GUESS: A Language and Interface for Graph Explorati on

Eytan Adar’

University of Washington, Computer Science and Eeejing
101 Paul G. Allen Center, Box 352350, Seattle, V@A%5
eadar@u.washington.edu

ABSTRACT

As graph models are applied to more widely varyfigdds,

researchers struggle with tools for exploring andlyzing these
structures. We describe GUESS, a novel system faphg
exploration that combines an interpreted languagth \a&

graphical front end that allows researchers todiggprototype
and deploy new visualizations. GUESS also contaimovel,
interactive interpreter that connects the languagkinterface in
a way that facilities exploratory visualization kas Our
language, Gython, is a domain-specific embeddedjulage
which provides all the advantages of Python witlw,ngraph
specific operators, primitives, and shortcuts. Vighlight key
aspects of the system in the context of a large siseey and
specific, real-world, case studies ranging from ialo@and
knowledge networks to distributed computer netwamklysis.

Author Keywords
Graph visualization, domain-specific embedded |aiggu

ACM Classification Keywords
D.2.6 Programming Environments, H.5.2 User Intexfac
D.2.11 Domain-specific architectures

INTRODUCTION

Graphs models are in use today in domains as vasesbcial
sciences, organizational behavior, physics, andlogical
sciences. With such wide ranging use it is nopssing that
the number of visualization options available tee@chers has
become almost overwhelming. Researchers now ntugjgte
to decide which tool is best suited for his or heeds. These
tools are at times too general to handle the modelf specific
graph models or at times limited to one domain.e BGUESS
system was inspired by this need. Its design sairt the result
of watching users of our previous system, ZoomgrigyhWe
have found many areas of common need in graph etjgo
and visualization systems, and in particular twdmtasks: a)
the creation of static images through explorataatadanalysis,
and b) the creation of dynamic visualizations tthety would
like to distribute to others. The common featusebbth use
cases is a need for a flexible way of dealing witéph data.

The GUESS language, Gython, extends the Pythompreter,
or more accurately the Jython system [18], by agldirew

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without fesiged that copies
are not made or distributed for profit or commdreidvantage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers orefistribute to lists,
requires prior specific permission and/or a fee.

CHI 2006, April 22—28, 2006, Montréal, Québec, Gima

Copyright 2006 ACV1-5959:-17€-3/06/0004...$5.0.

operators, so-called syntactic sugar, and datatstes which
are tightly bound to the visualization and databbaekend.
Additionally, our customized, interactive interpretlets users
quickly access the output of their work. For ex@mpassing
the mouse over the textual output in the interpreiadow will

cause the corresponding graph objects to be higkliy A
contextual menu system in the interpreter winddemad further
control of graph properties (e.g. changing color§UESS is
distributed with many commands and network algamih
ranging from layout algorithms to shortest pathctostering
algorithms. A number of these are contributed thy JUNG
library [17] which we use for the underlying dateustures.

Since its release, the GUESS system has been dadedoover
a thousand times and has an active mailing listsefs. It has
been used in applications ranging from computenvork

analysis to biological networks to social netwottsvater-line

networks. These uses have frequently been unaertak users
with very little programming experience and demuoatst the
viability of our approach. In addition to ouisdussion of a
number of case studies, we have also collectedvasirom 76

individuals (primarily in the social network comnity) that

describes their use of alternative systems and GJES

Below we briefly cover related work and then wevdehto the
Gython language with particular attention to exptory
analysis tasks. We describe the GUESS GUI (Fidyrand
interactive interpreter and conclude with furthéscdssions of
our user survey and two case studies in which ubesse
developed visualizations using GUESS.

B : o

TR oot Las ek

>>> getConvexHulls() Mode2
[hull:[v243, v258, v244, v242, v245, v246, N\ Edge

¥ hull

>>> m.add(getConvexHulls{)[0],"hul
|>>>
| e

— 1 i 7] IR

Figure 1: A screenshot of the GUESS system.

" Work done while author was at HP Labs

a) b)

£ Guess Visualization £ Guess Visualization

File Displsy Layout Help File Displsy Layout Help

< Guess Visualization

File Display Layout Help

Frequency threshald (171)
S0 100 150 200

c)

[dockexample2 /

e oG

e [ClRiE

I~

Figure 2a-c. The GUESS pipeline, a) users load graphs into the
system or programmatically create them, b) exptoyatdata
analysis and visualization is performed, and c) @nmpulete
application or applet is generated with custom wid@nd controls.

RELATED WORK

A full discussion of the many graph drawing paclsigebeyond
the scope of this paper but are extensively desdrip [23].

Because our survey asked users familiar with soméhese
systems to describe their impressions we will asklra few
specific systems in the discussion of the languagkinterface.
Briefly, however, we believe that GUESS is relatedthree
specific system categories: graph analysis/visatitin systems,
graph libraries, and database visualization.

The GUESS system is an attempt to combine anabs
visualization into one package that supports Exgtoy Data
Analysis (EDA) [29] for graphs. It thus distinghés itself from
solutions that require one system to perform aiglyich as
partitioning (e.g. using Analytic Technologies’ WNHT),

followed by a different program for rendering (eRpjek [4] or
GraphViz [9]). Interactive exploration is diffiduivhen a user is
forced to go back and forth between the analysid tre

visualization packages.

Similarly, systems using sophisticated APIs thatjune a
program—-> compile > run (PCR) cycle are also unattractive.
Frameworks in this domain include excellent grapalysis and
visualization libraries that are ideal for low-léy@ogrammers.
For example, in C/C++ we have LEDA [21] and in Jake
GET/GLT[27], Prefuse [13], yEd [32], and JGraph]16
systems. GUESS does not seek to displace the#étsoout
rather provides a new way to interface with thdfor example,
we have demonstrated that our visualization layen de
replaced with Prefuse and TouchGraph [28] (wistdl
controllable through Gython). Our main use casgeicted in
Figure 2. We believe that GUESS should allow usesmply
load a graph and immediately begin controlling the
visualization. Once the analysis is complete, meqgerienced
users can go further and easily prototype more temp
visualization applications.

The GGobi package contains a graph visualizatioig-pi that
is embedded in the R system [26]. Other approacheh as
LINK [6] or Graphlet [14], use interpreted languag&cheme
and TCL, respectively) and are more related togmais. Users

issn) [0] BRG] oo

of Graphlet are given access to various graph tstres and
algorithms and can manipulate the Tk GUI. Grapislén fact

an evolution from the GraphEd [15] system, an qld=based
system and illustrates the evolution to interpref@uguages.
Though Graphlet is similar to GUESS in a numbewafs, we
believe that by adhering to the unmodified TCL laage, the
system forces users to make use of complex, minéigrograms
to achieve basic goals that could be satisfied wibimcise,
domain-specific operators and primitives. Unldtber systems
which simply implement graph data structures agdrithms in

a specific language, GUESS augments the languagease
common user tasks. Additionally, by not providiagtronger
connection between the interactive interpreter atick

visualization, systems such as Graphlet add worktHfe user
who must manually match the output of exploratasynmands
to the visualization.

Other solutions that make data exploration possdrke not
necessarily streamlined for data structures comimograph
analysis. The GGobi/R solution, for example, reggiiusers to
manipulate matrices and vectors and frequently iregu
additional steps for very simple tasks. A diffdrapproach is
the use of the general LEFTY graphics language [it9]
GraphViz. We believe that a popular language sicRyhon,
augmented with operators and syntactic sugar, esduhe
learning curve while providing the right level obsiraction.
Additionally, GUESS is based on Python becausdahguage
is familiar to many users and is similar to a numiifestatistical
systems (e.g. S-plus and R). There are also a widgy of
libraries implemented in Python that can be easitggrated
into GUESS.

We also believe that our use of a modified Pythamec
distinguishes GUESS from database visualizatiotesys such
as Tioga [3], Polaris [25], DEVise [20], and Riv8t[While
these approaches are potentially able to handfghgstiuctures,
the generality of their approach limits their abstions and
forces more work for the user. By focusing on |aaggl
structures and operations that are unique to graphdelieve
GUESS users can more rapidly develop visualizatmmshese
types of structures.

Another interesting area of related research has bee work in
graph database and schema designs. GML and XMedbas
approaches such as GraphML, and GXL, provide a argsim
for describing and passing graphs between applitatias well
as flexibility for additional attributes [10]. Hawer, while
graphs in these formats can express many useredefin
properties, storage in an XML database and quergéng. in
XQL, XQuery, XPath, XUpdate) is difficult for nowécusers.
Other solutions, such as GraphDB [11] and GOOD ,[vW&re
designed from the start to hold and query grapicgires but
lack visualization features.

THE GYTHON LANGUAGE

When we originally built Zoomgraph we drew inspioat from
domain-specific languages such as GnuPlot and tatestical
analysis system R. However, we quickly learnedt tids
require a steeper learning curve for users. ligdesy Gython
we have opted to use a domain-specific-embeddegusare
(DSEL) instead. Specifically, we extend Pythonhwig¢atures
necessary for dealing with graph structures. Bsedbython is
an extension of Jython (an implementation of Pythodava),
our users have the ability to rapidly add to theES$ GUI. In
fact, we have created a great many classes andptesrto
bootstrap visualization tasks.

GUESS Objects — Nodes and Edges

Because nodes and edges are the primary curreraryajraph
we chose those to be the primary (first-class) abj;n GUESS.
Each node has aame that is accessible from the global
namespace. For example, in a social network we ma&g a
node named bob_jones, or in a protein-protein &ttésn
network we could have Hsp70. The user will notessarily be
accessing individual nodes, but the option is add to them.
Edges are also uniquely identified, but these iflerg are not
directly accessible to the user. Instead, edgesederenced by
their two endpoints. For example, if we assume madesbob
and alice, the edge between them hgb<->alice. From the
implementation perspective, the bob node will logk any
undirected edges connecting it to alice.

In order to select edges that that represent differ
relationships, we have added additional operatots ithe
language, ->, <->, <-, and ?. These are defined as

e alice<->bob selects all undirected or bidirected
edges between alice and bob (undirected and
bidirected are equivalent in GUESS)

. alice->bob and alice<-bob selects all

directed edges.

« alice?bob selects all edges between alice and bob.

Though we have added shortcuts operators, we aavieled
overloading (i.e. redefining) existing operatorspi@vent user
confusion. By making these operators a part oh@yt users
have a concise way of selecting groups of edges. other
implementations, such as Graphlet, or many of tlieero
toolkits, the user must iterate over edges to §ipecific matches
(e.g. a multi-line “for each” program). This isceucial design
point of GUESS. Because a great deal of interactigth
GUESS happens through an interactive interpreteerevusers
enter commands which are immediately executed, sit i
undesirable to have multi-ine commands as thessorbe
difficult to enter and correct. Another solutioowd have been
to create functions such asalice.edgesTo(bob) or

getDirectedEdges(alice,bolip mask the iterations. However,
we feel that these lack the conciseness of the niinect
statement:alice->bob and force the user to remember longer
commands (e.0. was it getDirectedEdges or
findDirectedEdge®).

In addition to nodes and edges, the other mainctstre in
GUESS is the set. This is based on our observatianusers
most often deal with groupings of nodes or edg#iserathan
those edges themselves (e.g. all edges represeataigns of a
certain type, all nodes representing certain engasy etc.)
Although Python has the notion of sets at the rbasic levels
we extend this in Gython to speed up certain tasksor
example, if we have five nodes, N1 through N5, wa create
the following two groups of nodes:

groupl = (N1,N2,N3)

group2 = (N3,N4,N5)
We can find the intersection by using the “&” ogeraor the
union with “|” which are both novel to Gython (egroupl &
group?. This is useful because users are frequentéyrésted
in groups that fall in multiple groups (e.g. depzenht 1
employees that are managers or vice presidentspthan
common task is finding the edges between group®dés. For
example, we would like to find all routes of comriaation
between computers in China and computers in the U®.
facilitate this, the same edge selection operdt@asworked for
individual nodes will also work on sets. So giveur two
groups, a user may use the commgnaupl->group2to find
all directed edges between the two (note tft,N2,N3)-
>(N3,N4,N5)will generate the same results.

The working graph object exists in the global ngmaes as the
variable §". The set of all nodes and edges in the graph are
accessed apnodesandg.edgegespectively. Using these sets a
user could find all outgoing edges from N1 by usitng
commandN1->g.nodegqthough there are alternative methods).

Node and Edge Fields

Based on our experiments with Zoomgraph and ouwresuwe

have found that users require graphs structuresugaport

properties. While graphs can be described as plsimatrix,

most users require graph structures where nodesdgeb have
more complex properties. Of the 55 survey pardictp that
answered this question, 35 (or 64%) indicated tthey worked
with graphs with complex properties (e.g. emploigentifier on

nodes, relationship type on edges, etc.) and 14 2&¥)

indicated needing at least simple properties (eigights on
edges, labels for nodes, etc.), with only the remai 6 (or

11%) satisfied with simple matrices.

In GUESS, a user has the option of associafielyls (i.e.
properties or attributes) with nodes and edgestre@tly, fields
can be textual, numerical, or Boolean (with someitazhal
exceptions for shapes and images). For example,obrour
sample applications involves a social network witha
company. Nodes, representing employees, have tuatex
department field associated with them calléept and job
function field calledobfunc For example, Bob, Alice and Jane
are Manager, Designer, and Intern respectively.mil&ily,
edges have afreq field representing the frequency of
communication between two employees (e.g. Bob atide A
communicated 10 times).

To be consistent with Python we decided that atte could be
accessed by appending the field name to the varizdnine (e.g.

variable.field. This is standard in Python, but required
modifications to the Jython implementation. Foample:

e bob.jobfun returns “Manager”

¢ (bob<->alice).freq returns 10

¢ (alice<->jane).freq = 21 updates the
amount of communication between alice and jane.

Fields come in two flavors, data fields, and visiiglds. The 3
examples above are simple examples of data fiel#fésual
fields correspond to properties that are used byESS to
visualize the graph. For nodes these inclstide, height width,
fixed, visible, color, label, labelvisible, indegreoutdegree,
totaldegree, x,and y. For edges, GUESS currently utilizes
color, width, label, labelvisible, directecand weight When
loading a new graph into the system, a user mainaehe
initial values for any subset of these attributeCertain
properties (e.gindegree, outdegree, totaldegjesre calculated
dynamically with structure changes. These areutaied as
needed in order to prevent overhead to graph dpesgat Other
measures, for example graph centrality measureg {80
PageRank [24], are also generated the first tirneefields are
accessed on a node (e.glice.betweenness bob.pagerank

Changes to visual properties cause an immediategeht the
display. For exampleéhob.color = redwill set the bob node to
red (GUESS has namespace definitions for nearlgod@rs but
will also accept an RGB triplet). Users can malse wf
Python's iterators to modify the fields of group§.he for-loop,
for temp in g.nodes: temp.color = redll set all graph nodes to
red. However, because such functions are useagodntly and
the syntax is cumbersome, an additional featu@ydiion is the
application of setter operations to groups. PFanaple:

e g.nodes.color = pink will set all nodes in the

graph to pink

e (alice,bob).style = 2 will make the alice
and bob nodes circular (default is square)

e (bob,jane).size = 20 will change the size of
bob and jane to 20 pixels (this is syntactic subat
sets height and width at the same time)

« (alice-bob,bob-alice).width = 3 wil
change the line width on the two edges.

In addition to fields, nodes and edges have a nuwimethods
that can be used to find various graph featuresr example,
alice.unweightedShortestPath(bowjll calculate the length of
the shortest path from alice to bob. As we begirstabilize

these methods and find which are frequently used nves

replace them with operators (i.alice<*>bob may come to
mean shortest path). Many other functions existstdecting

neighboring edges, nodes, and other graph propebti¢ are
beyond the scope of this paper.

Though both types of fields, visual and data, exiSGUESS,
users access both in the same manner. This isdrffeyent
than most toolkit implementations such as JUNG mfu®e in
which a Model-View-Controller model disentanglegad&rom
visualization. While useful from a programming ggective,
such models frequently require additional code.r &le,
we could define afedgeWidthRendereobject which tells the
visualization system what width to set each edgdéperhaps
based on some edge property). We believe thaxpioetory

situations users simply wish to modify visual pnds directly
and not implement rendering objects.

While GUESS is not intended to scale to Interne¢digraphs
we have successfully loaded and manipulated netwvofkens

of thousands of nodes and edges on a standard [R@out
algorithms are by far the most expensive operatthnagh the
usual graph sizes (< 5000 nodes) are laid out wearl
instantaneously and standard operations such asirgpland
grouping are nearly real time for much larger ggaph

Filtering Fields

In addition to controlling node and edge propertfeedds are
also used in GUESS to filter graph elements. rttento make
filtering commands directly accessible to usersmaue object
is automatically created for every field that ither defined by
the system or user. That is, for every field ia flystem a field
object is created and made accessible in the giwakspace.

These objects have overloaded (“==", “>", “<”, “>=<=", and

“I=") and added operators (“like”, “roverlaps”, ‘ootains”,

“rexact”, and “rcontained”) When the operators applied to a
field object, GUESS will find all nodes or edgestaming the
filter and return a set of matching objects. Baraple:

« fre@ > 10 will select all edges with
communication frequency greater than 10, and
(freq > 10).color = blue will make those
edges blue

. name like ‘al%’ will find all nodes whose

name starts with “al”.

¢ Users can also make queries between fields. For

examplex >y finds all nodes whose x location is
larger than their y location.

We believe that while including the query syntaxha language
is common in database visualization systems, fitoigel in this
context. Because the bulk of graph systems male afs
languages that are not targeted at querying datassérs are
forced to make database queries, and remap thisrésick to
the graph data. Presuming a connection to a dsgtalaauser
may have to do something of the form:

matchingRows =

db.query(“SELECT * from edges where freq>10")

for each row in matchingRows:
matchingEdge = mapRowToEdge(row)

While we may be able to hide this in a functiong(e.
findMatching(“freq > 10")) this becomes more cumbersome
when users begin to require unions, intersectionspnnections
between sets. If we relied on only existing largguaonstructs
such as those provided in Java or TCL we may hadet
intersection((alice,bob),(findMatchingNodes(“job

func == ‘manager™))

to find who between alice and bob is a managerGython the
equivalent query would be:

(alice,bob) & (jobfunc = ‘manager’)
A user could also find all edges connecting aliciéhwa
frequency of communication greater than 15 by doing
(alice<->g.nodes) & (freq > 15)
If a naming conflict exists between node and edgkld, the
node field is bound in the namespace (eglth). To specify

which width field one is interested in, we prepeNdde. or
Edge. to the field name (e §ode.widthvs Edge.width.

Fields are objects themselves and have propentielsiding
simple measures like “max” and “avg” (e.g. freq.ma¥ields
are also passed as arguments to various functiociading
sortBy(fieldname) and groupAndSortBy(fieldname).
Respectively, these functions generate a set oésad edges
sorted by a particular field or a set of sets inchtobjects with
equivalent field values are grouped together. blgtave can
also use the syntayroupl.sortBy(fieldnamep sort all items in
groupl by some field.

Loading Graphs

Unlike Zoomgraph, users of GUESS have more optifams
loading graphs into the system. A simple commaaspd
format called GDF is the easiest for new users. wéler,
GUESS now supports GraphML and the Pajek file fasnfiar
importing from other applications.

In addition to loading in various graph descriptfdes, users of
GUESS can also create and remove nodes, edgefielsdon-
the-fly. Various primitives support these funccend the data
is appropriately saved into the backend database.

Because GUESS uses a database as a backend, abuaece
can switch in their own databases by implementinginaple
API. One user of GUESS, who had previously creatdarge
system for analysis, elected to use a network neodlaulilt in
GUESS) which allowed him to connect remotely anmpy
execute scripted commands to construct and manégalgraph.

Graph States

There are two main reasons we may be interestpdeserving
graph states. The first is the necessity of urgl@ments in
exploratory tasks, and the second is in the armlg§itime-
sensitive data (e.g. dynamic graphs).

Although we noticed this in Zoomgraph users, pgréots in
our survey confirmed for us the importance of réuagr to
previous versions of the visualization. When askedcame
their main issues with systems such as Pajek antlBEC users
responded with statements such as: “[In UCINET] yawe to
reload a network for every operation. Horribleridafor Pajek
“once you have applied a spring embedding algoriyfmen can
never return to the previous sociogram displayéatly, when
performing exploratory visualizations it is cruci@ revert to
previous layouts if the current one is unsatisfactfihis is
especially important since many layout algorithetguire a long
time to compute). In GUESS we allow users to issusave
state” commandss(state name)or to easily retrieve a saved
state through the load state commaitgfstate name). The
argument to both methods is a either a string ger which is
becomes the name of the state. While we could hi® t
automatically for the user after every command uppert full
undo, we disable this option in the distributedsi@n as it has a
computation cost and may disrupt the user’s flow

While there are many instances of graphs that aaéics
frequently users are interested in graphs thathamging over
time. In our own work we have had to visualize ivas
dynamic social networks and have generated mowviedepict
various phenomena. In our survey population wesdsthe

! Independently of this feature, GUESS allows userslog their
interaction sessions to file (these can later bplayed”).

participants if they required visualizations of dymic graphs
(yes or no). Of the 59 that answered, 47 (or 80%icated a
need to visualize such graphs. On the other haweral noted
in their criticism of systems such as Pajek and NETT as well
as toolkits such as JUNG that very little suppsravailable for
this task.

The Gython language supports querying and accefisld$ at
different states. For example, if we had definestlage for every
year we would typebob[1999].jobfuncto find Bob’s job
function in 1999. We could also find all commurtioa edges
where the frequency of communication increased fi®89 to
2000 by doingfreq[2000] > freq[1999]

In order to preserve a mental map model [22], GUEH&®
Zoomgraph, implements @weening algorithm that smoothly
transforms a graph from state to state. A user spagify the
amount of time to spend on this transformation cadBse nodes
and edges can appear and disappear between stateare
distracting in their transition we have added addal controls
that define how quickly in the cycle nodes and sdgeould
disappear and how late they should appear. Whegea is
satisfied with their animation, GUESS can exporte th
visualization in QuickTime format. In fact all us@teractions
with the visualization system can be saved. Isarwants to
manually move nodes and edges or apply transfoomatihese
can be saved as a movie as well.

Sometimes dynamic graphs have a complex notiotatd.s For
example, a social network graph may have different
communication frequencies for each time periodr ths type
of dynamic graph, the state mechanism describedreali®
appropriate. A far simpler type of state is a rgknin which
nodes and edges exist or vanish depending onrtiee(8.g. the
network link is up or is down). To represent this allow users
to define a range field which is a comma delimitist
indicating when a node or edge exists. A rangkl fieich as
“1,5-10,20,” for example, indicates that a grapénent existed
during time 1 and 20 and during the period betwgemd 10
(inclusive). Users can query on this using theillamquery
syntax with the operators roverlap, rcontains, tamed, rexact.
For example:

. Node rcontains 5 returns all nodes that exist at

time 5

« Edge roverlap (4,6)
overlap the time period 4-6.

returns all edges that

Now that we have defined the fundamentals of thguage, we
can start to see how they can be used in visudbeatjpn.

Functions and Programming in Gython

In the original Zoomgraph system we had implemetedraph
functions as reserved keywords. One of the csitisi of this
was that it was difficult for users to add theirrowunctions or
modify ours. Users had to program the primitiveJava so it
would be accessible to them in the Zoomgraph laggua
Instead, in GUESS we have bundled some functiotts time
appropriate objects (e.g. graph functions are pmédrigraph
objects, display window functions in the main wimdobject,
etc.). A user wanting to generate a random layautld use the
commandy.randomLayout()

While packaging of this type is understandablertgppmmers,
in observing our users it emerged that they weeguently
confused about which functions belonged to whicheab

Rather than having them look up these functionsyetime we
implemented an automated system that generatesnaeanuof
wrapper functions at compile time that are theringef globally.
Users can now typeandomLayout() (in fact they can do
randomLayout omitting the parenthesis—another Gython
feature) and the system automatically knows whibfed to
invoke the function on. In this way, we have pdad both
primitives and functions which the user may seléam
depending on their comfort level with the language.

Simple Visualizations and Exploration

While the GUESS interface provides a number ofufiest for
the exploration and manipulation of the graphs bam
zooming, etc.), it is frequently desirable and ptitdly easier,
to achieve this programmatically. For example, ES3
provides acenter(...)function which will take any set of nodes
and edges and center the camera around those lpacining
and zooming as needed. A user can, for examptenzn on a
department by typingenter(dept =="‘IT’).

One of the most used features of GUESS are furstioat map
data properties to visual properties. For instam@& may want
to map the communication frequency field to thetwidf an
edge (ranging from 1 to 5 pixels). Programmatcahis would
correspond to something the following:
for e in sortBy(freq):
prop = (e.freq — freq.min)/
(freg.max-freq.min)
e.width =1 + 4 * prop

Similarly, to color each department differently e@uld use the
random color generator (GUESS also has a functiqeraduce
a sequence of colors in a range) and do:
for group in groupBy(dept):
group.color = randomColor()

Since commands such as these are used so frequentiave
created shortcut functions called colorize andzeesihich take

a field as an argument and optional arguments sscstarting
and ending colors and sizes and visually transfivennodes or
edges. The commands for the previous two exampbesd be
resizeLinear(freq,1,5) and colorize(dept) Figure 3, for
example, was generated using the command
colorize(totaldegree,yellow,red)

Since GUESS is built on top of the JUNG library ean also
make use of various pieces of code available teegbpn graph
based clustering. One application where GUESSbkaesa used
is in finding communities of nodes and visually Hlighting
those communities. Using the betweenness clugtengthod, a
popular community finding algorithm, and GUESS'’ |&ypito
create convex hulls around sets we apply the fatigiunction:

for clust in edgeBetweennessClusters(7):
createConvexHull(clust,randomColor(120))

In this example we are asking for 7 clusters ané th
randomColor method takes an optional alpha variable to
indicate transparency. Various other clusterirgpathms are
implemented and available to the user. For Figune applied
groupBy(deptlinstead of the betweenness clustering method to
generate the hulls.

Layout Algorithms and New Visualizations

It is rare for a user visualizing a graph to halveaaly specified
the coordinates for all the nodes. More frequerttg user will
depend on the visualization system to layout ttaplgrin a way

that conveys some interesting aspect of the grapBUESS
provides a number of standard layout algorithmduitiag
Fruchterman-Reingold, Kamada-Kawai, Sugiyama, GEM,
ISOM, radial layouts, and various spring based @nm@ntations
(these are fairly standard techniques and are geavim [8]) as
well as a few of our own creation. For iteratiggduts, such as
the spring-based techniques, users may specifintingber of
iterations to run. Supplying no argument will résn a query

to the user every 30 seconds asking if they woikd to
continue.

While our algorithms are frequently sufficient fasers, they
may also create their own using quite easily. /Astamn
visualization such as Figure 3 takes under 10 lineEhe
equivalent algorithm would have taken far more wairectly in
systems such as JUNG or Prefuse as we would havetcha
implement and compile new layout algorithms, anteptally
new renderers, in order to control placement asdldy.

While we have not attempted extensive scaling én@sits we
have successfully loaded and applied the GEM &lgarito

graphs with 10000 nodes and 12000 edges. Largphgrseem
very plausible and seem only limited by memory.

THE GUI

At the visual layer, the GUESS system supportsdibplay of

very large graphs through the use of the Picc@méwork [5].

Piccolo provides an infinite visualization planetiwiinfinite

zoom for 2D objects. However, in building GUE®8 have
opted to disentangle the data from the visual sspr&tion, thus
allowing integration with Prefuse and TouchGraph.

Beyond simple pan and zoom features, users hawssdo a
number of commands that change the display of taphg

export images, and perform basic layout operatiodsers can
also annotate the graph with basic 2D objects. ditfahal

features include a property window and basic chgrti
Automatically generated legends are a crucial featin

exploratory environments as they help annotatealidata in a
useful way. This was one of the most requesteturfes in

Zoomgraph and is now available in GUESS.

nodes

Figure 3:
(individuals) are placed around the circle by dapant.
The more connected nodes are pulled into the caote
colored a deeper red (edge colors are the averatie o
node color). A convex hull groups departments tiogre

A sample Vvisualization where

Our belief is that the defaultfy - 1o/x|

interface to GUESS should be {me'wmw '

plain as possible. Network an

graph analysis in various fields h

resulted in an incredibly larg {dep=52]

collection of algorithms and

methods. Frequently, the metho [k

are similar but the language an

names to describe them al [

completely different. Even within ,.“,%ﬂ [:

fields such as social networ e f—'.l"

analysis the number of tools i ism= | Tl dg'ptzipm

overwhelming. Pajek, for exampl L h

has 17 menus in the menu bar wi i E
X . >>> groupBy(dept) 79

an average of 8 items in eac [[v203, v164, v73, v340, v194, v201, v132 [0 100, vi04, v61, L=

These are themselves submen v338, ¥352], [v16], [v271, v55, v314, vi30%., 190, v100, v102,

which may go down 4 levels. O v185, v215], [v187, v208, v331, v141, v79%! 01, v51, vi84

the 47 survey participants wh

described their issues with Paje
and UCINET, 17 (or 36%) made
specific note of the overwhelming
Uls and lack of guidance as their
main issue with these systems.

¥261, v122, v363, v232, v152, v321, v65, vhes

| nterpreter | 152

v318, v52, v94, -

| [select astate =/ IL'EH“_‘JDL'@J V255 ‘321

(37 more) &

Figure 4: A demonstration of the connection between therpméter and various
visualizations. A tooltip window displays addit@ninformation. In addition to the

highlighting in the graph display, note that the pegment containing moused-over nodes

We believe the interface that an end s gjightly pulled out.
user is exposed to should contain

the functions needed for their task.

As such, we have allowed programmatic control ofnme
options, toolbars, and other areas of the GUI. Iape is that
users will load interface views that address tkpicific needs.
A biologist, for example, may not see the sociatwaoek
algorithms that are available to the social anadyshe network
flow algorithms for the computer scientist.

The Interactive Interpreter

One of the most novel features of GUESS has been th

interactive interpreter. We started with the basithon

interpretef console and extended from there. The console

provides a simple way to enter commands. As cordsane
entered they are evaluated immediately and the ubuip
displayed in the console. Figure 4 shows a sligktijarged
view of this console in the bottom left of the \adimation
window. If a user ends their line with a coldhe Python
symbol indicating the start of a code block, théeipreter
allows the user to enter additional lines. Hittiagter on a
blank link leaves the code block mode. This istipalarly
useful for defining loops. The interpreter alsmvides the
usual cut and paste operations as well as a histogtion to
cycle through previous commands.

If we look at the output of thgroupBycommand in Figure 4 we
notice that the result is fairly overwhelming. Tiesponse is a
large grouping of node groups (one for each depantn This
is useful for a programmer, but simply lookingla results may
not tell us much. A user faced with this list nvagnt to match
what is in the list to the visualization. To helye drew
inspiration from trends in development environmerasd
systems such as Matlab. When a user moves theenooumsor
over text in the interactive window and the textlenthe mouse
corresponds to a node or edge, that edge is hightigin the
visual display. If the mouse moves over a variabf@esenting

2 Strictly speaking, we started with the graphicaé amplemented in
the YaTiSeWoBe system.

a group of nodes or edges the complete group isligiged.

More interestingly, GUESS makes a distinction betwé@ems
in sets and sets. For example, if the systemnstargroup of
two groups such as [[V1],[V3,V4], GUESS forms tledidwing

table in memory:

1 2 3 4 8 9 10 11 12 13 14 1 1 17

[1ryviyiarf1y.{rvy{s|.vi4a4|1]|]1

When the user mouses over positions 3 or 4, nodeisvVl
highlighted. Similarly, when the user moves ovesipions 11
or 12, V3 is highlighted. However, if the user rasvover
position 10, 13, or 16, both nodes V3 and V4 aghlighted in
the display. Moving over positions 1, 9, or 17 smEs
highlighting of all three nodes. The “matchedkitis always
underlined to provide the user with a visual intdma of the
area they are moving over. From an implementgienspective
we make use of an interval-tree data structure lwkdgchighly
optimized for these tasks.

Due to our event management infrastructure, highilig a node
does not necessarily mean simply highlighting itthie graph
window. If the node, edge, or group is part of ather
visualization (e.g. a chart) that area will be Higiited as well.
Figure 4 is an example of all this in action.

Tooltips that are displayed are contextualizechi type of the
object being moused-over. The top entries 15 entaire shown
for lists, exception logs are shown for errors, dndumentation
is displayed when mousing over functions. GUES® allows

functions that create lists to annotate them. &le the
grouping operators, will annotate lists with thewping criteria.

In Figure 4 at the top of the tooltip box we findi@te that “dept
== dept6.” This annotation helps the user quidiintify the

reason a group was formed.

A last feature that allows for integration betwegésualizations
and the interpreter are contextualized menus. Whenuser
right clicks on text or on items in the visualipatia popup
menu appears with items specific to the selecteohdt For
example, for nodes or groups of nodes, users daotghe style
of the nodes. For edges the menu may includetiagébr edge
width. These menus enable quickly modifying theusl
aspects of graph elements without extensive typirig. all
menus users have the option to define a variabbeenia the
interpreter with the contents of the selected iteuser may
select a number of nodes in the graph, right-dilckthe menu,
and set the variable “foo” to the content of thdeston.
Subsequently, commands liko.color = black would be
understood and executed by GUESS.

Handling User “Mistakes” in the Interpreter

In watching our users interact with the system écdme
apparent that they were frequently overwriting #ssociation
between namespace names and objects. For exampiger

would typeg = 5 and would lose access to the graph object.

This is extremely dangerous in an exploratory sydbecause it
is difficult to back out of namespace changes dudlye(at least
without extensive modifications to the language system).
Instead, we settled upon a simple scheme in whieh
distinguish between user variables and immutablstegsy
variables. Nodes and the graph objectfor example, as well
as colors and fields are of this immutable type anderror
message is returned if a user tries to modify tbentent.

Other issues, such as infinite loops are helpfulindled by
Java. This ensures that user error does not Gauksastrous
crash of the system. Furthermore, when GUESS iis inu
“persistent” mode all changes to the graph arehfidsto disk
and can recovered at the restart of the application

A previous issue was that deleted nodes and edges gone
from the system. In GUESS, nodes and edges thatleleted
from the graph become part of a specid¢letedstate which can
be queried as all states. Those nodes can bg easilded to
the working state with a simple command.

Building Applications

During the exploration stage users may save thigiralizations
into a persistent database, a simple file, or exi@rimage into
any number of formats (including JPG, PNG, GIF, PBPS,

and others). Users may also save a log of thegram so that
it can be rerun at a later time on either the sdate or new
graphs. While this is in some cases sufficierg.(@.user simply
wishes to generate an image for paper), there racudntly
times where a user would like to build a new aggtian or

augment the GUI. Gython, like Jython, can be coeapiinto

Java code and our applications can be used in fpple

GUESS allows users to create new “toolbars” that docked
either vertically or horizontally in the GUl. Bacse we are
using a modified Jython core, users are able toemade of
standard Java widgets while ignoring the messy ildetat

implementing complex event handlers. Users can alake
user of functional programming techniques in definiGUI

reactions. For example, a user can create a battdrhave the
display center every time the button is clickedtig command:

testButton.actionPerformed = lambda event:
center()

A slider bar can be used to control which edgesdésplay in
the social network example:

testSlider.mouseReleased = hideshow
def hideshow:
val = testSlider.getValue()
(freq < val).visible =0
(freq >= val).visible = 1
For users familiar with Java, where they would haveefine a
listener object to handle mouse events, query dagabor filter
nodes, this is far simpler. Once the user has B
designing their visualization and/or GUI modificats these can
be deployed either as an application or as an appldsers may
define highlighting behavior in the same way, augtmaenus
(both main menus and contextualized popups), antt@ovhat
happens when items are clicked on (e.g. open a agebpr
zoom in).

As we primarily rely on Jython for these features will not
cover the full details of writing GUI extensions daistead
concentrate on a few sample applications thattitiis GUESS
in action.

SURVEY AND GUESS CASE STUDIES

We are aware of many groups either using or evalg&@UESS

in applications ranging from social networks to miocheckers
to computer networks to biodiversity networks. $omse

GUESS independently of other systems, but we ameaof at

least one where a simple network interface has besated so
that GUESS can respond to remote commands. Belew
briefly describe our survey in more detail and dode by

concentrating on two real-world examples of GUES 8se.

Graph Software Survey

Although we have described some of the survey tesulthe
context of the system description it is worth menitng some
other key facts. The survey was collected ovema week
period by advertising to a number of mailing ligtise bulk of
responses came from SOCNET, a large social-netwasing

list with some from the JUNG and GUESS mailing slist
During this time, 77 users completed at least aotign of the
survey. Of the 63 users answering this questd@n(or 78%)
indicated that they had no experience with GUESS&8IatThus
the bulk of responses were more useful for undedatg user
needs and experiences with other graph visualizagod

analysis packages. Only 37% (28 out of 76) wesenfa field

where programming knowledge was to be expected. (e.g

Computer Science and Physics). The rest were pomarily
social science fields (e.g. Sociology and Ethnplgya

The goal of the survey was primarily to identifisugs, both
positive and negative, users had with other systerhe bulk of
participants had no (49 participants) or very lediexposure (6
participants) to GUESS (of 63).

The survey collected free form answers for threegmries of
graph tools: Menu-based tools (Pajek, UCINET, etodlkits
and programmable systems (JUNG, Graphlet, Preéisg, and
math systems with graph functions (Mathematica, eR..).
Participants indicated which systems they had wssd were
prompted to enter positive and negative impressiofifiese
responses were coded and appear throughout the fapsitive
responses tended to be short statements conceamailgbility
or price (free was always good). Participants wiaremore
willing to provide negative reactions. These fssware
encouraging for us as they confirm a number of @egisions.
For the menu-based tools the top complaints wefe4{
respondents): complex interfaces (17 instances}, baich
oriented/extensible (11 instances), and issues aath formats

(5 instances). Fewer respondents (31) were fammifidn toolkit
systems and the only repeated complaint was oregdmaing
curve (4 instances).

Because so many different systems exist for vigimgi and
analyzing graph structures we feel that these resm are
mostly useful for identifying issues that GUESS aaprove on.
We feel that a better indication of GUESS’ usefalés in the
positive responses in real case studies.

Proximity Estimation and Load Transfer

One of the groups to make use of both ZoomgraphGIDESS
is the Networking Research Group at HP. One df therent
projects is the estimation of network latenciesaige networks
[31]. Because pair-wise computation of latencywesy time

consuming, the authors have developed algorithms fo

estimating which network nodes are closest (in $enfriatency)
to any source computer.
effectiveness of the algorithm they have used GUBESS
generate a custom visualization (Figure 5a).

Their implementation loads the fully connected drdall pair-
wise connections). When a user selects a node ribdée
becomes the center of a star graph with all neighgaonodes
around them. All other nodes and edges are remfyoed the
graph. The connected nodes are laid out in aecaobund the
central node at a distance proportional to the restivork

| BES|

Fle Display Layot Help

P EEE)

Fie Window

Bandwidth Rank 5 (31.0 Mbps)
Bandwidth Rank 4 (33.4 Mbps)
Bandwidth Rank 3 (35.4 Mbps)
Bandwidth Rank 2 (100.0 Misps)
Bandwidth Rank 1 (104.0 Misps)

I anetian2.cfliue. ey

(==]

a) e m

| [eect astote =] (&] oSN R |

File Display Layout Help

q
M

AW =
NS, 4
I

K
AP

Undiirected weight threshold (8) dl [] 6 reciprocated citations
0 10 20 30 W 50

| poiitoot |

| [selectastae -] \ | \ Instapunc

[Java Applet Window

Figure 5a,b: Figure 5a is a screenshots of a network
estimation algorithm. Figure 5b captures the jualit
weblog visualization applet
(www.hpl.hp.com/research/idl/demos/politicalblogdem
o.html). Note the additional “toolbar” at the huott
which was added by the user.

In order to demonstrate th

latency. Those nodes that are predicted to bes @os colored
differently based on the predicted distance.

One of the requests of users of Zoomgraph was biiyato
create a legend. This feature is now availablBUHESS. Users
may create as many legends as they want and “insede,
edges, or convex hulls into the legend with someute
annotation. The legend used in this visualizathmicates how
colors correspond to latency values. Users ofvibealization
can quickly assess the quality of the predictiod anderstand
where and how failures happen.

A different visualization for this group demonsésita resource
allocation system in which work on overloaded cotepi is

moved to other resources. This tree based visualiz is

created dynamically through simulation. As a naddetree

becomes overloaded it is divided into two otherewudith the

edge being labeled with “reason” for the split.

Both visualizations were built in few days of pame effort and
were well received in demonstration sessions.

Political Weblog Network

After the US elections in 2004 there was a great deinterest
in the web research community in the study of anlgwocial
structures in the political context. A recent pajattempted to
understand political webloggers [1], and specificad compare
liberal and conservative blog network structures.

By using GUESS, the authors of the study were &blereate
high-quality, static, visualizations of these netkgo for their
paper. They were also interested in making thea dad the
visualizations available to their readers.

The graph and a new toolbar were deployed with GR/ES an
applet. Figure 5b is a screenshot of this visaitn. The

graph was laid out using a GEM layout which cleadyarates
the red (conservative) and blue (liberal) nodesdéé are sized
according to their in-degree and edge width israefi by the

number of reciprocated citations between the blodsdges

internal to the liberal side are colored blue, aidilarly those

on the conservative side are red, with those tioascin yellow.

Up to this point the program is 8 lines of code.

Nodes and Edges may have event handlers attachlednothat
wait for the mouse to move over or the mouse buttoe
clicked. In this case, the author has electecgs$pand to shift-
clicks on nodes by opening up a web page with gsedated
blog homepage. The toolbar at the bottom of theestiallows
users to select a threshold (i.e. the number oédimne blog
links to another) for displaying links. As theddr is moved to
the right edges that do not meet the thresholdiaaen. In all,
the script is under 60 lines of code.

CONCULSIONS AND FUTURE WORK

In this paper we have introduced the GUESS systé/r. have

illustrated how the Gython language can be useéxploratory

data analysis of graph structures. We believé ttha design
decisions we have made in language design makedheseful

for rapid exploratory data analysis. We also helithat the use
of a targeted, domain-specific language is broaglglicable in

the design of direct manipulation systems in wHiok grained

user control is desirable. Furthermore, the GUESStem

presents an environment for users with arbitrappgrdatasets
and a single mechanism for generating static andamijc

visualizations as well as applications. Finallye believe that
our GUI design represents a novel integration afu@ and

visual interaction which can be applied to othesusilization
systems where multiple modes of interaction aressary.

At present, our major goals are to improve theesy& ability
to handle dynamic graphs and to add path findimgasgics that
provides users with a more flexible grammar fodiing graphs.

As we continue to work with users we hope to bee aol
generate custom interfaces for different users.wBgking with
biologists or social scientists we hope to deteemimhich
features they find most useful for their tasks grdvide a
custom view into GUESS that supports those needs.

AVAILABILITY
GUESS is available at: http://www.graphexploratorg.

ACKNOWLEDGEMENTS

The author would like to thank David Feinberg anshiia Tyler
without whom GUESS could not have been built. Addil

thanks to Bernardo Huberman, Lada Adamic, the Nator

team, and all the users of Zoomgraph and GUES§reAt deal
of thanks to the implementers of the free softwatéch we

were able to use in this system. Finally, thaokBan Weld and
Kayur Patel for useful comments on this paper.

REFERENCES

[1] Adamic, L.A., and N. Glance, “The Political Blogdmge
and the 2004 U.S. Election: Divided They Blog,™ 2
Annual Weblogging Workshop, WWW 2005, Chiba,
Japan, May 10, 2005.

[2] Adar, E., and J.R. Tyler, “Zoomgraph Manual,
www.hpl.hp.com/shl/projects/graphs/doc/zg-manuai.ht

[3] Aiken, A., J. Chen, M. Liu, M. Spalding, M. Stonaker,
and A. Woodruff, “The Tioga-2 Database Visualizatio
Environment,” IEEE Vis. '95 Workshop. on Database
Issues for Data VisAtlanta, Oct. 1995, pp. 181-207

[4] Batagelj, V., and A. Mrvar, “Pajek — Program forrga
Analysis,” Connections21:47-47, 1998.

[5] Bederson, B.B., J. Grosjean, and J. Meyer, “Toddsign
for Interactive Structured GraphicdEEE Transactions on
Software Engineering30(8):535-546.

[6] Berry, J., N. Dean, M. Goldberg, G. Shannon, and S.
Skiena, “Graph Drawing and Manipulation with LINK,”
Lecture Notes in Computer Science 1353: Graph Dmgwi
1997 G. Di Battista (ed.), Springer, 1997.

[7] Bosch, R., C. Stolte, D. Tang, J. Gerth, M. Rosgmbland
P. Hanrahan, “Rivet: A Flexible Environment for Quumter
System Visualization,Computer Graphics34(1), 2000.

[8] Di Battista, G., P. Eades, R. Tamassia, and I. @lisT
Graph Drawing: Algorithms for Visualization of Grag
Prentice Hall, 2002.

[9] Gansner, E.R., and S.C. North, “An open visualamati
system and its applications to software enginegring
Software — Practice and Experiencg0(11):1203-1233,
2000.

[10] “The GraphML File Format,” graphml.graphdrawingyor

[11]Guting, R.H. “GraphDB: Modeling and Querying Graphs
in Databases,” VLDB '94, Santiago De Chile, Chigp.
12-15, 1994.

[12] Gyseens, M., J. Paredaens, J. Van den Bussch®, arah
Gucht, “A Graph-Oriented Object Database Model,”
Proceedings of the ™ Symposium on Principles of
Database Systembilashville, TN, 1990.

[13]Heer, J., S. K. Card, and J. A. Landay, “Prefus@:.oalkit
for Interactive Information Visualization,” CHI 260
Portland, OR, April 2-7, 2005.

[14]Himsolt, M., “Graphlet: design and implementatioh a
graph editor,” Software — Practice & Experience
30(11):1303-1324, 2000.

[15]Himsolt, M., “GraphEd: A Graphical Platform for the
Implementation of Graph Algorithms,Lecture Notes in
Computer Science: Graph Drawing 19®pringer, 1994.

[16]JGraph homepage, http://www.jgraph.com
[17]JUNG homepagdittp://jung.sourceforge.net
[18]Jython homepage, http://www.jython.org

[19]Koutsofios, E. and D. Dobkin, “Lefty: A two-view idr
for technical pictures”, Graphics Interface '91,Id2ay,
Alberta, 1991, pp. 68-76.

[20]Livny, M., R. Ramakrishan, K. Beyer, G. Chen, D.
Donjerkovic, S. Lawande, J. Myllymaki, and K. Wenge
“DEVise: Integrated Querying and Visual Exploratioh
Large Datasets Proceedings of ACM SIGMQD997.

[21]Melhorn, K., and S. Naher, “LEDA: a platform for
combinatorial and geometric computingGdmmunications
of the ACM 38(1):96-102.

[22]Misue, K., P. Eades, W. Lai, and K. Sugiyama, “Layo
Adjustment and the Mental Map,Journal of Visual
Languages and Computin§(2):183-210, 1995.

[23]Mutzel, P., and M. JungerGraph Drawing Software
Springer-Verlag, 2003.

[24]Page, L., S. Brin, R. Motwani, and T. Winograd, &Th
PageRank Citation Ranking: Bringing Order to thebWe
Stanford Technical Report, 1998.

[25] Stolte, C., D. Tang, and P. Hanrahan, “Polaris: y&t&m
for Query, Analysis, and Visualization of Multidimgonal
Relational DatabaseJEEE Transactions on Visualization
and Computer Graphi¢8(1), 2002.

[26] Swayne, D.F., B. Andreas, and D.T. Lang, “Explonato
Visual Analysis of Graphs in GGobi,” Workshop on
Distributed Statistical Computing (DSC 2003), Vienn
Austria, March 20-22, 2003.

[27] Tom Sawyer Software, http://www.tomsawyer.com
[28] TouchGraph, http://www.touchgraph.com

[29] Tukey, J.,Exploratory Data Analysis Addison-Wesley,
1977.

[30]wasserman, S., and K. FauSgcial Network Analysis
Cambridge University Press, 1994.

[31]Xu, Z., P. Sharma, S. Lee, and S. Banerjee, “Nateig
Scalable Network Proximity Estimation,” HP Laboris
Technical Report, HPL-2004-28, Feb. 2004.

[32]yEd by yWorks, http://mwww.yworks.com

