personalts$s to digital cultural

heritage through adaptive user profiling. Here we presenktiowledge-based recom-
mender system of Smartmuseum that uses context-aware oseling and semantic

data processing to provide recommendations. The funaiipofithe Smartmuseum rec-
ommender system can be illustrated through four main stenar

1. Outside user scenario: the user is provided information about interesting vigjtin
sites or museums.

2. Inside user scenario: the user enters a visiting site or museum and is provided
information about objects that could be in interest of therus



3. User administrative scenario: the user enters user profile information either manu-

ally or tags objects to express interests on-site.
4. Curator administrative scenario: the system curator enters a new object into the

system.
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Fig. 1: System-level features of the Smartmuseum recomeresystem.

The outside scenario is dependent on the location of the determined by the
GPS of a mobile device or a map interface of a web browser. ddetibn information
forms the context of the user. This context is combined withuser’s personal profile
to recommend sites of interest that are close to the usererdulocation. When the
user finds a suitable visiting site and wants to know more oatwido at the specific
site, the user can click on the user interface to indicatetiteance to the visiting site.
This switches the mode of the system to the inside scenario.

In the inside scenario, the user’s context is attached \wighiriformation of being
inside a certain visiting site or a museum. The user profitaés matched to objects
limited to the ones available on the site.

In the user administrative scenario, the user is able toagacommended objects
using an”l like” tag or an "l dislike” tag. The metadata of thisjects marked with these



tags are further used to construct and adapt the user'sgrofie user is also able to
manually enter profile information using a web interfacethia curator administrative
scenario, the digital library or museum curator is able teenew objects to the system.
The objects are then stored and indexed using semantiarieggechniques for further
reference.

These main level scenarios can be divided into four syseamalfeatures illustrated
in Figure 1. A User can enter the user profile manually or it lbartonstructed auto-
matically based on the user’s tagging behavior. In the regendation phase, the user
profile is first retrieved based on user’s current contextdRemendations are retrieved
for the user in either an inside or an outside scenario. Tpatiphe administrative sce-
nario, the system curator is able to enter new objects toytes for further reference.
The objects are stored and indexed in a triple-store thailesauery expansion and
efficient retrieval.

3 Content Creation and Storage

3.1 Ontologies, Metadata Schemas and Annotations

The metadata describing objects are called annotationsotations are stored and in-
dexed to enable efficient retrieval in the recommendati@sphThe actual objects can
be regular HTML pages or images and stored decentralizezlafhotations are stored
in the Smartmuseum annotation base and can further be uggdetoeference to the
HTML pages or images. Annotations are described in RDF({®)Uage [6].

In this study, the system was tested with two different dettas cultural heritage
domain: Finnish cultural heritage data from CultureSampxa® and Smartmuseum
data from Heritage Malfaand Institute and Museum of the History of Science in Flo-
rencé. Both datasets consist of lightweight ontologies and sdicelly annotated data
corresponding to a Dublin Core compatible metadata schetadtireSampo dataset
is indexed with the KOKO ontolodydeveloped in FInnONTO project [15]. Smartmu-
seum data is indexed with Getty VocabulafieEhe ontologies used are light weight
ontologies that are transformed to RDF(S) from thesaurérelconcepts are organized
in subsumption hierarchies. Geographical instances aretsted in meronymical hi-
erarchies that represent geographical inclusion. Gebgrakinstances are geo-coded
using the W3C Geo Vocabulafy

The aggregated knowledge base of CultureSampo dataseirt®©B3,735 objects
and the Smartmuseum data consist of 1000 objects. The kdge/lease consists of
over 1.3 million RDF triples. The content is enriched usiegsoning, resulting in some
12 million triples.

4 http:/iwww.kulttuurisampo.fi/

5 http://www.heritagemalta.org/

8 http://www.imss.fi.it/

7 http://www.yso.fifonto/koko

8 http://www.getty.edu/research/conductiresearch/vocabularies/
9 http://www.w3.0rg/2003/01/geo/



3.2 Annotation Storage and Indexing

Smartmuseum requires fast retrieval of recommendatiodsdgnamic query expan-
sion depending on the user’s profile and context. Indexirigagitable to enable such
functionalities. To support these requirements, we bailtindices:

1. Annotation Index stores the original annotations and is built by storingrgles for
each of the objects. The purpose of the index is to suppdndageval when build-
ing a Triple-space index. Annotation index is also used twenee the information
of the object to be shown in the user interface. We use a matrobjects times
triples. This enables further access either by queryinggusiiples, or querying
using object URIs.

2. Ontology Index is an index that stores the subsumption and part-of hieiesch
These are used for on-line query expansion and building th@efspace index.
For each resource in the domain, we store the superclassies fsource in sub-
sumption and part-of hierarchies. We use a matrix of regsutitnes resources.
For example, for resource Helsinki, we store all it's anoesin the part-of tree:
Uusimaa, Finland, Scandinavia, Northern-Europe, Europelze Earth.

3. Triple-space Index is an index that stores the annotation with respect to tran-

sitive subsumption and part-of relations, i.e. tripleggovating from the anno-
tations based on reasoning. This index makes use of the aimmindex and
ontology index. We use a matrix of objects times triples. Eaample, for
triple <sm:Objectl, sm:manufacturedin, place:Helsinki> we store all combina-
tions reachable by reasoning, i.€sm:Objectl, sm:relatedTo, place:Helsinki>,
<sm: Objectl, rdf:Property, place:Helsinki>, <sm:Objectl, sm:manufacturedin,
place:Finland>, ... , <rdf: Resource, rdf: Resource, rdf: Resource>.

4. Spatial Index is an index that stores positioning information about ofgjeln our
data set, positioning information is represented in twdedi#nt ways: either 1)
directly using WGS84 as a reference datum for values of ptigseyeo:lat and
geo:long from the W3C Geo Vocabulary, or 2) indirectly by a referenca lo-
cation described in ontologies which then refers to WGS8desgeither directly
or through it's ancestor concepts. For each annotation,tere & reference to a
WGS84 point using latitudéat and longitudelon. This indexing is also done
for annotations that refer to coordinates indirectly tlgiounstances in the geo-
ontology. This ensures fast retrieval of the objects basetti® WGS84 coordinate
information. In addition, we store coordinate location wéey location in the on-
tology.

Annotation index is designed to support the other indexasls and Ontology in-
dex to support on-line query expansion. Therefore, an iad@nnotation can now be
represented with the Spatial index and the Triple-spaocexindin annotation of an ob-
ject is a set of triples and coordinates attached to an abjeate formally, a objecD
consist of a set of triplese T and set of coordinates Triples belong to the Cartesian
product of the resourceB in the domain, " € R x R x R. Each coordinate has
latitudelat € [—180, 180] and longituddong € [—180, 180]. Therefore, an objedd
is a pairD =< t,c >, wheret forms a vector space of triples. The vector space model
(VSM) [22] is further used for the retrieval of the objects.



All of the indices are implemented using Apache Ludéné/e store all the indexes
in separate fields, but in a single final index. This enablafuating all retrieval criteria
in the same query evaluation task, which is essential inapplications. This is due,
that result sets for the Triple space index can be very langdraworst case all of the
annotations stored in the annotation base. Thereforadigiihe result set using spatial
criteria must be done in the same query evaluation task tiatriple space matching.
This is expected to cut down the search space significantlyahlife retrieval cases.

4 User Profiling

A user profile is a collection of data about interests assedito a specific user. We
support ontology-based user profiles and our model for sgmting user profiles con-
sists of a set of RDF triples. This is important to enable matg the user profiles to
the annotations. The profile triples are formulated usirspuece identifiers from on-
tologies. The rationale behind this is that triples can béched to annotations using
ontology-based reasoning and query expansion. Posijdnformation is mapped to
geographical location identifiers of the ontology using $patial index.

The model used to represent a user profile is context awaigmigans that the con-
text where the tagging is performed can be attached to thalddple that describes the
user’s interest. Smartmuseum currently supports onltimeca@ontext, but the context
model is designed to use triples and therefore any continiration can be deployed.
Each triple in the user profile can be attached to a contexd.cbmtext is represented
using a set of triples.

More formally, a user profilé® consist of a set of profile entrigeg. Profile entries
consist of atriplé € 7" and a context triplet € 7" that belong to a Cartesian product of
the resource® in the domain]’ € R x R x R. Each triplet is attached with a context
in which it was added. For each triple in the profile engiyin the user profile, there
exists a weightv € [—1,1]. A User can create a user profile either manually using a
web user-interface or dynamically based on the tags thatdteexplicitly adds for the
visited objects.

4.1 Manual User Profile Construction

A user profile can be created manually using a web user-agershown in Figure 2.
The user is able to add concepts that the user likes or dsslikiee selections can be
made from three facets: general concepts, persons andsplBaeh concept can be
selected either by using an auto-completion search ordddatowsing based on the
subsumption and part-of hierarchies of the ontologies.ratienale is to support initial
profile creation using web interface and further adapt tlodilprto the user’s interests
based on the user’s behavior. The concepts that are mainsgited to the profile are
expanded as triples. Each conceptis placed as an objed tffite andrdf: Property is
used as the predicate ardf: Resource as the subject. This is because the user interface
is required to be simple and only initial profile is requiredke inserted using the

10 http://lucene.apache.org/
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Fig.2: Web user-interface for manual profile editing. Ussas add explicit concepts that they

like or dislike. The selection can be made using faceted sirapbased on the subsumption hier-
archies of the ontologies (left). In addition, the seletsioan be made from three auto-completion
widgets: general concepts, persons or places (person acelsplidgets shown right).

web user-interface. The annotations are binary predicatesre the subject is always
the identifier of the object and the object is the actual valescribing the annotated
object. Therefore, placing the concept only as the objetttefriple and using the most
general property is suitable and guarantees the match tealired resources in the
recommendation retrieval phase. The triples in the mantddil@ construction phase
are added with an empty context.

4.2 Dynamic Profile Construction

User profile can also be constructed dynamically based otatiging behavior of a
user. When the user sees an interesting object inside a mugba user is able to
tag the object with an "I Like” tag or an "I dislike” tag. The essprofile is then up-
dated accordingly. Each triple in the user’s profile is dt&atto a context in which the
tagging of the object, to which the triple was attached tos wearformed. For exam-
ple, consider a case where user has tagged an "I like” tag pairding that is anno-
tated to have aenaissance as astyle period , and the tagging has taken place in Italy.
In our example, this would result to a following triples to inserted as a user pro-
file entry: ¢ =<sm:painting,sm:stylePeriod, koko:renaissance>, ¢t =<rdf: Resource,
sm: userLocation, place: Italy>, w = 1.

The problem with direct estimation like this is that user aicated a preference
of Italian paintings, however, the contexts in which theeylations are done can be
very sparse. Therefore, we use Laplace (i.e. add one) singdtt8] to shave a share
of the probability mass to contexts for which no observatiare available. In this way,
we can observe some probability for every triple even if & hat been tagged in the
specified context.

5 Recommendation Retrieval

Recommendation retrieval is performed in five phases.,Firstuser profile is retrieved
based on the user’s context. This results into a weightedfgabfile triples. Second,
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Fig. 3: The mobile user interface (left) illustrates theside scenario, where user is recommended
cultural sites close the the user’s current location. Thbe brewser user interface (right) repre-
sents the inside scenario, where the user is recommendecdt®bjside the museum that match
the user’s profile.

the user’s current context is created based on the locatitheaiser. This gives spatial
restrictions for objects to be recommended and includegpimgghe user’s location
using spatial index to an ontological representation thased in the user profile. Per-
forming these two phases, we are able to formulate a usebgtiodit corresponds to the
user’s current context and specifies spatial restrictibas ¢an be used in the recom-
mendation retrieval phase. Third, the query-time contefdrmation that are offered
for user as slider controls in the user interface (see welvdouser interface in Figure
3) are used to perform on-line query expansion and weighEogrth, the user profile
is used to retrieve the relevant objects from the annot&igse. Finally, the best results
are clustered to provide different viewpoints to the recandation results. Each clus-
ter is explained in terms of the matching triples that thesotyj in the cluster contain.

5.1 User Profile Retrieval

Retrieving the user profile based on the user’s context ie igrmapping the user’s lo-
cation, determined by GPS or the user pointing a map in anntggface, to ontological

concepts using the spatial index. This results into an ogtoal resource representing
the position information. The weighted user profile is thetieved based on the con-



text. The weights for the triples can be observed from thgitagbehavior of the user.
We use the likelihood of a context generating a certaindrifilcan be observed from
the relative frequencies of the profile entries. Formalyct) = “2420l). For ex-
ample, if a user profile contains tags for triples aboutdtalpaintings in the context of
Helsinki, say 10 times, and triples in Helsinki in total 2fhés, theP (<sm:Painting,
sm:manufacturedin, place: Italy> | <rdf:Resource, sm: userLocation, place: Helsinki>)
would bel0/20 = 0.5. In addition, we have the negative or positive votes for the.
We calculate the average of the votes of the triple in thergaentext and multiply it
with the probability of the triple in the context.

5.2 User Context Creation

Constructing spatial constraints corresponding the siseirrent context heads to limit
the matching of the possible objects to be recommended &ettiat are close to the
user’s current location. We create constraints to retrieerby content by expanding
the location information of the user. The received coorgimmint is expanded to cover
a circular area within the radius A sole bounding box is created where each of the
edges of the box have a distanc&om the pointp, where the user is located i.e. the
distance to the edges of the bounding box from the givesv. The distance can be
adjusted in the user interface. We set the possible intéovaé from 100 meters to 50
kilometers.

5.3 Query Expansion and Weighting

On-line query expansion and weighting means to expandiftlegt retrieved in a first
phase by using ontological reasoning. We provide slidetrots) shown in Figure 3
for the user to control the following dimensions: subjecttera location and tempo-
ral. Here, the subject matter slider reflects to triples jmegtdd bydc: subject or any of
it's sub-properties, the location slider reflects to tripfedicated by the spatial cov-
erage predicate or any of it's sub-properties and the teattider reflects to triples
predicated by temporal coverage predicate or any of it'smwiperties. For example by
moving the subject matter -slider to a lower position, wefgran query expansion to
retrieve also content that is more general than defined biriffles in the profile. This
means not only matching more specific cases of the tripleifiease of Finland, match
also Helsinki), but also more general cases (i.e. in caséntdriel, match also Scandi-
navia). This query expansion up in the hierarchy is done byutating the Wu-Palmer
measure [28] for each resource of the triple and by accejtingiple combinations
of resources that have a Wu-Palmer value below the value diyehe slider. In ad-
dition of the query expansion, the weight of the triple inecds weighted according
to the value given by the slider. Here, the ontology indexsedito make fast on-line
calculation of the Wu-Palmer measure.

Intuitively, this means that by lowering the value given bg slider, users indicate
the dimension less relevant for their current informatieech In this way, users can
allow more radical query expansion and at the same time giver value for the di-
mension specified by the slider. On the other hand, usersetaam certain dimension



more important, and triples under this dimension will bedliseretrieval strictly based
on user’s profile and with higher weight.

5.4 Recommendation Retrieval

Recommendation retrieval is performed by using the quengitacted from user pro-
file and context. Based on the earlier phases we have a setfdériplest that each
have weightv. Each triple may be expanded using query expansion to rfaittiples,
that each have the weight of the original triples. The weiaftgach resulting triple is
then multiplied by the value given by the slider. As a resuit mave a set of triples

t € T, each triple having a weight. In addition, we have a spatial constraint, that
defines the lower and upper bound for latitude and longit&deally, we can define
the retrieval as a two step matching procedure that utitzespatial constraints and a
scoring function used to calculate the cosine similari3] [ vector space model [22]
that we have generalized for the triple space:

1. Prune the search space based on the spatial index, stithelspatial constraints
hold.

2. For the remaining matrix, calculate cosine similarityvren vectors of index
triplesit in triple-space index and triplesn the profile using the Apache Lucene
tf-idf scoring function:score(t, it) = >_ triple M atch(t, it), where

(tf(t) - idf (t)? - w) whent = it

tripleM atch(t,it) = {0 otherwise

wheretf is a triple frequency of a triple given bytf = freq(t)'/2, idf(t) is an

inverse triple frequency given byif (t) = 1 + log(24 ), whereN is the number
of all objects andV; is the number of objects, whet@ppears and is the weight
determined for the triple.

5.5 Clustering

The recommendation results are returned as a ranked lisebgtrieval method. While
the ranking of the objects is important, to avoid over sgeztion, users may also
want to receive recommendations from the different viewmospecified in their user
profiles. Therefore, we cluster the top recommendationsshod the user 10 highest
ranked objects from each cluster.

The clustering is based on the matching triples collecteceéxh of the top 300
recommended objects given by the retrieval method. We wes€dktICA algorithm to
perform independent component analysis {13Jndependent component analysis is
a computational method for separating a multivariate digia subcomponents sup-
posing the mutual statistical independence. We constrocheept combinations times
objects matrix. The following combinations of the matchinigles are used as con-
cept combinations: subject, object, subject and objeetlipate and object, and the full

11 An Java implementation of FastICA (http://sourceforgéprejects/fastica/) is used.



triple. Then, the principal component analysis is run fa thatrix to reduce dimen-
sions. Eigenfilter with filtering percentage of 98 is used @AP This means that after
PCA sorts the eigenvalues, the first highest eigenvaluessevBum is higher than 98
percent of all of the eigenvalues are used in the actualGAstlgorithm.

For FastICA, we set the number of desired clusters to 10. iBhike maximum
number of clusters returned. However, the algorithm detegmless clusters if no fur-
ther meaningful separation can be made. We used the hypethogent (a=1) as a
contrast function. Clusters were obtained based on theebigibsolute value of each
object from the returned component vectors. Finally, thestelrs were labeled by in-
cluding the labels of the five most common concepts occuirittige cluster excluding
concepts that occur in all of the clusters.

5.6 User Interfaces

The Smartmuseum recommender system is implemented witsaparate user inter-
faces: web browser based interface and mobile phone intesfeown in Figure 3. The
mobile user widget reads the user’s location context froertiobile device and re-
trieves matching content. In the example showed in the fighee user’s location is
Espoo in Finland, and the user is known to be outdoor based@rswwn indication.
The web user interface demonstrates a situation where #rehas indicated to be in-
side a museum. The web interface shows the results corréspio the user’s profile.
The results are clustered into two clusters. The first ciugiatains objects meant for
adult visitors, have a subject science and are cross-stdféssecond cluster contains
instruments that have subject electrical engineering aaclso meant for adult visi-
tors. Using the web interface, the user is able to adjustehemmendations on three
dimensions using sliders as explained before: subjeceméitation and time. Adjust-
ing the sliders different matching triples may be determiared therefore also different
clusters may be formulated. In the current system sensersaiincluded to identify if
the user is entering the museum or if the user is looking sartecplar artwork. There-
fore user is required to indicate the rating of the objecheréntrance to a museum by
clicking a link in the user interface.

The current version of the system has been implemented foetahsowser and
with partial functionality for Symbian S60 mobile devicesing the S60 Web Run-
time (WRT)*? The mobile system acts as a "push” service and automatiopliates
recommendation data by polling the server based on a coafigptime interval. The
recommendation engine is implemented in Java and uses Apacené? for indexing
and cosine similarity calculation. All of the data is modkie RDF(S}*.

12 http://www.forum.nokia.com/Technologfopics/WehTechnologies/WelRuntime/. The ap-
plication is functional in S60 mobile devices that have thsifloning support.

13 http://lucene.apache.org/java/docs/

1 http:/www.w3.0rg/RDF/



6 Discussion

6.1 Related Work

Recommender systems have been used in a number of differplitations such as
web browsing [8], recommending books, music [17], moviéq Hnd news [16].

The current recommendation methods can be divided into ageaphic technique
[20, 26], collaborative filtering [16, 21], case based filigr[7] and content based fil-
tering [24, 20]. Knowledge-based recommender systemsl[%rke a type of content-
based filtering.

Many existing cultural heritage portals support knowletbgsed recommendation
[25, 14] and mobile recommender systems have been impleahénthe cultural her-
itage domain [2, 4]. The CHIP demonstrator [27] providesspealized access to mu-
seum collections using ontology-based annotations and/lkedge-based recommen-
dation. A similar approach has been applied to provide rewendation support in
e-tourism [10]. DBPedia Mobile enables map-based visatitin and semantic search
on DBPedia dataset [3]. Recently, many researchers hawelgdried to leverage a
Semantic Web in support of context-aware and personaleeshmmendation. For ex-
ample, MyCampus is a Semantic Web environment for contegr@mobile services
[12]. It provides interfaces to perform privacy aware gesm@nd to access information
from external web services.

6.2 Contributions

This paper presented knowledge-based recommender systamn@iseum. The con-
tributions of our approach are threefold. First, we presegeneric user profile model
that is not based on pre-defined schemata, but is a simplé seighted triples. Sec-
ond, user profiling used is context-aware and takes advanfagpntextual information,
such as user’s currentlocation, to further improve peréoatéon. Third, the knowledge
representation and retrieval methods of Smartmuseum aesllzm metadata schemas
and large domain ontologies. This allows generalizatiorhterogeneous distributed
collections described with different vocabularies anéedént levels of granularity. We
describe a recommender method that is able to benefit fromrigezontext-aware user
profile, operates on smart indices and enables on-lineeéioce of context-dependent
query expansion. The recommendation method is demorgiraéeprototype applica-
tion that operates on a knowledge-base of over 130.000 tshgexd has both mobile
and web user interfaces.

Content- and knowledge based recommender systems oftésr $tdm over-
specialization [1]. This means that the user is being recentad only the objects
that are similar to the ones she rated highly in the past. Mewyéf the objects are
too similar to something the user has already seen, such iffer@t news article de-
scribing the same event, objects should not be recommehd&dhartmuseum, query
expansion and clustering can be used to reduce over-spgatiath.

In case of content- and knowledge based recommender systeengser has to
rate a sufficient number of objects before a content-bassshmmender system can
really understand user’s preferences and present retetdemendations. This is often



referred as a cold-start problem. We tackle the problem fgriofy a web interface,
where users can manually edit and insert new profile infdomaln this way, the user is
also able to avoid non-relevant information to be includedger’s profile. In addition,
the background knowledge is used to reduce the sparsityeafdta.

Although formal evaluation of the system has not yet beerdooted, the demon-
strator system that tackles the problems presented abeved®m built and intuitively
gives relevant recommendations. However, further evaoaif the methods and us-
ability of the user interfaces are required.

Smartmuseum only uses location as a context and the penficertd the context-
based profiles are not studied in detail. Also the profileiesitare independent and
therefore modeling conditional dependencies of multipletext parameters is not sup-
ported. The system may also suffer from restricted posiigpbecause it relies only on
GPS.

In addition, Smartmuseum recommender system has onlelihgontent analysis
capabilities and is most useful in domains where contetinétion can be extracted
automatically or like in our case where it has been providedumally by museum cu-
rators.

6.3 Future Work

Our intention is to extend the work to the following direct® First, we will deploy
automatic detection of user’s location inside a museumdaneexternal sensors. We
will also provide RFID based identification for individudbjects inside the museums.
Second, we will investigate how collaborative filteringtia@ues could be incorporated
with our knowledge-based recommendation method. Suchidwgpproach would ben-
efit from annotated content and ontology-based reasonirigyduld be able to capture
the knowledge originating from collaborative behavior loé tusers. Third, our inten-
tion is to extended the system to use other external infdomaburces that can provide
context information.
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