
Gödel’s correspondence on proof theory and
constructive mathematics

W. W. Tait ∗

The volumes of Gödel’s collected papers under review consist almost en-
tirely of a rich selection of his philosophical/scientific correspondence, includ-
ing English translations face-to-face with the originals when the latter are in
German. The residue consists of correspondence with editors (more amusing
than of any scientific value) and five letters from Gödel to his mother, in
which explains to her his religious views. The term “selection” is strongly
operative here: The editors state the total number of items of personal and
scientific correspondence in Gödel’s Nachlass to be around thirty-five hun-
dred. The correspondence selected involves fifty correspondents, and the
editors list the most prominent of these: Paul Bernays, William Boone,
Rudolph Carnap. Paul Cohen, Burton Dreben, Jacques Herbrand, Arend
Heyting, Karl Menger, Ernest Nagel, Emil Post, Abraham Robinson, Alfred
Tarski, Stanislaw Ulam, John von Neumann, Hao Wang, and Ernest Zermelo.
The correspondence is arranged alphebetically, with A-G in Volume IV. The
imbalance results from the disproportionate size of the Bernays correrspon-
dence: 85 letters are included (almost all of them), spanning 234 pages)
including the face-to-face originals and translations). Each volume contains
a calendar of all the items included in the volume together with separate
calendars listing all known correspondence (whether included or not) with
the major correspondents (seven in Volume IV and ten in Volume V).

Let me recommend to the reader the review of these same volumes by
Paolo Mancosu in the Notre Dame Journal of Formal Logic 45 (2004):109-
125. This essay very nicely describes much of the correspondence in terms of
broad themes relating, especially, to the incompleteness theorems—their ori-
gins in Gödel’s thought, their reception, their impact on Hilbert’s program,

∗Charles Parsons read part of an early draft of this review and made important cor-
rections and suggestions.
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etc. I will do something less synoptic but perhaps complementary to Man-
cosu’s essay: I will concentrate more on small details in the correspondence
that seem to me worthy of further discussion; although there are many of
these and I will not take up all or even most of them. In fact, I will restrict
myself to the correspondence concerned with constructivity and constructive
foundations of mathematics, and so, in particular, will not comment on the
fairly large correspondence on set theory.

The introductory essays are a valuable part of these two volumes. Indeed,
this is true of the preceding volumes of the collected works as well, but
because of the more or less off-the-cuff nature of correspondence, I think that
the interpretive and evaluative elements of these introductions take on more
weight. For this reason, I will be more inclined to draw the introductions
into my discussion of the texts than in my earlier critical review [Tait, 2001]
of Volume III of these collected works.

1 Herbrand’s Consistency Proof

Gödel’s correspondence with Jacques Herbrand consists of a letter from Her-
brand dated 7.4.31 and a reply dated 26.7.31 (one day before Herbrand died),
both of which are included in Volume V.

The most striking thing about Herbrand’s letter has to do with Gödel’s
mistaken memory of it. In [1934, p. 26, footnote 34], Gödel refers to a
letter from Herbrand, presumably this one, which served as inspiration for
his definition of the general recursive functions as functions computable from
systems of equations. Herbrand also considers systems of defining axioms for
functions, He places two conditions on the defining equations which Gödel
seems not to have remembered: One, call it the computability condition,
which does belong in the definition of the notion of general recursive function,
is the requirement that the functions be computable from the defining axioms
(without specifying, however, any set of rules of computation).1 The second,
call it the provability condition, which does not belong, is a requirement
that satisfaction of the computability condition be intuitionistically provable.
There is a valuable discussion of this in the introductory note by Wilfried
Sieg. However, one thing puzzling about Gödel’s memory of the letter is
that, as he mentions in his reply to Herbrand, he had also read [Herbrand,

1Herbrand’s defining axioms can be propositional combinations of equations, but these
can always be resolved into sets of equations.
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1931], which contains essentially the same description of the conditions on
the defining axioms as in the letter. Had he forgotten about that paper? Or
had he misremembered that as well?

Herbrand’s letter for the most part summarizes [Herbrand, 1931]. The
main result of that paper is this: Let the formulas be built up from equations
involving 0, the successor function ′, and finitely or infinitely many other
function symbols f0, f1, . . .. Let Γ be a set of quantifier-free axioms, including
the axioms for 0 and successor and defining axioms for the fn, where the
defining axioms for fn contains fk only if k ≤ n. Let F denote the set of
functions defined by these axioms and let T (Γ) (1 + 2′ + 3F in his notation)
denote the theory in first-order logic with identity whose axioms are Γ and
instances of the axiom schema

(1) φ(0) ∧ ∀x[φ(x) −→ φ(x′)] −→ ∀xφ(x)

of complete induction, where φ is quantifier-free. Suppose that there is a
deduction in this theory of the quantifier-free formula θ. Then we may con-
struct from it a deduction of θ from Γ∪∆ which contains no quantifiers. The
formulas in ∆ consist, for each instance (1) of complete induction, the defi-
nition by primitive recursion in φ(x) of a function ε(x) of x (and presumably
the other parameters in φ(x)) which is 0 up to the first x, if any, such that
¬φ(x) and has the value x thereafter, together with the axiom

ε(x) = y′ −→ ε(y′) = y′ ∧ ε(y) = 0

In fact, in sketching the deduction of ∀xφ(x) from φ(0) and ∀x[φ(x) −→
φ(x′)], Herbrand assumes that every number is 0 or a successor, and so to
carry out his deduction, we need also to assume that ∆ contains the axioms

pred(0) = 0 pred(x′) = x x 6= 0 −→ x = pred(x)′

These new axioms allow us to eliminate all instances of mathematical induc-
tion. The result then follows simply from Herbrand’s fundamental theorem.

If we replace the axiom (1) by the equivalent rule of induction

φ(0), [φ(x) −→ φ(x′)] ⇒ φ(t)

(with φ(x) still quantifier-free) then the formulas ∆ are not needed and there
is the straight forward result that T (Γ) is conservative over its quantifier-free
part T (Γ)∗, rather easily obtained from Herbrand’s fundamental theem or
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Gentzen’s (later) Hauptsatz. Whichever variant of the result we choose, it
can be formalized in primitive recursive arithmetic PRA. Herbrand himself
simply states that it is intuitionistically provable. In what follows, assume
that T (Γ)∗ contains the rule of induction or, alternatively, just assume that
Γ includes ∆.

Herbrand assumes that the axioms Γ are intuitionistically valid and, in
particular, that the defining axioms satisfy the provability condition. He
argues that the intuitionistic validity of the axioms ∆ follows and, conse-
quently, so does that of θ. Thus, the intuitionist is free to appy first-order
logic and complete induction for quantifier-free formulas to any set Γ of for-
mulas he recognizes to be intuitionistically valid: any quantifier-free formula
he derives in this way will be intuitionistically valid. In particular, there
follows an intuitionistic consistency proof for T (Γ).

He gives three examples of systems Γ to which he believes to be intuition-
istically valid and so to which his intuitionistic consistency theorem applies:
(i ) the defining axioms for addition and multiplication, (ii) the defining ax-
ioms for all primitive recursive functions, and (iii) the defining axioms for
a class of functions containing non-primitive recursive functions such as the
Ackermann function.

Herbrand goes on to explain why his consistency theorem does not conflict
with Gödel’s second incompleteness theorem, but his explanation, both in
the published paper and in his letter, is a bit awkward and Gödel did not
entirely understand it. The explanation is that, in order to formalize his
consistency proof for T (Γ) in a theory of the form T (Γ′), we need functions
which are not explicitly definable from those in F , i.e. Γ′ 6⊆ Γ. He mentions,
first, that in order to arithmetize the consistency proof, we must introduce
a certain number of primitive recursive functions, beyond those explicitly
definable from addition and multiplication, the functions in example (i), in
order to arithmetize syntax. But in any case, we need to add more functions
to F—he says that “this can be proved precisely: it is easy”, as indeed it
is. In Herbrand’s argument, the consistency of T (Γ) is reduced (in PRA)
to that of T (Γ)∗, and the argument that the latter is consistent is that its
consequences are obtained by intuitionistically valid inferences from Γ, and
Γ is intuitionistically valid. But to formalize the latter, “we have to number
all objects occurring in proofs” [Herbrand, 1931] ([Herbrand, 1971, p. 296]).
The most reasonable interpretation of this is that we need to enumerate the
functions defined by terms of T (Γ); in other words, T (Γ′) must contain an
evaluation function for the terms in T (Γ), i.e. a function f of two variables
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such that, for each term t of T (Γ) containing the variables ~x, f([t], 〈~x〉) = t,
where [t] is the Gödel number of t, ~x is a list of the distinct variables in t (in
some standard order), and 〈~x〉 is the sequence number of ~x. As Herbrand
points out in [1931], the diagonal argument shows that f cannot be explicitly
defined from F .

Unfortunately, he can be understood to be saying that Gödel’s result it-
self also depends upon there being an enumerating function in T (Γ). That
is, he can be understood in that way if one ignores the fact that, in the
paper, he had just gone (schematically) through Gödel’s argument that in
T (Γ) one can prove that its consistency implies its Gödel sentence, without
pointing to any difficulty in it.2 Gödel, in his reply, stated that he did not
completely understand what Herbrand meant, but then goes on himself to
make the point: that the new functions are needed only to prove the consis-
tency of T (Γ), not to prove the second incompleteness theorem. Perhaps he
suspected that that is what Herbrand meant (Herbrand had apologized in
his letter for his limited command of German): he suggested that in future
correspondence, they each write in his mother tongue. (The response to this
did indeed come in French: it was a letter from Herbrand’s father, informing
Gödel of his death. See Volume V, p. 24, fn. d.)

Here are some corrections of typos in the Herbrand corresponence: “or”
for “oder” in two occurrences on p. 17 and “Principia Mathematica” for
“Principia mathemtica” in four occurrences on p. 23.

2 Herbrand’s Error and the Dreben Corre-

spondence

The correspondence with Burton Dreben consists of five letters and a letter
written by Dana Scott for Gödel. Two letters by Dreben, # 2 (5.24.66) and #
5 (4.15.70), one by Gödel, # 3 (7.19.66), and the letter by Scott, (Volume V,
Appendix A, pp. 568-570), concern Gödel’s claim that his decision procedure
for satisfiability for the class of prenex formulas with prenex of the form ∀∀∃
and without identity, the socalled Gödel class, can be extended to this class
with identity. As we know (some of us quite painfully: the reviewer once

2He seems to have noticed that the second incompleteness theorem can be applied
to systems such as PRA in which mathematical induction is restricted to quantifier-free
formulas.
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had a beautiful proof of solvability of the Gödel class with identity), Gödel
was wrong here: Warren Goldfarb, who wrote the introductory note for the
Dreben correspondence, proved that in [1984a].

Also of interest is #4 (12.30.69), Dreben’s request for clarification from
Gödel of a remark in his “Russell’s mathematical logic” [Gödel, 1944] that (to
quote Dreben)“Russell’s definition of the truth functions as applied to propo-
sitions containing quantifiers ‘proved its fecundity in a consistency proof for
arithmetic.’ ” Gödel did not answer this letter, but Goldfarb observes that,
at the end of lecture notes he wrote for a lecture in Princeton in 1941 on
the Dialectica interpretation, he had added a note which answers Dreben’s
question. Namely, that interpretation, too, involves precisely the problem
of interpreting the propositional connectives when applied to formulas con-
taining quantifiers. Gödel’s remark in the paper on Russell is in the context
of discussing a certain on again-off again constructivist thread in Principia
Mathematica. But Russell’s interpretation is just an application of the De
Morgan laws and so is not constructive in the ordinary sense. But one ele-
ment that Russell’s and Gödel’s interpretations share is that they are both
interpreting the propositional connectives as proposition-valued functions of
propositions. The very formulation of Dreben’s question, in which he refers to
the “truth functions,” may have precluded him from understanding Gödel’s
remark: The truth functions are defined by truth tables.

But I bring up the correspondence with Dreben in the context of the
Herbrand correspondence because of letter # 1 (3.6.63), which concerns an
error in the proof of a lemma ((3.3) in [Herbrand, 1930]) to Herbrand’s fun-
damental theorem (“Herbrand’s Theorem”) in his thesis. Gödel seems to
have noticed it in the early 1940s and to have found a satisfactory correction
of the lemma. However, he did not announce his discovery and there was
no general awareness of the error until it was rediscovered in 1962. Goldfarb
mistakenly attributes the rediscovery to Dreben (p. 389) and the attribution
is repeated in his introductory note (p. 306) to the van Heijenoort corre-
spondence. The error was indeed rediscovered in 1962, but it was discovered
by Peter Andrews, then a graduate student at Princeton. An exchange of
letters and a conversation convinced Dreben that there was indeed an error
in the proof. Shortly thereafter, Dreben sent Andrews a counterexample,
and St̊al Aanderaa, then a graduate student of Dreben, soon produced a
simpler family of counterexamples, which are presented in [Dreben, Andrews
and S.Aanderaa, 1963]. Given that Dreben had been working on Herbrand’s
thesis for some years prior to Andrew’s discovery, and that, once discovered,
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the production of counterexamples followed in quite short order, it would
seem that the discovery itself was of sufficient significance to have merited
explicitly crediting Andrews with it.3

In his thesis, Herbrand gives an argument that the lemma (3.3) implies
Lemma 3 (5.3), which has as an easy consequence that, given a deduction
of height m of a sequent in the classical sequent calculus, there would be
a cut-free deduction of it of a height h which is polynomial in m. Now
[Gentzen, 1935] did not give bounds in the proof of his Hauptsatz (that cuts
can be eliminated in predicate logic), but an understanding of his proof would
certainly lead one to believe that h is exponential in m; and it seems quite
likely to me that this is how Gödel came to discover Herbrand’s error. In any
case, the proof of cut-elimination in [Schütte, 1951] for Peano arithmetic with
the ω-rule applies directly to predicate logic, and gives a bound for h which
is exponential in m—namely h ≤ fn(m), where n is the least number greater
than the logical complexity of the cut formulas and f(x) = 2x. Actually, there
is the slightly better bound h ≤ gn(m), where g(0) = 0 and g(x + 1) = 2x. I
don’t know whether this bound is optimal, but it is known that the bound
must in general be exponential in m.

The simplest proof of this I know consists of finite versions of Gentzen’s
proofs of the derivability in first-order arithmetic of induction up to each
ω(k) on the one hand and of the non-derivability of induction up to ε0 on the
other, and parallels an analogous result for the system of natural deduction in
[Orevkov, 1979]. Let Γ consist of the axioms of identity, the universal closure
of recursion equations for addition and exponentiation to base 2 (20 = 1 and
2x′

= 2x + 2x), and the axioms N0 and ∀x[Nx → Nx′]. It is easy to show
that there is a cut-free proof of the sequent Γ ⇒ Nk for each k and that the
least height of such a proof is linear in k but ≥ k. There are also deductions
of Γ ⇒ Nx ∧ N0 → Nx + 0 and Γ, [Nx ∧ Ny → Nx + y] ⇒ Nx ∧ Ny′ →
Nx + y′. So by mathematical induction, Γ ⇒ ∀xy[Nx ∧ Ny → Nx + y].
Using this, we obtain a deduction of Γ ⇒ Nx → N2x by mathematical
induction. Substituting the numeral k for x, the mathematical inductions
involved reduce to finite sequences of at most k cuts, and we have a deduction
in predicate logic of Γ ⇒ Nk → N2k of height polynomial in k. So, by a
cut, there is a proof of Γ ⇒ N2k of height polynomial in k; but there is no

3An account of the discovery, including Andrews’ correspondence with Dreben,
can be found in [Andrews, 2003], which is also obtainable from his website
[http://gtps.math.cmu.edu/andrews.html].
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cut-free proof of it of height < 2k. (Iterating this, we even obtain deductions

of Γ ⇒ N22k , Γ ⇒ N222k
, etc., of height polynomial in k.) Eliminating

individual constants and function constants in favor of a purely relational
language is routine and changes bounds only linearly.4

In any case, after Schütte’s result, at least, and certainly by the late
1950’s, anyone reading Herbrand’s Lemma 3 should have been suspicious.
Probably the error escaped public notice for so long simply because Her-
brand’s paper itself, important though it was at that time, was badly written
and seems not to have been widely studied. Alternative proofs of (versions of)
Herbrand’s Theorem were soon available, using either the epsilon theorems
or Gentzen’s Hauptsatz.5

3 The two meanings of “Intuitionism”

There are three questions arising from the Herbrand correspondence concern-
ing the term “intuitionistic,” which Herbrand uses throughout his letter as
well as in his 1931 paper to indicate the constructive character of his results.
One question is: What did Herbrand mean by the term? Another is: What
did Gödel understand it to mean? A third question is: How was it generally
understood at that time?

In the final remark (a) of [1931] (p, 296-297 in [Herbrand, 1971]), Her-
brand writes that “it seems to us almost certain that every intuitionistic ar-
gument can . . . be carried out in an arithmetic [of the form T (Γ)∗].” In partic-
ular, it would follow that mathematical induction is restricted to quantifier-
free formulas in intuitionistic arguments. On pages 2-3 of letter # 1 (p. 17),
he repeats this statement about intuitionistic proofs without any expression
of uncertainty. But this is clearly not the intuitionism whose logic (admit-
ting all propositions built up from atoms by means of propositional connec-
tives and quantifiers) had already been formalized in [Heyting, 1930]. In
[Herbrand, 1931a], Herbrand relates intuitionism to the position of Brouwer,
but then describes it “in its extreme form” in terms that, as Gödel noted in
his correspondence with von Heijenoort (letter # 11), are closer to finitism.
In fact, Gödel states that “taken in the sense that Herbrand probably had

4Although I haven’t carefully checked, these examples also seem closely related to
Aanderaa’s family of counterexamples to Herbrand’s lemma (3.3).

5See Goldfarb’s discussion of this in his introduction to [Herbrand, 1971].
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in mind, it is the correct demarcation of finitism within intuitionism.”6

Herbrand’s letter was addressed from Berlin, where he was working with,
among others, von Neumann. In [von Neumann, 1927], the latter also uses
the term “intuitionistic” in connection with Hilbert’s proof theory and he
states explicitly that he is using it in the sense of Brouwer and Weyl. On the
other hand, when he begins in §C1 to discuss consistency proofs, he states
that all the inferences should be “intuitionistic (i.e. finite)” (my emphasis).
So it seems reasonably clear that Herbrand was using the term “intuition-
ism” in his letter and in [Herbrand, 1931] to refer to the “extreme form”
of intuitionism and that he got this usage from von Neuman, a conclusion
that is endorsed by van Heijenoort in his letter # 14 to Gödel. It also seems
reasonable to conclude that they both intended this usage to coincide with
what Hilbert referred to as finitary reasoning, whether or not that is in fact
the case.

But why did von Neumann use the term in this way? Some confusion
over this question has been caused by van Heijenoort’s statement in his in-
troductory note to [Herbrand, 1931] in [von Heijenoort, 1967] that “the iden-
tification of ‘intuitionistic; with ‘finitist’ was then current among members
of the Hilbert school” and, also published in 1967, Bernays’ statement in
his Encyclopedia of Philosophy article on Hilbert, in reference to Gödel’s
and Gentzen’s interpretation of Peano arithmetic PA in Heyting arithmetic
HA, that “In this way it appeared that intuitionistic reasoning is not iden-
tical with finitist reasoning, contrary to the prevailing views at that time.”
(Presumably these two statements are independent of each other.) The only
example van Heijenoort cites for his assertion is von Neuann’s use of “in-
tuitionistic” in [von Neumann, 1927] and, as far as I know, no member of
Hilbert’s school (other than von Neumann and Herbrand) used the term in
this way. The date of publication of Gödel’s interpretation of PA in HA
(Gentzen’s was not published) is 1932. But by that time, Hilbert had long
rejected quantified propositions as finitist and Heyting had already published
his formalization of intuitionistic logic admitting quantifiers. How can it be
that people were not aware of the difference?

6Strangely, Gödel infers from this that, in his letter and in [1931], Herbrand is referring
to intuitionism in Brouwer’s sense—presumably because otherwise he would have modified
his use of the term with “in its extreme form”. But in both documents (with or without
some expression of uncertainty) Herbrand asserts that every intuitionistic argument is
formalized in some T (Γ)∗. Surely this indicates that he was thinking of intuitionism in
the narrow sense.
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I believe that it was not a case of identification, but of ambiguity—that
there were two conceptions of arithmetic reasoning at that time, recognized
as distinct, one more restrictive than the other, and both called intuitionistic
by von Neumann and Herbrand.

Like Herbrand, Gödel was entirely clear about the distinction between the
wider sense of the term ‘intuitionism” and the narrow sense. In his reply to
Herbrand’s letter he seems to be leaving it open how to interpret the latter’s
usage. For example, as we will see below, he questions Herbrand’s assertion
that intuitionistic proofs are always proofs in some T (Γ)∗. In a footnote he
points out that Brouwer and Heyting admit proofs which go beyond what
can be formalized in such systems (presumably because they would admit
arbitrary quantification over numbers and, in particular, mathematical in-
duction applied to formulas containing numerical quantifiers), and then goes
on to doubt Herbrand’s assertion even if “intuitionistic” is interpreted more
narrowly.

A name surprisingly missing from much of the discussion of this issue is
that of Weyl. In the early 1920s, he was converted to many of the themes of
Brouwer’s intuitionism, such as Brouwer’s analysis of the continuum and the
rejection of excluded middle. (See [Weyl, 1921].) But in fact his view was
more radical than Brouwer’s. (See [van Dalen, 1995] and [Mancosu, 1996,
pp. 76-79].) In particular, his view leads to the conclusion that all genuine
propositions in arithmetic or analysis are purely universal propositions about
numbers or choice sequences, respectively, i.e. they can be expressed by
quantifier-free formulas. In fact, these universal propositions are themselves
propositions only in the limiting sense that their assertion stands for the
claim to have a rule r which, applied to an arbitrary system ~n of val;ues of
the free variables, yields a proof r(~n) of the corresponding instance; and so
they cannot be combined by means of quantifiers or propositional connectives
into other propositions. (Both the functions that occur in the equations and
the rules r are to be obtained by explicit definition and primitive recursion.)
Existential propositions are also not genuine propositions: the proposition
∃yφ(x, y), for example, stands for the claim to have a function f and a
proof of an arbitrary instance of φ(xf(x)). In the context of arithmetic,
this certainly agrees with the position stated in [Hilbert, 1926]. In fact,
concerning arithmetic, Weyl’s intuitionism would seem to coincide with what
can be formalized in PRA and so to fall within the scope of Hilbert’s finitism.
(His analysis, involving the use of choice sequences and the principle of bar
recursion, has rather the proof-theoretic strength of first-order arithmetic.
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See §7 below.)
Von Neumann, for the three years preceding his appointment in Berlin,

had been at ETH in Zurich, where he interacted with Weyl. Although Weyl’s
views on arithmetic diverged from the intuitionism of Brouwer, as formal-
ized by Heyting, he identified his views as intuitionism. It seems quite likely,
then, that von Neumann, when speaking of intuitionism, was simply adopt-
ing Weyl’s terminology—although, in as much as he accepted intuitionistic
methods that go beyond PRA, I don’t believe that his ideology was the same
as Weyl’s.

4 Finitary Number Theory

Sieg’s introductory note to the Herbrand correspondence refers to the exam-
ple (iii) to show that Herbrand takes the concept of finitist function to go
beyond the primitive recursive functions. It does so indeed, assuming (as I
believe we can) the equivalence of finitism and intuitionism in the ‘extreme’
sense for him in this context. But the example (ii) already shows that. As
noted above, following Herbrand, in order for his consistency proof to apply
to example (ii), the enumeration function for the primitive recursive functions
must be regarded as intuitionistic.

In connection with this, a remark is needed about Herbrand’s assertion
that every intuitionistic proof can be carried out in some T (Γ)∗ and that,
conversely, every such proof is intuitionistic. Clearly, in this characterization
of intuitionism, the provability condition on Γ cannot be in play. Otherwise,
in order to prove anything intuitionistically in the language of some Γ, we
would have first to have proved intuitionistically that we can compute unique
values from the defining axioms of the evaluation function for the terms of
Γ—and we would be in a circle. In his reply to Herbrand’s letter (p. 3) Gödel
remarks:

For even if we admit that every intuitionistic proof can be carried
out in one of the systems [T (Γ)∗] (which seems not at all obvi-
ous to me), the question still always remains open whether the
intuitionistic proofs that are required in each case to justify the
unicity of the recursion axioms are all formalizable in Principia
Mathematica.

So Herbrand’s characterization of intuitionistic reasoning in arithmetic as
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free-variable reasoning from systems of defining axions for functions, from
which unique values of the functions are computable cannot carry with it (on
pain of circularity) any condition that we have a proof of this computability.
This situation illustrates the conceptual difficulty in analyzing the notion of
finitist or (in the narrow sense) intuitionistic reasoning when one wishes to
take this notion to go beyond PRA.

The latter system itself, to which Gödel refers in [Gödel, 1938a] as finitary
number theory, is characterized by two moments. One is that the basic
principle of definition of functions, aside from explicit definition, is definition
by iteration or primitive recursion. This principle follows from the idea of an
arbitrary number. It is simply the principle that we can uniquely transfer the
finite iteration given by the arbitrary number n from the successor function
starting at 0 to any operation Φ on a domain D of objects starting at a,
yielding Φn(a), where a is any object in D. (Mathematical induction is just
primitive recursion applied to a domain of proofs. The reduction of the
general form of primitive recursion, including mathematical induction, to
pure iteration is discussed in [Tait, 2005b, pp. 57-58]. and in [Tait, 2005a]).
The usual axioms of 0 and successor (which are derivable when we take ¬φ
to abbreviate φ → 0 = 1) simply express the fact that the arbitrary iteration
given by n is ‘free’ (i.e., contains no loops), so that it can operate as an
iterator of an arbitrary operation. It seems reasonable to hold, with Weyl,7

that definition by iteration, together with 0 and the successor operation,
simply express what we mean by number, and itself needs no foundation.
Thus, in the case of primitive recursion definition, there is no question of
proving that the recursion equations define a function, in the sense that
a unique value is determined for each argument. These equations merely
express the fact that we can uniquely construct Φn(a) for arbitrary n; and
this is contained in the very idea of an arbitrary number.

The other moment of PRA is that we apply iteration or primitive recur-
sion only to operations on domains D of finite objects—call them finitary
domains. (Since proofs of closed numerical equations are computations and
these are finite objects, proof by mathematical induction in PRA is justified
on these grounds.) These two moments determine PRA, and this explains its
special ‘minimal’ role and why it deserves the title “finitary” (independently
of any historical uses of this term): it contains the principle that defines our

7See [Weyl, 1921], the end of Part II §1 (“The Basic Ideas”) and the first paragraph of
§2a (“Functio Discreta”), and also [Weyl, 1949, p. 33].
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concept of number, but applies it only to operations on finitary domains.
PRA has interesting subsystems such as the system based on the Kalmar

elementary functions, but they all involve restrictions on iteration to some
special class of operations on finitary domains and so, at least from our point
of view, are arbitrary.

Extensions of PRA are of two kinds: in one, we admit iteration applied
to operations on domains which contain infinite objects—call them infinitary
domains. For example, we may apply iteration to operations on the domain
of functions of some finite type (over the domain N of numbers), obtaining
Gödel’s theory T of impredicative primitive recursive functions of finite type,
or on the domains of objects of type φ (in the sense of the Curry-Howard
theory of propositions-as-types), where φ is a sentence of HA, obtaining
the proofs of HA.These extensions still follow from our basic conception of
number as arbitrary free finite iteration, but they give up all pretense to
finiteness.

The other kind of extension of PRA—and this is the kind relevant to the
present discussion of intuitionism in the narrow sense or finitism—retains the
restriction to finitary domains, but admits principles of definition of functions
on them that cannot be obtained solely by iteration of operations on them.
The main examples in the literature are functions (such as the Ackermann
function) defined by manifold nested recursions. But on what grounds do
we admit such definitions? In the case of manifold nested recursion, we
can obtain the function f in question by applying iteration to operations on
either one of Gödel’s finite types or on the Curry-Howard type φ for suitable
arithmetic sentence φ. It is also possible to reduce k+1-fold nested recursion
(k ≥ 0) to ordinary (i.e. un-nested) recursion on (a natural ordering of N
of order type) ω(ωk). But then, as with the case of the original definition
by nested recursion, we may ask on what grounds should we accept such
definitions by transfinite recursion: to obtain them by iteration, we again
need to iterate operations on infinitary domains.

To the response that we just see intuitively that this or that is a valid
means of defining functions, that we can see that a value can always be com-
puted from the definition, it seems justified to demand that the intuition be
transformed into a proof. For the basis of the intuition must be the princi-
ples that define our conception of number, 0 and successor and iteration. To
see intuitively the validity of a particular definition of a numerical function
therefore must mean to see intuitively that it follows from these principles.
But what can “follows from” mean other than that “it can be proved from”?
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When such a proof has been given to show that a certain non-primitive recur-
sive function is defined and computable, we will see that it involves applying
iteration to operations on infinitary domains. This demand for proof applies
not only to definition by manifold nested recursions, but to any candidate
for an intuitionist or finitist function defined by a system of equations. If
it is not defined by iteration and explicit definition, then we should demand
a proof that the equations are satisfied. Otherwise, the question of what,
beyond the primitive recursive functions, is to be admitted as a finitist or
intuitionistic function would seem to be entirely subjective, depending upon
one’s personal intuitions. I will argue that this is precisely the position that
Gödel attributes to Hilbert.

As a matter of fact, in letter #69 (7 January 1970) Bernays himself
manifests this conception of finitism when he suggests that nested recursion
on ω2 is finitary in the same sense that ordinary recursion on ω is “i.e., if
one views them as a description of computation procedures for which it can
be seen that the function determined by the specific procedure satisfies the
recursion equations . . . .” But the nature of his “it can be seen” becomes
clear when he then goes on to make the insight more concrete by regarding
the computation of the function f(m, y) defined by nested recursion on ω2

(where the argument (m, y) represents the ordinal ω · m + y) as the step-
by-step computation of the functions fm, where fm(y) = f(m, y) and fm+1

is defined by primitive recursion from fm. But the insight that f(x, y) can
be computed for arbitrary x and y, is really the insight that fx+1(y) can
be computed if fx(z) can be computed for arbitrary z. Thus the insight
becomes a non-finitist construction of the function f : namely, f0 is a given
function and fx+1 = G(x, fx), where G is a function of the infinitary type
N → [(N → N) → (N → N)]. (This is discussed further in [Tait, 2002] and
in the Appendix to [Tait, 2005b].) In this case, what is ‘seen” is, in outline,
a proof. But by suppressing the details of the proof, one avoids noticing
exactly what is involved in it. We will encounter another case of this in
§10 in connection with Gödel’s contention that we see immediately that his
primitive recursive functions of finite type are computable (in his sense).

Somehow, in connection with questions of constructivity, although the
very term should serve as a warning, the question of what can be computed
has been substituted for the proper question of what can be constructed.8

8Once one takes construction as the central notion, one sees why (or at least one has
a sense in which) Markov’s principle is not constructive: If F (x) is a decidable arithmetic
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Extensions of PRA which are ‘finitary’ only in the sense that they are ob-
tained by adding only defining equations from which non-primitive recursive
numerical functions can be computed, such as manifold nested recursive func-
tions, without explicitly adding iteration of operations on infinitary domains,
are foundationally incomplete: We may “see” that the new functions defined
by the equations are computable, but they lack the means of defining them
from the basic principles.

I should emphasize that this argument involves a conceptual analysis of
what finitist should mean, in terms of whether or not iteration is applied
(implicitly or explicitly) only to operations on finitary domains. It does
not confront the historical question of what this or that person meant by
“finitism” at this or that time. But it should be noted that in [Weyl, 1921] the
description of the foundations of arithmetic would seem to limit intuitionistic
arguments in this field to precisely those formalized in PRA. Likewise, what
Gödel refers to as ‘finitary number theory’ in [Gödel, 1938a] is, as we have
already noted, precisely PRA.

5 Nested Recursion

Interestingly, there is some indication that von Neumann thought in 1930
that all intuitionist functions (in the narrow sense) can be obtained by man-
ifold nested recursions—an apparently stronger thesis than Herbrand’s. At
least, in his letter # 2 to Gödel (11.29.30), he writes

I believe that every intuitionistic consideration can be formally
copied, because the “arbitrarily nested” recursions of Bernays-
Hilbert are equivalent to ordinary transfinite recursions up to
appropriate ordinals of the second number class. This is a process
that can be formally captured, unless there is an intuitionistically
definable ordinal of the second number class that could not be
defined formally-which is in my view unthinkable. Intuitionism
clearly has no finite axiom system, but that does not prevent its
being a part of classical mathematics that does have one.

predicate and one knows that ¬∀xF (x) is true, then we can compute an n such that
¬F (n); but from a proof of ¬∀xF (x) we cannot construct such an n. See [Tait, 2005a] for
further discussion of this.
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But he overestimates the power of the “arbitrarily nested” recursions.9 De-
termining that was precisely the problem investigated in [Tait, 1961]. Nested
or ordinary (i.e. un-nested) recursion on k variables can be reduced to nested
or ordinary recursion, respectively, on (the natural well-ordering of N of type)
ωk. (Oddly, Bernays, in his letter # 69 to Gödel (1.7.70), seems not to have
understood this point.) Nested recursion10 on α can be reduced to ordinary
recursion on mα, where m < ω is effectively determined from the syntactical
form of the definition.11 Thus, the k + 1-fold nested recursions in [Hilbert
and Bernays, 1934] are all reducible to ordinary recursion on ω(ωk) (k ≥ 0).
Conversely, ordinary recursion on ωα can be reduced to nested recursion on
ω × α. Thus, ordinary recursion on ordinals less than ω(ωω) would seem to
characterize von Neumann’s conception of intuitionism in his letter. Obvi-
ously he would not have been happy with that bound.

6 Well-Foundedness of Exponentiation

Another oddity concerning this subject in the Bernays correspondence is that
Gödel, in letter 68b, states that [Tait, 1961] shows that “one gets up to ε0

with nested recursions”. I had thought (and still think) that, as we just
noted in connection with van Neumann, it established the bound ω(ωω) for
what one can get up to with manifold nested recursions. From the context in
Gödel’s letter, namely a discussion of a very nice proof by Bernays that every
descending sequence of ordinals from ωα is finite, using (when it is spelled
out) nested recursion on ω × α, it seems that he must be referring to the
(less elegant) proof of that in [Tait, 1961]—it was the crux of the reduction
of ordinary recursion on ωα to nested recursion on ω × α. Bernays’ proof

9I am assuming here that he is referring to k-fold nested recursion for some k. I do
not know the reference to Bernays and Hilbert in the letter, and it is conceivable that he
is referring in general to systems of equations that define what we old-fashion folks would
call “general recursive functions”. But, in that case, I am not sure how the assignment of
ordinals to the systems goes.

10The function f is defined by nested recursion on α if the definiens of f(~x, y) contains
f only in contexts of the form f(~s, [t]y), where [z]y is defined to be z if z is less than y in
the standard ordering of N of order type α and is 0 otherwise. Here the terms in ~s and the
term t may themselves contain occurrences of f . This would seem to be the most general
form of nested recursion on an ordinal, and certainly includes the so-called k-fold nested
recursions as nested recursions on ωk.

11In my paper, I stated that it reduced to ordinary recursion on ωα, but in the proof,
this can be replaced by mα for suitable m.
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(a slight simplification of which I present below) is in the second edition
of [Hilbert and Bernays, 1939] (pp. 533-535). Both Bernays and Gödel
take it as a proof that descending sequences of ordinals < ε0 are always
finite; but that is a mistake. For setting ω(0) = ω and ω(n+1) = ωω(n) (so
that ε0 = limn ω(n)), the result only shows that descending sequences from
ω(n+1) are finite by appealing to nested recursion on ω(n) (or on ω2 when
n = 0). Now, from the fact that every descending sequence from ω(n) is
finite, we can derive in PRA the principle of ordinary recursion on ω(n), but
not the principle of nested recursion (of the appropriate kind). Therefore, the
implicit complete induction step, assumed by both Bernays and Gödel, from
no infinite descending sequences from ω(n) to no infinite descending sequences
from ω(n+1), is not established by Bernays’ (or my, or any) argument. Gödel
explicitly notes in the letter that Bernays’ construction seems to involve a
nested recursion; but his concern with this is only that nested recursions
“are not finitary in Hilbert’s sense (i.e., not intuitive)”. It seems not to have
occurred to him that the need for a nested recursion invalidates the proof as
a proof of the well-foundedness of ε0.

Let me stop here to present Bernays’ proof: It is simpler even than his
own exposition makes it out to be. The (Cantor) normal form for α < ε0 is

α = ωα1 · a1 + · · ·+ ωαn · an

where
α > α1 > · · · > αn 0 < a1, . . . , an < ω.

Let T(γ) be the set (call it a “spread” if you like) of all f : ω −→ γ (call them
“choice sequences”, if you like) such that f(n) > 0 −→ f(n+1) < f(n). Call
a function F : T(γ) −→ ω a well-founding function for T(γ) iff f(F (f)) = 0
for all f ∈ T(γ).

The crux of Bernays’ proof is simply this: If f ∈ T(ωα · (n + 1)), n > 0,
let f ′ be the element of T(ωα · n) defined by

f ′(m) = f(m)− ωα · n

In other words, if ωα ·n is the leading term in the normal form of f(m), then
it is dropped to obtain f ′(m). If f(m) < ωα ·n, then f ′(m) = 0. Suppose that
f ′(m) = 0. Then in any case f(m) < ωα ·n, so that λxf(m+x) ∈ T(ωα ·n).12

For 0 < α < ε0 and n < ω, we define a well-founding function Fα,n for
T(ωα · (n + 1)) by nested recursion on ω · α + n:

12In carrying out his argument, Bernays restricts the functions f ∈ T(γ) to ones with
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• F1,0 is to be a well-founding function for T(ω). Let G(f, n) = 1 +
G(λxf(1 + x), f(1)) if n = f(0) > f(1), and G(f, n) = 0 otherwise.
Then F1,0(f) = G(f, f(0)). So F1,0(f) is primitive recursive in f .

• Fα,n+1(f) = Fα,n(f ′) + Fα,n(λnf(Fα,n(f ′) + n)).
Notice that there is a nested recursion in this case.

• For α > ω
Fα,0(f) = Fδ,n+1(f)

where ωδ · n is the leading term in the Cantor normal form of f(0).

A similar argument proves well-foundedness of γα by nested recursion on
α × γ (using Cantor’s normal form to the base γ in the nontrivial case that
γ > 1).

7 Choice Sequences

In his earlier letter #68a (7.69) to Bernays, in connection with the latter’s
‘proof’ of the well-foundedness of ε0, Gödel is more positive about the proof
and suggests that the proof uses the notion of choice sequence. He means that
T(γ) may be regarded as a spread of choice sequences in Brouwer’s sense. If
one takes as the mark of the distinction between reasoning about numerical
functions and reasoning about choice sequences that functions defined on a
spread of the latter should satisfy the bar theorem, i.e., their unsecured se-
quences should be well-ordered,13 then Bernays’ definition of a well-founding

f(0) of the form ωα · a and such that, if

f(m) = ωα1 · a1 + · · ·+ ωαn · an

(in normal form) then either

f(m + 1) = ωα1 · a1 + · · ·+ ωαi · ai

or
f(m + 1) = ωα1 · a1 + · · ·+ ωαi · ai + ωβ · b

(in normal form) for some i < n. He notes that any g ∈ T (γ) as we have defined it can
be transformed into one satisfying this condition by interpolating some steps before each
step of g, so that a well-founding function for T (γ) in this restricted sense is one in our
sense. But this does not really simplify the argument.

13I would argue that, unless one injects entirely subjective ideas into mathematics, it is
the only mark. See [Tait, 2005b, Introduction §4].
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function for T(ωα) by nested recursion on ω×α satisfies this condition. Gödel
goes on to say “If one reckons choice sequences to be finitary mathematics,
your proof is even finitary.”14 He asks whether Bernays would agree with
this observation and suggests including it in a footnote to the revised and
translated Dialectica paper. In the event, the observation does not appear
in [Gödel, 1990b]. Gödel returns to the subject of choice sequences in letter
# 68b (7.25.69) and asks Bernays “Hilbert, I presume, didn’t want to permit
choice sequences?” (emphasis Gödel’s). Bernays replies in letter # 69 that,
as far as he knew, Hilbert never took a position at all on choice sequences.

Remembering that we are restricted to quantifier-free formulas, bar induc-
tion can only be the principle that, if we have constructed a numerical-valued
function F of numerical function arguments, then we may define new func-
tions by recursion on the ordering of its unsecured sequences. But [Tait, 1965]
proves that if we consider the second-order extension of PRA by allowing nu-
merical function (‘choice sequence’) variables as parameters in definitions of
functions, then adding this form of bar recursion yields the same numerical
functions as adding definition by α-recursion for each α < ε0. (Incidentally,
it is because of this result and because I believe that Weyl’s intuitionistic
arithmetic is PRA that I asserted in §3 that his analysis is proof-theoretically
equivalent to first-order arithmetic.)

8 Gödel’s Conception of Hilbert’s Finitism

Let me say straight off that, contrary to what I wrote in [Tait, 2001], I be-
lieve one should distinguish between Gödel’s pronouncements about finitism,
which he usually refers to as Hilbert’s finitism, and what he himself calls
finitary number theory in [Gödel, 1938a] and what, both in that lecture and
in the earlier one [Gödel, *1933o], he refers to as the lowest level of construc-
tivity or finitary mathematics. (As we will see, there is a puzzling difference
between what he describes as the lowest level in these two papers.) At the
time of writing [Tait, 2001], I was vividly aware of the distinction between
the conceptual question of what ought to be called finitism and the historical

14He also writes that the proof in [Tait, 1961] does not use choice sequences. But the
difference is that the proof there shows that a hypothetically given descending sequence of
ordinals from ωα is finite. If one replaced the given sequence by a variable for a numerical
function or choice sequence, the conceptual basis for the proof would be exactly the same
as for Bernays’ proof.
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question of what Hilbert had in mind; but it had not occurred to me that
Gödel also had, at least implicitly, made this distinction. But we will see
that, given his conception of Hilbert’s finitism, there is strong evidence that
he rejected it himself as an adequate foundation for proof theory. In any case,
the alternative to this reading of the situation is to attribute to him an un-
reasonable fluctuation in his views about ‘finitism’. I feel that there has been
rather too much easy settling for obscurity or inconsistency on Gödel’s part
in discussions of his works, especially—but not exclusively—his unpublished
work, appearing in volumes III-V of the Collected Works. Of course, one can
reasonably suppose that the wording in those works, by their nature—lecture
notes, letters written in a day, etc.—did not receive the same care that he de-
voted to wording in his published papers. Nevertheless, it seems all the more
reasonable that, in such cases, one should look for an interpretation of what
he wrote, against the background of all of his writings, that has him saying
something sensible. Allow me to refer to this as the McKeon Principle.15

Both Herbrand’s letter and von Neumann’s letters # 2 and #3 are con-
cerned with Gödel’s statement in [Gödel, 1931, p. 197] that his second in-
completeness theorem did not necessarily show the impossibility of Hilbert’s
program, i.e. to obtain finitist consistency proofs for axiomatizations of
mathematics. As we see from the above quote in §4 from p. 3 of his re-
ply to Herbrand, Gödel persisted in 1931 in his belief that there could be
finitist proofs that escape formalization in Principia Mathematica or other
formalisms, such as first- or second-order number theory or set theory; and
so the possibility remained for each of these systems that there could be a
finitist proof of its consistency. Gödel seems also to have rejected von Neu-
mann’s argument to the contrary in at least one of two missing letters; for
in letter #3 (12.1.31) von Neumann thanks Gödel for the letters and later
goes on to write “I absolutely disagree with your view on the formalizability
of intuitionism.”

15Of course, one can carry the principle too far. Richard McKeon, who lectured on phi-
losophy at the University of Chicago in the years 1935-1974, preached (in his earlier years)
this very salubrious view in connection with the interpretation of the great philosophers,
such as Plato: If your interpretation of them makes them fools (even in their own time),
then it is likely that you have more work to do. Unfortunately, this doctrine never took
hold—in the case of Plato scholarship at least, among contemporary scholars of either
ancient philosophy or philosophy of mathematics —and, in McKeon’s hands, it degener-
ated into the less salubrious view that the great philosophers were never wrong: one only
needed to discover the right principle of translation.
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A reasonable conclusion to be drawn from Gödel’s writings is that this
view of finitism remained constant into the 1960’s: It was someone else’s
ideology, namely Hilbert’s, and he was unhappy with the terms in which it
was formulated, namely in terms of intuition. Thus, a short while before he
received the letter from Herbrand, in letter #3(4.2.31) to Bernays, he dis-
cusses Hilbert’s extension Z∗ and Bernays extension Z∗∗ of Z (= PA with the
least number operator) obtained by adding as axioms the universal closures
of finitistically valid formulas of Z which, respectively, contain no bound
variables and are arbitrary. He sketches the proof that, under a reasonable
assumption, these systems also have undecidable sentences. Then he writes

By the way, I don’t think that one can rest content with the sys-
tems [Z∗, Z∗∗] as a satisfactory foundation of number theory (even
apart from their lack of deductive closure), and indeed, above all
because in them the complicated and problematical concept ”fini-
tary proof” is assumed (in the statement of the rule for axioms)
without having been made mathematically precise.

As late as 1968, we have quoted him in letter # 68b to Bernays as stating
that “nested recursions are not finitary in Hilbert’s sense (i.e. not intuitive)”.
In the postscript to that letter, he again writes “Hilbert’s finitism (through
the requirement of being “intuitive”) has a quite unnatural boundary.”

In his introductory note to the Bernays correspondence, Solomon Fefer-
man refers (e.g. on p.55) to Gödel’s “unsettled views” of finitism. But that
is accurate only of his view of Hilbert’s finitism, and the instability centers
around his view of whether or not there is or could be a precise analysis
of what is ‘intuitive’. Beginning with letter #40 (8.11.61) to Bernays, he
entertains the possibility that there is such an analysis. He writes

[Kreisel] now really seems to have shown in a mathematically
satisfying way that the first ε-number is the precise limit of what
is finitary.

The reference is to [Kreisel, 1960]. (Later on he refers to [Kreisel, 1965].
There is also an earlier mention of Kreisel’s work in this connection in letter
# 23 (9.30.58), but without the strong claim for it.) That he is referring to
Hilbert’s conception is confirmed by the continuation of this passage:

I find this result very beautiful, even if it will perhaps require a
phenomenological substructure in order to be completely satisfy-
ing.
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In letter # 61 (1.21.67) he writes, without reference to Kreisel

I am now convinced that ε0 is a bound on Hilbert’s finitism, not
merely in practice but in principle, and that it will also be possible
to prove that convincingly.

Note that the bound ε0 here is not “the precise limit” of the previous quote.
But perhaps the reason is that, although it might be a precise limit in prin-
ciple, he does not want to commit to the assertion that we can in practice
obtain (well-foundedness of all the ordinals <) ε0. In letter # 64 (5.16.68)
he again mentions Kreisel’s analysis:

I would still like to ask you whether in the new edition of the book
on foundations [namely of the Grundlagen der Mathematik I and
II] you have taken account of Kreisel’s derivation of induction up
to ε0. [The refereence is to [Kreisel, 1965].] It seems to me that
it comes much closer to being finitary than your earlier proof.

The ‘earlier proof’ is, of course, the fallacious proof discussed above, which
was included. However, Bernays exercised better judgment in the case of
Kreisel’s argument. The latter is perfectly valid as a sketch of how, in
an autonomous hierarchy of quantifier-free formal systems including prim-
itive recursive definition generated by a certain reflection principle, the well-
foundedness of each ordinal < ε0, but not that of ε0, can be derived. I
have already explained in [Tait, 1981] why the reflection principle even at
the lowest stage goes beyond what “finitism” should mean. But I confess
surprise that either Kreisel or Gödel should have believed that what is ac-
cessible by ‘intuition’ is closed under this principle. Suppose that we agree
that we can intuitively see through the computation of each given primitive
recursive function—essentially that we can intuitively envision the tree of all
descending sequences of ordinals less than α for each α < ωω. The crucial
first step in Kreisel’s argument (§3.42, with reference back to §3.412, pp.
170-171, in his paper) is that we can then see through the computation of
an evaluation function for the primitive recursive functions. (I.e. we can en-
vision all descending sequences of ordinals less than ωω.) Why in the world
would anyone find that convincing? My concrete insight into the structure
of the computations of any given primitive recursive function may depend
upon the definition of that particular function in a non-uniform way, in no
way yielding an intuition of the structure of the computations of an arbitrary
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such function. The situation is analogous to that ω-incompleteness, where,
say in HA, one may have, for each n, a proof of φ(n̄) without having a proof
of ∀xφ(x). Of Kreisel’s analysis, Gödel remarks later on in footnote f of
[1990b] that “his arguments would have to be elaborated further to be fully
convincing”. Nevertheless, Gödel seems to be accepting the possibility of ε0

being at least an upper bound of the ordinals on which recursion is finitary
in the unidealized sense of concrete intuition that he takes to be Hilbert’s
conception of finitism; and so this is a modification of his earlier view that,
in principle, no formal bound could be placed on finitism in Hilbert’s sense.
On the other hand, as we see from footnote f , he remained unconvinced that
such a bound had actually been established. indeed, in [1990b, p. 273], he
repeats essentially what he wrote in [1958]:

Due to the lack of a precise definition of either concrete or ab-
stract evidence there exists, today, no rigorous proof for the in-
sufficiency (even for the consistency proof of number theory) of
finitary mathematics.

But, again, notice that he is not now contesting even the possibility of estab-
lishing a bound.

Why did Gödel change his mind in the 1960’s and ’70’s about the possibil-
ity of an upper bound on finitary reasoning in Hilbert’s sense? One possible
explanation, gaining some corroboration from the reference quoted above to
phenomenology, would be his study of Husserl’s writings, which according to
[J. W. Dawson, 1997, p. 218], he began in 1959. For in transcendental phe-
nomenology he may have felt one could find a basis for the requisite precise
analysis of intuition.

One could very well question Gödel’s understanding of what Hilbert
meant by finitary reasoning: As far as I know, he cites only Hilbert’s discus-
sion in “Über das Unendliche” [1926]. But then in [1990b, p. 272, footnote
b] he writes

”Concrete intuition”, ”concretely intuitive” are used as transla-
tions of ”Anschauung”, ”anschaulich”. The simple terms ”con-
crete” or ”intuitive” are also used in this sense in the present
paper. ’What Hilbert means by ”Anschauung” is substantially
Kant’s space-time intuition confined, however, to configurations
of a finite number of discrete objects. Note that it is Hilbert’s
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insistence on concrete knowledge that makes finitary mathemat-
ics so surprisingly weak and excludes many things that are just
as incontrovertibly evident to everybody as finitary number the-
ory. E.g., while any primitive recursive definition is finitary, the
general principle of primitive recursive definition is not a finitary
proposition, because it contains the abstract concept of function.
There is nothing in the term ”finitary” which would suggest a
restriction to concrete knowledge. Only Hilbert’s special inter-
pretation of it introduces this restriction.

Gödel’s distinction between concrete objects and abstract objects coincides
extensionally with our distinction between finite objects and infinite objects.
In particular, his examples of abstract objects, namely functions of finite type
over the natural numbers and proofs of arithmetic sentences, are in general
infinite. But surely there is something in the term “finitary” that suggests
a restriction to finite objects. Bernays, in his essay [1930–31], develops the
notion of a formal object as the underpinning of Hilbert’s finitism, and he
argues that finiteness is “an essential characteristic of formal objects.”

It is incidentally noteworthy that, in his letters to Bernays, when Gödel
is writing about Hilbert;s finitism, there is never the suggestion that he is
equally writing about Bernays’ finitism. It may be that, since there tends
to be a critical edge to his remarks in such cases, he is simply avoiding
direct criticism of Bernays. (There is a remarkably civil—indeed friendly
and evolving towards affectionate—tone to their correspondence in general.)
But perhaps, too, he did not share what I take now to be a generally held
opinion (that I share) that the philosophical underpinning of Hilbert’s proof
theory owed much to Bernays.

I don’t have a clear understanding of Bernay’s notion of a formal object.
In whatever sense a natural number is a formal object, it also is applicable
as an iterator of an arbitrary operation on a domain. But it seems clear that
the role played by intuition in this conception is a very different thing from
the way in which Gödel conceives it. There is one idea of the role of intuition
in arithmetic, which seems to have been Weyl’s (in his intuitionistic phase)
and arguably (although by no means certainly) was Hilbert’s. It may also be
possible to trace it to Kant’s notion of pure inner intuition. See [Friedman,
1992, chapters 1 and 2]. On this conception, it is intuition that provides
us with the operation of finite iteration (in contrast with the second-order
logical construction of this operation by Frege and Dedekind). However, once
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we have satisfactorily analyzed that intuition, by introducing 0 and successor
and the principle of iteration, intuition plays no more role: it gives content
to arithmetic; but it is not directly a source of new truths.16 Gödel, on the
contrary, when he is speaking of Hilbert’s finitism, takes intuition to refer to
direct insight into arithmetic truth in individual cases. (That is why it has
no ‘natural boundary’.) Thus, in [1990b, p. 273] he writes

Recursion for ε0 could be proved finitarily if the consistency of
number theory could. On the other hand the validity of this recur-
sion can certainly not be made immediately evident, as is possible
for example in the case of ω2. That is to say, one cannot grasp
at one glance the various structural possibilities which exist for
decreasing sequences, and there exists, therefore, no immediate
concrete knowledge of the termination of every such sequence.

In the early 1960’s at Stanford, someone (I am no longer sure who it was—or
maybe I just don’t want to say) proposed as the measure of mathematical
IQ the bound on the ordinals α for which one could “grasp at one glance the
various structural possibilities which exist for decreasing sequences” from α.
The inventor, as I recall, claimed the math IQ of ε0. I had to keep very quiet
in discussions of this, since, although I convinced myself that my math IQ
was ≥ ω(2), I couldn’t get it higher than that. I later realized that some
of those ‘· · · ’s in my head getting me up even to ω(2) represented iterations
of operations, not on N, but on infinitary domains, and that my math IQ
was, like everyone else’s, at most ωω.17 I hasten to add, though, that I
don’t think that this is a good measure of mathematical IQ. Why shouldn’t
the latter also take account of the ability to avoid such combinatorics and
invent concepts, such as that of accessibility, which lead to easy insight into,
e.g., the well-foundedness of each ordinal < ε0? I think that this question
is closely related to Gödel’s dissatisfaction, expressed in footnote b (quoted
above), with Hilbert’s finitism. From the point of view of direct insight into
truth, the restriction to the concrete is too restrictive. But then, this was
not the point of view of Hilbert. Hilbert’s aim was to provide the content to
‘contentual’ mathematics.

16It is analogous to another pair of myths: God, the prime mover, versus a God who
intervenes at every step in the workings of the world.

17Since recursion on ωn for each n is reducible to primitive recursions, the ‘· · · ’s in this
case can always represent iterations of numerical operations.
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9 Gödel’s System A

In [Gödel, 1938a] Gödel speaks of finitary number theory in a sense which
does not refer to Hilbert’s finitism: It is not defined by reference to intuition,
but by a description of objective rules of definition and proof—and it is pre-
cisely the system PRA. He describes it as the lowest level of a hierarchy of
‘finitary’ systems, which also includes the introduction of the primitive re-
cursive functions of finite type, intuitionistic logic, and transfinite induction.
His use of the term “finitary” to describe all these extensions as well is odd.
(Perhaps he really didn’t think that the term had anything to do with being
finite.) On the other hand, we are speaking here of very rough lecture notes,
and maybe we shouldn’t worry too much about this choice of terminology.
In the lecture notes [Gödel, *1933o], he speaks instead of a hierarchy of con-
structive systems. There the lowest level is given the name “system A”. In
the introductory note to [Gödel, 1938a], Charles Parsons and Sieg identified
that system (along with the system of finitary number theory), with PRA—a
view which I echoed in [Tait, 2001].

In his introductory note to the Herbrand correspondence, Sieg correctly
rejects that identification—but for the wrong reasons. He writes that Gödel
changed his views significantly from July 1931, the time of his reply to Her-
brand, to late December 1933, when he delivered the lecture [Gödel, *1933o].
He claims that in these lecture notes Gödel “sharply distinguishes intuitionist
from finitist arguments, the latter constituting the most restrictive form of
constructive mathematics.” Here Sieg is identifiying finitism (as Gödel then
understood it) with the system A, and his claim is, further, that this system
extends beyond PRA and, in particular encompasses functions such as the
Ackermann function which are defined only with the aid of manifold nested
recursions. The same point of view is expressed in Sieg’s introductory note
to the von Neumann correspondence as well as in [Sieg, 2005], which contains
a more extended discussion of the Herbrand-Gödel correspondence.

First, let me note this: It may be that the word “finitism’ or “finitist”
occurs somewhere in [*1933o], but I haven’t yet found an occurrence, and
it certainly does not occur in the passages in which Gödel is describing the
layers of constructivity. What he does write is

Now, what remains of mathematics if we discard these methods
[and retain only things that can be constructed and operations
that can actually be carried out] is the so-called intuitionistic
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mathematics, and the domain of this intuitionistic mathematics
is by no means so uniquely determined as it may seem at first
sight. For it is certainly true that there are different notions of
constructivity and, accordingly, different layers of intuitionistic
or constructive mathematics.

We see here a distinction similar to that which he implicitly drew in the letter
to Herbrand between the narrow conception of intuitionism and the wider.
He again refers the latter conception to Brouwer and Heyting. I think that
Sieg is right that Gödel draws a sharper distinction in [*1933o], but it confuses
matters to say that it is between intuitionism and finitism; it is between the
intuitionism of Brouwer and Heyting and reasoning in conformity with his
system A. That he might, at that time at least, have been willing to identify
A as finitary number theory (as he did PRA in [Gödel, 1938a]) seems quite
reasonable. But there is no reason to think that he had changed his mind
about what Hilbert meant by finitism. He has changed the subject, not his
mind, and is pursuing the question of constructive foundations for classical
mathematics in a way more congenial to himself.

According to Sieg’s view, Gödel changed his conception of finitism be-
tween 1931 and 1933, then changed it again in 1938, when finitism became
identified with PRA, and then changed it again, when finitist reasoning again
became founded on intuition. Add to this the cases in which Gödel really did
seem to vacillate, namely in connection with the question of whether there is
an in principle bound on intuition, and it is no wonder that Feferman wrote
of “unsettled views.” I would prefer to do some McKeonizing here.

What is system A? In footnote q on p. 8 of his introductory note to the
Herbrand correspondence, Sieg writes

The restrictive characteristics of the system A are formulated on
pp. 23 and 24 of [Gödel, *1933o]: (i) universal quantification
is restricted to totalities whose elements can be generated by a
“finite procedure”; (ii) negation cannot be applied to universal
statements; (iii) notions have to be decidable and functions must
be calculable. As to condition (iii), Godel claims, “such notions
and functions can always be defined by complete induction;” . . . .

Requirement (i) is that the totality be generated by a finite procedure. The
effect of (ii) (he has in mind propositions built up from atoms by means of
∧,∨,¬ and ∀: if implication were included, then negation would sneak in as
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a defined operation) is that each statement is Π0
1, so that the statement can

be expressed by a quantifier-free formula. In (iii), one should note that defi-
nition and proof by complete induction can be generalized to other systems
of objects “generated by a finite procedure”, providing we assume that each
object has a unique generation. But Sieg has dropped off the last—and quite
important—part of the quoted passage from Gödel concerning (iii):

and so we may say that our system [I will call it A] is based
exclusively on the method of complete induction in its definitions
as well as in its proofs. (The brackets are Gödel’s.)

This of course is not a ‘claim’: it is a baptism. With it, and if we restrict our-
selves to arithmetic (i.e. where the objects generated by a finite procedure are
the natural numbers generated by successor), the ‘restrictive characteristics’
become a definition of A: it is PRA.

Nevertheless, Gödel’s words, quoted in connection with (iii), if they did
constitute a claim, would be puzzling: He certainly knew that there are com-
putable functions, such as the Ackermann function, that cannot be defined
by complete induction. But rather than saddling Gödel with a claim that he
knew was false, it is more reasonable to suppose that he is simply making
more specific what he meant by (iii). Exactly what definitions of computable
functions are to be admitted in A? (As we will have occasion to note later on,
even a year later in [Gödel, 1934, footnote 34], he did not regard the notion
of a computable function to be adequately explicated.) His answer is that
the functions must be introduced by complete induction. I would agree that
Gödel’s notes do not make this point cleanly. But remember that they are
notes to himself for a lecture and, in such a case particularly, the McKeon
principle ought again to apply: look for a reading that makes sense and is
commensurate with our knowledge of the author. The alternative, that he is
making a claim, makes his position incoherent.

Sieg argues (in footnotes q and s), primarily on the basis of Gödel’s
response to Herbrand’s letter, that A includes the Ackermann function. But
surely we should begin with Gödel’s own description of A. The issue boils
down to this: To reject the view that Gödel’s system A, restricted to the
domain of natural numbers, is PRA, aside from implying a discontinuity
with his reference to the lowest level of constructivity in [1938a], is to hold
that he was using the expression “the method of complete induction in its
definitions as well as in its proofs” to refer to something other than proof by
mathematical induction and definition by primitive recursion.
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The earliest use of the expression “complete induction” that I know is
in [Dedekind, 1887]. There, followed in parentheses by “inference from n
to n + 1”, it forms the heading of §80, in which Dedekind proves mathe-
matical induction. The only other occurrences of its use that I have found
(although I have by no means attempted an exhaustive search) are in one or
more works by one of Poincaré, Brouwer, Weyl, Hilbert, Gentzen and other
works of Gödel. With one exception, these referred only to a principle of
proof, and in each case, that principle is mathematical induction. Primi-
tive recursive definition was generally called ”definition by induction” (as in
Dedekind’s essay), “definition by recursion”, “recursive definition”, etc. (all
of these instances preceding the use of the term “recursive” to refer to more
general kinds of recursive definition). The one exception that I found was
[Weyl, 1949, p. 33], which uses the term “complete induction” to refer both
to a principle of proof and to one of definition. The former is, again, math-
ematical induction and the latter, primitive recursive definition. (Weyl also
paraphrased “complete induction” by “inference from n to n+1“.) Nor does
it seem likely that complete induction in the context of proof would mean
mathematical induction, i.e. proof of φ(n + 1) induced by proof of φ(n), but
that in the context of definition of functions, it would mean something other
than value of f at n+1 induced by its value at n. It therefore seems quite un-
likely that Gödel was using “complete induction” to refer to anything other
than proof by mathematical induction and definition by primitive recursion.

I have so far been discussing A only with respect to arithmetic, i.e., where
the only totality involved is that of the natural numbers. Of course, even if
the totalities also include the domain of all words over some finite alphabet,
nothing will change, since the words can be coded by numbers in such a
way that definition and proof by complete induction with respect to words
reduces to complete induction with respect to numbers. (The requirement
of uniqueness of generation, needed in order to apply definition by complete
induction, means that the totality may be represented by a set of words over
a finite alphabet.) But it would seem that he had in mind something more;
otherwise the following passage on p. 26 ([Gödel, 1995, p. 52]) would make
no sense:

Now all the intuitionistic proofs complying with the requirements
of the system A which have ever been constructed can easily
be expressed in the system of classical analysis and even in the
system of classical arithmetic, and there are reasons for believing
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that this will hold for any proof which one will ever be able to
construct.

If we assume that only the totality of natural numbers or the totality of
words over some finite alphabet is in question, then the first part of this is
reasonable. The syntactical objects can be coded by numbers and so the proof
can be formalized in PRA. But Dedekind’s proof of the principle of definition
by recursion easily translates into a proof in classical analysis (second-order
number theory) of the unique existence of each primitive recursive function
and Gödel showed that in fact they could in fact be explicitly defined in PA
itself. It is the second part of the quote that is puzzling. If the only totality
involved were essentially that of the numbers, there would surely be more
than “reasons for believing” that all such arguments can be expressed in PA.

The only explanation of what Gödel had in mind here that occurs to
me with any plausibility at all takes its hint from his use of the expression
“finite procedure”. Suppose we consider a totality W of words over some
finite alphabet containing the null word, but where the question of whether
or not the unit extension w ∗ a of the word w ∈ W by the symbol a from the
alphabet is in W is made to depend upon some condition. It is reasonable
to suppose that Gödel would not call the proceedure of generating these
words “finite” if the condition were not decidable or at least effective (in the
sense that there is an effective enumeration of words such that, for w ∈ W ,
w ∗ a ∈ W iff it occurs in the enumeration). This notion of an effective
enumeration involves that of a ‘finite procedure’, namely for determining
the nth word in the enumeration as a function of n. In [Gödel, 1934, page
3], Gödel speaks of computability “by a finite procedure” and remarks in
footnote 3 that the notion of finite computation is not defined. On the other
hand, he seems to be saying there that it serves as a good heuristic principle to
equate computability by a finite procedure with general recursiveness. Now,
with that equation, the set of Gödel-numbers of the words in W is defined by
a predicate ∃yφ(x, y), where φ is a formula of PRA. Then proof by complete
induction with respect to W reduces to complete induction with respect to N
applied to Σ0

1 formulas, and each function defined by complete induction over
W is simply the restriction of a primitive recursive function to arguments in
W . Thus, even when system A is extended beyond PRA to include such
domains W , under this assumption, every proof in A will be formalizable in
PA. Indeed, it is fairly easy to see that complete induction applied to Σ0

1

formulas is conservative over PRA [Parsons, 1972]. So, it seems reasonable to
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suppose that Gödel understood that, under this ‘heuristic principle’, system
A does not go beyond PRA.

If this is the correct explanation for Gödel’s lack of complete conviction
that every intuitionistic proof in conformity with system A is formalizable
in PA, then it also may explain something else: Gödel expresses in [Gödel,
*193?] his belief that the “gap” between the informal notion of computability
and a precise mathematical definition “has been filled by Herbrand, Church
and Turing.” Certainly he is referring to work of Church and Turing in 1936.
If we assume that he had that belief when he wrote his lecture notes for
[Gödel, 1938a], this will explain why, in that work, he restricted the lowest
level of finitary mathematics to PRA, i.e., to the case in which the only
totality involved is N. This bit of Gödel’s vacillation will in this way be
explained as an entirely reasonable adjustment of his views in the light of
further progress.

On the issue of whether or not Gödel, in [Gödel, *1933o], intended system
A to encompass more general forms of recursion, such as nested manifold
recursions, the foregoing would seem to be entirely conclusive. But let’s look
at Sieg’s argument to the contrary. On pp. 26-27 of [*1933o] Gödel states
that the methods of A are insufficient to prove the consistency of PA; but
he then goes on to state that interesting partial results have been obtained
and mentions Herbrand’s result, which he formulates in this way:

If we take a theory which is constructive in the sense that each
existence assertion made in the axioms is covered by a construc-
tion, and if we add to this theory the non-constructive notion of
existence and all the logical rules concerning it, e.g., the law of
excluded middle, we shall never get into any contradiction.

Sieg (footnote s) takes this passage (and its context) as evidence that A is
stronger than PRA and, in particular, admits the Ackermann function:

In Gödel’s judgment, Herbrand had given a finitist consistency
proof for a theory of arithmetic with quantifier-free induction
and a large class F of calculable functions that included the Ack-
ermann function; . . .

Moreover, as we have already noted, he understand’s Gödel to equate finitism
with what can be proved in system A. The sole evidence for the latter is
that Gödel “insists that all known finitist arguments given by ‘Hilbert and his
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disciples’ can be carried out in [A].” (p. 8.) But, first of all, as already noted,
the term “finitist” does not occur in Gödel’s text. Gödel said simply that the
methods so far used in the Hilbert school for attempting consistency proofs
are all formalizable in A: There is no claim in [*1933o] that, in principle, all
finitist arguments in the sense of Hilbert are formalizable in A. Only such a
claim would contradict his earlier statements about Hilbert’s finitism.18

As for the quoted passage concerning Herbrand’s result, there is no ex-
plicit reference either to the system A or to finitism, only a reference to
constructivity; and Gödel has already distinguished different layers of con-
structivity, of which A is only the lowest. Nevertheless, although the passage
by no means has to be read in this way, its context might well suggest that
what Gödel means is that, although PA cannot be proved consistent in A,
by Herbrand’s methods, we are able to prove the consistency of certain frag-
ments of PA in A.

But it should also be noted that Gödel singles out no particular such
fragments. In particular, he does not refer to Herbrand’s example (iii) in
which the axioms define the Ackermann function—nor the example (ii) in
which they define all the primitive recursive functions. It is only by sup-
posing that Gödel means both that the theorem yields a consistency proof
in A and that it applies to example (iii) [or (ii)] that one can infer that
A is stronger than PRA. Herbrand’s theorem itself does not depend upon
any decision about what constitutes an intuitionistically valid axiom set Γ,
it just begins with the assumption that we have one. Independent of that
assumption, the reduction of a deduction of a quantifier-free θ in T (Γ) to
a quantifier-free deduction of θ in T (Γ)∗ can be formalized in PRA. I be-
lieve that anyone at that time with an interest in proof theory would have
been impressed with that result—that quantifiers can be eliminated from the
proofs (provided that they don’t occur in axioms or formulas to which math-
ematical induction is applied), independently of any particular view about
what constitutes finitary reasoning, what Hilbert thought constituted fini-
tary reasoning, or the lowest level of constructive reasoning. (The earlier
arguments of Ackermann and von Neumann for the finitary consistency of
PA were known to be fallacious by that time.)

At the end of the day, the question to be answered is this: Is it more likely

18The same confusion between an historical remark and a claim about the compass of
what Gödel took to be finitist occurs in [Sieg, 2005, p. 180], where Sieg writes “Gödel’s
reasons for conjecturing that A contains all finitist arguments are not made explicit.”
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that Gödel meant that Herbrand’s result, applied to either example (ii) or
(iii), could be proved in A or that he was using the expression “complete
induction” in its customary sense? Both cannot be true.

10 The Dialectica Interpretation

We have noted that Gödel first mentioned the use of functions of finite type
(over N) as an extension of finitary number theory in [Gödel, 1938a]. In 1941
he lectured on his interpretation of Heyting arithmetic HA in his theory T of
primitive recursive functions functions of finite type both at IAS in Princeton
and at Yale. ([Gödel, *1941] contains the notes for the latter lecture.) In
these lectures, he presented the interpretation as giving a constructive content
to intuitionistic arithmetic, whose interpretation by Heyting he regarded as
lacking in clear constructive meaning. In the Dialectica paper, he presented it
as a consistency proof for HA—and so for the corresponding classical system
PA—relative to T .

The earliest mention of the functional inbterpretation in the correspon-
dence with Bernays is in letter # 17 (2.6.57), in which he mentions his earlier
lecture in Princeton on the subject. He raises the question of whether the in-
terpretation can be extended to analysis by admitting definition by recursion
over transfinite (but still constructive) ordinals—a question that he repeats
in letter # 27 (1.7.59), after the publication of the Dialectica paper. If we
leave aside the question of constructivity, Spector’s result [Spector, 1962]
constitutes such an interpretation of analysis, since even his higher type bar
recursion may be understood as recursion over a well-ordering (though not in
general of numbers). No mention is made in Gödel’s correspondence of Gi-
rard’s extension of the functional interpretation to analysis and simple type
theory using functions in a hierarchy of generalized types [Girard, 1971].
Likewise, there is no reference to the Curry-Howard propositions-as-types
theory.

Anyone who fails to discern an element of saintliness in Bernays’ character
needs only to read the correspondence with Gödel on the subject of the
publication of a translation of Gödel’s Dialectica paper. It begins a bit rocky.
In letter #53 (9.17.65) from Bernays:

That Mr. Leo Boron, in association with William Howard, is
translating your beautiful p[aper in the Dialectica volume of 1958
into English, and that this translation was submitted to Dialectica
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for publication is surely known to you. If I correctly understood
Mr. Boron in what he wrote, you have agreed to the publication
of his translation.

In letter # 54 (9.27.65) from Gödel:

Above all, I thank you for having made me aware of its intended
publication. . . . But in any case I would like to ask you, in the
event the translation really iks supposed to appear in print, to
have a copy of the manuscript sent to me.

And it doesn’t get any smoother. In letter # 56 (12.5.65) Gödel indicates the
need for some small revisions and Bernays responds mentioning the plan to
have the manuscript in the hands of the printer towards the end of January.
There ensues an exchange in which, from 25 January 1966 until 26 December
1972, Gödel wrote ten letters explaining why he was delayed or why he was
not yet satisfied with the manuscript and needed to make further changes.
Bernays’ responses: “It would be nice if you could send me the manuscript
soon” (#62 (10.22.67); “Now you can probably send me the paper for Di-
alectica very soon” #67 (1.6.69); “Mr. Gonseth [an editor of the volume in
which the paper was to appear] would certainly be very pleased to receive
it” # 69 (1.7.70). In # 70 (7.12.70), Bernays writes “It was very pleasing to
me to receive your rewritten version . . . ”. But then, in # 74 (12.22.70) from
Gödel: “Please wait with the page layouts.” In # 75 (12.31.70) Bernays:
“I’m pleased to hear that you have now brought the text of the notes to your
Dialectica paper into a form that is satisfying to you, and I look forward with
great interest to the receipt of the corrected version of your paper.” —And
so on. Bernays finally just dropped the subject.

Why couldn’t Gödel let the paper go into print? The problem was with
the notion of a computable function of finite type, which he took as the foun-
dation of his theory T . A computable function of type A → B is defined
in [Gödel, 1990b] to be a well-defined mathematical procedure for which it
is constructively evident that, applied to every computable object of type
A, it yields a computable object of type B. (Here one takes the numbers,
or better, the numerals to be the computable objects of type N.) Thus,
the logical complexity of the notion of a computable object of type A grows
with the complexity of the type A, itself. Now Gödel himself suggests that
this notion of a computable function may not be sufficiently clear; but he
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asserts that “there can be no doubt” that the functions introduced in his the-
ory, namely the primitive recursive functions of finite type, are computable
[Gödel, 1958, p. 283, footnote 5]. No doubt that is true; but consider a case
of the function f of type N → A defined by iteration fn = gn(a), where
a is a computable object of type A and g is a computable function of type
A → A. We indeed don’t doubt the computability of f ; but that is be-
cause we immediately accept mathematical induction applied to the concept
‘fx is a computable object of type A’, a concept with an unboundedly high
logical complexity, depending on A. The correspondence with Bernays leaves
one with the impression that they both (but perhaps especially Bernays) were
seeking a way to formulate the notion of computability and, in particular, the
condition of ‘constructive evidence’ that would avoid this problem. (In an
earlier version of the 1972 manuscript, Gödel had written “intuitionistically
demonstrable” in place of “constructively evident.” Bernays had suggested
in letter # 70 (7.12.70) that “the reader could well be taken aback.” by the
former wording.) But, except in politics, spin has its limits and the problem
wouldn’t go away.

There are in fact two problems, one local and one global. The former,
which we just mentioned, is that the very notion of computable function of
higher type, with the condition of ‘constructive evidence’, seems to invoke
non-trivial logic, which is just what Gödel is attempting to give construc-
tive content to. The global problem arises from the fact that the theorems
of intuitionistic propositional logic need to be theorems of T (since the Di-
alectica interpretation of a quantifier-free formula of HA is just itself). But
Gödel’s complaint against intuitionistic logic concerns propositional logic—in
particular, Heyting’s explanation of implication. So Gödel requires that the
logic of T be truth-functional. But, since T is to be a constructive theory,
this means that the atomic formulas of T must be decidable. The atomic
formulas of T are equations between terms of like type, which, on the usual
extensional meaning of equality of functions, is not decidable. Gödel replaces
this notion of equality by the intensional notion of definitional equality. This
notion really has no precise sense beyond some specific rules of definition,
such as those provided by T itself. But within such a boundary, we may
understand two terms of like type to be definitionally equal if sequences of
replacements of definiendum by definiens in the two terms yields a common
term. However, proof of the decidability of equations even between closed
numerical terms of T requires all of intuitionistic arithmetic. (I.e., the proof
of t = 0∨ t 6= 0 requires mathematical induction applied to formulas of arbi-
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trarily high logical complexity, depending on the complexity of the types of
function constants occurring in t.)

In footnote h of [Gödel, 1990b, p. 275-6] there is an attempt to solve at
least the local problem by replacing the requirement of constructive evidence
with that of reductive proof, which is a more restrictive kind of proof than
that formalized in Heyting’s logic and isn’t open to Gödel’s objections to the
latter. I have been unable to find a coherent reading of the footnote. But
Gödel seems to have, at least sometimes, remained convinced that the idea of
reductive proof solves at least the local problem. (I’m not sure how clearly
he understood the global one.) In his unsent reply to Fredrick Sawyer’s
letter (2.1.74), Gödel refers to his footnote h in [Gödel, 1990b] as a means
of avoiding the difficulty in the notion of a computable function of finite
type; although he writes that “the matter, probably, cannot be explained
convincingly in a footnote.”

A coherent foundation for the theory T is available, however, as we in-
dicated in §reffinitary number theory. It merely requires that we take the
notion of a function of a given finite type over N as primitive. Iteration ap-
plied to finite types yields the principle of primitive recursion and certainly
explicit definition of functions is implicit in the concept of a function. It is
not the restriction to computable functions that makes a theory such as T
constructive: rather, it is the restriction to objects that we can construct. On
the other hand, this same point of view provides a constructive foundation
for the Curry-Howard theory of types and so for HA directly. Thus, from
the point of view of providing constructive meaning for the logical constants
as employed in HA, the Dialectica interpretation is a failure in two respects:
First, it is superfluous and, second, it interprets as constructive propositions
like instances of Markov’s principle that are not constructive.

11 Impredicativity of the Number Concept

In letter #74 (12.22.70), in explaining his delay with the Dialectica paper,
Gödel refers to complications with his footnote h (there called “note k”)
arising from the “unavoidable ‘self-reflexivities’ ”. Here he is referring to the
impredicativity of the definitions of functions of higher type in T , where the
definitions of functions of lower type essentially involve functions of higher
type. In letter #76 (3.16.72) Bernays has an interesting response: He writes
that it indeed seems unavoidable, but that the concept of number already
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itself involves a certain impredicativity, which therefore is already present in
finitary number theory. This impredicativity has to do with the two faces of
numbers: numbers as objects, arising from 0 by applications of the successor
operation, and numbers as (type-free) iterators of operation on any domain,
including the domain N of numbers, itself. Essentially the same point about
the impredicativity of the number concept, although in somewhat different
terms, appears in some work of Edward Nelson, who goes on in [Nelson, 1986]
to develop arithmetic on the basis of the separation of these two faces of num-
ber. In Nelson’s discussion, this impredicativity is tied to the impredicativity
in the familiar sense of the definition of the set of numbers as the intersection
of all sets containing 0 and closed under successor. Bernays’ remark reveals
that, even rejecting that foundation of arithmetic, which a finitist must in
any case do, the trace of that impredicativity remains in the most elementary
reasoning about numbers.
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