
GUESS: A Language and Interface for Graph Explorati on
Eytan Adar*

University of Washington, Computer Science and Engineering
101 Paul G. Allen Center, Box 352350, Seattle, WA 98195

eadar@u.washington.edu

ABSTRACT
As graph models are applied to more widely varying fields,
researchers struggle with tools for exploring and analyzing these
structures. We describe GUESS, a novel system for graph
exploration that combines an interpreted language with a
graphical front end that allows researchers to rapidly prototype
and deploy new visualizations. GUESS also contains a novel,
interactive interpreter that connects the language and interface in
a way that facilities exploratory visualization tasks. Our
language, Gython, is a domain-specific embedded language
which provides all the advantages of Python with new, graph
specific operators, primitives, and shortcuts. We highlight key
aspects of the system in the context of a large user survey and
specific, real-world, case studies ranging from social and
knowledge networks to distributed computer network analysis.

Author Keywords
Graph visualization, domain-specific embedded language

ACM Classification Keywords
D.2.6 Programming Environments, H.5.2 User Interfaces,
D.2.11 Domain-specific architectures

INTRODUCTION
Graphs models are in use today in domains as varied as social
sciences, organizational behavior, physics, and biological
sciences. With such wide ranging use it is not surprising that
the number of visualization options available to researchers has
become almost overwhelming. Researchers now must struggle
to decide which tool is best suited for his or her needs. These
tools are at times too general to handle the modeling of specific
graph models or at times limited to one domain. The GUESS
system was inspired by this need. Its design is in part the result
of watching users of our previous system, Zoomgraph [2]. We
have found many areas of common need in graph exploration
and visualization systems, and in particular two main tasks: a)
the creation of static images through exploratory data analysis,
and b) the creation of dynamic visualizations that they would
like to distribute to others. The common feature to both use
cases is a need for a flexible way of dealing with graph data.

The GUESS language, Gython, extends the Python interpreter,
or more accurately the Jython system [18], by adding new

operators, so-called syntactic sugar, and data structures which
are tightly bound to the visualization and database backend.
Additionally, our customized, interactive interpreter lets users
quickly access the output of their work. For example, passing
the mouse over the textual output in the interpreter window will
cause the corresponding graph objects to be highlighted. A
contextual menu system in the interpreter window allows further
control of graph properties (e.g. changing colors). GUESS is
distributed with many commands and network algorithms
ranging from layout algorithms to shortest path to clustering
algorithms. A number of these are contributed by the JUNG
library [17] which we use for the underlying data structures.

Since its release, the GUESS system has been downloaded over
a thousand times and has an active mailing list of users. It has
been used in applications ranging from computer network
analysis to biological networks to social networks to water-line
networks. These uses have frequently been undertaken by users
with very little programming experience and demonstrate the
viability of our approach. In addition to our discussion of a
number of case studies, we have also collected a survey from 76
individuals (primarily in the social network community) that
describes their use of alternative systems and GUESS.

Below we briefly cover related work and then we delve into the
Gython language with particular attention to exploratory
analysis tasks. We describe the GUESS GUI (Figure 1) and
interactive interpreter and conclude with further discussions of
our user survey and two case studies in which users have
developed visualizations using GUESS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

Figure 1: A screenshot of the GUESS system.

* Work done while author was at HP Labs

RELATED WORK
A full discussion of the many graph drawing packages is beyond
the scope of this paper but are extensively described in [23].
Because our survey asked users familiar with some of these
systems to describe their impressions we will address a few
specific systems in the discussion of the language and interface.
Briefly, however, we believe that GUESS is related to three
specific system categories: graph analysis/visualization systems,
graph libraries, and database visualization.

The GUESS system is an attempt to combine analysis and
visualization into one package that supports Exploratory Data
Analysis (EDA) [29] for graphs. It thus distinguishes itself from
solutions that require one system to perform analysis, such as
partitioning (e.g. using Analytic Technologies’ UCINET),
followed by a different program for rendering (e.g. Pajek [4] or
GraphViz [9]). Interactive exploration is difficult when a user is
forced to go back and forth between the analysis and the
visualization packages.

Similarly, systems using sophisticated APIs that require a
program � compile � run (PCR) cycle are also unattractive.
Frameworks in this domain include excellent graph analysis and
visualization libraries that are ideal for low-level programmers.
For example, in C/C++ we have LEDA [21] and in Java the
GET/GLT[27], Prefuse [13], yEd [32], and JGraph [16]
systems. GUESS does not seek to displace these toolkits but
rather provides a new way to interface with them. For example,
we have demonstrated that our visualization layer can be
replaced with Prefuse and TouchGraph [28] (while still
controllable through Gython). Our main use case is depicted in
Figure 2. We believe that GUESS should allow users to simply
load a graph and immediately begin controlling the
visualization. Once the analysis is complete, more experienced
users can go further and easily prototype more complex
visualization applications.

The GGobi package contains a graph visualization plug-in that
is embedded in the R system [26]. Other approaches, such as
LINK [6] or Graphlet [14], use interpreted languages (Scheme
and TCL, respectively) and are more related to our goals. Users

of Graphlet are given access to various graph structures and
algorithms and can manipulate the Tk GUI. Graphlet is in fact
an evolution from the GraphEd [15] system, an older, C based
system and illustrates the evolution to interpreted languages.
Though Graphlet is similar to GUESS in a number of ways, we
believe that by adhering to the unmodified TCL language, the
system forces users to make use of complex, multi-line programs
to achieve basic goals that could be satisfied with concise,
domain-specific operators and primitives. Unlike other systems
which simply implement graph data structures and algorithms in
a specific language, GUESS augments the language to ease
common user tasks. Additionally, by not providing a stronger
connection between the interactive interpreter and the
visualization, systems such as Graphlet add work for the user
who must manually match the output of exploratory commands
to the visualization.

Other solutions that make data exploration possible are not
necessarily streamlined for data structures common in graph
analysis. The GGobi/R solution, for example, requires users to
manipulate matrices and vectors and frequently requires
additional steps for very simple tasks. A different approach is
the use of the general LEFTY graphics language [19] in
GraphViz. We believe that a popular language such as Python,
augmented with operators and syntactic sugar, reduces the
learning curve while providing the right level of abstraction.
Additionally, GUESS is based on Python because the language
is familiar to many users and is similar to a number of statistical
systems (e.g. S-plus and R). There are also a wide array of
libraries implemented in Python that can be easily integrated
into GUESS.

We also believe that our use of a modified Python core
distinguishes GUESS from database visualization systems such
as Tioga [3], Polaris [25], DEVise [20], and Rivet[7]. While
these approaches are potentially able to handle graph structures,
the generality of their approach limits their abstractions and
forces more work for the user. By focusing on language
structures and operations that are unique to graphs, we believe
GUESS users can more rapidly develop visualizations on these
types of structures.

Figure 2a-c: The GUESS pipeline, a) users load graphs into the
system or programmatically create them, b) exploratory data
analysis and visualization is performed, and c) a complete
application or applet is generated with custom widgets and controls.

a) b)

c)

Another interesting area of related research has been the work in
graph database and schema designs. GML and XML-based
approaches such as GraphML, and GXL, provide a mechanism
for describing and passing graphs between applications, as well
as flexibility for additional attributes [10]. However, while
graphs in these formats can express many user-defined
properties, storage in an XML database and querying (e.g. in
XQL, XQuery, XPath, XUpdate) is difficult for novice users.
Other solutions, such as GraphDB [11] and GOOD [12], were
designed from the start to hold and query graph structures but
lack visualization features.

THE GYTHON LANGUAGE
When we originally built Zoomgraph we drew inspiration from
domain-specific languages such as GnuPlot and the statistical
analysis system R. However, we quickly learned that this
require a steeper learning curve for users. In designing Gython
we have opted to use a domain-specific-embedded language
(DSEL) instead. Specifically, we extend Python with features
necessary for dealing with graph structures. Because Gython is
an extension of Jython (an implementation of Python in Java),
our users have the ability to rapidly add to the GUESS GUI. In
fact, we have created a great many classes and examples to
bootstrap visualization tasks.

GUESS Objects – Nodes and Edges
Because nodes and edges are the primary currency of any graph
we chose those to be the primary (first-class) objects in GUESS.
Each node has a name that is accessible from the global
namespace. For example, in a social network we may have a
node named bob_jones, or in a protein-protein interaction
network we could have Hsp70. The user will not necessarily be
accessing individual nodes, but the option is available to them.
Edges are also uniquely identified, but these identifiers are not
directly accessible to the user. Instead, edges are referenced by
their two endpoints. For example, if we assume two nodes, bob
and alice, the edge between them is bob<->alice. From the
implementation perspective, the bob node will look up any
undirected edges connecting it to alice.

In order to select edges that that represent different
relationships, we have added additional operators into the
language, ->, <->, <-, and ?. These are defined as:

• alice<->bob selects all undirected or bidirected
edges between alice and bob (undirected and
bidirected are equivalent in GUESS)

• alice->bob and alice<-bob selects all
directed edges.

• alice?bob selects all edges between alice and bob.

 Though we have added shortcuts operators, we have avoided
overloading (i.e. redefining) existing operators to prevent user
confusion. By making these operators a part of Gython, users
have a concise way of selecting groups of edges. In other
implementations, such as Graphlet, or many of the other
toolkits, the user must iterate over edges to find specific matches
(e.g. a multi-line “for each” program). This is a crucial design
point of GUESS. Because a great deal of interaction with
GUESS happens through an interactive interpreter, where users
enter commands which are immediately executed, it is
undesirable to have multi-line commands as these become
difficult to enter and correct. Another solution would have been
to create functions such as: alice.edgesTo(bob) or

getDirectedEdges(alice,bob) to mask the iterations. However,
we feel that these lack the conciseness of the more direct
statement: alice->bob and force the user to remember longer
commands (e.g. was it getDirectedEdges or
findDirectedEdges?).

In addition to nodes and edges, the other main structure in
GUESS is the set. This is based on our observation that users
most often deal with groupings of nodes or edges rather than
those edges themselves (e.g. all edges representing relations of a
certain type, all nodes representing certain employees, etc.)
Although Python has the notion of sets at the most basic levels
we extend this in Gython to speed up certain tasks. For
example, if we have five nodes, N1 through N5, we can create
the following two groups of nodes:

group1 = (N1,N2,N3)
group2 = (N3,N4,N5)

We can find the intersection by using the “&” operator or the
union with “|” which are both novel to Gython (e.g. group1 &
group2). This is useful because users are frequently interested
in groups that fall in multiple groups (e.g. department 1
employees that are managers or vice presidents). Another
common task is finding the edges between groups of nodes. For
example, we would like to find all routes of communication
between computers in China and computers in the US. To
facilitate this, the same edge selection operators that worked for
individual nodes will also work on sets. So given our two
groups, a user may use the command group1->group2 to find
all directed edges between the two (note that (N1,N2,N3)-
>(N3,N4,N5) will generate the same results.

The working graph object exists in the global namespace as the
variable “g”. The set of all nodes and edges in the graph are
accessed as g.nodes and g.edges respectively. Using these sets a
user could find all outgoing edges from N1 by using the
command: N1->g.nodes (though there are alternative methods).

Node and Edge Fields
Based on our experiments with Zoomgraph and our survey we
have found that users require graphs structures to support
properties. While graphs can be described as a simple matrix,
most users require graph structures where nodes and edges have
more complex properties. Of the 55 survey participants that
answered this question, 35 (or 64%) indicated that they worked
with graphs with complex properties (e.g. employee identifier on
nodes, relationship type on edges, etc.) and 14 (or 25%)
indicated needing at least simple properties (e.g. weights on
edges, labels for nodes, etc.), with only the remaining 6 (or
11%) satisfied with simple matrices.

In GUESS, a user has the option of associating fields (i.e.
properties or attributes) with nodes and edges. Currently, fields
can be textual, numerical, or Boolean (with some additional
exceptions for shapes and images). For example, one of our
sample applications involves a social network within a
company. Nodes, representing employees, have a textual
department field associated with them called dept and job
function field called jobfunc. For example, Bob, Alice and Jane
are Manager, Designer, and Intern respectively. Similarly,
edges have a freq field representing the frequency of
communication between two employees (e.g. Bob and Alice
communicated 10 times).

To be consistent with Python we decided that attributes could be
accessed by appending the field name to the variable name (e.g.

variable.field). This is standard in Python, but required
modifications to the Jython implementation. For example:

• bob.jobfun returns “Manager”

• (bob<->alice).freq returns 10

• (alice<->jane).freq = 21 updates the
amount of communication between alice and jane.

Fields come in two flavors, data fields, and visual fields. The 3
examples above are simple examples of data fields. Visual
fields correspond to properties that are used by GUESS to
visualize the graph. For nodes these include, style, height width,
fixed, visible, color, label, labelvisible, indegree, outdegree,
totaldegree, x, and y. For edges, GUESS currently utilizes
color, width, label, labelvisible, directed, and weight. When
loading a new graph into the system, a user may define the
initial values for any subset of these attributes. Certain
properties (e.g. indegree, outdegree, totaldegree) are calculated
dynamically with structure changes. These are calculated as
needed in order to prevent overhead to graph operations. Other
measures, for example graph centrality measures [30] or
PageRank [24], are also generated the first time those fields are
accessed on a node (e.g. alice.betweenness or bob.pagerank).

Changes to visual properties cause an immediate change to the
display. For example, bob.color = red will set the bob node to
red (GUESS has namespace definitions for nearly 80 colors but
will also accept an RGB triplet). Users can make use of
Python’s iterators to modify the fields of groups. The for-loop,
for temp in g.nodes: temp.color = red will set all graph nodes to
red. However, because such functions are used so frequently and
the syntax is cumbersome, an additional feature of Gython is the
application of setter operations to groups. For example:

• g.nodes.color = pink will set all nodes in the
graph to pink

• (alice,bob).style = 2 will make the alice
and bob nodes circular (default is square)

• (bob,jane).size = 20 will change the size of
bob and jane to 20 pixels (this is syntactic sugar that
sets height and width at the same time)

• (alice-bob,bob-alice).width = 3 will
change the line width on the two edges.

In addition to fields, nodes and edges have a number of methods
that can be used to find various graph features. For example,
alice.unweightedShortestPath(bob) will calculate the length of
the shortest path from alice to bob. As we begin to stabilize
these methods and find which are frequently used we may
replace them with operators (i.e. alice<*>bob may come to
mean shortest path). Many other functions exist for selecting
neighboring edges, nodes, and other graph properties but are
beyond the scope of this paper.

Though both types of fields, visual and data, exist in GUESS,
users access both in the same manner. This is very different
than most toolkit implementations such as JUNG or Prefuse in
which a Model-View-Controller model disentangles data from
visualization. While useful from a programming perspective,
such models frequently require additional code. For example,
we could define an EdgeWidthRenderer object which tells the
visualization system what width to set each edge to (perhaps
based on some edge property). We believe that in exploratory

situations users simply wish to modify visual properties directly
and not implement rendering objects.

While GUESS is not intended to scale to Internet sized graphs
we have successfully loaded and manipulated networks of tens
of thousands of nodes and edges on a standard PC. Layout
algorithms are by far the most expensive operations though the
usual graph sizes (< 5000 nodes) are laid out nearly
instantaneously and standard operations such as coloring and
grouping are nearly real time for much larger graphs.

Filtering Fields
In addition to controlling node and edge properties, fields are
also used in GUESS to filter graph elements. In order to make
filtering commands directly accessible to users a unique object
is automatically created for every field that is either defined by
the system or user. That is, for every field in the system a field
object is created and made accessible in the global namespace.

These objects have overloaded (“==”, “>”, “<”, “>=”, “<=”, and
“!=”) and added operators (“like”, “roverlaps”, “rcontains”,
“rexact”, and “rcontained”) When the operators are applied to a
field object, GUESS will find all nodes or edges matching the
filter and return a set of matching objects. For example:

• freq > 10 will select all edges with
communication frequency greater than 10, and
(freq > 10).color = blue will make those
edges blue

• name like ‘al%’ will find all nodes whose
name starts with “al”.

• Users can also make queries between fields. For
example x > y finds all nodes whose x location is
larger than their y location.

We believe that while including the query syntax in the language
is common in database visualization systems, it is novel in this
context. Because the bulk of graph systems make use of
languages that are not targeted at querying datasets, users are
forced to make database queries, and remap the results back to
the graph data. Presuming a connection to a database, a user
may have to do something of the form:

matchingRows =
 db.query(“SELECT * from edges where freq>10”)
for each row in matchingRows:
 matchingEdge = mapRowToEdge(row)

While we may be able to hide this in a function (e.g.
findMatching(“freq > 10”)) this becomes more cumbersome
when users begin to require unions, intersections, or connections
between sets. If we relied on only existing language constructs
such as those provided in Java or TCL we may have to do:
intersection((alice,bob),(findMatchingNodes(“job
func == ‘manager’”))

to find who between alice and bob is a manager. In Gython the
equivalent query would be:

(alice,bob) & (jobfunc = ‘manager’)

A user could also find all edges connecting alice with a
frequency of communication greater than 15 by doing:

(alice<->g.nodes) & (freq > 15)

If a naming conflict exists between node and edge fields, the
node field is bound in the namespace (e.g. width). To specify

which width field one is interested in, we prepend Node. or
Edge. to the field name (e.g. Node.width vs Edge.width).

Fields are objects themselves and have properties including
simple measures like “max” and “avg” (e.g. freq.max). Fields
are also passed as arguments to various functions including
sortBy(fieldname) and groupAndSortBy(fieldname).
Respectively, these functions generate a set of nodes or edges
sorted by a particular field or a set of sets in which objects with
equivalent field values are grouped together. Notably we can
also use the syntax group1.sortBy(fieldname) to sort all items in
group1 by some field.

Loading Graphs
Unlike Zoomgraph, users of GUESS have more options for
loading graphs into the system. A simple comma separated
format called GDF is the easiest for new users. However,
GUESS now supports GraphML and the Pajek file formats for
importing from other applications.

In addition to loading in various graph description files, users of
GUESS can also create and remove nodes, edges, and fields on-
the-fly. Various primitives support these functions and the data
is appropriately saved into the backend database.

Because GUESS uses a database as a backend, advanced users
can switch in their own databases by implementing a simple
API. One user of GUESS, who had previously created a large
system for analysis, elected to use a network module (built in
GUESS) which allowed him to connect remotely and simply
execute scripted commands to construct and manipulate a graph.

Graph States
There are two main reasons we may be interested in preserving
graph states. The first is the necessity of undoing events in
exploratory tasks, and the second is in the analysis of time-
sensitive data (e.g. dynamic graphs).

Although we noticed this in Zoomgraph users, participants in
our survey confirmed for us the importance of reverting to
previous versions of the visualization. When asked to name
their main issues with systems such as Pajek and UCINET, users
responded with statements such as: “[In UCINET] you have to
reload a network for every operation. Horrible.” and for Pajek
“once you have applied a spring embedding algorithm you can
never return to the previous sociogram display.” Clearly, when
performing exploratory visualizations it is crucial to revert to
previous layouts if the current one is unsatisfactory (this is
especially important since many layout algorithms require a long
time to compute). In GUESS we allow users to issue a “save
state” command, ss(state name), or to easily retrieve a saved
state through the load state command, ls(state name). The
argument to both methods is a either a string or integer which is
becomes the name of the state. While we could do this
automatically for the user after every command to support full
undo, we disable this option in the distributed version as it has a
computation cost and may disrupt the user’s flow1.

While there are many instances of graphs that are static,
frequently users are interested in graphs that are changing over
time. In our own work we have had to visualize various
dynamic social networks and have generated movies to depict
various phenomena. In our survey population we asked the

1 Independently of this feature, GUESS allows users to log their

interaction sessions to file (these can later be “replayed”).

participants if they required visualizations of dynamic graphs
(yes or no). Of the 59 that answered, 47 (or 80%) indicated a
need to visualize such graphs. On the other hand several noted
in their criticism of systems such as Pajek and UCINET as well
as toolkits such as JUNG that very little support is available for
this task.

The Gython language supports querying and access of fields at
different states. For example, if we had defined a state for every
year we would type bob[1999].jobfunc to find Bob’s job
function in 1999. We could also find all communication edges
where the frequency of communication increased from 1999 to
2000 by doing: freq[2000] > freq[1999].

In order to preserve a mental map model [22], GUESS, like
Zoomgraph, implements a tweening algorithm that smoothly
transforms a graph from state to state. A user may specify the
amount of time to spend on this transformation. Because nodes
and edges can appear and disappear between states and are
distracting in their transition we have added additional controls
that define how quickly in the cycle nodes and edges should
disappear and how late they should appear. When a user is
satisfied with their animation, GUESS can export the
visualization in QuickTime format. In fact all user interactions
with the visualization system can be saved. If a user wants to
manually move nodes and edges or apply transformations these
can be saved as a movie as well.

Sometimes dynamic graphs have a complex notion of state. For
example, a social network graph may have different
communication frequencies for each time period. For this type
of dynamic graph, the state mechanism described above is
appropriate. A far simpler type of state is a network in which
nodes and edges exist or vanish depending on the time (e.g. the
network link is up or is down). To represent this we allow users
to define a range field which is a comma delimited list
indicating when a node or edge exists. A range field such as
“1,5-10,20,” for example, indicates that a graph element existed
during time 1 and 20 and during the period between 5 and 10
(inclusive). Users can query on this using the familiar query
syntax with the operators roverlap, rcontains, rcontained, rexact.
For example:

• Node rcontains 5 returns all nodes that exist at
time 5

• Edge roverlap (4,6) returns all edges that
overlap the time period 4-6.

Now that we have defined the fundamentals of the language, we
can start to see how they can be used in visual exploration.

Functions and Programming in Gython
In the original Zoomgraph system we had implemented all graph
functions as reserved keywords. One of the criticisms of this
was that it was difficult for users to add their own functions or
modify ours. Users had to program the primitive in Java so it
would be accessible to them in the Zoomgraph language.
Instead, in GUESS we have bundled some functions into the
appropriate objects (e.g. graph functions are part of graph
objects, display window functions in the main window object,
etc.). A user wanting to generate a random layout would use the
command g.randomLayout().

While packaging of this type is understandable to programmers,
in observing our users it emerged that they were frequently
confused about which functions belonged to which object.

Rather than having them look up these functions every time we
implemented an automated system that generates a number of
wrapper functions at compile time that are then defined globally.
Users can now type randomLayout() (in fact they can do
randomLayout, omitting the parenthesis–another Gython
feature) and the system automatically knows which object to
invoke the function on. In this way, we have provided both
primitives and functions which the user may select from
depending on their comfort level with the language.

Simple Visualizations and Exploration
While the GUESS interface provides a number of features for
the exploration and manipulation of the graphs (panning,
zooming, etc.), it is frequently desirable and potentially easier,
to achieve this programmatically. For example, GUESS
provides a center(…) function which will take any set of nodes
and edges and center the camera around those objects, panning
and zooming as needed. A user can, for example, zoom in on a
department by typing center(dept == ‘IT’).

One of the most used features of GUESS are functions that map
data properties to visual properties. For instance, we may want
to map the communication frequency field to the width of an
edge (ranging from 1 to 5 pixels). Programmatically, this would
correspond to something the following:

for e in sortBy(freq):
 prop = (e.freq – freq.min)/

 (freq.max-freq.min)
 e.width = 1 + 4 * prop

Similarly, to color each department differently we could use the
random color generator (GUESS also has a function to produce
a sequence of colors in a range) and do:

for group in groupBy(dept):
 group.color = randomColor()

Since commands such as these are used so frequently we have
created shortcut functions called colorize and resize which take
a field as an argument and optional arguments such as starting
and ending colors and sizes and visually transform the nodes or
edges. The commands for the previous two examples would be
resizeLinear(freq,1,5) and colorize(dept). Figure 3, for
example, was generated using the command
colorize(totaldegree,yellow,red).

Since GUESS is built on top of the JUNG library we can also
make use of various pieces of code available that perform graph
based clustering. One application where GUESS has been used
is in finding communities of nodes and visually highlighting
those communities. Using the betweenness clustering method, a
popular community finding algorithm, and GUESS’ ability to
create convex hulls around sets we apply the following function:

for clust in edgeBetweennessClusters(7):
 createConvexHull(clust,randomColor(120))

In this example we are asking for 7 clusters and the
randomColor method takes an optional alpha variable to
indicate transparency. Various other clustering algorithms are
implemented and available to the user. For Figure 3 we applied
groupBy(dept) instead of the betweenness clustering method to
generate the hulls.

Layout Algorithms and New Visualizations
It is rare for a user visualizing a graph to have already specified
the coordinates for all the nodes. More frequently, the user will
depend on the visualization system to layout the graph in a way

that conveys some interesting aspect of the graph. GUESS
provides a number of standard layout algorithms including
Fruchterman-Reingold, Kamada-Kawai, Sugiyama, GEM,
ISOM, radial layouts, and various spring based implementations
(these are fairly standard techniques and are surveyed in [8]) as
well as a few of our own creation. For iterative layouts, such as
the spring-based techniques, users may specify the number of
iterations to run. Supplying no argument will result in a query
to the user every 30 seconds asking if they would like to
continue.

While our algorithms are frequently sufficient for users, they
may also create their own using quite easily. A custom
visualization such as Figure 3 takes under 10 lines. The
equivalent algorithm would have taken far more work directly in
systems such as JUNG or Prefuse as we would have had to
implement and compile new layout algorithms, and potentially
new renderers, in order to control placement and display.

While we have not attempted extensive scaling experiments we
have successfully loaded and applied the GEM algorithm to
graphs with 10000 nodes and 12000 edges. Larger graphs seem
very plausible and seem only limited by memory.

THE GUI
At the visual layer, the GUESS system supports the display of
very large graphs through the use of the Piccolo framework [5].
Piccolo provides an infinite visualization plane with infinite
zoom for 2D objects. However, in building GUESS we have
opted to disentangle the data from the visual representation, thus
allowing integration with Prefuse and TouchGraph.

Beyond simple pan and zoom features, users have access to a
number of commands that change the display of the graph,
export images, and perform basic layout operations. Users can
also annotate the graph with basic 2D objects. Additional
features include a property window and basic charting.
Automatically generated legends are a crucial feature in
exploratory environments as they help annotate visual data in a
useful way. This was one of the most requested features in
Zoomgraph and is now available in GUESS.

Figure 3: A sample visualization where nodes
(individuals) are placed around the circle by department.
The more connected nodes are pulled into the circle and
colored a deeper red (edge colors are the average of the
node color). A convex hull groups departments together.

Our belief is that the default
interface to GUESS should be as
plain as possible. Network and
graph analysis in various fields has
resulted in an incredibly large
collection of algorithms and
methods. Frequently, the methods
are similar but the language and
names to describe them are
completely different. Even within
fields such as social network
analysis the number of tools is
overwhelming. Pajek, for example,
has 17 menus in the menu bar with
an average of 8 items in each.
These are themselves submenus
which may go down 4 levels. Of
the 47 survey participants who
described their issues with Pajek
and UCINET, 17 (or 36%) made
specific note of the overwhelming
UIs and lack of guidance as their
main issue with these systems.

We believe the interface that an end
user is exposed to should contain
the functions needed for their task.
As such, we have allowed programmatic control of menu
options, toolbars, and other areas of the GUI. Our hope is that
users will load interface views that address their specific needs.
A biologist, for example, may not see the social network
algorithms that are available to the social analyst or the network
flow algorithms for the computer scientist.

The Interactive Interpreter
One of the most novel features of GUESS has been the
interactive interpreter. We started with the basic Jython
interpreter2 console and extended from there. The console
provides a simple way to enter commands. As commands are
entered they are evaluated immediately and the output is
displayed in the console. Figure 4 shows a slightly enlarged
view of this console in the bottom left of the visualization
window. If a user ends their line with a colon, the Python
symbol indicating the start of a code block, the interpreter
allows the user to enter additional lines. Hitting enter on a
blank link leaves the code block mode. This is particularly
useful for defining loops. The interpreter also provides the
usual cut and paste operations as well as a history function to
cycle through previous commands.

If we look at the output of the groupBy command in Figure 4 we
notice that the result is fairly overwhelming. The response is a
large grouping of node groups (one for each department). This
is useful for a programmer, but simply looking at the results may
not tell us much. A user faced with this list may want to match
what is in the list to the visualization. To help, we drew
inspiration from trends in development environments and
systems such as Matlab. When a user moves the mouse cursor
over text in the interactive window and the text under the mouse
corresponds to a node or edge, that edge is highlighted in the
visual display. If the mouse moves over a variable representing

2 Strictly speaking, we started with the graphical one implemented in

the YaTiSeWoBe system.

a group of nodes or edges the complete group is highlighted.
More interestingly, GUESS makes a distinction between items
in sets and sets. For example, if the system returns a group of
two groups such as [[V1],[V3,V4], GUESS forms the following
table in memory:

1 2 3 4 8 9 10 11 12 13 14 15 16 17

[[V 1] , [V 3 , V 4]]

When the user mouses over positions 3 or 4, node V1 is
highlighted. Similarly, when the user moves over positions 11
or 12, V3 is highlighted. However, if the user moves over
position 10, 13, or 16, both nodes V3 and V4 are highlighted in
the display. Moving over positions 1, 9, or 17 causes
highlighting of all three nodes. The “matched” text is always
underlined to provide the user with a visual indication of the
area they are moving over. From an implementation perspective
we make use of an interval-tree data structure which is highly
optimized for these tasks.

Due to our event management infrastructure, highlighting a node
does not necessarily mean simply highlighting it in the graph
window. If the node, edge, or group is part of any other
visualization (e.g. a chart) that area will be highlighted as well.
Figure 4 is an example of all this in action.

Tooltips that are displayed are contextualized to the type of the
object being moused-over. The top entries 15 entries are shown
for lists, exception logs are shown for errors, and documentation
is displayed when mousing over functions. GUESS also allows
functions that create lists to annotate them. For example the
grouping operators, will annotate lists with the grouping criteria.
In Figure 4 at the top of the tooltip box we find a note that “dept
== dept6.” This annotation helps the user quickly identify the
reason a group was formed.

Figure 4: A demonstration of the connection between the interpreter and various
visualizations. A tooltip window displays additional information. In addition to the
highlighting in the graph display, note that the pie segment containing moused-over nodes
is slightly pulled out.

A last feature that allows for integration between visualizations
and the interpreter are contextualized menus. When the user
right clicks on text or on items in the visualization a popup
menu appears with items specific to the selected items. For
example, for nodes or groups of nodes, users can select the style
of the nodes. For edges the menu may include a setting for edge
width. These menus enable quickly modifying the visual
aspects of graph elements without extensive typing. In all
menus users have the option to define a variable name in the
interpreter with the contents of the selected item. A user may
select a number of nodes in the graph, right-click for the menu,
and set the variable “foo” to the content of the selection.
Subsequently, commands like foo.color = black would be
understood and executed by GUESS.

Handling User “Mistakes” in the Interpreter
In watching our users interact with the system it became
apparent that they were frequently overwriting the association
between namespace names and objects. For example, a user
would type g = 5 and would lose access to the graph object.
This is extremely dangerous in an exploratory system because it
is difficult to back out of namespace changes gracefully (at least
without extensive modifications to the language subsystem).
Instead, we settled upon a simple scheme in which we
distinguish between user variables and immutable system
variables. Nodes and the graph object, g, for example, as well
as colors and fields are of this immutable type and an error
message is returned if a user tries to modify their content.

Other issues, such as infinite loops are helpfully handled by
Java. This ensures that user error does not cause a disastrous
crash of the system. Furthermore, when GUESS is run in
“persistent” mode all changes to the graph are flushed to disk
and can recovered at the restart of the application.

A previous issue was that deleted nodes and edges were gone
from the system. In GUESS, nodes and edges that are deleted
from the graph become part of a special _deleted state which can
be queried as all states. Those nodes can be easily re-added to
the working state with a simple command.

Building Applications
During the exploration stage users may save their visualizations
into a persistent database, a simple file, or export the image into
any number of formats (including JPG, PNG, GIF, PDF, EPS,
and others). Users may also save a log of their program so that
it can be rerun at a later time on either the same data or new
graphs. While this is in some cases sufficient (e.g. a user simply
wishes to generate an image for paper), there are frequently
times where a user would like to build a new application or
augment the GUI. Gython, like Jython, can be compiled into
Java code and our applications can be used in Applets.

GUESS allows users to create new “toolbars” that are docked
either vertically or horizontally in the GUI. Because we are
using a modified Jython core, users are able to make use of
standard Java widgets while ignoring the messy details of
implementing complex event handlers. Users can also make
user of functional programming techniques in defining GUI
reactions. For example, a user can create a button and have the
display center every time the button is clicked by this command:

testButton.actionPerformed = lambda event:
center()

A slider bar can be used to control which edges are display in
the social network example:

testSlider.mouseReleased = hideshow
def hideshow:
 val = testSlider.getValue()
 (freq < val).visible = 0
 (freq >= val).visible = 1

For users familiar with Java, where they would have to define a
listener object to handle mouse events, query databases or filter
nodes, this is far simpler. Once the user has completed
designing their visualization and/or GUI modifications these can
be deployed either as an application or as an applet. Users may
define highlighting behavior in the same way, augment menus
(both main menus and contextualized popups), and control what
happens when items are clicked on (e.g. open a webpage or
zoom in).

As we primarily rely on Jython for these features we will not
cover the full details of writing GUI extensions and instead
concentrate on a few sample applications that illustrate GUESS
in action.

SURVEY AND GUESS CASE STUDIES
We are aware of many groups either using or evaluating GUESS
in applications ranging from social networks to model checkers
to computer networks to biodiversity networks. Some use
GUESS independently of other systems, but we are aware of at
least one where a simple network interface has been created so
that GUESS can respond to remote commands. Below we
briefly describe our survey in more detail and conclude by
concentrating on two real-world examples of GUESS in use.

Graph Software Survey
Although we have described some of the survey results in the
context of the system description it is worth mentioning some
other key facts. The survey was collected over a one week
period by advertising to a number of mailing lists (the bulk of
responses came from SOCNET, a large social-networks mailing
list with some from the JUNG and GUESS mailing lists).
During this time, 77 users completed at least one portion of the
survey. Of the 63 users answering this question, 49 (or 78%)
indicated that they had no experience with GUESS at all. Thus
the bulk of responses were more useful for understanding user
needs and experiences with other graph visualization and
analysis packages. Only 37% (28 out of 76) were from a field
where programming knowledge was to be expected (e.g.
Computer Science and Physics). The rest were from primarily
social science fields (e.g. Sociology and Ethnography).

The goal of the survey was primarily to identify issues, both
positive and negative, users had with other systems. The bulk of
participants had no (49 participants) or very limited exposure (6
participants) to GUESS (of 63).

The survey collected free form answers for three categories of
graph tools: Menu-based tools (Pajek, UCINET, etc.), toolkits
and programmable systems (JUNG, Graphlet, Prefuse, etc.), and
math systems with graph functions (Mathematica, R, etc.).
Participants indicated which systems they had used and were
prompted to enter positive and negative impressions. These
responses were coded and appear throughout the paper. Positive
responses tended to be short statements concerning availability
or price (free was always good). Participants were far more
willing to provide negative reactions. These results are
encouraging for us as they confirm a number of our decisions.
For the menu-based tools the top complaints were (of 47
respondents): complex interfaces (17 instances), not batch
oriented/extensible (11 instances), and issues with data formats

(5 instances). Fewer respondents (31) were familiar with toolkit
systems and the only repeated complaint was on the learning
curve (4 instances).

Because so many different systems exist for visualizing and
analyzing graph structures we feel that these responses are
mostly useful for identifying issues that GUESS can improve on.
We feel that a better indication of GUESS’ usefulness is in the
positive responses in real case studies.

Proximity Estimation and Load Transfer
One of the groups to make use of both Zoomgraph and GUESS
is the Networking Research Group at HP. One of their current
projects is the estimation of network latencies in large networks
[31]. Because pair-wise computation of latency is very time
consuming, the authors have developed algorithms for
estimating which network nodes are closest (in terms of latency)
to any source computer. In order to demonstrate the
effectiveness of the algorithm they have used GUESS to
generate a custom visualization (Figure 5a).

Their implementation loads the fully connected graph (all pair-
wise connections). When a user selects a node that node
becomes the center of a star graph with all neighboring nodes
around them. All other nodes and edges are removed from the
graph. The connected nodes are laid out in a circle around the
central node at a distance proportional to the real network

latency. Those nodes that are predicted to be close are colored
differently based on the predicted distance.

One of the requests of users of Zoomgraph was the ability to
create a legend. This feature is now available in GUESS. Users
may create as many legends as they want and “insert” node,
edges, or convex hulls into the legend with some textual
annotation. The legend used in this visualization indicates how
colors correspond to latency values. Users of the visualization
can quickly assess the quality of the prediction and understand
where and how failures happen.

A different visualization for this group demonstrates a resource
allocation system in which work on overloaded computers is
moved to other resources. This tree based visualization is
created dynamically through simulation. As a node in tree
becomes overloaded it is divided into two other nodes with the
edge being labeled with “reason” for the split.

Both visualizations were built in few days of part time effort and
were well received in demonstration sessions.

Political Weblog Network
After the US elections in 2004 there was a great deal of interest
in the web research community in the study of online social
structures in the political context. A recent project attempted to
understand political webloggers [1], and specifically to compare
liberal and conservative blog network structures.

By using GUESS, the authors of the study were able to create
high-quality, static, visualizations of these networks for their
paper. They were also interested in making the data and the
visualizations available to their readers.

The graph and a new toolbar were deployed with GUESS as an
applet. Figure 5b is a screenshot of this visualization. The
graph was laid out using a GEM layout which clearly separates
the red (conservative) and blue (liberal) nodes. Nodes are sized
according to their in-degree and edge width is defined by the
number of reciprocated citations between the blogs. Edges
internal to the liberal side are colored blue, and similarly those
on the conservative side are red, with those that cross in yellow.
Up to this point the program is 8 lines of code.

Nodes and Edges may have event handlers attached to them that
wait for the mouse to move over or the mouse button to be
clicked. In this case, the author has elected to respond to shift-
clicks on nodes by opening up a web page with the associated
blog homepage. The toolbar at the bottom of the screen allows
users to select a threshold (i.e. the number of times one blog
links to another) for displaying links. As the slider is moved to
the right edges that do not meet the threshold are hidden. In all,
the script is under 60 lines of code.

CONCULSIONS AND FUTURE WORK
In this paper we have introduced the GUESS system. We have
illustrated how the Gython language can be used for exploratory
data analysis of graph structures. We believe that the design
decisions we have made in language design make the tool useful
for rapid exploratory data analysis. We also believe that the use
of a targeted, domain-specific language is broadly applicable in
the design of direct manipulation systems in which fine grained
user control is desirable. Furthermore, the GUESS system
presents an environment for users with arbitrary graph datasets
and a single mechanism for generating static and dynamic
visualizations as well as applications. Finally, we believe that
our GUI design represents a novel integration of textual and

Figure 5a,b: Figure 5a is a screenshots of a network
estimation algorithm. Figure 5b captures the political
weblog visualization applet
(www.hpl.hp.com/research/idl/demos/politicalblogdem
o.html). Note the additional “toolbar” at the bottom
which was added by the user.

a)

b)

visual interaction which can be applied to other visualization
systems where multiple modes of interaction are necessary.

At present, our major goals are to improve the system’s ability
to handle dynamic graphs and to add path finding semantics that
provides users with a more flexible grammar for finding graphs.

As we continue to work with users we hope to be able to
generate custom interfaces for different users. By working with
biologists or social scientists we hope to determine which
features they find most useful for their tasks and provide a
custom view into GUESS that supports those needs.

AVAILABILITY
GUESS is available at: http://www.graphexploration.org

ACKNOWLEDGEMENTS
The author would like to thank David Feinberg and Joshua Tyler
without whom GUESS could not have been built. Additional
thanks to Bernardo Huberman, Lada Adamic, the Netvigator
team, and all the users of Zoomgraph and GUESS. A great deal
of thanks to the implementers of the free software which we
were able to use in this system. Finally, thanks to Dan Weld and
Kayur Patel for useful comments on this paper.

REFERENCES
[1] Adamic, L.A., and N. Glance, “The Political Blogosphere

and the 2004 U.S. Election: Divided They Blog,” 2nd
Annual Weblogging Workshop, WWW 2005, Chiba,
Japan, May 10, 2005.

[2] Adar, E., and J.R. Tyler, “Zoomgraph Manual,”
www.hpl.hp.com/shl/projects/graphs/doc/zg-manual.htm

[3] Aiken, A., J. Chen, M. Liu, M. Spalding, M. Stonebraker,
and A. Woodruff, “The Tioga-2 Database Visualization
Environment,” IEEE Vis. ’95 Workshop. on Database
Issues for Data Vis., Atlanta, Oct. 1995, pp. 181-207

[4] Batagelj, V., and A. Mrvar, “Pajek – Program for Large
Analysis,” Connections, 21:47-47, 1998.

[5] Bederson, B.B., J. Grosjean, and J. Meyer, “Toolkit Design
for Interactive Structured Graphics,” IEEE Transactions on
Software Engineering, 30(8):535-546.

[6] Berry, J., N. Dean, M. Goldberg, G. Shannon, and S.
Skiena, “Graph Drawing and Manipulation with LINK,”
Lecture Notes in Computer Science 1353: Graph Drawing
1997, G. Di Battista (ed.), Springer, 1997.

[7] Bosch, R., C. Stolte, D. Tang, J. Gerth, M. Rosenblum, and
P. Hanrahan, “Rivet: A Flexible Environment for Computer
System Visualization,” Computer Graphics, 34(1), 2000.

[8] Di Battista, G., P. Eades, R. Tamassia, and I. G. Tollis,
Graph Drawing: Algorithms for Visualization of Graphs,
Prentice Hall, 2002.

[9] Gansner, E.R., and S.C. North, “An open visualization
system and its applications to software engineering,”
Software – Practice and Experience, 30(11):1203-1233,
2000.

[10] “The GraphML File Format,” graphml.graphdrawing.org

[11] Güting, R.H. “GraphDB: Modeling and Querying Graphs
in Databases,” VLDB ’94, Santiago De Chile, Chile, Sep.
12-15, 1994.

[12] Gyseens, M., J. Paredaens, J. Van den Bussche, and D. Van
Gucht, “A Graph-Oriented Object Database Model,”
Proceedings of the 9th Symposium on Principles of
Database Systems, Nashville, TN, 1990.

[13] Heer, J., S. K. Card, and J. A. Landay, “Prefuse: A Toolkit
for Interactive Information Visualization,” CHI 2005,
Portland, OR, April 2-7, 2005.

[14] Himsolt, M., “Graphlet: design and implementation of a
graph editor,” Software – Practice & Experience,
30(11):1303-1324, 2000.

[15] Himsolt, M., “GraphEd: A Graphical Platform for the
Implementation of Graph Algorithms,” Lecture Notes in
Computer Science: Graph Drawing 1994, Springer, 1994.

[16] JGraph homepage, http://www.jgraph.com

[17] JUNG homepage, http://jung.sourceforge.net

[18] Jython homepage, http://www.jython.org

[19] Koutsofios, E. and D. Dobkin, “Lefty: A two-view editor
for technical pictures”, Graphics Interface '91, Calgary,
Alberta, 1991, pp. 68-76.

[20] Livny, M., R. Ramakrishan, K. Beyer, G. Chen, D.
Donjerkovic, S. Lawande, J. Myllymaki, and K. Wenger,
“DEVise: Integrated Querying and Visual Exploration of
Large Datasets,” Proceedings of ACM SIGMOD, 1997.

[21] Melhorn, K., and S. Naher, “LEDA: a platform for
combinatorial and geometric computing,” Communications
of the ACM, 38(1):96-102.

[22] Misue, K., P. Eades, W. Lai, and K. Sugiyama, “Layout
Adjustment and the Mental Map,” Journal of Visual
Languages and Computing, 6(2):183-210, 1995.

[23] Mutzel, P., and M. Junger, Graph Drawing Software,
Springer-Verlag, 2003.

[24] Page, L., S. Brin, R. Motwani, and T. Winograd, “The
PageRank Citation Ranking: Bringing Order to the Web,”
Stanford Technical Report, 1998.

[25] Stolte, C., D. Tang, and P. Hanrahan, “Polaris: A System
for Query, Analysis, and Visualization of Multidimensional
Relational Database,” IEEE Transactions on Visualization
and Computer Graphics, 8(1), 2002.

[26] Swayne, D.F., B. Andreas, and D.T. Lang, “Exploratory
Visual Analysis of Graphs in GGobi,” Workshop on
Distributed Statistical Computing (DSC 2003), Vienna,
Austria, March 20-22, 2003.

[27] Tom Sawyer Software, http://www.tomsawyer.com

[28] TouchGraph, http://www.touchgraph.com

[29] Tukey, J., Exploratory Data Analysis, Addison-Wesley,
1977.

[30] Wasserman, S., and K. Faust, Social Network Analysis,
Cambridge University Press, 1994.

[31] Xu, Z., P. Sharma, S. Lee, and S. Banerjee, “Netvigator:
Scalable Network Proximity Estimation,” HP Laboratories
Technical Report, HPL-2004-28, Feb. 2004.

[32] yEd by yWorks, http://www.yworks.com

