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Abstract— Recently, Content Distribution Networks
(CDNs) have attracted a great deal of attention from both
the industry and academic communities. In this paper, we
design efficient object replication algorithms to achieve the
optimal performance while not violating clients’ QoS re-
quirements. We show that such a problem is NP-complete
and solve it with a three-stage mechanism: In the first stage,
object replication constraints to meet the QoS requirements
are generated. Second, a minimal object replication set
(MORS), which can satisfy the constraints with the mini-
mal number of replicas on each server, is created. Finally,
more objects are replicated on the servers with spare space
to further improve the performance. We propose a number
of heuristic algorithms and conduct extensive trace-driven
simulation experiments to evaluate the performance of these
algorithms.

keyword – Content Distribution Network (CDN), Replica
Placement Algorithm, Quality of Service (QoS)

I. INTRODUCTION

With the recent successes of the commercial CDNs, such as
Akamai [1] and Digital Island [2], CDNs have attracted a great
deal of attention from both the industry and academic commu-
nities. In CDN system, Replica Placement algorithm (RP) has
great impact on the system overall performance. According to
the replication granularity, CDN systems can be categorized into
two types: full replication architecture (FD) and partial replica-
tion architecture (PD). Massive research efforts have been car-
ried out on the replica placement problem on both FD and PD
architectures [3], [4], [5], [6], [7], [8], [9]. Among them, Greedy
algorithms are considered to be the best algorithms.

Existing heuristic algorithms solved the replica placement
very well, and a near-optimal performance for the entire client
community can be achieved. While an average performance
metric is important, the current algorithm can not provide the
QoS guarantees for individual clients. In this paper, we inves-
tigate the techniques of object replica placement algorithms to
support Quality of Service (QoS) in PD architecture. Given cer-
tain amount of system resources, our objective is to optimize
an average performance metric (such as access latency) for all
the clients while meeting different QoS requirements of individ-
ual clients. A three-stage mechanism is introduced. First, we
generate object replication constraints according to the QoS re-
quirements. Second, we create a minimal object replication set
(MORS) which can satisfy all the replication constraints with
the minimal number of copies of each object and decide the lo-
cation for each replica in MORS. This gives the CDN service
provider an intuitive impression on how many servers and how
many resources on each server are needed for providing certain
level of QoS requirement. In the final stage, we store more repli-
cas on the servers which still have spare space to further improve

the performance. We show such a problem is a NP-complete
problem. A number of heuristic algorithms are proposed. The
main contributions of this paper are:

• We formulate the QoS-Aware object replica placement
problem in CDN system and prove it is a NP-complete
problem;

• We define the concept of MORS. A MORS represents the
minimal system resource demand for a certain QoS guar-
antee. We define an optimal MORS is the MORS which
achieves the best performance among all the MORSs;

• We develop several heuristic algorithms including random,
popularity and greedy algorithms, to generate MORS. We
conduct simulation experiments to evaluate the perfor-
mance of the various algorithms;

• We propose a flexible three-stage mechanism to solve this
problem. Several heuristic algorithm combinations are in-
troduced. We evaluate and compare the performance of
various algorithm combinations with the super optimal al-
gorithm. The greedy algorithm is proved to be able to
achieve the best performance.

The rest of the paper is organized as follows: Section II de-
scribes the problem formulation and the cost model. Section III
presents the proposed heuristic algorithms. Section IV evalu-
ates the performance of various algorithms. Section V sum-
maries the previous related works, and finally, we conclude in
Section VI.

II. PROBLEM FORMULATION

Object replication problem can be formulated as a graph
problem that approximates the overall performance of a certain
metric (Such as minimal storage cost, minimal user access la-
tency or network bandwidth consumption).

Consider a content distribution system, a set of objects are
replicated and distributed on these servers. For each object, at
most one copy can be stored on each server. However, multiple
copies may be stored on different servers. Each server only has
limited storage capacity and can not hold all the objects. There
are a large number of clients with different QoS requirements
want to access those objects. We focus our attention on the
design of an efficient object placement algorithm to determine
the number of copies for each object and the locations for these
copies subject to each server’s capacity restriction. Our objec-
tive function is to minimize the end user retrieve cost while not
violating the QoS requirement for each client.
A. System Cost Model

The object replication problem can be formally stated as fol-
lows: In a CDN system, we have N content servers. The storage
capacity on each server is denoted by Sk, k = 1,2,...,N). These
servers are used to keep the copies of a set of objects. Assum-
ing the number of objects in the system is J, and the size of



each object is denoted by Oj , j = 1,2,...,J. For simplicity, we
assume the aggregated capacity of all the servers is much big-
ger than the overall storage requirement (which is the case in
reality):

∑J

j=1
Oj <

∑N

k=1
Sk, and for any k ∈ [1, N ], Sk <∑J

j=1
Oj . Thus, the server storage shortage problem seldom

happens. Before we define any QoS related constraints, we give
the storage constraints first. We define the following variable:
xjk, to denote the relations between the servers and the objects
to be stored. If object j has a copy on server k, then xjk = 1;
otherwise, xjk = 0. Based on these definitions, we have:

For any server k,
J∑

j=1

Ojxjk ≤ Sk (1)

For any object j,
1 ≤

N∑

k=1

xjk ≤ N (2)

Assume we have M clients denoted by Ti, i = 1,2,...,M). For
each client, retrieving an object from any server will introduce
some cost. This retrieve cost is determined by the network topol-
ogy and the network conditions between the client and the server
which used to fetch the object. For simplicity, we assume that
all the objects have the same size, and the retrieve cost is propor-
tional to the distance between the client and that server. Thus,
we define another variable: Cik, to represent the cost for the
client i to retrieve an object from server k. For any client, it
is desirable to retrieve all the requested objects from the server
which has the minimal distance to it. We define the server k

′

is
the designated server for client i if server k

′

has a smaller C
ik

′

than any other servers. However, due to the storage capacity
limitation, it is very likely that the designated server does not
contain all the objects a client wants to access. This client has
to retrieve some of these objects from other servers.

We define the variable: Pij to represent the request prob-
ability that client i will request object j. If we do not consider
QoS requirements of different clients, the objective of the object
replica placement can be formulated as choosing the suitable
values for all the xjk in the matrix X = (xjk), j = 1, 2, ..., J
and k = 1, 2, ..., N , that we can achieve the minimal average
retrieve cost. Assume the current replica placement is A. Then,
for client i to access an object j, the minimal cost is:

Pij ∗ mink∈[1,N]∧xik=1(Cik) (3)

mink∈[1,N]∧xik=1(Cik) represents the cost for client i to
fetch object j from the nearest server which has the object (this
server may not be the designated server if it does not have the
requested object). Thus, considering all the clients and all the
objects, the minimal overall cost C(A) for an object replication
deployment A is:

C(A) =

M∑

i=1

J∑

j=1

Pij ∗ mink∈[1,N]∧xik=1(Cik) (4)

B. QoS requirements
To provide QoS guarantees for different clients, we divide the

clients into multiple service classes according to their different
QoS requirements. From the clients’ points of views, in gen-
eral, higher QoS guarantee stands for smaller access latencies.
Clients in the higher service classes should receive better per-
formance guarantee than the clients in the lower service classes.
We define the QoS requirement with the time of retrieving an
object. Thus, QoS guarantee for a service class means: for any

clients belongs to this class, retrieving an object must be fin-
ished within a certain period of time. Assume we have D ser-
vice classes (1,2,...,D). A maximal cost constraint is set for each
class, denoted by MCCD . The higher the class, the lower the
maximal cost constraint. We have the following equations:

MCCD ≤ MCCD−1 ≤ ... ≤ MCC1 (5)

Our goal is to find a matrix X = (xjk) which can achieve the
minimal cost C(A) subject to the following constraints:

For client i who belongs to class d, for any Pij > 0, to meet
the QoS requirement, the system must guarantee at least one
server, which the cost for client i to access an object from it is
less than MCCd, exists, and that server has a copy of object j.

∃k ∈ [1, N ], (xjk = 1) ∧ (Cik ≤ MCCd) (6)

C. NP-Complete Problem
In theory, the above problem is a decision problem and it is

NP-complete. To prove this, first, we will show that it is a NP
problem. Given a target overall cost C

′

(A), we need to find out
whether a candidate solution exists such that

M∑

i=1

J∑

j=1

Pij ∗ mink∈[1,N]∧xik=1(Cik) ≤ C
′

(A) (7)

can be computed in polynomial time.
Examine a candidate solution satisfies QoS requirement or

not can be done within polynomial time since the shortest path
between clients can servers can be computed in polynomial
time. Given a candidate solution A, it is very easy to verify
the total computation cost is less than the bound C

′

(A) or not
within the polynomial time. Thus, this problem is NP problem.
Next, if we consider a special case that all the clients are be-
longing to the same service class. Only one server k

′

can be
used to store objects and the request probability for any object
is the same. The problem is reduced to:

Minimizing:
C(A) =

M∑

i=0

C
ik

′ (8)

subject to:
J∑

j=1

Ojxjk
′ ≤ S

k
′ (9)

Clearly, this problem is identical to the well-known NP-
complete Knapsack problem [10]. Thus, such a problem is a
NP-complete problem and finding the optimal solution is not
feasible.

III. OBJECT PLACEMENT ALGORITHMS

In this section, we present a number of algorithms for solving
the QoS-Aware object placement problem. Since no optimal so-
lution is feasible, we have designed several heuristic algorithms
that utilize the available information in different ways in order
to get the best performance and meet the QoS requirements. We
use the average retrieve cost as the metric to evaluate the perfor-
mance. We take a three-stage approach to make the placement
decision. First, we generate a set of object placement constraints
by considering the QoS requirements. According to these con-
straints, in the second stage, we construct a small set of objects
(MORS) to be deployed on the servers. Thus, after this stage,
the QoS requirements are satisfied. The last stage is used to fur-
ther reduce the retrieve cost by adding more object replicas on
the servers with free space.



A. Determine the Object Placement Constraints
In the first stage, we must determine the replica placement

constraints to meet the certain QoS requirements. Assume client
i belongs to class d, the maximal cost allowed in class d is
MCCd, and the set of the objects that client i will retrieve is
Q. Then, for any object j ∈ Q, a replica must be presented on a
server which the cost for client i to retrieve an object from it is
less than MCCd. We determine the constraints as follows: each
time, the algorithm selects a client, denoted by i. We divide the
servers into two partitions: the servers which client i has the re-
trieve cost lower than MCCd and the servers which client has
the cost higher than MCCd. We do not consider the second par-
tition since it can not satisfy the QoS requirement for this client
anyway. For the first set of servers, we will generate a constraint
Cons(i,j) for client i and object j: For object j, which Pij 6= 0,
we must store a copy on at least one of these servers. This pro-
cess continues until we generated all the placement constraints
for all the clients and all the objects.
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Fig. 1. Simple illustration of determining the object placement con-
straints

Figure 1 shows a simple example. Consider a CDN system
which contains only two clients C1 and C2, and five servers S1,
S2, S3, S4 and S5. C1 and C2 are belonging to the same service
class d1, and MCCd1 is 10. The distances between clients and
the servers (retrieve cost) are shown in the figure. Both Clients
C1 and C2 have the same probability to retrieve object j1 in the
future. Clearly, since the distance between C1 and S1 is 3, C1
and S2 is 4, both are less than MCCd1. For client C1, to meet
the QoS requirement, either S1 or S3 must keep a copy of j1, we
denote this constraint with x1,j1 ∪ x3,j1. There’s no constraint
on servers S2, S4 or S5 since the distance between C1 and any of
them is larger than MCCd1. Whether they have a copy of j1 or
not has no effect on satisfying C1’s QoS requirement. Similarly,
for client C2, either S2 or S4 must keep a copy. We can generate
another constraint, represented by x2,j1 ∪ x4,j1. For client C2,
no constraint is generated on servers S1, S3 or S5 as well. In
summary, to meet the QoS requirements for object j1 and clients
C1 and C2, we have to store at least two copies of j1. One copy
must be resided on S1 or S3 and another copy must be stored on
S2 or S4. Thus, we can create a placement constraint for object
j1:

(x1,j1 ∪ x3,j1) ∩ (x2,j1 ∪ x4,j1) (10)

The generated constraints will be used to assign object copies
on certain servers in the second stage. We use (S1,S2) to denote
that both S1 and S2 have a copy of j1. For the above exam-
ple, to meet the QoS requirements, no matter how many copies
are replicated on these five servers, one of the following server
placement combinations: (S1,S2), (S1,S4), (S3,S2) and (S3,S4)
must be chosen. Other possible placement decisions could be
(S1,S2,S4), (S2,S3,S4,S5) or even (S1,S2,S3,S4,S5). However,
only two replicas are necessary, the additional copies are redun-
dant, they do not have any contribution to further improve the
system performance.

B. Minimal Object Replication Set (MORS)
In the second stage, we will create a Minimal Object Replica-

tion Set (MORS) according to the object placement constraints.
We define a MORS is the smallest replica set which contain-
ing the minimal number of copies for each object on different
servers to meet all the QoS requirements. Actually, it can be
viewed as the representation of the minimal resource (Here, it is
the minimal storage capacity needed on individual servers) re-
quired for providing certain QoS guarantees. In the above exam-
ple, any of the server placement combinations (S1,S2), (S1,S4),
(S3,S2) and (S3,S4) which only has two servers is a MORS.

Different MORSs result in different performance. For exam-
ple, in Figure 1, if we store a copy of object j1 on both server
S1 and S2, the overall cost for client C1 and C2 to retrieve j1
is 3 + 6 = 9. While in (S1,S4), (S3,S2) and (S3,S4), the corre-
sponding costs are 10, 10 and 11. We define the MORS which
has the minimal overall cost as the optimal SORS. In this exam-
ple, (S1,S2) is the optimal MORS. Finding the optimal MORS
is also a NP-complete problem (it can be easily derived from
the previous proof). We develop several heuristic algorithms to
generate near-optimal MORS placement decision.

C. Random MORS Algorithm (RA)
In random algorithm, the objects are assigned to the servers

randomly subject to the QoS constraints and the server storage
restrictions. Figure 2 shows the pseudo code of the random
MORS algorithm. The algorithm is performed on the objects
one by one. Each time, we pick an object (denoted as j) with
the uniform probability. Then, we choose a client (denoted as i)
which has Pij 6= 0 with the uniform probability as well. By ap-
plying the constraint Cons(i,j), a set of servers which can satisfy
the QoS requirement for client i and object j are determined.
The system examines the availability of object j in this set, if
none of these servers has a copy, it randomly chooses one server
which has enough spare space from this set, and stores a copy
of object j. If any of these servers has a copy of j, no opera-
tion is taken because the current replica deployment can satisfy
this constraint already. We continue this procedure by randomly
choosing another client until all the constraints related to this
object are checked. After that, we move to another object (it is
also picked with uniform probability), and repeat the same op-
eration until all the objects are checked. Finally, a MORS which
can satisfy all the constraints is generated.

             
    

Input: Servers N, Clients M, Objects J

Procedure  Random MORS Generation Algorithm

Output: MORS    
          FinishedClient=null;
          StartClientSet={1,2,...,M};
          FinishedObject=null;
          StartObjectSet={1,2,...,J};

          randomly choose one object i from StartObjectSet;

While(StartObjectSet!=NULL)
        {

    while (StartClientSet != null)
        {
           choose one client j;

           if (any server in serverset has the object j stored)
               break;
            else
               randomly choose one server to store object j;

            FinishedClient+=i;
            StartClientSet−=i;

          Placement Constraints set  Cons(i,j)

           serverset=apply Cons(i,j);

        }

       FinishedObject+=j;
       StartObjectSet−=j;

          StartObjectSet={1,2,...,J};
        }

end procedure

Fig. 2. Random MORS Algorithm



D. Popularity MORS Algorithm (PA)
Random algorithm does not use workload characteristic in-

formation to make placement decision. While in popularity
MORS algorithm, unlike random algorithm which picks the lo-
cation for each replica with the uniform probability, the algo-
rithm tries to determine the best locations for each object based
on its popularity. First, the system sorts all the objects in de-
creasing order of popularity according to their aggregated re-
quest rates from the clients. The placement decision process
starts from the object (denoted as j) which has the highest popu-
larity. The algorithm also sorts the clients in decreasing order of
popularity according to their request rates for object j. Then, it
picks the client i with the highest request rate, and examines the
corresponding constraint Cons(i,j), to generate the set of servers
which can satisfy this QoS constraints. If any of these servers
has a copy, we move to the next client which has the second
highest request rate. If none of the servers has a copy of object
j, we need to choose one server from the server set to store it. We
use the following mechanism to determine this server: For each
server in this set, we calculate the aggregated request rates for
object j on clients which use this server as the designated server
and sort these servers in decreasing order. The server which has
the highest aggregated rate is chosen first. If this server does
not have enough spare space, we will check the server which
has the second highest aggregated request rate and store a copy.
After all the client constraints for this object are checked, the
replica placement decision for this object is made. We move to
the next object and continue this procedure until all the objects
are checked. This algorithm has higher computational overhead
than the random algorithm. However, it can achieve better per-
formance.

E. Greedy MORS Algorithm (GA)
The third algorithm we consider is greedy algorithm. In this

algorithm, as Popularity algorithm, the system sorts the objects
and the clients in the decreasing orders of popularity. Then, each
time, we start from the first object j and the first client i, applying
the placement constraint Cons(i,j). After getting the server set
which contains all the servers satisfying the constraint, if any
of these servers has a copy, system moves to the next client. If
none of them has a copy, we calculate the retrieve cost for each
server as if it is used to store object j. Then we pick the server
which generates the lowest cost to store a copy of object j. If
this server does not have enough spare space, the server which
has the second lowest cost is chosen. This process continues
until all the clients are checked. Thus, in each step, we choose
the server which can introduce the maximum cost reduction. For
example, in the previous example, for client C1, the retrieve cost
for retrieve j1 on S1 is 3 and the cost on S3 is 4. Thus, a copy of
j1 is replicated on S1. Then, for client C2, the cost for retrieve
on S2 is 6 and S4 is 7. Thus, another copy should be kept on
S2. Thus, among all the MORS configurations (S1,S2), (S1,S4),
(S3,S2) and (S3,S4), (S1,S2) has the smallest overall cost, and
it will be chosen by greedy algorithm.

F. Achieving Better Performance
By creating a minimal object placement set, the system de-

fines the minimal resource required to meet the certain QoS re-
quirements. However, it does not achieve the best performance.
Thus, in the third stage, we use the additional storage space on
each server to store more objects and improve the system per-
formance even more.

The object placement problem for the additional copies is
similar to the above problem. We could adopt the above heuris-
tic algorithms directly for this purpose. There are two differ-
ences we should take into consideration. First, in previous cases,
system starts from an empty set (no copy of any object exists on
any server). Here, we start from the condition that each server
already stored a bunch of objects determined by a MORS. Sec-
ond, in previous cases, locations of the object copies are sub-
jected to the constraints to meet the QoS requirements. Here,
this restriction does not exist any more.

1) Random Algorithm (RA): In this algorithm, since
no replica placement constraints need to apply, each time, we
choose one object and one server with uniform probability, and
store this object on that server in case no copy of this object
exists.

2) Popularity Algorithm (PA): In this algorithm, each
server stores the most popular objects for its clients. The place-
ment decisions are made by the servers independently. Each
time, we choose a server and generate the aggregated request
probabilities of all the objects for the clients which use this
server as the designated server. We sort these objects in the
decreasing order of popularity. Then, we store as many objects
as possible if they are not stored on this server yet.

3) Greedy Algorithm (GA): Here, we calculate all the
retrieve costs by choosing one server and one object each time.
The server-object pair which yields the lowest cost is chosen.
And a copy of that object is stored on that server. After the
new placement is generated, we do the same process by re-
calculating all the costs under this new placement. We iterate
the procedure until all the storage spaces are exhausted.

G. Super Optimal Algorithm
We also propose a super optimal algorithm. In this algorithm,

we do not set the storage capacity limitation. Each server can
hold a full copy of all the objects. Thus, a client can get any
object it wants from the designated server with the minimal re-
trieve cost introduced. We believe such a system can yield the
best performance. This algorithm is used as an upbound refer-
ence in our experiments to evaluate the proposed solutions.

H. Summary
In summary, we develop a three-stage mechanism for QoS-

Aware object replica placement. We could generate several
strategies by using different algorithm combinations. For sim-
plicity, we use RA-RA to denote the combination of using the
random MORS algorithm in the second stage and also using the
random algorithm in the third stage. The following combina-
tions can be applied: RA-RA, RA-PA, RA-GA, PA-RA, PA-PA,
PA-GA, GA-RA, GA-PA and GA-GA. We evaluate the perfor-
mance of these strategies in Section IV.

.

IV. PERFORMANCE EVALUATION

We use Transit-Stub topology (TS model) introduced in [11]
as the major network model. GT-ITM topology generator [12]
is used to generate the emulated network model. We generate
network models with two different sizes: a TS network with
300 nodes and another one with 1000 nodes. The average node
distance in 300-node network is 161 and it is 266 in 1000-node
network.

We evaluate the performance of three different MORS gen-
erating algorithms. We also compare the overall performance
of nine different algorithm combinations: RA-RA, RA-PA, RA-
GA, PA-RA, PA-PA, PA-GA, GA-RA, GA-PA and GA-GA.
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Fig. 4. MORS Performance, 200 servers, 500 clients

In our experiments, we take the web proxy logs obtained
from the National Laboratory for Applied Network Research
(NLANR) as the workload traces. The trace data we use is col-
lected from UC server between Feb 21st and Feb 24th, 2003.

A. Minimal Object Replication Set
We start by identifying the performance of MORS generated

by various algorithms. To avoid the biased results, in this exper-
iment, we repeat the simulation three times for each algorithm.
Each time, the sets of servers and clients are randomly chosen.
The results are shown in figures 3 and 4. To make it more
clearly, we show the results as the ratio between the average re-
trieve cost to the average node distance.

From the figures, we observe that the greedy MORS algo-
rithm (GA) achieves the smallest average retrieve cost. For 300-
node network, the average retrieve cost is about 58% to 63%
of the average node distance. Popularity MORS algorithm (PA)
also achieve good performance, which is slightly worse than GA
algorithm. Random MORS algorithm (RA) has the worst per-
formance. The average retrieve cost in RA is about 30-40%
more than in GA and PA algorithms. Clearly, the object repli-
cation strategy used in the second stage has great impact on the
system efficiency. This result shows, even with the smallest set
of objects replicated, the locations of the replicas must be care-
fully selected. It is proven that utilizing workload characteristic
information to make the replication decision is important. Both
GA and PA take this information into account and achieve bet-
ter performance. We also observe that as we increase the storage
capacity on each server, all the three algorithms can not obtain
much performance gain. This shows that, only small amount of
system resources is enough to meet certain QoS requirements.
Compare two different size networks, for each algorithm, the
average retrieve cost achieved in 1000-node network is much
less than in 300-node network if we measured with the ratio be-
tween the average retrieve cost and the average node distance.
For example, with RA algorithm applied, this ratio is between
76-84% in 300-node network, while in 1000-node network, the
ratio is reduced to 64-71%. This is because of the higher density
of servers in the second case. In 1000-node network, 20% of the
nodes are chosen as servers while only 10% of the nodes are
chosen in 300-node network. In 1000-node network, the clients
have more servers which satisfy the QoS requirements can be
chosen. Thus, it has more storage space can be used to keep
replicas, this is very important for achieving good performance
especially when the storage size on each server is small.

B. QoS effect in MORS
We also evaluate the MORS property with different QoS val-

ues. Figure 5 shows the results in RA algorithm. We vary the
minimal QoS cost from 0.5 to 2 times of the average node dis-
tance. The storage size on each server varies from 5% to 20%
of the whole data set. We discard some cases which the QoS re-
quirements can not be satisfied (5% storage size, with QoS value
0.5, etc). We observe that, as the QoS value increases from 0.5
to 0.75 of the average node distance, RA algorithm can achieve
a little performance improvement. However, as the QoS value
continues increase, the performance becomes worse. The rea-
son is, in such conditions, because the system looses the QoS
requirement, more servers which include some servers that have
long distance to the client can satisfy the QoS constraints now.
Because RA algorithm choose the location of a replica with
equal possibility, it is very likely that a remote server is chosen.
Thus, the average retrieve cost may even increase. However,
for both GA and PA algorithms, system uses the workload in-
formation to make the decision, this problem does not happen.
No matter what the QoS constraint is, the MORSs determined
by GA and PA algorithms do not change a lot, and the MORS
performance does not change as well. Thus, we do not show the
results here.
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Fig. 5. MORS Performance with different QoS (30 servers, 150 clients)
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Fig. 6. Overall performance comparison (30 servers, 150 clients)

MORS is not enough to achieve the best performance. In the
second experiment, we evaluate the overall retrieve cost. We
compare nine different heuristic algorithm combinations with
super optimal solution and the results for 300-node network are
shown in Figure 6. We do not show the results for 1000-node
network experiments because it generates the similar behavior.
We observe that, the super optimal algorithm achieves the best
performance because it does not have any storage constraints. It
outperforms all the other algorithms. Among all the other ap-
proaches, using GA algorithm in the third stage yields good re-
sults. GA-GA achieves the best performance. We believe this is
because GA algorithm maximizes the performance gain in each
iteration when a replica placement decision is made. From the
results, we also observe that, by using GA in the third stage,
it is not very important which algorithm is used in the second



stage. Even RA-GA can obtain very good performance (only
slightly worse than GA-GA). This proofs that greedy algorithm
is the best solution which can achieve the near-optimal perfor-
mance. Using PA algorithm can also achieve good performance,
although it is a little worse than GA algorithm, the computa-
tional complexity is much lower. Thus, using PA algorithm in
the third stage can be chosen as the best cost-effective option.
On the other hand, using RA algorithm in the third stage is to-
tally inadequate since it yields the worst performance no mat-
ter which algorithm is used in the second stage. As shown in
the figure, all the RA-RA, PA-RA and GA-RA combinations
have much worse performance than any other algorithm com-
binations. Even with a very large server storage size (30% of
the data set). The performance for these three algorithms is still
20-25% more than any other solutions. Among them, RA-RA is
the worst.

From the figure, we also find that using GA algorithm in the
second stage can yield better overall performance than using PA
algorithm in case the storage size is relatively small (5% or 10%
of data set). This proofs that GA can make the better decision
than PA algorithm. As the server storage size increases, this dif-
ference diminishes. This shows with a larger storage space can
be utilized, an approximately accurate decision is good enough
to achieve good performance. As the storage size increased to
25-30% of the data set, using GA or PA in the third stage can
achieve nearly the same performance as the super optimal solu-
tion. Thus, from this experiment, we can conclude that taking
the workload characteristic information into account in object
placement decision is important for the system to achieve the
near-optimal performance.

V. RELATED WORKS

There has been a considerable amount of researches to inves-
tigate the replica placement problem [3], [5], [13], [7], [9]. This
problem can be further divided into server placement problem
and object placement problem according to the replica granular-
ity.

In server placement problem, the replica granularity is a mir-
ror server. Actually, this problem is a variant of the traditional
facility location problem. In [3], Liu et al considered the prob-
lem of placing replicas on a tree-based topology. In [7], Qiu et
al formulated this problem as uncapacitated minimal K-median.
They restrict the maximum number of replicas but do not restrict
the number of requests served by each replica. The study con-
ducted by Jamin et al [13] is similar to [7]. Their work found,
regardless of the placement strategies, increasing the number of
replicas is effective only for a very small number of replicas.
The results suggested that the AS-level fanout-based algorithm
should work as well as greedy algorithms, [5] used this approach
by exploring the impact of various replica and client placement
methods.

In [9], the authors investigated the object replication prob-
lem. The replica entity is a copy of object. The authors proven
that it is a NP-complete problem and proposed several heuristic
algorithms.

Karlsson et al. performed extensive evaluation of different
replica placement algorithms [14]. They concluded that web
caching is much more efficient approach if the update is fre-
quent. However, for content distribution problem, replica place-
ment algorithms are still necessary once properties such as avail-
ability, reliability, performance and bounded update propagation
have to be guaranteed.

Tang et al. [15] is the first work conducted on QoS-Aware
replica placement problem. They studied two classes of ser-

vice models: replica-aware and replica-blind service. l-Greedy-
Insert and l-Greedy-Delete heuristic algorithms are proposed.
While in this paper, we investigate the problem of minimizing
the client retrieve cost and meet the client QoS requirements.
Our work can be viewed as the compliments with theirs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the QoS-Aware object replication
placement problem in content distribution network. We proved
that it is a NP-complete problem and an optimal solution is
not feasible. To solve this problem, we proposed a three-stage
mechanism to achieve the best performance while meeting the
QoS requirements of different clients. We defined a minimal ob-
ject replication set (MORS) to represent the minimal system re-
source requirement for certain QoS guarantee. After a MORS is
generated, more objects are replicated on the spare server space.
A combination of three heuristic algorithms: random, popular-
ity and greedy are introduced to achieve the near-optimal per-
formance. We did extensive experiments to evaluate the perfor-
mance of different algorithm combinations and compare with
the super optimal solution. We observed that it is important to
take client access behavior into account when the system make
the object replica deployment decision. The neglect of this in-
formation will cause at least 30% to 40% system performance
degradation.
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