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LAGRANGE MULTIPLIERS AND OPTIMALITY *

R. TYRRELL ROCKAFELLAR †

Abstract. Lagrange multipliers used to be viewed as auxiliary variables introduced in a
problem of constrained minimization in order to write first-order optimality conditions formally as
a system of equations. Modern applications, with their emphasis on numerical methods and more

complicated side conditions than equations, have demanded deeper understanding of the concept and
how it fits into a larger theoretical picture.

A major line of research has been the nonsmooth geometry of one-sided tangent and normal
vectors to the set of points satisfying the given constraints. Another has been the game-theoretic

role of multiplier vectors as solutions to a dual problem. Interpretations as generalized derivatives of
the optimal value with respect to problem parameters have also been explored. Lagrange multipliers

are now being seen as arising from a general rule for the subdifferentiation of a nonsmooth objective
function which allows black-and-white constraints to be replaced by penalty expressions. This paper
traces such themes in the current theory of Lagrange multipliers, providing along the way a free-
standing exposition of basic nonsmooth analysis as motivated by and applied to this subject.

Key words. Lagrange multipliers, optimization, saddle points, dual problems, augmented

Lagrangian, constraint qualifications, normal cones, subgradients, nonsmooth analysis.
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1. Optimization problems. Any problem of optimization concerns the mini-
mization of some real-valued, or possibly extended-real-valued, function f0 over some
set C; maximization can be converted to minimization by a change of sign. For prob-
lems in finitely many “continuous” variables, which we concentrate on here, C is a
subset of lRn and may be specified by a number of side conditions, called constraints,
on x = (x1, . . . , xn). Its elements are called the feasible solutions to the problem, in
contrast to the optimal solutions where the minimum of f0 relative to C is actually
attained in a global or local sense.

Equality constraints fi(x) = 0 and inequality constraints fi(x) ≤ 0 are most
common in describing feasible solutions, but other side conditions, like the attainability
of x as a state taken on by a controlled dynamical system, are encountered too. Such
further conditions can be indicated abstractly by a requirement x ∈ X with X ⊂ lRn.
This notation can be convenient also in representing simple conditions for which the
explicit introduction of a constraint function fi would be cumbersome, for instance
sign restrictions or upper or lower bounds on the components xj of x. In a standard
formulation of optimization from this point of view, the problem is to

(P)
minimize f0(x) over all x ∈ X

such that fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

where f0, f1, . . . , fm are real-valued functions on lRn and X is a certain subset of lRn.
Then C is the set of points x ∈ X for which the listed conditions fi(x) ≤ 0 or fi(x) = 0
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are satisfied. The presence of X can be suppressed by taking it to be all of lRn, which
we refer to as the case of (P) where there’s no abstract constraint. In general it’s
customary to suppose—and for simplicity we’ll do so throughout this paper—that X
is closed, and that the objective function f0 and constraint functions fi are smooth
(i.e., at least of class C1).

In classical problems of optimization, only equality constraints were seriously
considered. Even today, mathematics is so identified with the study of “equations”
that many people find it hard at first to appreciate the importance of inequality
constraints and to recognize when they may be appropriate. Yet inequalities are the
hallmark of modern optimization, affecting not just the scope of applications but the
very nature of the analysis that must be used. This is largely because of the computer
revolution, which has opened the way to huge problems of a prescriptive kind—where
the goal may be to prescribe how some device should best be designed, or how some
system should best be operated. In such problems in engineering, economics and
management, it’s typical that actions can be taken only within certain limited ranges,
and that the consequences of the actions are desired to lie within certain other ranges.
Clearly, inequality constraints are essential in representing such ranges.

A set C specified as in (P) can be very complicated. Usually there’s no practical
way of decomposing C into a finite number of simple pieces which can be investigated
one by one. The process of minimizing f0 over C leads inevitably to the possibility
that the points of interest may lie on the boundary of C. When inequality constraints
come into play, the geometry becomes one-sided and nontraditional forms of analysis
are needed.

A fundamental issue despite these complications is the characterization of the lo-
cally or globally optimal solutions to (P), if any. Not just any kind of characterization
will do, however, in these days of diverse applications and exacting computational
requirements. Conditions for optimality must not only be technically correct in their
depiction of what’s necessary or sufficient, but rich in supplying information about
potential solutions and in suggesting a variety of numerical approaches. Moreover
they should fit into a robust theoretical pattern which readily accommodates problem
features that might be elaborated beyond the statement so far in (P).

Lagrange multipliers have long been used in optimality conditions involving con-
straints, and it’s interesting to see how their role has come to be understood from
many different angles. This paper aims at opening up such perspectives to the reader
and providing an overview not only of the properties of Lagrange multipliers that can
be drawn upon in applications and numerical work, but also the new kind of analysis
that has needed to be developed. We’ll focus the discussion on first-order conditions
for the most part, but this will already reveal differences in outlook and methodology
that distinguish optimization from other mathematical disciplines.

One distinguishing idea which dominates many issues in optimization theory is
convexity. A set C ⊂ lRn is said to be convex if it contains along with any two different
points the line segment joining those points:

x ∈ C, x′ ∈ C, 0 < t < 1 =⇒ (1− t)x+ tx′ ∈ C.

(In particular, the empty set is convex, as are sets consisting of a single point.) A
function f on lRn called convex if it satisfies the inequality

f
(
(1− t)x+ tx′

)
≤ (1− t)f(x) + tf(x′) for any x and x′ when 0 < t < 1.

It’s concave if the opposite inequality always holds, and affine under equality; the
affine functions f : lRn → lR have the form f(x) = v·x+ const.
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Convexity is a large subject which can hardly be addressed here, see [1], but much
of the impetus for its growth in recent decades has come from applications in opti-
mization. An important reason is the fact that when a convex function is minimized
over a convex set every locally optimal solution is global. Also, first-order necessary
conditions for optimality turn out to be sufficient. A variety of other properties con-
ducive to computation and interpretation of solutions ride on convexity as well. In
fact the great watershed in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity. Even for problems that aren’t themselves of convex type,
convexity may enter for instance in setting up subproblems as part of an iterative
numerical scheme.

By the convex case of problem (P), we’ll mean the case where X is a convex set
and, relative to X, the objective function f0 and the inequality constraint functions
f1, . . . , fs are convex, and the equality constraints functions fs+1, . . . , fm are affine.
The feasible set C is then convex, so that a convex function is indeed being minimized
over a convex set. In such a problem the vectors of Lagrange multipliers that may be
introduced to express optimality have a remarkable significance. They generally solve
an auxiliary problem of optimization which is dual to the given problem. Moreover, as
will be explained later, these two problems are the strategy problems associated with
the two players in a certain zero-sum game. Such game concepts have had a great
impact on optimization, especially on its applications to areas like economics.

Although we’re supposing in problem (P) that the fi’s are smooth, it’s unavoid-
able that questions of nonsmooth analysis eventually be raised. In order to relate
Lagrange multipliers to perturbations of (P) with respect to certain canonical param-
eters, for instance, we’ll need to consider the optimal value (the minimum value of f0
over C) as a function of such parameters, but this function can’t be expected to be
smooth no matter how much smoothness is imposed on the fi’s.

Another source of nonsmoothness in optimization—there are many—is the fre-
quent use of penalty expressions. Instead of solving problem (P) as stated, we may
wish to minimize a function of the form

f(x) = f0(x) + ρ1

(
f1(x)

)
+ · · ·+ ρm

(
fm(x)

)
(1.1)

over the set X, where each ρi is a function on lR1 that gives the value 0 when fi(x)
lies in the desired range, but some positive value (a penalty) when it lies outside that
range. As an extreme case, infinite penalties might be used. Indeed, in taking

for i = 1, . . . , s : ρi(ui) =
{

0 if ui ≤ 0,
∞ if ui > 0,

for i = s+ 1, . . . ,m : ρi(ui) =
{

0 if ui = 0,
∞ if ui 6= 0,

(1.2)

we get for f in (1.1) the so-called essential objective function in (P), whose minimiza-
tion over X is equivalent to the minimization of f0 over C. Obviously, the essential
objective function is far from smooth and even is discontinuous, but even finite penal-
ties may be incompatible with smoothness. For example, linear penalty expressions

for i = 1, . . . , s : ρi(ui) =
{

0 if ui ≤ 0,
diui if ui > 0,

for i = s+ 1, . . . ,m : ρi(ui) =
{

0 if ui = 0,
di|ui| if ui 6= 0,

(1.3)
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with positive constants di have “kinks” at the origin which prevent f from being
smooth. Linear penalties have widely been used in numerical schemes since their
introduction by Pietrzykowski [2] and Zangwill [3]. Quadratic penalty expressions

for i = 1, . . . , s : ρi(ui) =
{

0 if ui ≤ 0,
1
2diu2

i if ui > 0,

for i = s+ 1, . . . ,m : ρi(ui) =
{

0 if ui = 0,
1
2diu2

i if ui 6= 0,

(1.4)

with coefficients di > 0, first proposed in the inequality case by Courant [4], are first-
order smooth but discontinuous in their second derivatives. Penalty expressions with
a possible mixture of linear and quadratic pieces have been suggested by Rockafellar
and Wets [5], [6], [7], and Rockafellar [8] as offering advantages over the black-and-
white constraints in (1.2) even in the modeling of some situations, especially large-
scale problems with dynamic or stochastic structure. Similar expressions ρi have been
introduced in connection with augmented Lagrangian theory, which will be described
in §6 and 7, but differing from penalty functions in the usual sense of that notion
because they take on negative as well as positive values. Such “monitoring functions”
nevertheless have the purpose of facilitating problem formulations in which standard
constraints are replaced by terms incorporated into a modified objective function,
although at the possible expense of some nonsmoothness.

For most of this paper we’ll keep to the conventional format of problem (P),
but in §10 we’ll explain how the results can be extended to a more flexible problem
statement which covers the minimization of penalty expressions such as in (1.1) as well
as other nonsmooth objective functions that often arise in optimization modeling.

2. The classical view. Lagrange multipliers first made their appearance in
problems having equality constraints only , which in the notation of (P) is the case
where X = lRn and s = 0. The feasible set then has the form

C =
{
x

∣∣ fi(x) = 0 for i = 1, . . . ,m
}
. (2.1)

and can be approached geometrically as a “smooth manifold,” like an d-dimensional
hypersurface within lRn. This approach requires a rank assumption on the Jacobian
matrix of the mapping F : x 7→

(
f1(x), . . . , fm(x)

)
from lRn into lRm. Specifically,

if at a given point x̄ ∈ C the Jacobian matrix ∇F (x̄) ∈ lRm×n, whose rows are the
gradient vectors ∇fi(x̄), has full rank m, it’s possible to coordinatize C around x̄ so
as to identify it locally with a region of lRd for d = n − m. The rank condition on
∇F (x̄) is equivalent of course to the linear independence of the vectors ∇fi(x̄) for
i = 1, . . . ,m and entails having m ≤ n.

The workhorse in this mathematical setting is the standard implicit mapping theo-
rem along with its special case, the inverse mapping theorem. The linear independence
condition makes possible a local change of coordinates around x̄ which reduces the
constraints to an extremely simple form. Specifically, one can write x = G(z), with
x̄ = G(z̄), for a smooth local mapping G having invertible Jacobian ∇G(z̄), in such a
way that the transformed constraint functions hi = fi◦G are just hi(z1, . . . , zn) ≡ zi

and, therefore, the constraints on z = (z1, . . . , zn) are just zi = 0 for i = 1, . . . ,m.
For the problem of minimizing the transformed objective function h0 = f0◦G sub-
ject to such constraints, there’s an elementary first-order necessary condition for the
optimality of z̄: one must have

∂h0

∂zi
(z̄) = 0 for i = m+ 1, . . . , n. (2.2)



lagrange multipliers and optimality 5

A corresponding condition in the original coordinates can be stated in terms of the
values

ȳi = −∂h0

∂zi
(z̄) for i = 1, . . . ,m. (2.3)

These have the property that ∇
(
h0 + ȳ1h1 + · · · + ȳmhm

)
(z̄) = 0, and this equation

can be written equivalently as

∇
(
f0 + ȳ1f1 + · · ·+ ȳmfm

)
(x̄) = 0. (2.4)

Thus, a necessary condition for the local optimality of x̄ in the original problem is the
existence of values ȳi such that the latter holds.

This result can be stated elegantly in terms of the Lagrangian for problem (P),
which is the function L on lRn × lRn defined by

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x) for y = (y1, . . . , ym). (2.5)

Theorem 2.1. In the case of problem (P) where only equality constraints are
present, if x̄ = (x̄1, . . . , x̄n) is a locally optimal solution at which the gradients ∇fi(x̄)
are linearly independent, there must be a vector ȳ = (ȳ1, . . . , ȳm) such that

∇xL(x̄, ȳ) = 0, ∇yL(x̄, ȳ) = 0. (2.6)

The supplementary values ȳi in this first-order condition are called Lagrange mul-
tipliers for the constraint functions fi at x̄. An intriguing question is what they might
mean in a particular application, since it seems strange perhaps that a problem entirely
in lRn should require us to search for a vector pair in the larger space lRn × lRm.

The two equations in (2.6) can be combined into a single equation, the vanishing
of the full gradient ∇L(x̄, ȳ) relative to all the variables, but there’s a conceptual
pitfall in this. The false impression is often gained that since the given problem in x is
one of minimization, the vanishing of ∇L(x̄, ȳ) should, at least in “nice” circumstances
when x̄ is optimal, correspond to L(x, y) achieving a local minimum with respect to
both x and y at (x̄, ȳ). But apart from the convex case of (P), L need not have a local
minimum even with respect to x at x̄ when y is fixed at ȳ. On the other hand, it will
become clear as we go along that the equation ∇yL(x̄, ȳ) = 0 should be interpreted
on the basis of general principles as indicating a maximum of L with respect to y at
ȳ when x is fixed at x̄.

The immediate appeal of (2.6) as a necessary condition for optimality resides in
the fact that these vector equations constitute n + m scalar equations in the n + m
unknowns x̄j and ȳi. The idea comes to mind that in solving the equations for x̄
and ȳ jointly one may hope to determine some—or every—locally optimal solution
x̄ to (P). While this is definitely the role in which Lagrange multipliers were seen
traditionally, the viewpoint is naive from current perspectives. The equations may
well be nonlinear. Solving a system of nonlinear equations numerically is no easier
than solving an optimization problem directly by numerical means. In fact, nonlinear
equations are now often solved by optimization techniques through conversion to a
nonlinear least squares problem.

Although a direct approach to the equality-constrained case of (P) through solv-
ing the equations in (2.6) may not be practical, Lagrange multipliers retain importance
for other reasons. Before delving into these, let’s look at the extent to which the clas-
sical methodology behind Theorem 2.1 is able to handle inequality constraints along
with equality constraints.
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An inequality constraint fi(x) ≤ 0 is active at a point x̄ of the feasible set C
in (P ) if fi(x̄) = 0, whereas it’s inactive if fi(x̄) < 0. Obviously, in the theoretical
study of the local optimality of x̄ only the active inequality constraints at x̄ need to
be considered with the equality constraints, but as a practical matter it may be very
hard to know without a lot of computation exactly which of the inequality constraints
might turn out to be active.

As a temporary notational simplification, let’s suppose that the inequality con-
straints fi(x) ≤ 0 for i = 1, . . . , r are inactive at x̄, whereas the ones for i = r+1, . . . , s
are active. (The set X is still the whole space lRn.) As long as all the gradients ∇fi(x̄)
for i = r + 1, . . . , s, s + 1, . . . ,m are linearly independent, we can follow the previous
pattern of introducing a change of coordinates x = G(z) such that the functions
hi = fi◦G take the form hi(z1, . . . , zn) ≡ zi for i = r + 1, . . . ,m. Then the problem is
reduced locally to minimizing h0(z1, . . . , zn) subject to

zi

{
≤ 0 for i = r + 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.

The former point x̄ is transformed into a point z̄ having coordinates z̄i = 0 for i =
r+ 1, . . . ,m. The elementary first-order necessary condition for the optimality of z̄ in
this setting is that

∂h0

∂zi
(z̄)

{
≤ 0 for i = r + 1, . . . , s,
= 0 for i = m+ 1, . . . , n.

Then by letting

ȳi =

{ 0 for i = 1, . . . , r,

−∂h0

∂zi
(z̄) for i = r + 1, . . . ,m,

we obtain ∇
(
h0 + ȳ1h1 + · · ·+ ȳmhm

)
(z̄) = 0, which translates back to

∇
(
f0 + ȳ1f1 + · · ·+ ȳmfm

)
(x̄) = 0.

This result can be stated as the following generalization of Theorem 2.1 in which
the notation no longer supposes advance knowledge of the active set of inequality
constraints.

Theorem 2.2. In the case of problem (P) with both equality and inequality con-
straints possibly present, but no abstract constraint, if x̄ is a locally optimal solution at
which the gradients ∇fi(x̄) of the equality constraint functions and the active inequality
constraint functions are linearly independent, there must be a vector ȳ in

Y =
{
y = (y1, . . . , ys, ys+1, . . . , ym)

∣∣ yi ≥ 0 for i = 1, . . . , s
}

(2.7)

such that

∇xL(x̄, ȳ) = 0, (2.8)
∂L

∂yi
(x̄, ȳ)

{
= 0 for i ∈ [1, s] with ȳi > 0, and for i ∈ [s+ 1,m],
≤ 0 for i ∈ [1, s] with ȳi = 0. (2.9)

The simple rule ∇yL(x̄, ȳ) = 0 in Theorem 2.1 has been replaced in Theorem 2.2
by requirements imposed jointly on ∇yL(x̄, ȳ) and ȳ. The significance of these compli-
cated requirements will emerge later along with a more compact mode of expressing
them.
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Certainly Theorem 1.2 dispels further any illusion that the role of Lagrange mul-
tipliers is to enable an optimization problem to be solved by solving some system
of smooth nonlinear equations. Beyond the practical difficulties already mentioned,
there’s now the fact that a whole collection of systems might be have to be inspected.
For each subset I of {1, . . . , s} we could contemplate solving the n+m equations

∂L

∂xj
(x̄, ȳ) = 0 for j = 1, . . . , n,

∂L

∂yi
(x̄, ȳ) = 0 for i ∈ I and i = s+ 1, . . . ,m,

ȳi = 0 for i ∈ {1, . . . , s} \ I,

for the n + m unknowns x̄j and ȳi and checking then to see whether the remaining
conditions in Theorem 2.2, namely

∂L

∂yi
(x̄, ȳ) ≤ 0 for i ∈ {1, . . . , s} \ I,

ȳi ≥ 0 for i ∈ I and i = s+ 1, . . . ,m,

happen to be satisfied in addition. But the number of such systems to look at could
be astronomical, so that an exhaustive search would be impossible.

The first-order optimality conditions in Theorem 2.2 are commonly called the
Kuhn-Tucker conditions on the basis of the 1951 paper of Kuhn and Tucker [9], but
after many years it came to light that they had also been derived in the 1939 master’s
thesis of Karush [10]. This thesis was never published, but the essential portions are
reproduced in Kuhn’s 1976 historical account [11]. The very same theorem is proved
by virtually the same approach in both cases, but with a “constraint qualification” in
terms of certain tangent vectors instead of the linear independence in Theorem 2.2.
This will be explained in §4. Karush’s motivation came not from linear programming,
an inspiring new subject when Kuhn and Tucker did their work, but from the calculus
of variations. Others in the calculus of variations had earlier considered inequality
constraints, for instance Valentine [12], but from a more limited outlook. Quite a
different approach to inequality constraints, still arriving in effect at the same con-
ditions, was taken before Kuhn and Tucker by John [13]. His hypothesis amounted
to the generalization of the linear independence condition in Theorem 2.2 in which
the coefficients of the gradients of the inequality constraint functions are restricted to
nonnegativity. This too will be explained in §4.

Equality and inequality constraints are handled by Theorem 2.2, but not an ab-
stract constraint x ∈ X. The optimality condition is therefore limited to applications
where it’s possible and convenient to represent all side conditions explicitly by a fi-
nite number of equations and inequalities. The insistence on linear independence of
constraint gradients is a further shortcoming of Theorem 2.2. While the linear inde-
pendence assumption is natural for equality constraints, it’s unnecessarily restrictive
for inequality constraints. It excludes many harmless situations that often arise, as
for instance when the constraints are merely linear (i.e., all the constraint functions
are affine) but the gradients are to some degree linearly dependent because of inherent
symmetries in the problem’s structure. This of course is why even the early contribu-
tors just cited felt the need for closer study of the constraint geometry in optimization
problems.
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3. Geometry of tangents and normals. The key to understanding Lagrange
multipliers has been the development of concepts pertinent to the minimization of a
function f0 over a set C ⊂ lRn without insisting, at first, on any particular kind of
representation for C. This not only furnishes insights for a variety of representations
of C, possibly involving an abstract constraint x ∈ X, but also leads to a better way
of writing multiplier conditions like the ones in Theorem 2.2.

Proceeding for the time being under the bare assumption that C is some subset
of lRn, we discuss the local geometry of C in terms of “tangent vectors” and “normal
vectors” at a point x̄. The introduction of such vectors in a one-sided sense, instead
of the classical two-sided manner, has been essential to advancement in optimization
theory ever since inequality constraints came to the fore. It has stimulated the growth
of a new branch of analysis, which is called nonsmooth analysis because of its emphasis
on one-sided derivative properties of functions as well as kinks and corners in set
boundaries.

Many different definitions of tangent and normal vectors have been offered over
the years. The systematic developments began with convex analysis in the 1960s and
continued in the 70s and 80s with various extensions to nonconvex sets and functions.
We take this opportunity to present current refinements which advantageously cover
both convex and nonconvex situations with a minimum of effort. The concepts will
be applied to Lagrange multipliers in §4.

Definition 3.1. A vector w is tangent to C at x̄, written w ∈ TC(x̄), if there
is a sequence of vectors wk → w along with a sequence of scalars tk ↓0 such that
x̄+ tkwk ∈ C.

Definition 3.2. A vector v is normal to C at x̄, written v ∈ NC(x̄), if there is
a sequence of vectors vk → v along with a sequence of points xk → x̄ in C such that,
for each k, 〈

vk, x− xk
〉
≤ o

(
|x− xk|

)
for x ∈ C (3.1)

(where 〈· , ·〉 is the canonical inner product in lRn, | · | denotes the Euclidean norm,
and o refers as usual to a term with the property that o(t)/t → 0 as t → 0). It is a
regular normal vector if the sequences can be chosen constant, i.e., if actually〈

v, x− x̄
〉
≤ o

(
|x− x̄|

)
for x ∈ C. (3.2)

Note that 0 ∈ TC(x̄), and whenever w ∈ TC(x̄) then also λw ∈ TC(x̄) for all
λ ≥ 0. These properties also hold for NC(x̄) and mean that the sets TC(x̄) and
NC(x̄) are cones in lRn. In the special case where C is a smooth manifold they turn
out to be the usual tangent and normal subspaces to C at x̄, but in general they
aren’t symmetric about the origin: they may contain a vector without containing its
negative. As subsets of lRn they’re always closed but not necessarily convex, although
convexity shows up very often.

The limit process in Definition 3.2 introduces the set of pairs (x, v) with v a
normal to C at x as the closure in C × lRn of the set of pairs (x, v) with v a regular
normal to C at x. A basic consequence therefore of Definition 3.2 is the following.

Proposition 3.3. The set
{

(x, v)
∣∣ v ∈ NC(x)

}
is closed as a subset of C× lRn:

if xk → x̄ in C and vk → v with vk ∈ NC(xk), then v ∈ NC(x̄).
The symbols TC(x̄) and NC(x̄) are used to denote more than one kind of tangent

cone and normal cone in the optimization literature. For the purposes here there is
no need to get involved with a multiplicity of definitions and technical relationships,
but some remarks may be helpful in providing orientation to other presentations of
the subject.
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The cone we’re designating here by TC(x̄) was first considered by Bouligand [14],
who called it the contingent cone to C at x̄. It was rediscovered early on in the study
of Lagrange multipliers for inequality constraints and ever since has been regarded as
fundamental by everyone who has dealt with the subject, not only in mathematical
programming but control theory and other areas. For instance, Hestenes relied on
this cone in his 1966 book [15], which connected the then-new field of optimal control
with the accomplishments of the 1930s school in the calculus of variations. Another
important tangent cone is that of Clarke [16], which often agrees with TC(x̄) but in
general is a subcone of TC(x̄).

The normal cone NC(x̄) coincides with the cone of “limiting normals” developed
by Clarke [16], [17], [18] under the assumption that C is closed. (A blanket assump-
tion of closedness would cause us trouble in §§8 and 9, so we avoid it here.) Clarke
used limits of more special “proximal” normals, instead of the regular normals vk in
Definition 3.2, but the cone comes out the same because every regular normal is itself
a limit of proximal normals when C is closed; cf. Kruger and Mordukhovich [19], or
Ioffe [20]). Clarke’s tangent cone consists of the vectors w such that 〈v, w〉 ≤ 0 for all
v ∈ NC(x̄).

Clarke was the first to take the crucial step of introducing limits to get a more
robust notion of normal vectors. But the normal cone really stressed by Clarke in [16],
and well known now for its many successful applications to a diversity of problems,
especially in optimal control and the calculus of variations (cf. [17] and [18]) isn’t this
cone of limit vectors, NC(x̄), but its closed convex hull.

Clarke’s convexified normal cone and his tangent cone are polar to each other.
For a long time such duality was felt to be essential in guiding the development of
nonsmooth analysis because of the experience that had been gained in convex analysis
[1]. Although the cone of limiting normals was assigned a prominent role in Clarke’s
framework, results in the calculus of normal vectors were typically stated in terms of
the convexified normal cone, cf. Clarke [17] and Rockafellar [21]. This seemed a good
expedient because (1) it promoted the desired duality, (2) in most of the examples
deemed important at the time the cones turned out anyway to agree with the ones
in Definitions 3.1 and 3.2, and (3) convexification was ultimately needed anyway in
certain infinite-dimensional applications involving weak convergence. But gradually it
has become clear that convexification is an obstacle in some key areas, especially the
treatment of graphs of nonsmooth mappings.

The move away from the convexifying of the cone of limiting normals has been
championed by Mordukhovich, who furnished the missing results needed to fill the
calculus gaps that had been feared in the absence of convexity [22], [23], [24]. Mor-
dukhovich, like Clarke, emphasized “proximal” normals as the starting point for defin-
ing general normals through limits. The “regular” normals used here have not pre-
viously been featured in that expositional role, but they have long been familiar in
optimization under an alternative definition in terms of polarity with tangent vec-
tors (the property in Proposition 3.5(b) below); cf. Bazaraa, Gould, and Nashed [25],
Hestenes [26], Penot [27].

Thanks to the efforts of many researchers, a streamlined theory is now in the
offing. Its outline will be presented here. We’ll be able to proceed on the basis of
only the one tangent cone TC(x̄) in Definition 3.1 and the one normal cone NC(x̄) in
Definition 3.2 and yet go directly to the heart of the issues about Lagrange multipliers.

We begin by demonstrating that when C is convex, TC(x̄) and NC(x̄) coincide
with the tangent and normal cones originally introduced in convex analysis.

Proposition 3.4. If the set C is convex, the tangent cone TC(x̄) is the closure
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of the set of all vectors w such that x̄ + εw ∈ C for some ε > 0, whereas the normal
cone NC(x̄) is the set of vectors v such that〈

v, x− x̄
〉
≤ 0 for all x ∈ C, (3.3)

or in other words, such that the linear function x 7→ 〈v, x〉 achieves its maximum over
C at x̄. Every normal to a convex set is therefore a regular normal.

Proof. The assertion about tangents stems from the observation that when x̄ +
εw ∈ C for some ε > 0, all the points x̄ + tw with 0 < t < ε likewise belong to C,
since these lie on the line segment joining x̄ with x̄+ εw.

As for normals, if v satisfies (3.3) it definitely satisfies (3.2) and thus belongs to
NC(x̄). On the other hand, suppose v satisfies (3.2) and consider any x ∈ C. The
convexity of C implies that the point xt = x̄+t(x− x̄) belongs to C for all t ∈ (0, 1), so
that

〈
v, xt− x̄

〉
≤ o

(
|xt− x̄|

)
for t ∈ (0, 1), or in other words,

〈
v, x− x̄〉 ≤ o

(
t|x− x̄|

)
/t

for t ∈ (0, 1). Taking the limit on the right as t ↓0, we see that
〈
v, x− x̄

〉
≤ 0. Thus,

v satisfies (3.3); this demonstrates that (3.3) characterizes regular normals, at least.
Now consider a general normal v, which by Definition 3.2 is a limit of regu-

lar normals vk at points xk approaching x̄ in C. For each x ∈ C we have by the
characterization already developed that

〈
vk, x − xk

〉
≤ 0, so in the limit we have〈

v, x − x̄
〉
≤ 0. Therefore v again has the property in (3.3). In particular, every

normal is regular.
Regular normal vectors v always have a variational interpretation, even when the

set isn’t convex. This previously unnoticed fact, which underscores the fundamental
connection between normal vectors and optimality conditions, is brought out in prop-
erty (c) of the next proposition, which also indicates how the normal cone can always
be derived from the tangent cone.

Proposition 3.5. For any set C ⊂ lRn, the following properties of a vector
v ∈ lRn are equivalent:

(a) v is a regular normal to C at x̄;
(b) 〈v, w〉 ≤ 0 for every tangent vector w to C at x̄;
(c) on some open neighborhood O of x̄ there is a smooth function f0 with −∇f0(x̄) =

v, such that f0 attains its minimum relative to C ∩O at x̄.
Proof. Condition (a) is equivalent to the property that 〈v, w〉 ≤ 0 whenever w

is the limit of a sequence of vectors of the form (xk − x̄)/|xk − x̄| with xk ∈ C,
xk 6= x̄. Since the tangent cone TC(x̄) consists of all nonnegative multiples of vectors
w obtainable as such limits (together with the zero vector), it’s clear that this property
of v holds if and only if (b) holds. Thus, (a) is equivalent to (b). On the other hand, (c)
obviously implies (a) because of the expansion f0(x) = f0(x̄)+ 〈v, x− x̄〉+ o

(
|x− x̄|

)
.

Only the implication from (a) to (c) is left to establish. Fix any vector v satisfying
the inequalities in (3.2). Define a nondecreasing function θ0 : [0,∞) → [0,∞) by
taking θ0(t) to be the maximum of

〈
v, x − x̄

〉
subject to x ∈ C, |x − x̄| ≤ t, and

note that (3.2) ensures that θ0(t)/t→ 0 as t ↓0. Next define θ1(t) = (1/t)
∫ 2t

t
θ0(s)ds

for t > 0, θ1(0) = 0. Since θ0(t) ≤ θ1(t) ≤ θ0(2t), the nondecreasing function θ1 is
continuous on [0,∞) with θ0(t)/t ≤ θ1(t)/t ≤ 2

[
θ0(2t)/2t

]
. Therefore θ1(t)/t → 0 as

t ↓0. Finally, define θ2(t) = (1/t)
∫ 2t

t
θ1(s)ds for t > 0, θ2(0) = 0. The same reasoning

shows that θ2 is continuous and nondecreasing on [0,∞) with θ2 ≥ θ1 and θ2(t)/t→ 0
as t ↓0. But because θ1 was itself continuous, we now have the further property that
θ2 is smooth on (0,∞); specifically, θ′2(t) =

[
θ1(2t) − θ1(t) − θ2(t)

]/
t for t > 0, and

θ′2(t) → 0 as t ↓0. In particular θ2 ≥ θ1. Now let f0(x) = −
〈
v, x − x̄

〉
+ θ2

(
|x − x̄|

)
.

The function f0 is well defined and smooth on the open ball of radius 1 around x̄,
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and ∇f0(x̄) = −v. The construction ensures that f0(x) ≥ 0 for all x ∈ C in this ball,
whereas f0(x̄) = 0. Thus f0 attains a local minimum relative to C at x̄, and condition
(c) has been verified.

A fundamental principle emerges from these facts.
Theorem 3.6. For any problem in which a smooth function f0 is to be minimized

over a closed set C, the gradient normality condition

−∇f0(x̄) ∈ NC(x̄) (3.4)

is necessary for local optimality. It is sufficient for global optimality when C is convex
and, relative to C, f0 is convex. The task of developing first-order optimality con-
ditions comes down then in principle to determining formulas for NC(x̄) in various
cases of C.

Proof. The necessity is given by the implication from (c) to (a) in Proposition 3.5
(which is entirely elementary, as the proof there shows). The sufficiency in the convex
case follows immediately from the characterization of NC(x̄) in Proposition 3.3 and
the inequality

f0(x) ≥ f0(x̄) +
〈
∇f0(x̄), x− x̄

〉
for x ∈ C, (3.5)

which holds whenever f0 is convex relative to C.
In writing a normality condition like (3.4) we follow the convention that the

symbolism implies x̄ ∈ C. This lifts the burden of having always to make the latter
explicit. In effect we interpret NC(x̄) as denoting the empty set when x̄ /∈ C.

Although the statement of Theorem 3.6 makes no use of it directly, −∇f0(x̄)
must be a regular normal to C at x̄, as the justification shows. In many applications,
even when C isn’t convex, every normal vector v ∈ NC(x̄) will be regular anyway.
One might be tempted through this to simplify matters by dropping the limit process
in the definition of NC(x̄) and restricting the concept of normality in the first place to
the vectors v with the property in (3.2). This would work up to a point, but theoret-
ical disadvantages would eventually become serious. In particular, the closedness in
Proposition 3.3 would be lacking in general. To maintain this crucial property, often
used in technical arguments, the class of sets C under consideration would have to
be restricted—often in effect to the kinds of sets for which every normal in the sense
of Definition 3.2 is automatically a regular normal. Such sets are common and im-
portant (all convex sets are among them by Proposition 3.4), but some of the sets of
fundamental interest in optimization fall in tougher categories, for instance graphs and
epigraphs of mappings that express the dependence of optimal solutions and optimal
values on parameters (cf. §9).

Normality conditions in mode of (3.4) first gained a foothold in convex analysis,
cf. [1], and spread from there to nonsmooth analysis in Clarke’s framework [16], [17].
Such a condition in terms of the cone of regular normals was given by Hestenes [24].

The beauty of this fundamental kind of first-order optimality condition is that it
covers wide territory without forcing more detail on us than we might want to cope
with at a particular time. There’s no way of knowing in advance of computations just
where an optimal solution x̄ might be located within C, and it would be cumbersome
to have to list all possibilities explicitly every time the issue came up. For instance,
from the fact that

NC(x̄) = {0} when x̄ is an interior point of C, (3.6)

we obtain from the gradient normality condition (3.4) the classical rule that ∇f0(x̄) =
0 whenever such a point gives a local minimum of f0 relative to C. But the gradient
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normality condition applies equally well to situations where x̄ is a boundary point of
C at which some combination of constraints might be active.

When C is convex, (3.4) can be re-expressed through the characterization of
NC(x̄) in Proposition 3.4. In the notation M(x) = ∇f0(x) it takes the form〈

M(x̄), x− x̄
〉
≥ 0 for all x ∈ C. (3.7)

This condition for any mapping M : lRn → lRn is called the variational inequality for
M and C. The variational inequality for M and C is thus the relation

−M(x̄) ∈ NC(x̄) (with C convex). (3.8)

Variational inequalities have taken on great importance in generalizations of partial
differential equations to include “inequality type” side conditions. Because partial
differential operators can often be interpreted as the gradient mappings of convex
functionals on function spaces, the variational inequalities in PDE theory often con-
stitute optimality conditions for such functionals. In such a context lRn would be
replaced by an infinite-dimensional Hilbert space in (3.7).

To fill out the picture of the relationship between tangents and normals, we
derive one more fact of nonsmooth geometry. Recall that C is locally closed at x̄ if its
intersection with some neighborhood of x̄ is closed.

Definition 3.7. The set C is Clarke regular at x̄, one of its points, if C is locally
closed at x̄ and every normal vector to C at x̄ is a regular normal vector.

Clarke’s original definition of regularity [16], [17], differs on the surface: he re-
quires every tangent vector to be regular in the sense of belonging to the polar of
NC(x̄). This means that 〈v, w〉 ≤ 0 for all w ∈ TC(x̄) and v ∈ NC(x̄), and it is
therefore equivalent by Proposition 3.5 to the normal vector property used here.

Proposition 3.8. Let x̄ ∈ C and suppose C is Clarke regular at x̄. Then the
tangent and normal cones to C at x̄ are convex cones polar to each other:

TC(x̄) =
{
w

∣∣ 〈v, w〉 ≤ 0 for all v ∈ NC(x̄)
}
,

NC(x̄) =
{
v

∣∣ 〈v, w〉 ≤ 0 for all w ∈ TC(x̄)
}
.

(3.9)

Proof. Because every normal is a regular normal, we know from Proposition 3.5
that the second equation in (3.9) is correct along with the “⊂” part of the first equa-
tion. Our job is to prove the opposite inclusion. Fixing any w̄ /∈ TC(x̄), we aim at
establishing the existence of a vector v̄ ∈ NC(x̄) with 〈v̄, w̄〉 > 0.

Replacing C by its intersection with some closed ball around x̄ if necessary, we can
suppose that C is compact. Let B stand for some closed ball around w̄ that doesn’t
meet TC(x̄) (this exists because TC(x̄) is closed). The definition of TC(x̄) implies the
existence of a value ε > 0 such that the compact, convex set S =

{
x̄+ tw

∣∣w ∈ B, t ∈
[0, ε]

}
meets C only at x̄. For an arbitrary sequence of values εk ∈ (0, ε) with εk ↓0,

consider the compact, convex sets Sk =
{
x̄ + tw

∣∣w ∈ B, t ∈ [εk, ε]
}
, which are

disjoint from C.
The function h(x, u) = 1

2 |x−u|2 attains its minimum over C×Sk at some (xk, uk).
In particular, x minimizes h(x, uk) over x ∈ C, so the vector −∇xh(xk, uk) = uk − xk

is a regular normal to C at xk (Proposition 3.5). Likewise, the vector −∇uh(xk, uk) =
xk −uk is a regular normal to Sk at uk. Necessarily xk 6= uk because C ∩Sk = ∅, but
xk → x̄ and uk → x̄, because the sets Sk increase to D (the closure of their union),
and C ∩ S = {x̄}.
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Let vk = (uk−xk)/|uk−xk|, so that vk is a regular normal to C at xk, while −vk

is a regular normal to Sk at uk, and |vk| = 1. We can suppose that vk converges to
some v̄ with |v̄| = 1; then v̄ ∈ NC(x̄) by Definition 3.2. Because −vk is normal to Sk

at uk and Sk is convex, we have by Proposition 3.4 that 〈vk, u−uk〉 ≥ 0 for all u ∈ Sk.
Since Sk increases to D while uk → x̄, we obtain in the limit that 〈v̄, u − x̄〉 ≥ 0 for
all u ∈ D. We can choose u in this inequality to have the form x̄+ εw for any w ∈ B,
where w in turn can be written in terms of the radius δ of the ball B as w̄ + δz
for arbitrary z with |z| ≤ 1. Hence

〈
v̄, ε(w̄ + δz)

〉
≥ 0 for all such z. This implies

〈v̄, w̄〉 ≥ δ/ε > 0.
Proposition 3.8 applies in particular when C is any closed, convex set, inasmuch

as all normals to such sets are regular by Proposition 3.4. The polarity of the tangent
and normal cones in that case is a well known fact of convex analysis [1]. We’ll see
in the next section that the feasible set C to (P) exhibits the same property under a
minor assumption, even though it generally isn’t convex.

4. Multiplier rule with normal cones. Normal cones are useful in the de-
velopment and statement of Lagrange multiplier rules for equality and inequality con-
straints as well as in dealing abstractly with minimization over a set C. For a starter,
we show how the multiplier conditions (2.9) in Theorem 2.2 can be written in a very
neat manner which ultimately gives the pattern for generalizations to problem formats
beyond (P). We focus on the closed, convex sets

Y = lRs
+ × lRm−s =

{
y = (y1, . . . , ym)

∣∣ yi ≥ 0 for i = 1, . . . , s
}
,

U =
{
u = (u1, . . . , um)

∣∣ui ≤ 0 for i = 1, . . . , s; ui = 0 for i = s+ 1, . . . ,m
}
,
(4.1)

the first constituting the multiplier space for problem (P) as identified in Theorem 2.2,
and the second allowing the feasible set in (P) to be expressed by

C =
{
x ∈ X

∣∣F (x) ∈ U
}
, where F (x) =

(
f1(x), . . . , fm(x)

)
. (4.2)

Proposition 4.1. At any ȳ ∈ Y the normal cone NY (ȳ) consists of all vectors
u = (u1, . . . , um) such that

ui

{
≤ 0 for i ∈ {1, . . . , s} with ȳi = 0,
= 0 for i ∈ {i, . . . , s} with ȳi > 0 and for i ∈ {s+ 1, . . . ,m},

while at any ū ∈ U the normal cone NU (ū) consists of all y = (y1, . . . , ym) such that

yi

 = 0 for i ∈ {i, . . . , s} with ūi < 0,
≥ 0 for i ∈ {1, . . . , s} with ūi = 0,
unrestricted for i ∈ {s+ 1, . . . ,m}.

Thus, ȳ ∈ NU (ū) if and only if ū ∈ NY (ȳ), and condition (2.9) in Theorem 2.2 can
be written either as ȳ ∈ NU

(
F (x̄)

)
, where F (x̄) =

(
f1(x̄), . . . , fm(x̄)

)
, or as

∇yL(x̄, ȳ) ∈ NY (ȳ). (4.3)

This view of the multiplier conditions in Theorem 2.2 holds a surprise. Because
Y is convex and L(x, y) is affine in y, the normality relation (4.3) indicates through
Proposition 3.4 that L(x̄, y) ≤ L(x̄, ȳ) for all y ∈ Y . It refers therefore to a global
maximum of the Lagrangian in the y argument, even though the original problem in
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x was one of minimization. But this ties into notions of game theory promoted by von
Neumann, as we’ll see in §5.

Our discussion turns now to modern developments of multiplier rules which im-
prove on Theorem 2.2. Ever since inequality constraints attracted major attention in
optimization, the geometry of one-sided tangents and normals to a feasible set C has
been studied for this purpose in one way or another. Arguments exclusively in terms
of normal vectors will be offered in Theorem 4.2, but for many years the customary
approach to deriving first-order optimality conditions when C is the feasible set in
the standard problem (P) has been through tangent vectors, essentially by way of the
implication from (c) to (b) in Proposition 3.4. If x̄ is locally optimal, −∇f0(x̄) must
be one of the vectors v in (b), so the task has been seen as that of determining how
the vectors v obtained from the condition in (b) may be represented.

It’s worth tracing how this older route goes, even though we’ll bypass it here.
In the pioneering work of Kuhn and Tucker [9] and that of their later discovered
predecessor Karush [10], the tangent vectors studied at a point x̄ ∈ C were the vectors
of the form w = ẋ(0) corresponding to smooth arcs x : (−ε, ε) 7→ C such that x(t) ∈ C
for t ≥ 0, x(0) = x̄. Such vectors belong to the cone TC(x̄) as we’ve defined it, and
often—but not always—describe it completely.

From the description of TC(x̄) in Definition 3.1 and the expansions

fi(x̄+ tkwk) = fi(x̄) + tk
〈
∇fi(x̄), wkx

〉
+ o

(
tk|wk|

)
for all x

it’s easy to deduce that

w ∈ TC(x̄) =⇒


w ∈ TX(x̄),〈
∇fi(x̄), w

〉
≤ 0 for i ∈ {1, . . . , s} with fi(x̄) = 0,〈

∇fi(x̄), w
〉

= 0 for i ∈ {s+ 1, . . . ,m}.
(4.4)

Let K(x̄) stand for the set of w describes on the right side of this implication; we
have TC(x̄) ⊂ K(x̄) in this notation. In circumstances where x̄ is locally optimal and
TC(x̄) = K(x̄), −∇f0(x̄) must be one of the vectors v such that 〈v, w〉 ≤ 0 for all w ∈
K(x̄). The latter condition can be translated as follows into a special representation
for v. First, when X = lRn (so that TX(x̄) = lRn), the Farkas Lemma [28] for linear
inequalities states that the vectors v satisfying 〈v, w〉 ≤ 0 for every w ∈ K(x̄) are
precisely the ones that can be represented in the form v = y1∇f1(x̄)+ · · ·+ym∇fm(x̄)
with coefficients yi satisfying

yi

 = 0 for i ∈ {1, . . . , s} with fi(x̄) < 0,
≥ 0 for i ∈ {1, . . . , s} with fi(x̄) = 0,
unrestricted for i ∈ {s+ 1, . . . ,m}.

(4.5)

This result can be extended to situations where X might not be all of lRn but at
least is a polyhedral set, meaning that it’s a convex set expressible as the points
satisfying some finite system of linear constraints. (In particular, lRn is considered to
be a polyhedral set.) By passing temporarily through an explicit introduction of such
linear constraints, one is able to deduce that the vectors v in question can be written
in the form

v = y1∇f1(x̄) + · · ·+ ym∇fm(x̄) + z

for some z ∈ NX(x̄), again with coefficients yi satisfying (4.5).
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It follows by this form of reasoning—in the case where the implication in (4.4) is
an equivalence andX is polyhedral—that a necessary condition for the local optimality
of x̄ in problem (P) is the existence of coefficients ȳi satisfying (4.5) such that

∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) + z̄ = 0 for some z̄ ∈ NX(x̄).

This relation reduces to ∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) = 0 if x̄ is an interior
point of X, as when X = lRn; cf. (3.6). In general it says −∇xL(x̄, ȳ) ∈ NX(x̄), while
condition (4.5) on the vector ȳ = (ȳ1, . . . , ȳm) can be expressed through Proposition
4.1 either as ȳ ∈ NU

(
F (x̄)

)
or as ∇yL(x̄, ȳ) ∈ NY (ȳ).

The use of normal cones in expressing such necessary conditions for optimality is
relatively new and hasn’t yet filtered down to the textbook level. Anyway, textbooks
in optimization have treated only the case of this derivation where X = lRn, preferring
to make explicit any linear constraints involved in the specification of X. Yet Kuhn
and Tucker in their paper [9] allowed for abstract handling of nonnegativity constraints
on certain of the components of x, in effect taking

X = lRr
+ × lRn−r =

{
x = (x1, . . . , xn)

∣∣xi ≥ 0 for i = 1, . . . , r
}
. (4.6)

The relation −∇xL(x̄, ȳ) ∈ NX(x̄) in this case summarizes their conditions

∂L

∂xj
(x̄, ȳ)

{
= 0 for j ∈ [1, r] with x̄j > 0, and for j ∈ [r + 1, n],
≥ 0 for j ∈ [1, r] with x̄j = 0, (4.7)

which are pleasingly parallel to the form taken by the conditions on the components
of ∇yL(x̄, ȳ) and ȳ in (2.9). Requirements of the form (4.7) or (2.9) are known as
complementary slackness conditions, because they forbid two linked inequalities to be
“slack” (i.e., to hold with strict inequality) at the same time. For instance, in (4.7)
at least one of the two inequalities (∂L/∂x1)(x̄, ȳ) ≥ 0 and x̄1 ≥ 0 must hold as an
equation.

As already underlined, this customary approach to deriving optimality conditions
depends on equivalence reigning in the tangent cone implication (4.4). Equivalence
can be established in various cases by demonstrating that the closure of some subcone
of TC(x̄) (such as the one utilized by Kuhn and Tucker [9] and Karush [10]) contains
all the vectors w on the right side of (4.4). Much effort has gone into finding conve-
nient assumptions, called constraint qualifications, that guarantee such a property. As
Kuhn and Tucker were well aware, no extra assumption is needed at all when every
constraint is linear. For nonlinear constraints, though, a constraint qualification can’t
be dispensed with.

A popular constraint qualification is one stated by Mangasarian and Fromovitz
[29] for the case of (P) with no abstract constraint: the gradients ∇fi(x̄) of the
equality constraints should be linearly independent, and there should be a vector w
such that

〈
∇fi(x̄), w

〉
= 0 for all the equality constraints, but

〈
∇fi(x̄), w

〉
< 0 for all

the active inequality constraints. In particular this condition validates the conclusions
in Theorem 2.2 without requiring the linear independence of the gradients of the
active inequality constraints together with the gradients of the equality constraints.
In the case of inequality constraints only, the same constraint qualification was used by
Karush [10]; the Mangasarian-Fromovitz condition is what one gets when independent
equality constraints are added and then linearized through a change of variables based
on the implicit function theorem.
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The well trod approach to optimality through tangent vectors has served ade-
quately for many purposes, but it’s unnecessarily complicated and suffers from techni-
cal and conceptual limitations which increasingly cause trouble as the theory reaches
out to embrace problem structures associated with infinite-dimensional applications.
The same optimality conditions, and more, can be obtained without such machin-
ery, without assuming that the set X is polyhedral, and incidentally without relying
anywhere on the implicit mapping theorem.

We’ll say the basic constraint qualification in (P) is satisfied at a feasible solution
x̄ when

(Q)

{
there is no vector y 6= 0 satisfying (4.5) such that

−
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄).

This assumption is close in spirit to the linear independence condition required by the
classical methodology behind Theorem 2.2, to which it reduces when X = lRn and
only equality constraints are involved. With inequality as well as equality constraints
present (but still X = lRn), condition (Q) would stipulate that the only linear combi-
nation y1∇f1(x̄)+ · · ·+ym∇fm(x̄) = 0 in which the coefficients yi for active inequality
constraints are nonnegative, while those for inactive inequality constraints are 0, is
the one in which all coefficients are 0.

The latter property is known to be equivalent to the Mangasarian-Fromovitz
constraint qualification by way of the Farkas Lemma. It’s the constraint qualification
employed in 1948 by John [13], although John adopted a different form of presentation,
which will be described after the proof of the theorem we’re leading up to. The basic
constraint qualification (Q) can be regarded therefore as the natural extension of the
Mangasarian-Fromovitz condition and the John condition to cover a general abstract
constraint x ∈ X.

Like the gradient condition in (Q), the restriction (4.5) on y in (Q) can be written
in normal cone form, namely y ∈ NU

(
F (x̄)

)
for the closed, convex set U in (4.1), cf.

Proposition 4.1. In the case where X is Clarke regular at x̄, as when X is a closed,
convex set, it would be possible to use the polarity relationship in Proposition 3.8 to
translate (Q) into an equivalent condition on the tangent cones TX(x̄) and TU

(
F (x̄)

)
.

But for general X that approach fails, and only a normal vector condition is effective.
Notice that if (Q) is satisfied at x̄, it must be satisfied at every x ∈ C in some

neighborhood of x̄. Otherwise there would be a sequence of points xk → x̄ in C and
nonzero vectors yk ∈ NU

(
F (xk)

)
with −

∑m
i=1 y

k
i ∇fi(xk) ∈ NX(xk). These vectors

yk could be normalized to length 1 without affecting the property in question, and
because of the smoothness of the fi’s any cluster point ȳ of the sequence {yk}∞k=1

would then present a violation of (Q) (because of the closedness of normality relations
in Proposition 3.3). The basic constraint qualification is thus a “stable” kind of
condition.

Theorem 4.2. If x̄ ∈ X is a locally optimal solution to (P) at which the basic
constraint qualification (Q) is satisfied, there must exist a vector ȳ ∈ Y such that

(L) −∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

Proof. Local optimality means that for some compact neighborhood V of x̄, we
have f0(x) ≥ f0(x̄) for all x ∈ C ∩ V . Replacing X by X̃ = X ∩ V if necessary, we
can suppose without loss of generality that x̄ is globally optimal in (P), and X is
compact. Then by replacing f0(x) by f̃0(x) = f0(x) + ε|x − x̄|2 if necessary, where
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∇f̃0(x̄) = ∇f0(x̄), we can ensure further without loss of generality that x̄ is the only
optimal solution to (P).

With U continuing to denote the set in (4.1) and F (x) =
(
f1(x), . . . , fm(x)

)
,

observe that the optimization problem

(P̂) minimize f̂(x, u) = f0(x) over all (x, u) ∈ X × U such that F (x)− u = 0

then has (x̄, ū) =
(
x̄, F (x̄)

)
as its unique optimal solution. For a sequence of values

εk ↓0, consider the penalty approximations

(P̂k) minimize f̂k(x, u) = f0(x) +
1

2εk

∣∣F (x)− u
∣∣2 over all (x, u) ∈ X × U.

Because (x̄, ū) is a feasible solution to (P̂k), the closed set

Sk =
{

(x, u) ∈ X × U
∣∣ f̂k(x, u) ≤ f̂k(x̄, ū) = f0(x̄)

}
is nonempty, and (P̂k) is equivalent to minimizing f̂k over Sk. Let µ be the minimum
value of f0 over the compact set X. Then

Sk ⊂
{

(x, u) ∈ X × U
∣∣∣ |F (x)− u| ≤ 2εk

[
f0(x̄)− µ]

}
. (4.8)

The boundedness of X implies through this that Sk is bounded, hence compact, so
the minimum of f̂k over Sk is attained. Thus, (P̂k) has an optimal solution.

Denoting an optimal solution to (P̂k), not necessarily unique, by (xk, uk) for each
k, we have from (4.8) that the sequence

{
(xk, uk)

}∞
k=1

in X × U is bounded with

|F (xk)− uk| ≤ 2εk

[
f0(x̄)− µ], f0(xk) ≤ f̂k(xk, uk) ≤ f0(x̄).

Any cluster point of this sequence is therefore a point (x̃, ũ) ∈ X × U satisfying
|F (x̃) − u| = 0 and f0(x̃) ≤ f0(x̄). But the only such point is (x̄, ū), the unique
optimal solution to (P̂). Therefore, xk → x̄ and uk → ū.

The optimality of (xk, uk) in (P̂k) implies that xk minimizes f̂k(x, uk) relative to
x ∈ X, and uk minimizes f̂k(xk, u) relative to u ∈ U . Therefore by Theorem 3.6,

−∇xf̂k(xk, uk) ∈ NX(xk), −∇uf̂k(xk, uk) ∈ NU (uk). (4.9)

Set yk = −∇uf̂k(xk, uk), so that yk
i =

[
fi(xk)−uk

i

]/
εk and∇xf̂k(xk, uk) = ∇f0(xk)+

yk
1∇f1(xk) + · · · + yk

m∇fm(xk) = ∇xL(xk, yk). The normality conditions (4.9) then
take the form

−∇xL(xk, yk) ∈ NX(xk), yk ∈ NU (uk). (4.10)

We distinguish now between two cases: the sequence of vectors yk is bounded or
it’s unbounded. If the sequence of vectors yk is bounded, we can suppose it converges
to some ȳ. Then in the limit in (4.10) we obtain through the closedness property in
Proposition 3.3 that −∇xL(x̄, ȳ) ∈ NX(x̄) and ȳ ∈ NU (ū) = NU

(
F (x̄)

)
. The second

of these normality conditions can also be written as ∇yL(x̄, ȳ) ∈ NY (ȳ) according to
Proposition 4.1, so we’ve arrived at condition (L).

If the sequence of vectors yk is unbounded, we can suppose (by passing to a
subsequence if necessary) that 0 < |yk| → ∞ and that the vectors ȳk = yk/|yk|
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converge to some ȳ 6= 0. Dividing the normals in (4.10) by |yk| (they’re still normals
after rescaling), we get −

(
1/|yk|

)
∇f0(xk) −

∑m
i=1 ȳ

k
i ∇fi(xk) ∈ NX(xk) with ȳk ∈

NU (uk). In the limit this yields −
∑m

i=1 ȳi∇fi(x̄) ∈ NX(x̄) with ȳ ∈ NU

(
F (x̄)

)
, so

assumption (Q) is violated. The unbounded case is therefore impossible.
This theorem could have been formulated in the pattern of John [13], who was

the first to prove the version in which no abstract constraint is involved. That would
have meant modifying the definition of L(x, y) to have a coefficient y0 ≥ 0 for f0.
Then Y = lRs+1

+ × lRm−s; the assertion would be the existence of a nonzero multiplier
vector in this higher-dimensional set Y , with no mention of a constraint qualification.
Of course, the conclusion in this case can be broken down into two cases, where ȳ0 > 0
or ȳ0 = 0, where in the first case a rescaling can make ȳ0 = 1. That case corresponds
to the conclusion in Theorem 4.2, while the other corresponds to a violation of (Q).

John’s way of formulating Lagrange multiplier rules is popular in some branches of
optimization, especially optimal control, but it has distinct disadvantages. It interferes
with comparisons with other approaches where the conclusion may be the same but
the constraint qualification is different. Most seriously, it clashes with saddle point
expressions of optimality such as will be seen in §§5 and 6.

The proof technique for Theorem 4.2, relying on a sequence of penalty approx-
imations, resembles that of McShane [30] (see also Beltrami [31] for a similar idea).
In McShane’s approach, directed only to the case of X = lRn, the approximate prob-
lem corresponding to (P̂k) consists instead of minimizing f0(x) + (1/2εk)dU

(
F (x)

)2

in x, where dU

(
F (x)

)
is the distance of F (x) from U . The approach here, where

minimization is set up in two vectors x and u, promotes the normal cone viewpoint,
thereby effecting a generalization to an arbitrary closed set X and, as already sug-
gested, promoting connections with saddle point properties as well as extensions to
problem formulations more flexible than (P).

Although we’ve spoken of developing first-order optimality conditions through
formulas for the normal cones NC(x̄) to various sets C, the proof of Theorem 4.2
appears to have taken a shortcut. But in fact, Theorem 4.2 provides such a formula for
the special case of the feasible set C in problem (P), which we state next. Theorem 4.2
follows in turn from this formula by Theorem 3.6.

Theorem 4.3. Let C be the feasible set in (P), and let x̄ be a point of C where
the basic constraint qualification (Q) is satisfied. Then

NC(x̄) ⊂
{
v = y1∇f1(x̄)+ · · ·+ym∇fm(x̄)+z

∣∣ y ∈ NU

(
F (x̄)

)
, z ∈ NX(x̄)

}
. (4.11)

If X is Clarke regular at x̄ (as when X is convex), then C is Clarke regular at x̄ and
the inclusion is an equation.

Proof. First consider a regular normal vector v ∈ NC(x̄). By Proposition 3.5 there
is a smooth function f0 on a neighborhood of x̄ such that f0 has a local minimum
relative to C at x̄, and −∇f0(x̄) = v. Applying Theorem 4.2 we get a vector ȳ ∈ Y
with −∇xL(x̄, ȳ) ∈ NX(x̄) and ∇yL(x̄, ȳ) ∈ NY (ȳ), and these conditions can be
written as v−

∑m
i=1∇fi(x̄) ∈ NX(x̄) and F (x̄) ∈ NY (ȳ), the latter being the same as

ȳ ∈ NU

(
F (x̄)

)
by Proposition 4.1. Thus, v belongs to the set on the right in (4.11).

Next consider a general normal v ∈ NC(x̄). By definition there exist sequences
xk → x̄ in C and vk → v with vk a regular normal in NC(xk). Since the basic
constraint qualification (Q) is satisfied at x̄, it’s also satisfied at xk once xk is in a
certain neighborhood of x̄ (recall the comment preceding Theorem 4.2). The argument
already given then provides vectors yk ∈ NU

(
F (xk)

)
and zk ∈ NX(xk) with

vk = yk
1∇f1(xk) + · · ·+ yk

m∇fm(xk) + zk.
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If the sequence of vectors yk has a cluster point ȳ, then the sequence of vectors zk has
a corresponding cluster point z̄ with

v = ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) + z̄,

and we have NU

(
F (x̄)

)
and z̄ ∈ NX(x̄) because of the closedness property in Propo-

sition 3.3. In this case, therefore, v again belongs to the set on the right in (4.11).
On the other hand, if the sequence of vectors yk has no cluster point, we have

|yk| → ∞. Consider then a cluster point ȳ of the normalized vectors ȳk = yk/|yk|,
which still lie in NU

(
F (xk)

)
; we have ȳ ∈ NU

(
F (x̄) and |ȳ| = 1. Since(

1/|yk|
)
vk = ȳk

1∇f1(xk) + · · ·+ ȳk
m∇fm(xk) +

(
1/|yk|

)
zk,

the vectors z̄k =
(
1/|yk|

)
zk ∈ NX(xk) have a cluster point z̄ ∈ NX(x̄) with

0 = ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) + z̄.

But this is impossible under assumption (Q). The general inclusion in (4.11) is thereby
established.

Suppose finally that X is Clarke regular at x̄, i.e., that every normal z ∈ NX(x̄)
is a regular normal. Let v be a vector represented as on the right in (4.11), and for the
coefficient vector y ∈ NU

(
F (x̄)

)
in question let h(x) =

∑m
i=1 yi∇fi(x), so that (from

the sign conditions represented by y ∈ NU

(
F (x̄)

)
, cf. Proposition 4.1) h(x) ≤ 0 = h(x̄)

for all x ∈ C, and the vector v − ∇h(x̄) = z is a regular normal to X at x̄. Then〈
v −∇h(x̄), x− x̄

〉
≤ o

(
|x− x̄|

)
for x ∈ X, so that〈

v, x− x̄
〉
≤

〈
∇h(x̄), x− x̄

〉
+ o

(
|x− x̄|

)
≤ h(x)− h(x̄) + o

(
|x− x̄|

)
≤ o

(
|x− x̄|

)
for all x ∈ X.

This tells us that v is a regular normal to C at x̄. The inclusion in (4.11) thus turns
into an equation in which all the vectors v are regular normals, and consequently C
is Clarke regular at x̄.

Because of the importance of linear constraints in many applications, the following
variant of Theorems 4.2 and 4.3 deserves attention.

Theorem 4.4. The conclusions of Theorem 4.2 remain valid when the basic con-
straint qualification (Q) at x̄ is replaced by

(Q′)


X is polyhedral, and the only vectors y 6= 0 satisfying (4.5) and

−
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄),

if any, have yi = 0 for each index i such that fi is not affine.

Likewise, Theorem 4.3 remains valid with (Q′) substituted for (Q), and in this case C
is Clarke regular at x̄ and the inclusion holds as an equation.

Proof. It’s enough to concern ourselves with Theorem 4.3, since the extension of
this result implies the extension of Theorem 4.2 through the normal cone principle in
Theorem 3.6. We’ll use a bootstrap approach, reducing the general case by stages to
the one already covered. We begin with the case where X = lRn and every fi is affine.
Because the gradient ∇fi(x) is the same for all x, we write it for now as ai. As a
harmless notational simplification in this context we suppose that all the inequality
constraints are active at x̄, and that the vectors a1, . . . , am span lRn. (Otherwise we
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could translate the argument to the subspace that they span, identifying it with lRn′

for some n′ < n.) The task then is to demonstrate that NC(x̄) coincides with the cone

K =
{
y1a1 + · · ·+ ymam

∣∣ y ∈ Y }
, (4.12)

where Y continues to be the cone in (4.1).
Because C is polyhedral in this initial context, hence convex, we know from

Proposition 3.4 that the vectors v ∈ NC(x̄) are the ones satisfying 〈v, x− x̄〉 ≤ 0 for
all x ∈ C. It’s elementary that every vector v ∈ K has this property, since

〈
ai, x− x̄

〉
= fi(x)− fi(x̄) = fi(x)

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

when x ∈ C. Thus, NC(k̄) ⊃ K.
To obtain the opposite inclusion, we must first establish that K is closed. For

each index set I ⊂ {1, . . . ,m} such that the vectors ai for i ∈ I form a basis for
lRn, let KI denote the subcone of K defined as in (4.12) but with yi = 0 for all
i /∈ I. Obviously KI is closed, since it corresponds in the coordinate system with basis
{ai}i∈I merely to a nonnegativity requirement on certain coordinates (the coordinates
are the yi values entering into the representations that define KI). By proving that
every v ∈ K belongs to some KI , we’ll be able to conclude that K is closed, because
there are only finitely many cones KI , and the union of finitely many closed sets is
closed.

Actually, we need only show that every v ∈ K can be represented as in (4.12)
with the set Ay = { ai | yi 6= 0 } linearly independent, since other ai’s with coefficients
yi = 0 can always be thrown in from the spanning set {a1, . . . , am} to form a basis.
Suppose v has a representation as in (4.12) with the set Ay not linearly independent:
there are coefficients ηi for i ∈ Av, not all zero, such that

∑
i∈Av

ηiai = 0. For any
value of t ∈ lR we’ll have another representation

v = y′1a1 + · · ·+ y′mam with y′i = yi − tηi.

It’s possible to choose t in such a manner that tηi = yi for at least one i with yi 6= 0,
but tηi ≤ yi for all i ∈ {1, . . . , s}. Then y′ ∈ Y and Ay′ ⊂ Ay, Ay′ 6= Ay. If the vectors
in Ay′ aren’t linearly independent, the procedure can be continued a step further to get
a representation in terms of a coefficient vector y′′ ∈ Y with Ay′′ ⊂ Ay′ , Ay′′ 6= Ay′ ,
and so on. Eventually a representation with linear independence will be achieved.

Having proved that K is closed, we now consider a vector v̂ /∈ K and demonstrate
that v̂ /∈ NC(x̄), thereby obtaining the desired relation NC(x̄) = K. Because K is
closed, the problem of minimizing ϕ(v) = 1

2 |v− v̂|2 over v ∈ K has an optimal solution
v̄. Theorem 3.6 characterizes this by the condition −∇ϕ(v̄) ∈ NK(v̄). The cone K is
convex, so this means by Proposition 3.4 that the vector w = −∇ϕ(v̄) = v̂ − v̄ 6= 0
satisfies 〈w, v− v̂〉 ≤ 0 for all v ∈ K. Hence 〈w, v̄〉 ≥ 0, inasmuch as 0 ∈ K. Since the
vector v = v̄ + z belongs to K for every z ∈ K, we must actually have 〈w, z〉 ≤ 0 for
all z ∈ K, hence in particular

〈w, ai〉
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

〈w, v̄〉 ≤ 0, so that 〈w, v̄〉 = 0.
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It follows that

fi(x̄+ w)− fi(x̄)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

so the point x̂ = x̄+w belongs to C, and yet 〈x̂−x̄, v̂〉 = 〈w, v̂〉 = 〈w, v̂−v̄〉 = |w|2 > 0.
Then v̂ /∈ NC(x̄), because the vectors v ∈ NC(x̄) have to satisfy 〈v, x− x̄〉 ≤ 0 for all
x ∈ C by Proposition 3.4.

So far we’ve proved that the variant of Theorem 4.3 with (Q) replaced by (Q′)
is correct when X = lRn and every constraint function fi is affine. Next we allow X
to be any polyhedral set, keeping the fi’s affine. The polyhedral property ensures a
representation of X as the set of points satisfying a system of constraints

f ′j(x)
{
≤ 0 for j = 1, . . . , s′,
= 0 for j = s′ + 1, . . . ,m′,

where every function f ′j is affine. From what we’ve already established, as applied to
X instead of C, the normal cone NX(x̄) consists of the vectors of the form

z = y′1∇f ′1(x̄) + · · ·+ y′m′∇f ′m′(x̄) where

y′j

{
= 0 for j ∈ {1, . . . , s′} with f ′j(x̄) < 0,
≥ 0 for j ∈ {1, . . . , s′} with f ′j(x̄) = 0.

(4.13)

On the other hand, we can think of C as specified by the fi and f ′j constraint systems
combined and thereby deduce from the same preliminary result that the normal cone
NC(x̄) consists of all vectors of the form

v = y1∇f1(x̄) + · · ·+ ym∇fm(x̄) + y′1∇f ′1(x̄) + · · ·+ y′m′∇f ′m′(x̄)

in which the coefficients y′j satisfy the requirements in (4.13) while the coefficients yi

satisfy the earlier ones in (4.5). Obviously in this way we confirm that the vectors in
NC(x̄) are in this case characterized by the representation in Theorem 4.3.

We’re ready now for the general case, where X is polyhedral but the functions
fi aren’t necessarily affine. For simplicity we can take the notation to be such that
the nonaffine inequality constraint functions are f1, . . . , fs∗ , whereas the nonaffine
equality constraint functions are fs+1, . . . , fm∗ . We suppress the affine constraint
functions temporarily by introducing in place of X the polyhedral set X ′ comprised
of the points x ∈ X satisfying the linear constraints fi(x) ≤ 0 for i = s∗ + 1, . . . , s
and fi(x) = 0 for i = m∗ + 1, . . . ,m. This allows us to think of C as the set of points
x ∈ X ′ satisfying the nonlinear constraints among the ones originally given. Condition
(Q′) is precisely the basic constraint qualification for this description of C, because
the normal cone NX′(x̄) is now known to consist of the vectors of the form

z′ = ys∗+1∇fs∗+1(x̄) + · · ·+ ysfs(x̄) + ym∗+1∇fm∗+1(x̄) + · · ·+ ymfm(x̄) + z

with z ∈ NX(x̄) and coefficients yi = 0 for i ∈ {s∗ + 1, . . . , s} with fi(x̄) < 0, but
yi ≥ 0 for i ∈ {s∗+ 1, . . . , s} with fi(x̄) = 0. On the strength of (Q) we may conclude
from the original version of Theorem 4.3 that the vectors in NC(x̄) are the ones of the
form

v = y1∇f1(x̄) + · · ·+ ys∗fs∗(x̄) + ys+1∇fs+1(x̄) + · · ·+ ym∗fm∗(x̄) + z′
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with z′ ∈ NX′(x̄) and coefficients yi = 0 for i ∈ {1, . . . , s∗} having fi(x̄) < 0, but
yi ≥ 0 for i ∈ {1, . . . , s∗} having fi(x̄) = 0. This representation along with the one for
NX′(x̄) yields the full result we wanted to obtain.

The proof of Theorem 4.4, although lengthy, uses no more than elementary linear
algebra in conjunction with the results previously obtained. In particular, the Farkas
Lemma wasn’t invoked as such. But the first part of the proof establishes, in effect
as an extension of the Farkas Lemma, the fact that the normal cone representation
in Theorem 4.3 is always valid in the case where the constraints are all linear and
X = lRn. On the other hand, the Farkas Lemma is a consequence of the final result.
It corresponds to the special case of Theorem 4.3 (as sharpened through Theorem
4.4) where C is defined by homogeneous linear constraints only: fi(x) = 〈ai, x〉 for
i = 1, . . . ,m, X = lRn, and x̄ = 0.

The kind of multiplier rule statement used by John [13] (as described after The-
orem 4.2) wouldn’t work for Theorem 4.4. This result demonstrates nonetheless that
a constraint qualification in normal cone formulation is fully capable of handling the
special features like linear constraints for which tangent cone formulations have tra-
ditionally been pushed.

5. Games and duality. For optimization problems of convex type, Lagrange
multipliers take on a game-theoretic role that could hardly even have been imagined
before the creative insights of von Neumann [32], [33], in applying mathematics to
models of social and economic conflict.

Theorem 5.1. In the convex case of (P), the Lagrangian L(x, y) is convex in
x ∈ X for each y ∈ Y , and concave (actually affine) in y ∈ Y for each x ∈ X. The
Lagrangian normality condition (L) in Theorem 4.2 is equivalent then to the saddle
point condition:{

the minimum of L(x, ȳ) in x ∈ X is attained at x̄,
the maximum of L(x̄, y) in y ∈ Y is attained at ȳ.

(5.1)

Proof. The expression f0(x) + y1f1(x) + · · · + ymfm(x) is always affine in y =
(y1, . . . , ym) for fixed x. When fi is convex for i = 0, 1, . . . , s and affine for i =
s+ 1, . . . ,m, as stipulated in the convex case of (P), this expression is convex in x as
long as the coefficients yi are nonnegative for i = 1, . . . , s. Since the set X is convex
in the convex case of (P) (and Y is convex by choice), the normal cone conditions are
by Theorem 3.6 not only necessary but sufficient for the minimum and maximum in
question.

A pair of elements x̄ and ȳ is said to give a saddle point of L on X × Y when
(5.1) holds; this can also be written as

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X, y ∈ Y (where x̄ ∈ X, ȳ ∈ Y ). (5.2)

This relation has a life of its own as an equilibrium condition for certain “games,” and
it leads to further properties of Lagrange multipliers which are of prime importance
for many applications.

It will be helpful to free ourselves temporarily of the specifics of the Lagrangian
L for problem (P ) and think of an arbitrary real-valued function L on a product of
any nonempty sets X and Y , not necessarily even in lRn and lRm. The triple (X,Y, L)
determines a certain two-person zero-sum game, described as follows. There are two
“agents,” Player 1 and Player 2; X is the “strategy set” for Player 1, Y is the “strategy
set” for Player 2, and L is the “payoff function.”
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(1) Player 1 selects an element x ∈ X, while Player 2 selects an element y ∈ Y .
(2) The two choices are revealed simultaneously.
(3) In consequence, Player 1 pays L(x, y) (dollars, say) to Player 2.

The simplicity of this model is deceptive, because it can be demonstrated that a
vast array of games—even chess and poker—can be dressed in such clothing. (In the
case of chess, for instance, each element x can be taken to be an encyclopedic prescrip-
tion of just what Player 1 would do in response to every possible board configuration
and the history that led to it, and similarly for each y.) A crucial property, however,
is that the amount won by either player is the amount lost by the other player (this
is what’s meant by “zero sum”). The amounts L(x, y) are allowed to be 0, and they
can be negative; then Player 1 really gets the money.

A saddle point (x̄, ȳ) of L over X × Y (if one exists) gives a kind of equilibrium
in the game. In choosing x̄, Player 1 is assured that no matter what element y might
be selected by Player 2, the payment can’t exceed the amount L(x̄, ȳ). Likewise, in
choosing ȳ Player 2 can be sure of receiving at least this same amount, regardless of
the actions of Player 1. The concept of a saddle point seems associated therefore with
an approach to the game in which each player tries to exercise as much control as
possible over the outcome, relative to a worst-case analysis of what might happen.

This notion can be made rigorous by introducing an optimization problem for
each player, to be used in determining the element to be selected. The optimization
problem for Player 1 is

(P1) minimize f(x) over x ∈ X, where f(x) = sup
y∈Y

L(x, y),

while the optimization problem for Player 2 is

(P2) maximize g(y) over y ∈ Y, where g(y) = inf
x∈X

L(x, y).

These are called the minimax strategy problems for the two players. In (P1), Player 1
distinguishes the various choices x only according to the least upper bound f(x) to
what might have to be paid out if that choice is made. An optimal solution x̄minimizes
this bound. The interpretation of problem (P2) is similar—from the viewpoint of
Player 2. Let’s write

inf(P1) = inf
x∈X

f(x), sup(P2) = sup
y∈Y

g(y). (5.3)

Then inf(P1) is the level that Player 1 can hold payments down to, whereas sup(P2)
is the level that Player 2 can force payments up to.

Proposition 5.2. In the game represented by a general choice of X, Y , and L,
it is always true that inf(P1) ≥ sup(P2). A pair (x̄, ȳ) furnishes a saddle point of
L(x, y) on X × Y if and only if

x̄ is an optimal solution to (P1),
ȳ is an optimal solution to (P2),
inf(P1) = sup(P2).

(5.4)

Proof. The definition of the functions f in (P1) and g in (P2) implies that

f(x) ≥ L(x, y) ≥ g(y) for all x ∈ X and y ∈ Y.
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Each value g(y) is therefore a lower bound for the minimization of f , so that inf(P1) ≥
g(y) for all y ∈ Y . Similarly, sup(P2) ≤ f(x), so we get

f(x) ≥ inf(P1) ≥ sup(P2) ≥ g(y) for all x ∈ X and y ∈ Y.

Condition (5.4) is tantamount therefore to f(x̄) = L(x̄, ȳ) = g(ȳ), i.e., to the equation
sup
y∈Y

L(x̄, y) = L(x̄, ȳ) = inf
x∈X

L(x, ȳ). But the latter is precisely the saddle point

condition (5.1)–(5.2).
Equipped with these concepts, let’s return to the Lagrangian L in the convex

case of the standard optimization problem (P). According to Theorem 5.1, the basic
necessary condition (L) for x̄ to be an optimal solution to (P) can be interpreted
in this case as requiring the existence of a vector ȳ such that L has a saddle point
over X × Y at (x̄, ȳ). But we know now that such a saddle point corresponds to an
equilibrium in the game associated with (X,Y, L). What is this game in relation to
(P ), and who are its “players”?

The minimax strategy problem (P1) in this situation can readily be determined
from the special nature of L and Y . The function f to be minimized is

f(x) = sup
y∈Y

{
f0(x) + y1f1(x) + · · ·+ ymfm(x)

}
for x ∈ X, (5.5)

where the restriction of y to Y in taking the “sup” means that the coefficients yi can be
chosen arbitrarily for the terms indexed by i = s+1, . . . ,m, but must be nonnegative
for i = 1, . . . , s. It’s apparent that

f(x) =
{
f0(x) when x ∈ C,
∞ when x /∈ C,

(5.6)

where C is the set of feasible solutions to (P) as earlier. But the minimization of this
function f over X is no different than the minimization of f0 over the subset C of X.
In other words, (P1) is the same as (P).

A mysterious piece of information has been uncovered. In our innocence we
thought we were engaged straightforwardly in solving a single problem (P). But we
find we’ve assumed the role of Player 1 in a certain game in which we have an adversary,
Player 2, whose interests are diametrically opposed to ours! Our adversary’s strategy
problem is

(D) maximize g(y) = inf
x∈X

{
f0(x) + y1f1(x) + · · ·+ ymfm(x)

}
over y ∈ Y.

This is the optimization problem dual to problem (P) in the Lagrangian sense.
In general, the essential objective function g in the dual problem (D) might, like

f in (5.6), be extended-real-valued. To learn more about the nature of (D) in a given
case with particular structure assigned to X and the fi’s, we’d have to identify the
set of points y where g(y) > −∞ and regard that as the feasible set in (D). Examples
will be considered below, but we first need to draw the main conclusion from these
developments.

Theorem 5.3. In the convex case of (P), the Lagrangian normality condition
(L) holds for x̄ and ȳ if and only if

x̄ is an optimal solution to (P),
ȳ is an optimal solution to (D),
inf(P) = sup(D).

(5.7)
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Thus in particular, if x̄ is an optimal solution to (P) at which the basic constraint
qualification (Q) or its variant (Q′) is satisfied, then there exists at least one optimal
solution to (D), and inf(P) = sup(D).

Proof. This is immediate from the combination of Theorem 5.1 with Proposi-
tion 5.2, in view of the existence of multiplier vectors assured by Theorems 4.2 and
4.4.

An early and very pretty example of duality in optimization was spotlighted by
Gale, Kuhn and Tucker [34] in linear programming , which is the case of problem (P)
where X is the special polyhedral cone in (4.6), the objective function is linear, and
all the constraints are linear. Adopting the notation

f0(x) = c1x1 + · · ·+ cnxn,

fi(x) = bi − ai1x1 − · · · − ainxn for i = 1, . . .m,

we can express the problem in this special case as

(P lin)
minimize c1x1 + · · ·+ cnxn subject to xj ≥ 0 for j = 1, . . . , r,

ai1x1 + · · ·+ ainxn

{
≥ bi for i = 1, . . . s,
= bi for i = s+ 1, . . . ,m.

The Lagrangian function is

L(x, y) =
n∑

j=1

cjxj +
m∑

i=1

yibi −
m,n∑

i=1,j=1

yiaijxj , (5.8)

which exhibits the same kind of symmetry between the x and y arguments as appears
in the choice of X and Y . To obtain the problem dual to this, we must determine
the function g defined in (D) for this Lagrangian and see where it’s finite or infinite.
Elementary calculations show that g(y) =

∑m
i=1 yibi if cj −

∑m
i=1 yiaij ≥ 0 for j =

1, . . . , r and cj −
∑m

i=1 yiaij = 0 for j = r+1, . . . , n, whereas g(y) = −∞ if y does not
satisfy these constraints. The dual problem therefore comes out as

(D lin)
maximize y1b1 + · · ·+ ymbm subject to yi ≥ 0 for i = 1, . . . , s,

y1a1j + · · ·+ ymamj

{
≤ cj for j = 1, . . . r,
= cj for j = r + 1, . . . , n.

From all this symmetry it emerges that not only do the Lagrange multiplier vectors
associated with an optimal solution to (P lin) have an interpretation as optimal solu-
tions ȳ to (D lin), but by the same token, the Lagrange multiplier vectors associated
with an optimal solution to (D lin) have an interpretation as optimal solutions x̄ to
(P lin). Each of these problems furnishes the multipliers for the other.

Corollary 5.4. If either of the linear programming problems (P lin) or (D lin)
has an optimal solution, then so does the other, and

inf(P lin) = sup(D lin).

The pairs (x̄, ȳ) such that x̄ solves (P lin) and ȳ solves (D lin) are precisely the ones
that, for the choice of L, X and Y corresponding to these problems, satisfy the La-
grangian normality condition (L), or equivalently, give a saddle point of L on X × Y .
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Proof. We need only observe that the constraint qualification (Q′) is trivially
satisfied in both of these problems, because they only involve linear constraints.

According to Kuhn [11], it was von Neumann [35] who proposed this result to
Gale, Kuhn and Tucker, who then proved it in [34]. The exciting duality moved Kuhn
and Tucker to give the main emphasis to saddle point conditions for optimality in
their paper [9] (which was written later than [34], although it came into print earlier).

An interpretation of the Lagrangian game associated with (P) is called for, but
there’s no universal story to fit all applications. An example will nonetheless convey
the basic idea and indicate some relationships between this kind of mathematics and
theoretical economics. Let’s think of f0(x) as the cost in dollars associated with a
decision vector x = (x1, . . . , xn) selected from X ⊂ lRn. (Perhaps X is a box—a
product of closed intervals, not necessarily bounded—which specifies ranges for the
variables xj .) Each conceivable decision x demands inputs of certain resources, which
are available only in limited supply (space, labor, fuel, etc.). The resources are indexed
by i = 1, . . . ,m, and fi(x) stands for the excess of resource i that x would require
relative to the amount available. The optimization problem is to find a decision x̄ ∈ X
that minimizes cost subject to not demanding more in resources than is available
(the excesses must be nonpositive). This is problem (P) in a case where no equality
constraints are present: s = m. (Note well that inequalities rather than equalities are
the proper model here. Nothing requires the decision maker to use up all the supplies
available. That additional restriction might lead to “busy work” inefficiencies, which
could force costs higher.)

In this model, where the set Y consists of all vectors y = (y1, . . . , ym) with
nonnegative components, the meaning of the Lagrangian L(x, y) = f0(x) + y1f1(x) +
· · · + ymfm(x) can be gleaned from dimensional analysis. Since the term f0(x) is
measured in dollars, L(x, y) must be in such units as well, and therefore yi must be
measured in dollars per unit of resource i. In other words, yi has to be a kind of price.
The vector y thus specifies prices which act to convert excesses of resource usage into
cost terms to be added to the basic costs already present. If fi(x) < 0, the added
cost associated with the input of resource i is negative (or at least nonpositive, since
yi ≥ 0); a credit is given for the unused surplus of this resource.

The following game interpretation can now be made. The decision problem is
enlarged to a setting where supplementary resource amounts can be purchased if
needed, and surplus amounts can be sold off. Player 1 selects a decision x from this
perspective, not insisting on the constraints fi(x) ≤ 0. Player 2, the “market,” selects
a price vector y. The quantity L(x, y) is then the net cost to Player 1 of the decision
x in accordance with any associated buying and selling of the various resources. This
cost is regarded as paid by the decision maker to the “market.” Player 2, as the
recipient, tries to set the prices so as to gain as much income as possible out of the
situation, while Player 1 tries to hold costs down.

Under the assumption that X and all the functions fi are convex, we can apply
Theorems 5.1 and 5.3. The multiplier vectors ȳ for an optimal decision x̄ furnish
a market equilibrium: the prices have the special property that the decision maker
is content with a decision that keeps within existing supplies even when offered the
option of buying and selling resources at the prices ȳi. The clear implication is that
these prices must tightly reflect the marginal value of the resources. The dual problem
is therefore one of imputing value to the resources relative to what the decision maker
can get out of them.

The saddle point characterization of optimality in (P), when it’s valid, as under
the assumptions in Theorem 5.1, affords more than interpretations of optimality. It
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provides alternative methods of solving (P). For instance, instead of applying an
optimization algorithm right to (P), one can in some cases apply it to the dual problem
(D) to get ȳ and then get x̄ from the minimization of L(x, ȳ) over x ∈ X. Or, one
can devise “primal-dual” algorithms which search directly for a saddle point of L on
X × Y . In practice such “pure” numerical approaches are often blended together.

For more on duality in convex optimization, see Rockafellar [36]. Special cases
beyond linear programming are developed in detail in Rockafellar [7], [8], [37], [38],
[39].

When problem (P) isn’t of convex type, the assertions in Theorem 5.3 generally
fail. Nonetheless, the Lagrangian dual problem (D) can still be useful. The function g
maximized over Y in (D) is always concave (although possibly extended-real-valued),
because it’s defined as the pointwise infimum of the collection affine functions x 7→
L(x, y) indexed by x ∈ X. From Proposition 5.2 we know that

inf(P) ≥ sup(D) always. (5.9)

By solving (D), one can at least obtain a lower bound to the optimal value in (P).
this may provide some guideline to whether, having already calculated a certain fea-
sible point x̂ in (P) with objective value f0(x̂), it’s worth expending more effort on
improving x̂. This approach is popular in areas of optimization where the problems
(P) are extremely difficult, as for instance when the specification of the set X includes
restricting some of the variables xj to take on integer values only.

6. Canonical perturbations. Lagrange multipliers hold fundamental signifi-
cance for the parametric study of problems of optimization. Through this, answers
can be found as to whether saddle point conditions and duality are limited only to
convex optimization or have some influence beyond.

An optimization problem typically involves not only modeling parameters but
data elements that might be subject to error or fluctuation and therefore have the
character of parameters as well. Much often depends on understanding how variations
in such parameters may affect the optimal value and optimal solutions.

In most of applied mathematics the opinion prevails that if a problem is well for-
mulated, and parameters enter its statement smoothly, then solutions should depend
smoothly on these parameters. But in optimization this rosy hope is lost already
in simple cases like linear programming. Broadly speaking, the trouble is that the
operations of minimization and maximization, unlike integration, composition, and
other operations at the core of classical analysis, don’t always preserve differentiabil-
ity and may even induce discontinuities. The mathematical prospects aren’t as bleak
as this may sound, however, because powerful methods of handling such features of
minimization and maximization have been devised in nonsmooth analysis.

The subject of nonsmoothness in parametric optimization is far too big to lay
out for general view here. But we can look at a key topic, the connection between
Lagrange multipliers and “generalized derivatives” of the optimal value in a problem
with respect to certain “canonical” perturbations, and in that way see the outlines of
what’s involved.

Let’s regard our problem (P) as embedded in an entire family of optimization
problems parameterized in a special way by u = (u1, . . . , um) ∈ lRm:

(
P(u)

) minimize f0(x) over all x ∈ X

such that fi(x) + ui

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m.
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Clearly (P) is
(
P(0)

)
; it’s fruitful to think of u as a perturbation vector shifting the

given problem from
(
P(0)

)
to

(
P(u)

)
. Define the function p on the parameter space

lRm by

p(u) = inf
(
P(u)

)
=

[
the optimal value corresponding to u = (u1, . . . , um)

]
. (6.1)

Observe that pmay be extended-real-valued. If the objective function f0 isn’t bounded
below on the feasible set for problem

(
P(u)

)
, we have p(u) = −∞. If this feasible set

happens to be empty (because the constraints are inconsistent), we have p(u) = ∞ by
the convention that the greatest lower bound to the empty set of real numbers is ∞.

We are dealing here with the canonical parameterization of problem (P) and
its canonical value function p. This terminology comes from the fact that all other
forms of parameterization and associated perturbation can, in principle, be cast in
the same mold. For instance, if we wish to think of the functions fi as depending on
some further vector b = (b1, . . . , bd) in a set B ⊂ lRd, the arguments being written
fi(x, b), and the issue concerns what happens when b varies close to a reference value
b̄ ∈ B, we can handle this by making the bk’s into new variables and introducing
x′ = (x, b) ∈ X × B as the new decision vector under the additional constraints
fm+k(x, b) = 0 for k = 1, . . . , d, where fm+k(x, b) = b̄k − bk. Shifts of bk away from b̄k
correspond then to shifts of the constraint fm+k(x, b) = 0 to fm+k(x, b) + um+k = 0.

Theorem 6.1. A pair of vectors x̄ ∈ X and ȳ ∈ Y furnishes a saddle point of
the Lagrangian L for (P) on X × Y if and only if{

x̄ is a (globally) optimal solution to (P),

p(u) ≥ p(0) +
〈
ȳ, u

〉
for all u.

(6.2)

Proof. The general interchange principle in minimization, applicable to any func-
tion Φ(x, u) on lRn × lRn, says for a pair (x̄, ū) that

(x̄, ū) minimizes Φ(x, u) on lRn × lRm

⇐⇒ x̄ minimizes Φ(x, ū) on lRn, while ū minimizes infx Φ(x, u) on lRm,

⇐⇒ ū minimizes Φ(x̄, u) on lRm, while x̄ minimizes infu Φ(x, u) on lRn.
(6.3)

We take ū = 0 and Φ(x, u) = ϕ(x, u)− 〈ȳ, u〉, where

ϕ(x, u) =
{
f0(x) if x is feasible for

(
P(u)

)
,

∞ if x isn’t feasible for
(
P(u)

)
.

(6.4)

The second condition in (6.3) can then be identified with (6.2), because inf
x

Φ(x, u) =

p(u)− 〈ȳ, u〉. When this condition holds, the value ϕ(x̄, 0) must be finite by virtue of
equivalence with the first condition in (6.3) (since Φ > −∞ everywhere, but Φ 6≡ ∞).
We argue that the saddle point condition corresponds to the third condition in (6.3).
For each x ∈ X let Ux denote the set of u ∈ lRm such that ui ≤ −fi(x) for i = 1, . . . , s,
but ui = −fi(x) for i = s+ 1, . . . ,m. For each x /∈ X let Ux = ∅. In this notation we
have

inf
u∈lRm

{
ϕ(x, u)− 〈y, u〉

}
= inf

u∈Ux

{
f0(x)− 〈y, u〉

}

=

L(x, y) if x ∈ X and y ∈ Y ,
−∞ if x ∈ X but y /∈ Y ,
∞ if x /∈ X,

(6.5)
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where the case y = ȳ gives infu Φ(x, u). Therefore, to assert that the third condition
in (6.3) holds with the minimum values finite is to say that ȳ ∈ Y and L(x, ȳ) achieves
its minimum relative to x ∈ X at x̄, while at the same time the minimum in (6.5)
for x = x̄ and y = ȳ is attained at u = 0, the minimum value being L(x̄, ȳ) and
equaling f0(x̄). But from (6.5) we know that L(x̄, y) ≤ f0(x̄) for all y ∈ Y , because
u = 0 is always a candidate in the minimization. Hence in these circumstances we
have L(x̄, y) ≤ L(x̄, ȳ) for all y ∈ Y , with L(x̄, ȳ) finite. Conversely, if this inequality
holds then necessarily L(x̄, ȳ) = f0(x̄) with x̄ feasible in (P), due to (5.5)–(5.6), and
then in (6.5) for x = x̄ and y = ȳ we get the minimum achieved at u = 0. The two
properties in the third condition in (6.3) are thus equivalent to the two parts of the
saddle point condition for L on X × Y .

As an interesting sidelight, this theorem informs us that in the convex case the
multiplier vectors (if any) that satisfy condition (L) for a particular optimal solution x̄
are the same as the ones satisfying it for any other optimal solution. In the nonconvex
case of (P) the associated multiplier vectors could well be different.

The relationship between ȳ and p in (6.2) can be understood geometrically in
terms of the epigraph of p, which is the set

epi p =
{

(u, α) ∈ lRm × lR
∣∣α ≥ p(u)

}
. (6.6)

The global inequality p(u) ≥ p(0)+ 〈ȳ, u〉, with p(0) finite, has the interpretation that
the epigraph of the affine function of u 7→ p(0) + 〈ȳ, u〉 (this epigraph being a certain
“upper” closed half-space in lRm × lRn) is a supporting half-space to the epigraph of
p at

(
0, p(0)

)
. For such a half-space to exist, the set epi p must in particular not

be “dented in” at
(
0, p(0)

)
. The role of convexity in the saddle point results in §5

becomes much clearer through this.
Proposition 6.2. In the convex case of problem (P), the canonical value func-

tion p is convex, and its epigraph is thus a convex set.
Proof. Suppose p(u′) ≤ α′ ∈ lR and p(u′′) ≤ α′′ ∈ lR, and consider any t ∈ (0, 1).

Fix any ε > 0. From the definition of p, there’s a feasible point x′ for problem(
P(u′)

)
with f0(x′) ≤ α′ + ε and also a feasible point x′′ for problem

(
P(u′′)

)
with

f0(x′′) ≤ α′′ + ε. Let x = (1 − t)x′ + tx′′. Again x ∈ X (because X is convex), and
we have

fi(x)
{
≤ (1− t)fi(x′) + tfi(x′′) for i = 0, 1, . . . , s,
= (1− t)fi(x′) + tfi(x′′) for i = s+ 1, . . . ,m

(because fi is convex on X for i = 0, 1, . . . , s and affine for i = s+1, . . . ,m). Therefore

f0(x) ≤ (1− t)[α′ + ε] + t[α′′ + ε] = α+ ε for α = (1− t)α′ + +tα′′,

and for u = (1− t)u′ + tu′′ we have

fi(x) + ui

{
≤ (1− t)

[
fi(x′) + u′i

]
+ t

[
fi(x′′) + u′′i

]
for i = 1, . . . , s,

= (1− t)
[
fi(x′) + u′i

]
+ t

[
fi(x′′) + u′′i

]
for i = s+ 1, . . . ,m,

which implies that x is feasible for
(
P (u)

)
. Hence p(u) ≤ α + ε. Since this is true

for arbitrary ε > 0, we actually have p(u) ≤ α. Thus, p is convex. Indeed, we’ve
demonstrated that for any pairs (u′, α′) and (u′′, α′′) in epi p and any t ∈ (0, 1), the
pair (u, α) = (1−t)(u′, α′)+t(u′′, α′′) will again belong to epi p, which is the condition
for the convexity of epi p.
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While many applications of optimization do lie in the realm of convexity, noncon-
vex problems certainly come up, too. Unfortunately, without convexity and assump-
tions dependent on it, one can’t very well ensure the existence of some ȳ for which the
p inequality in (6.2) holds, although there might be such a multiplier vector through
good luck. Therefore, the saddle point interpretation of the normality condition (L)
seems more or less inevitably restricted to convex optimization along with the kind of
Lagrangian duality in Theorem 5.3.

But all isn’t lost in the quest for saddle point expressions of optimality in noncon-
vex optimization. We simply must search for other expressions of (P) as the strategy
problem for Player 1 in some game. In other words, we must be prepared to alter L
and Y (even the space in which Y lies), while retaining X, with the goal of somehow
still getting the objective function f in problem (P1) to come out as (5.6) with C the
feasible set in (P).

This leads to the theory of modified Lagrangians for problem (P), which has
occupied many researchers. We’ll concentrate here on a single such Lagrangian having
both numerical and theoretical uses, based in part on ties to second-order conditions
for optimality. This modified Lagrangian relates in a natural way to the value function
p and sheds more light on perturbations of (P) and what the Lagrange multipliers
already at our disposal have to say about them.

The augmented Lagrangian L̃ for (P) requires only one additional variable η. It’s
given by

L̃(x, y, η) = f0(x) +
s∑

i=1

{
yifi(x) + (η/2)fi(x)2 if fi(x) ≥ −yi/η
−y2

i /2η if fi(x) ≤ −yi/η

}

+
m∑

i=s+1

{
yifi(x) + (η/2)fi(x)2

}
, where η > 0.

(6.7)

In order to place it in the game-theoretic framework of §5, we think of dual elements
ỹ = (y, η) in the set

Ỹ = lRm × (0,∞)

and work with the triple (X, Ỹ , L̃). We have the desired relation

sup
(y,η)∈Ỹ

L̃(x, y, η) =
{
f0(x) when x ∈ C,
∞ when x /∈ C,

(6.8)

since for fixed x ∈ X and y ∈ lRm the limit of L̃(x, y, η) as η → ∞ already gives
L(x, y) when x ∈ C but ∞ when x /∈ C; cf. then (5.5)–(5.6). This observation shows
that (P) is the strategy problem for Player 1 in the game associated with (X, Ỹ , L̃)
and suggests further that the augmented Lagrangian L̃ represents a kind of mixture
of the ordinary Lagrangian L and penalty expressions, with η the penalty parameter.

Note that in Ỹ the multipliers yi associated with the inequality constraint func-
tions f1, . . . , fs are no longer restricted a priori to be nonnegative. Nevertheless they’ll
turn out to be nonnegative at optimality (cf. Theorem 7.3 below). Also in contrast to
Y , the set Ỹ isn’t closed, because the variable η has been restricted to (0,∞) in order
to avoid division by 0 in the formula for L̃ in (6.6). This is a minor technical point
we could get around, but anyway it makes little difference because L̃ is monotone on
the η argument (see Proposition 7.1).
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The odd-looking formula for L̃ receives strong motivation from the next theorem,
and its proof—which indicates how the expression originated.

Theorem 6.3. A pair of vectors x̄ ∈ X and (ȳ, η̄) ∈ Ỹ furnishes a saddle point
of the augmented Lagrangian L̃ on X × Ỹ if and only if x̄ is a (globally) optimal solution to (P),

p(u) ≥ p(0) +
〈
ȳ, u

〉
− η̄

2

∣∣u∣∣2 for all u.
(6.9)

When this holds, any η̄′ > η̄ will have the property that[
x̄ solves (P)

]
⇐⇒

[
x̄ minimizes L̃(x, ȳ, η̄′) over x ∈ X

]
. (6.10)

Proof. The saddle point argument is very close to the one for Theorem 6.1. Re-
calling the function ϕ in (6.5), we apply the interchange principle (6.3) to Φ(x, u) =
ϕ(x, u) − 〈ȳ, u〉 + (η̄/2)|u|2 with ū = 0. We have inf

x
Φ(x, u) = p̃(u), where p̃(u) =

p(u)+ (η̄/2)|u|2 and p̃(0) = p(0), so the second condition in (6.3) is in this case equiv-
alent to (6.9). To demonstrate that the third condition in (6.3) comes out as the
saddle point condition for L̃ on X × Ỹ , we must determine inf

u
Φ(x, u) as a function of

x. The first step is to observe that

inf
ui≤−fi(x)

{
(η/2)u2

i − yiui

}
=

{
yifi(x) + (η/2)fi(x)2 if fi(x) ≥ −yi/η,
−y2

i /2η if fi(x) ≤ −yi/η.
(6.11)

Assisted by this and the notation Ux introduced in the proof of Theorem 6.1, we’re
able to calculate for any x, y, and η > 0 that

inf
u∈lRm

{
ϕ(x, u)− 〈y, u〉+ (η/2)|u|2

}
= inf

u∈Ux

{
f0(x)− 〈y, u〉+ (η/2)|u|2

}
=

{
L̃(x, y, η) if x ∈ X,
∞ if x /∈ X.

(6.12)

(This is the way the general expression for L̃ was discovered [40].) With (y, η) = (ȳ, η̄)
this tells us that inf

u
Φ(x, u) is L̃(x, ȳ, η̄) when x ∈ X, but ∞ otherwise. The third

condition in (6.3) asserts therefore that the minimum of L̃(x, ȳ, η̄) over x ∈ X is
attained at x̄, while at the same time the minimum in (6.12) for (x, y, η) = (x̄, ȳ, η̄)
is attained at u = 0. Mimicking the argument in the proof of Theorem 6.1, one sees
that the latter property means the maximum of L̃(x̄, y, η) over (y, η) ∈ Ỹ is attained
at (ȳ, η̄). The two parts of the third condition in (6.3) thus correspond to the two
parts of the saddle point condition for L̃ on X × Ỹ .

When (x̄, ȳ, η̄) satisfies (6.9) and η̄′ > η̄, not only will (6.9) still be satisfied by
(x̄, ȳ, η̄), but the p inequality will be strict away from 0. Then, with η̄ replaced by
η̄′ in the interchange argument, the elements (x̄, ū) in the third condition in (6.3)
necessarily have ū = 0; they’re thus the pairs (x̄, 0) such that x̄ minimizes L̃(x, ȳ, η̄′)
over x ∈ X. But they must also be the pairs in the first condition in (6.3). This yields
(6.10).

The addition of squared constraint terms to the ordinary Lagrangian was first
proposed by Hestenes [41] and Powell [42] in association with a special numerical
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approach—called the method of multipliers—to problems having equality constraints
only. The correct extension to inequality constraints, leading to the formula in (6.7),
was identified in Rockafellar [40] and first studied in detail by Buys [43] in his un-
published doctoral dissertation. A related formula was proposed by Wierzbicki [44].
The results in Theorem 4.2 were obtained in Rockafellar [45], [46] (saddle point equiv-
alence), and [47] (the property in (6.10)). Optimal solutions to (P) can indeed be
characterized in terms of saddle point of the augmented Lagrangian when certain
second-order optimality conditions are satisfied, as will be shown later in Theorem
7.4. This was first proved by Arrow, Gould and Howe [48] for a limited setting (with
the saddle point just in x and y for η̄ sufficiently high, and with y restricted a priori
to Y ) and in [46] for the general case. A deep connection between the augmented
Lagrangian and monotone operator methods in the convex case was shown in [45]
and [49]. Modified Lagrangians with greater degrees of smoothness have been devised
by Mangasarian [50]. For an overview of modified Lagrangians and their usage in
numerical optimization, see Bertsekas [51].

There’s a world of difference between the inequality for ȳ and p in (6.2) and the
one in (6.9). The first can’t be satisfied if p is “dented in,” but in the second the graph
of a concave quadratic function u 7→ p(0)+〈ȳ, u〉−(η̄/2)|u|2, rather than a hyperplane
constituting the graph of some affine function, is pushed up against the epigraph of
p. The value of η̄ > 0 controls the curvature of this parabolic surface, enabling it to
narrow down far enough to fit into any “dent” in epi p. We can be confident therefore
that some ȳ and η will exist to satisfy this inequality, unless the point

(
0, p(0)

)
lies in

a sharp crevice of epi p, which isn’t very likely.
The saddle point condition for the augmented Lagrangian L̃ is much more pow-

erful than the normality condition (L) for the ordinary Lagrangian L, so the fact that
it can be expected to hold in the absence of convexity assumptions on (P) has special
potential. Under condition (L) we only know that L(x, ȳ) has a sort of stationary
point at x̄ relative to X, but the saddle point condition for L̃ means that for some
value of the parameter η̄ the expression L̃(x, ȳ, η̄) achieves a definite minimum at x̄
relative to X.

The further property in (6.1) means that the augmented Lagrangian is capable of
furnishing an exact penalty function for (P). Through an appropriate choice of ȳ and
η̄′, we can minimize L̃(x, ȳ, η̄′) over x ∈ X with the constraints fi(x) ≤ 0 or fi(x) = 0
ignored and nonetheless get the same results as by minimizing the original objective
f0(x) over X subject to these constraints. This property, which has no counterpart
for the ordinary Lagrangian, can be advantageous even in the convex case of (P). Of
course, we can’t utilize it without first determining (ȳ, η̄′), but this isn’t as circular as
may appear. For help we can turn to the augmented dual problem

(D̃) maximize g̃(y, η) = inf
x∈X

L̃(x, y, η) over all (y, η) ∈ Ỹ = lRm × (0,∞).

Theorem 6.4. Suppose in (P) that X is bounded, and a feasible solution exists.
Then

inf(P) = sup(D̃), (6.13)

and (x̄, ȳ, η̄) gives a saddle point of L̃ on X × Ỹ if and only if x̄ solves (P) and (ȳ, η̄)
solves (D̃). The pairs (ȳ, η̄′) with the exact penalty property (6.10) are then the ones
such that, for some η̄ < η̄′, (ȳ, η̄) is an optimal solution to (D̃). Furthermore in this
case, the function g̃ in (D̃) is finite everywhere on Ỹ , so this maximization problem is
effectively unconstrained.
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Proof. On the general grounds of Proposition 5.2 as applied to (X, Ỹ , L̃), we know
that “≥” holds in (6.13). We must demonstrate that the inequality can’t be strict,
and then the saddle point assertion will likewise be a consequence of Proposition 5.2.
Fix any y ∈ lRm and let ϕ be the function in (6.5). We have (6.12), and consequently

inf
x,u

{
ϕ(x, u)− 〈y, u〉+ (η/2)|u|2

}
= inf

x∈X
u∈Ux

{
f0(x)− 〈y, u〉+ (η/2)|u|2

}
= inf

x∈X
L̃(x, y, η) = g̃(y, η).

(6.14)

Because X is bounded (as well as closed) and the pairs (x, u) with u ∈ Ux (as defined
in the proof of Theorem 6.1) are simply the ones satisfying the constraints in

(
P(u)

)
,

this infimum is finite and attained. (The lower level sets of the expression being
minimized are compact relative to the closed set in question.) The problem in (6.14)
can be regarded as a penalty representation of the problem of minimizing the same
expression subject to u = 0, which would yield inf(P) as the minimum value. Again
because of the underlying closedness and boundedness, the minimum value in the
penalty problem with parameter η (here y is being kept fixed) must approach this
value for u = 0 as η →∞. This establishes that g̃(y, η) → inf(P) as η →∞ (for every
y!) and provides us with the desired fact that the sup(D̃) can’t be less than inf(P).

The assertion about the exact penalty property is now immediate from Theorem
6.3. The finiteness of g̃ results from the compactness of X and the continuity of L̃ in
the formula for g̃(y, η) in (D̃).

The augmented dual problem (D̃) doesn’t actually have to be solved fully in order
to make use of the exact penalty property in (6.10). Schemes have been devised which
alternate between minimizing the Lagrangian expression in (6.10) and updating the
y and η values on which the expression depends. The root idea for such “multiplier
methods,” as they are called, came from Hestenes [41] and Powell [42] who treated
equality-constrained problems in a local sense without appeal to a dual problem. The
full formulation in terms of problem (D̃) appeared in Rockafellar [45] (convex case)
and [46], [47] (nonconvex case).

7. Augmented Lagrangian properties. The augmented Lagrangian L̃ has
many other interesting properties which further support its numerical and theoretical
roles. We go over these now, aiming in particular at the connections with second-order
optimality conditions.

Proposition 7.1. The expression L̃(x, y, η) is nondecreasing in η and concave
in (y, η) (for η > 0). In the convex case of (P) it is convex in x ∈ X.

Proof. For fixed x and y the terms involving η are nondecreasing functions of that
variable over (0,∞), with the two expressions in the case of i ∈ {1, . . . , s} agreeing at
the crossover points. Therefore L̃(x, y, η) is nondecreasing in η. For fixed x, each of the
terms with i ∈ {s+ 1, . . . ,m} is affine in (y, η). Each of the terms with i ∈ {1, . . . , s}
is concave in (y, η) because it’s the pointwise infimum of a collection of affine functions
of yi and η, as seen from (6.11). Since a sum of concave and affine functions is concave,
we conclude that L̃(x, y, η) is concave in (y, η).

Suppose now that f0, f1, . . . , fs are convex on X, while fs+1, . . . , fm are affine. In
this case the terms in L̃(x, y, η) coming from i = 0 and i ∈ {s+1, . . . ,m} are obviously
convex in x ∈ X. The term coming from each i ∈ {1, . . . , s} has the form ψi

(
fi(x)

)
for a certain nondecreasing, convex function ψi on lR, so it inherits the convexity of
fi. A sum of convex functions is convex, so this gives us the convexity of L̃(x, y, η) in
x ∈ X.
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One consequence of Proposition 7.1 is the concavity of the function g̃ maximized
in the augmented dual problem (D̃), regardless of whether (P) is of convex type or
not. This stems from the fact that g̃ is by definition the “lower envelope” of the family
of functions L̃(x, · , ·) indexed by x ∈ X, and these functions are concave.

Differentiability properties of L̃ are next on the agenda. The bipartite character
of the formula for L̃ notwithstanding, first derivatives and even one-sided second
derivatives exist when the functions fi have such derivatives. In bringing this out we’ll
follow the custom in optimization theory of denoting the second-derivative matrix of
fi at x by ∇2fi(x), and for the Lagrangian L writing

∇2
xxL(x, y) = ∇2f0(x) + y1∇2f1(x) + · · ·+ ym∇2fm(x).

Proposition 7.2. The augmented Lagrangian L̃ is C1, because the functions fi

are C1. It is C2 if the functions fi are C2, but only away from the points (x, y, η)
satisfying the transition equation fi(x) = −yi/η for some i ∈ {1, . . . , s}. However, the
first derivatives are locally Lipschitz continuous everywhere in that case.

At any (x̄, ȳ, η̄) (with η̄ > 0), and with ȳ+ denoting the vector with components

ȳ+
i =

{
max

{
0, ȳi + η̄fi(x̄)

}
for i = 1, . . . , s,

ȳi for i = s+ 1, . . . ,m,
(7.1)

one has the first derivative formulas

∇xL̃(x̄, ȳ, η̄) = ∇L(x̄, ȳ+),

∇yL̃(x̄, ȳ, η̄) = ȳ+ − ȳ,

∇ηL̃(x̄, ȳ, η̄) = (η̄/2)
∣∣ȳ+ − ȳ

∣∣2. (7.2)

In the C2 case of the fi’s, even when (x̄, ȳ, η̄) does satisfy one or more of the transition
equations, there is the second-order expansion

L̃(x̄+ w, ȳ, η̄) = L̃(x̄, ȳ, η̄) +
〈
∇xL(x̄, ȳ+), w

〉
+ 1

2

〈
w,∇2

xxL(x̄, ȳ+)w
〉

+
η̄

2

[ ∑
i∈I+

〈
fi(x̄), w

〉2 +
∑
i∈I0

max
{
0,

〈
fi(x̄), w

〉}2

]
+ o

(
|w|2

)
,

(7.3)

where I+ consists of the indices i ∈ {1, . . . , s} having fi(x̄) > −ȳi/η̄ along with all
the indices i ∈ {s + 1, . . . ,m}, and I0 consists of the indices i ∈ {1, . . . , s} having
fi(x̄) = −ȳi/η̄.

Proof. The only challenge is in the terms in definition (6.7) for the inequality
constraint functions. These can also be written as (1/2η)

[
max

{
0, yi +ηfi(x)

}2−y2
i

]
,

and properties of the function θ(s) = 1
2 max{0, s}2 on lR then come into action. This

function has continuous first derivative θ′(s) = max{0, s} ≥ 0 as well as continuous
second derivatives away from s = 0, where it nonetheless has right second derivative
θ′′+(0) = 1 and left second derivative θ′′−(0) = 0. The formulas in the proposition are
obtained by straightforward calculation using these properties.

Theorem 7.3. If x̄ and ȳ furnish a saddle point (x̄, ȳ, η̄) of the augmented La-
grangian L̃ on X × Ỹ for some η̄ > 0, then x̄ and ȳ satisfy the normality condition
(L) for the ordinary Lagrangian L on X × Y (and in particular, ȳ must belong to Y ).
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In the convex case of (P) the two conditions are equivalent. Then in fact (x̄, ȳ, η̄)
is a saddle point of L̃ on X × Ỹ for every η̄ > 0.

Proof. The saddle point condition for L̃ on X × Ỹ entails

−∇xL̃(x̄, ȳ, η̄) ∈ NX(x̄), ∇yL̃(x̄, ȳ, η̄) = 0, ∇ηL̃(x̄, ȳ, η̄) = 0,

where the first relation follows from Theorem 3.6 as applied to the minimization of
L̃(x, ȳ, η̄) over x ∈ X being attained at x̄. The derivative conditions in the y and η
arguments are equivalent in the notation of Proposition 7.2 to having ȳ = ȳ+, this
vector being by its definition an element of Y . Then ∇xL̃(x̄, ȳ, η̄) = ∇xL(x̄, ȳ) by
Proposition 7.2. But also, the equation ȳ = ȳ+ is another way of expressing (4.5),
which is identical to ∇yL(x̄, ȳ) ∈ NY (ȳ). Thus, the saddle point condition always
implies condition (L).

In the convex case of (P) the function p is convex by Proposition 6.2, so the p
inequality in (6.2) is equivalent to the one in (6.9) for any η̄ > 0. (This property in
convex analysis will be confirmed in the subgradient discussion in §8, cf. Propositions
8.5 and 8.6.) The remaining assertions of the theorem are in this way consequences
of the links forged in Theorems 6.1 and 6.3.

Theorem 7.4. Suppose that X is polyhedral (for instance X = lRn) and all the
functions fi are C2. For any feasible solution x to (P), let W (x) denote the set of
tangent vectors w ∈ TX(x) such that

〈
∇fi(x), w

〉 {
≤ 0 for i = 0 and for i ∈ {1, . . . , s} with fi(x) = 0,
= 0 for i ∈ {s+ 1, . . . ,m}.

(a) If x̄ and ȳ are such that, for some neighborhood V of x̄ and some η̄ > 0, (x̄, ȳ, η̄)
gives a saddle point of the augmented Lagrangian L̃ on (X ∩V )× Ỹ , then not only do
x̄ and ȳ satisfy the first-order condition (L), but also〈

w,∇2
xxL(x̄, ȳ)w

〉
≥ 0 for all w ∈W (x̄). (7.4)

(b) If x̄ and ȳ satisfy the first-order condition (L) and have the property that〈
w,∇2

xxL(x̄, ȳ)w
〉
> 0 for all nonzero w ∈W (x̄), (7.5)

then, for some neighborhood V of x̄ and some η̄ > 0, (x̄, ȳ, η̄) gives a saddle point
of the augmented Lagrangian L̃ on (X ∩ V ) × Ỹ , moreover one that’s strong in the
sense that there exists ε > 0 with L̃(x, ȳ, η̄) ≥ L̃(x̄, ȳ, η̄) + ε|x− x|2 for all x ∈ X near
x̄. Under the additional assumptions that X is bounded and x̄ is the unique globally
optimal solution to (P), the value of η̄ can be chosen to ensure that (x̄, ȳ, η̄) gives a
saddle point of L̃ on the whole set X × Ỹ .

Proof. In both (a) and (b) we’re in a situation where (L) holds (as follows in the
case of (a) from the preceding theorem). Since X is convex, we can use Proposition
3.4 to write the condition ∇xL(x̄, ȳ) ∈ NX(x̄) in (L) as〈

∇xL(x̄, ȳ), x− x̄
〉
≥ 0 for all x ∈ X. (7.6)

Because X isn’t just convex but polyhedral, there’s a value δ > 0 such that

0 6= w ∈ TX(x̄) ⇐⇒ x̄+
(
δ/|w|

)
w ∈ X ⇐⇒ x̄+ tw ∈ X for all t ∈

[
0, δ/|w|

]
,

(7.7)
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so (7.6) can be expressed equally well as〈
∇xL(x̄, ȳ), w

〉
≥ 0 for all w ∈ TX(x̄). (7.8)

The condition ∇yL(x̄, ȳ) ∈ NY (ȳ) in (L) is equivalent in the notation of Proposition
7.2 to ȳ+ = ȳ, which asserts that

max
{
fi(x̄),−ȳi/η̄

}
= 0 for i = 1, . . . , s,

fi(x̄) = 0 for i = s+ 1, . . . ,m.
(7.9)

Hence, despite the general dependence of ȳ+ on η̄ as well as on x̄ and ȳ, if ȳ+ = ȳ
holds for some (x̄, ȳ, η̄) it continues to hold when η̄ is shifted to any other value η > 0
(while x̄ and ȳ are kept fixed). Note also from (7.9) that

for i ∈ {1, . . . , s} :
{
fi(x̄) > −ȳi/η̄ ⇐⇒ ȳi > 0,
fi(x̄) = −ȳi/η̄ ⇐⇒ ȳi = 0.

Therefore, in the context of both (a) and (b), the second-order expansion in Proposi-
tion 7.2 takes the form that, for any η > 0,

L̃(x̄+ w, ȳ, η) = L̃(x̄, ȳ, η) +
〈
∇xL(x̄, ȳ), w

〉
+ 1

2

〈
w,∇2

xxL(x̄, ȳ)w
〉

+
η

2

[ ∑
i∈I+

〈
fi(x̄), w

〉2 +
∑
i∈I0

max
{
0,

〈
fi(x̄), w

〉}2

]
+ o

(
|w|2

)
(7.10)

with the index sets given by

i ∈ I+ ⇐⇒ i ∈ {1, . . . , s} with ȳi > 0, or i ∈ {s+ 1, . . . ,m},
i ∈ I0 ⇐⇒ i ∈ {1, . . . , s} with ȳi = 0.

(7.11)

In view of (7.8), where ∇xL(x̄, ȳ) = f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄), these index
sets can also be used to redescribe W (x̄):

w ∈W (x̄) ⇐⇒


w ∈ TX(x̄),〈
∇xL(x̄, ȳ), w

〉
= 0,〈

∇fi(x̄), w
〉

= 0 for i ∈ I+,〈
∇fi(x̄), w

〉
≤ 0 for i ∈ I0.

(7.12)

Going now to the specifics of (a), let’s suppose (x̄, ȳ, η̄) gives a saddle point of L̃ on
(X ∩ V )× Ỹ and consider any nonzero vector w ∈W (x̄). In particular the properties
in (7.7) hold for w, and since L̃(x, ȳ, η̄) achieves a local minimum relative to x ∈ X

at x̄ the function ψ(t) = L̃(x̄ + tw, ȳ, η̄) must therefore achieve a local minimum
over the interval

[
0, δ/|w|

]
at t = 0. This implies ψ′(0) ≥ 0, but from (7.10)–(7.12)

we have the first derivative value ψ′w(0) = 0 and the right second derivative value
ψ′′+(0) =

〈
w,∇2

xxL(x̄, ȳ)w
〉
. Accordingly, the latter must be nonnegative. Hence the

inequality in (7.4) is correct.
To argue (b) we write (7.10) as

L̃(x̄+ w, ȳ, η) = L̃(x̄, ȳ, η) + Ψ1(w) + Ψ2(w) + ηΨ3(w) + o
(
|w|2

)
(7.13)
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for the functions

Ψ1(w) =
〈
∇xL(x̄, ȳ), w

〉
,

Ψ2(w) = 1
2

〈
w,∇2

xxL(x̄, ȳ)w
〉
,

Ψ3(w) = 1
2

[ ∑
i∈I+

〈
fi(x̄), w

〉2 +
∑
i∈I0

max
{
0,

〈
fi(x̄), w

〉}2

]
.

For the δ in (7.7) let S =
{
w ∈ TX(x̄)

∣∣ |w| = δ
}
. On the compact set S the function

Ψ1 + Ψ3 is positive except at the points in S ∩W (x̄), where it vanishes. But under
our assumption that (7.5) holds we have Ψ2 positive at such points. On the compact
subset of S where Ψ2(w) ≤ 0, let λ be the minimum value of Ψ1 + Ψ3 and −µ be the
minimum value of Ψ2. Then λ > 0 and µ ≥ 0. Choose any value η̄ > µ/λ. Then
η̄(Ψ1 + Ψ3) + Ψ2 is positive on all of S; let a positive lower bound be ε0. Consider
now any nonzero w ∈ TX(x̄). We have (δ/|w|)w ∈ S, so that

ε0 ≤
[
η̄(Ψ1+Ψ3)+Ψ2

](
(δ/|w|)w

)
= η̄(δ/|w|)Ψ1(w)+(δ/|w|)2Ψ2(w)+η̄(δ/|w|)2Ψ2(w),

which implies that (ε0/δ2)|w|2 ≤ (η̄/δ)|w|Ψ1(w)+Ψ2(w)+ η̄Ψ3(w) and therefore that(
Ψ1 + Ψ2 + η̄Ψ3

)
(w) ≥ (ε/δ2)|w|2 when |w| ≤ δ/η̄.

By virtue of the expansion (7.10) there will then exist δ0 > 0 and ε > 0 such that

L̃(x̄+ w, ȳ, η̄) ≥ L̃(x̄, ȳ, η̄) + ε|w|2 when w ∈ TX(x̄), |w| ≤ δ0.

By taking δ0 ≤ δ and utilizing (7.7), we can transform this condition into the assertion

L̃(x, ȳ, η̄) ≥ L̃(x̄, ȳ, η̄) + ε|x− x̄|2 when x ∈ X, |x− x̄| ≤ δ0.

Then L̃(x, ȳ, η̄) has a minimum at x̄ relative to x ∈ X ∩ V for some neighborhood V
of x̄.

At the same time we have ∇yL̃(x̄, ȳ, η̄) = 0 and ∇ηL̃(x̄, ȳ, η̄) = 0, because these
equations are equivalent by Proposition 7.2 to ȳ+ = ȳ, which as we’ve seen earlier is
a consequence of the condition ∇yL(x̄, ȳ) ∈ NY (ȳ). Because L(x̄, y, η) is a smooth,
concave function of (y, η) on Ỹ = lRm × (0,∞) (by Propositions 7.1 and 7.2), these
equations say that L̃(x̄, y, η) achieves its maximum relative to Ỹ at (ȳ, η̄). Thus, L̃
has a saddle point on X × Ỹ at (x̄, ȳ, η̄).

The sufficient condition for a saddle point in Theorem 7.4(b) was proved in Rock-
afellar [46] for the case X = lRn; the extension to any polyhedral set X is new here.
A somewhat more limited result with X = lRn was proved earlier by Arrow, Gould
and Howe [48]. This property in combination with the earlier characterization of sad-
dle points of the augmented Lagrangian in Theorem 6.3 leads at once to a sufficient
condition for optimality in (P) that doesn’t require convexity.

Theorem 7.5. Suppose in (P) that X is polyhedral and all the functions fi are
C2. If the vectors x̄ ∈ X and ȳ ∈ Y satisfy the first-order condition (L) together with
the strict second-order condition (7.5), x̄ must be a locally optimal solution to problem
(P). In fact there must exist ε > 0 and δ > 0 such that

f0(x) ≥ f0(x̄) + ε|x− x̄|2 for all x ∈ C with |x− x̄| ≤ δ.
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Proof. We apply Theorem 7.4(b). When (x̄, ȳ, η̄) is a saddle point of L̃ on (X ∩
V )× Ỹ , we obtain from Theorem 6.3 that x̄ is an optimal solution to the localization
of (P) in which X is replaced by X ∩ V . The final assertion of the theorem yields the
final assertion of the corollary, because f0(x) ≥ L̃(x, ȳ, η̄) for all feasible x.

In the case of X = lRn this sufficient condition is well known, although most
writers on the subject formulate the second-order inequality in terms of the set of
vectors w satisfying〈

∇fi(x), w
〉 ≤ 0 for i ∈ {1, . . . , s} with fi(x) = 0 and ȳi = 0,

= 0 for i ∈ {1, . . . , s} with fi(x) = 0 and ȳi > 0
and for i ∈ {s+ 1, . . . ,m},

instead of W (x̄). The two sets are identical for any multiplier vector ȳ appearing in
condition (L), so the seeming dependence on ȳ in this other formulation is misleading.
The sufficiency for x̄ to be locally optimal when a multiplier vector exists with all
components ȳi > 0 (the case known as “strict complementarity”) was proved already
in 1939 by Karush [10]. For other early precedents, see Pennisi [52].

Second-order sufficient conditions for optimality like the ones in Theorem 7.5 are
heavily exploited in the development of numerical methods, not only the “multiplier
methods” mentioned in §6. The analysis provided here shows that such approaches
correspond in principle to exploiting saddle point properties of L̃, although this isn’t
well recognized by practitioners and therefore perhaps not exploited as far as it might
go. The underlying saddle point implications of the sufficient condition in Theorem
7.5 partly explain the vitality of this condition, in contrast to technically more refined
second-order conditions available in the literature, which typically involve more than
one multiplier vector ȳ in association with x̄, cf. Ioffe [53], Ben-Tal [54], and Rockafellar
[55].

Despite all this good news about the augmented Lagrangian, L̃ has some short-
comings in comparison with L. Most notably it does not inherit from L any separa-
bility which might be present with respect to components of x. Such separability is
sometimes crucial in numerical schemes for solving large-scale problems.

8. Subderivatives and subgradients. In Theorems 6.1 and 6.3 the Lagrange
multiplier vector ȳ appears as the gradient at u = 0 of a smooth function h such
that h ≤ p and h(0) = p(0). This relationship leads to one of the central notions in
nonsmooth analysis, that of a subgradient of a possibly nonsmooth and even extended-
real-valued function p. In explaining this notion we’ll keep to the notation of a function
p on lRm, because that’s where we initially want to make applications, namely to the
potential interpretation of Lagrange multipliers as “generalized derivatives” in a sense.
But for the time being p can be any function on lRm, not necessarily the canonical
value function in (6.1). In §9 the canonical value function will resurface. In §10 the
same ideas will be applied instead to generalized objective functions f on lRn.

As with the concept of normal vectors in Definition 3.2, there are different kinds
of subgradients in the literature of nonsmooth analysis, and we’re presenting only one
of these, which nowadays appears to offer the greatest advantages. In analogy with the
geometric relationship between normals and tangents, we consider along with these
basic subgradients a particular kind of directional derivative, the basic subderivative.

Definition 8.1. Consider any function p : lRm → [−∞,∞] and any point ū
where p(ū) is finite. For each vector w̄ ∈ lRm the subderivative of p at ū with respect
to w is the value

dp(ū)(w̄) = liminf
w→w̄
t ↓ 0

[
p(ū+ tw)− p(ū)

]
/t. (8.1)
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Definition 8.2. Consider any function p : lRm → [−∞,∞] and any point ū
where p(ū) is finite. A vector y ∈ lRm is a subgradient of p at ū, written y ∈ ∂p(ū),
if there’s a sequence of vectors yk → y along with a sequence of points uk → ū with
p(uk) → p(ū) such that, for each k,

p(u) ≥ p(uk) +
〈
yk, u− uk

〉
+ o

(
|u− uk|

)
. (8.2)

It is a regular subgradient if the sequences can be chosen constant, i.e., if actually

p(u) ≥ p(ū) +
〈
y, u− ū

〉
+ o

(
|u− ū|

)
. (8.3)

If p happens to be differentiable at ū, the vector ȳ = ∇p(ū) is obviously a regular
subgradient at ū, and then dp(ū)(w) = 〈ȳ, w〉 for all w. But subgradients can usefully
be studied in the absence of differentiability, which may well have to be faced when p
is the canonical value function in §6. In general, the subderivative function dp(ū) can
be extended-real-valued like p.

If p has a local minimum at ū, the vector y = 0 is a regular subgradient there.
Right from the definitions, therefore, we have a basic necessary condition for local
optimality:

0 ∈ ∂p(ū).

A major preoccupation of nonsmooth analysis is the development of calculus rules
to facilitate the application of this condition specific situations where a function is
minimized and is expressible in terms of operations like addition, composition, etc.
In §10 we’ll see a chain rule along such lines. Anyway, out of such considerations in
contexts where p may be extended-real-valued it’s convenient to adopt the convention
that ∂p(ū) denotes the empty set when p(ū) = ∞, but all of lRm if p(ū) = −∞. This
corresponds to the convention in §3 of interpreting the notation NC(x̄) as referring to
the empty set when x̄ doesn’t happen to lie in C.

The limit process used in defining subgradients is parallel to the one used for nor-
mals in Definition 3.2 and has similar motivations. It ensures the following property.

Proposition 8.3. If yk ∈ ∂p(uk) and yk → y, uk → ū, p(uk) → p(ū), then
y ∈ ∂p(ū).

The place of these concepts of subderivatives and subgradients in the literature
of nonsmooth analysis is much like that of the tangents and normals in §3. The
idea of defining one-sided substitutes for classical directional derivatives and gradients
first took on fundamental importance in convex analysis (cf. [1]), where more special
formulas suffice (see Proposition 8.5 below). The generalized directional derivatives at
ū expressed by the function dp(ū) : lRm → [−∞,∞] as defined through (8.1) have been
considered at least implicitly by most researchers on optimality conditions, although
when made explicit the names have varied; see Penot [27] and Ioffe [56] for some
background. The same goes for the vectors we’re calling regular subgradients, which
have been introduced at times through an inequality like (8.3) but also through an
equivalent relationship with the set dp(ū) (cf. property (b) in Proposition 8.6 below);
again see [27] and [56].

Clarke [16] achieved a breakthrough by introducing a limit process in the defini-
tion of subgradients; this opened up an impressive array of new applications, cf. [17],
[18]. Clarke’s formulation wasn’t that of Definition 8.2 but involved a three-stage pro-
cess, where (1) Lipschitz continuous functions were handled in terms of limits of their
actual gradients where such exist (which is almost everywhere), (2) this was applied to
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distance functions to define normal cones to general closed sets, and (3) normals to epi-
graph sets were used to get subgradients of non-Lipschitz functions (much in the spirit
of Proposition 8.4 below). Rockafellar [57] demonstrated how the three stages could
be collapsed to one by taking limits of “proximal subgradients,” essentially following
the pattern in Definition 8.2 but with the “o” term replaced by a second-order term.
In all this, however, Clarke took not only limits but convex hulls, and in the one-stage
version of Rockafellar these were complicated to express. As explained in §3, it’s now
appreciated, especially through the efforts of Mordukhovich (cf. [24]), that wholesale
convexification in nonsmooth analysis can be avoided, although infinite-dimensional
applications such as those treated by Clarke tend to necessitate it in the end anyway
(because of properties of weak convergence).

The study of subderivatives and subgradients is very closely related to that of
tangent and normal vectors in the geometric setting of the epigraph of p, as defined
in (6.6).

Proposition 8.4. For any function p : lRm → [−∞,∞] and any point ū where
p(ū) is finite, one has

y ∈ ∂p(ū) ⇐⇒ (y,−1) ∈ NE

(
ū, p(ū)

)
, where E = epi p. (8.4)

Regular subgradients y of p correspond in this manner to regular normals (y,−1) to
E. Furthermore, the epigraph of dp(ū) is the cone TE

(
ū, p(ū)

)
.

Proof. The tangent cone assertion is an elementary consequence of the observation
that, for t > 0, one has

(
ū, p(ū)

)
+ t(w, β) ∈ E if and only if β ≥

[
p(ū+ tw)− p(ū)

]
/t.

Next we take on the assertion that y is a regular subgradient of p at ū if and
only if (y,−1) is a regular normal to E at

(
ū, p(ū)

)
. It suffices to treat the case

where y = 0, since the general case can be reduced to this by substituting the function
q(u) = p(u)−〈y, u−ū〉 for p. Applying Proposition 3.5, we see that (0,−1) is a regular
normal to E at

(
ū, p(ū)

)
if and only if

〈
(0,−1), (w, β)

〉
≤ 0 for all (w, β) ∈ lRm × lR

with β ≥ dp(ū)(w). This property is the same as dp(ū)(w) ≥ 0 for all w, which in
view of Definition 8.1 is equivalent to p(u) ≥ p(ū)+o

(
|u− ū|), the condition for 0 to be

a regular subgradient. Thus, the subgradient-normal correspondence is correct in the
regular case. The general case is then immediate from the limit process in Definition
8.2 and Definition 3.2.

For orientation with the general literature, although it won’t be needed here, we
remark that subgradients in the sense of Clarke are the vectors obtained in replacing
the normal cone NE

(
ū, p(ū)

)
in (8.4) by its closed convex hull.

Through the pipeline in Proposition 8.4 the tangent and normal vector results in
§3 can be transferred quickly to the theory of subderivatives and subgradients.

Proposition 8.5. If the function p is convex, the subgradient set ∂p(ū) is the
set of vectors y such that

p(u) ≥ p(ū) +
〈
y, u− ū

〉
for all u. (8.5)

Every subgradient of a convex function is therefore a regular subgradient. On the
other hand, for any w̄ such that an ε > 0 exists with p(ū + εw) < ∞ for all w in a
neighborhood of w̄ (this being true for every vector w̄ when p is finite on a neighborhood
of ū), one has

dp(ū)(w̄) = lim
t ↓ 0

[
p(ū+ tw)− p(ū)

]
/t. (8.6)

Proof. Invoke Proposition 3.4 for the set E = epi p to get the subgradient result.
The subderivative result is more subtle in utilizing continuity properties of convex
functions, and we won’t prove it here; see [1, §23].
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Proposition 8.6. For any function p : lRm → [−∞,∞] and any point ū where
p(ū) is finite, the following properties of a vector y are equivalent:

(a) y is a regular subgradient of p at ū;
(b) 〈y, w〉 ≤ dp(ū)(w) for all w;
(c) on some open neighborhood O of ū there is a smooth function h with ∇h(ū) = y,

such that h(u) ≤ p(u) for all u ∈ O, and h(ū) = p(ū).
Proof. While this can be derived from Proposition 3.5 through Proposition 8.4,

the earlier proof can also be imitated in the new context.
We likewise want to translate Proposition 3.8 to subderivatives and subgradients,

and this requires a bit of technical groundwork because closedness properties of E =
epi p get involved. The closedness of E as a subset of lRm × lR corresponds to the
lower semicontinuity of p on lRm, which means that for every α ∈ lR the level set
{u | p(u) ≤ α } is closed, or equivalently that liminf

u′→u
p(u′) = p(u) for all u ∈ lRm.

Similarly, for a point ū where p is finite, E is locally closed at
(
ū, p(ū)

)
if and only

if p is locally lower semicontinuous at ū in the sense that, for some ε > 0 and some
neighborhood V of ū, the sets of the form {u ∈ V | p(u) ≤ α } with α ≤ p(ū) + ε
are all closed. (The combination of p being locally lower semicontinuous and locally
upper semicontinuous at ū is equivalent to p being continuous on a neighborhood
of ū. However, local lower semicontinuity of p at ū doesn’t require p to be lower
semicontinuous relative to a neighborhood of ū, but only relative to the intersection
of some neighborhood with a level set

{
u

∣∣ p(u) ≤ p(ū) + ε
}
.)

Proposition 8.7. Let p : lRm → [−∞,∞] be finite at ū, and suppose the set
E = epi p is Clarke regular at

(
ū, p(ū)

)
, as is true in particular if p is locally lower

semicontinuous at ū and convex. Then ∂p(ū) 6= ∅ if and only if dp(ū)(w) is finite for
some w, in which case dp(ū)(w) > −∞ for all w, and dp(ū)(0) = 0. Furthermore, if
∂p(ū) 6= ∅ the function dp and set ∂p are dual to each other in the sense that

dp(ū)(w) = sup
y∈∂p(ū)

〈
y, w

〉
for all w,

∂p(ū) =
{
y

∣∣ 〈
y, w

〉
≤ dp(ū)(w) for all w

}
.

(8.7)

Proof. The hypothesis enables us to apply Proposition 3.8 to E and translate
the results to the language of subderivatives and subgradients through the use of
Proposition 8.4.

Clarke regularity of E = epi p at
(
ū, p(ū)

)
requires, along with the local lower

semicontinuity of p at ū, that every normal in NE

(
ū, p(ū)

)
be a regular normal. Every

normal is either of the form λ(y,−1) with λ ≥ 0 or of the form (y, 0) with y 6= 0. If
there are no normals in NE

(
ū, p(ū)

)
of the second kind, or more broadly, if every

normal of the second kind is a limit of normals in NE

(
ū, p(ū)

)
of the first kind,

the Clarke regularity property is equivalent through Proposition 8.4 to having every
subgradient y ∈ ∂p(ū) be a regular subgradient. (In the limit case we use here the
fact that the regular normals to E at any point form a closed set, cf. property (b) in
Proposition 3.5.) In general, though, there could be normals (y, 0) ∈ NE

(
ū, p(ū)

)
that

arise in more complicated ways. These can be developed as “horizon subgradients” of
p at ū, but we won’t go into that here.

Incidentally, although we’ve been taking the position that facts about subderiva-
tives and subgradients are consequences of facts about tangents and normals, the
opposite position is just as tenable. For any set D ⊂ lRm and any point ū ∈ D, the
indicator function p = δD (with the value 0 on D but ∞ everywhere else) has

∂δD(ū) = ND(ū).
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The regular subgradients of δD at ū are likewise the regular normals to D. The
associated subderivative function is the indicator function for the set TD(ū).

9. Multiplier vectors as subgradients. We return now to the particular func-
tion p examined in §6, the canonical value function for problem (P). Our attention
is centered on the relationship between the subderivatives and subgradients of p at
ū = 0 on the one hand, and multiplier vectors ȳ for (P) on the other.

Theorem 9.1. When p is the canonical value function for (P), the Lagrange
multiplier vectors ȳ in Theorems 6.1 and 6.3 are regular subgradients ȳ ∈ ∂p(0), so
that

dp(0)(w) ≥ 〈ȳ, w〉 for all w. (9.1)

If p is happens to be differentiable at 0, this inequality implies

ȳi =
∂p

∂ui
(0) for i = 1, . . . ,m. (9.2)

Similarly, if ȳ satisfies together with some x̄ the sufficient condition for local optimality
in Theorem 7.5 (the set X being polyhedral), then for some neighborhood V of x̄ the
multiplier vector ȳ will be a regular subgradient in ∂pV (0), where pV is the value
function obtained instead of p when X is replaced by X ∩ V in (P); one will have

dpV (0)(w) ≥ 〈ȳ, w〉 for all w.

Proof. The initial assertions reinterpret the inequalities in (6.3) and (6.7) in the
light of Definitions 8.1 and 8.2. The final assertion is validated by the observation
that since this sufficient condition for optimality furnishes through Theorem 7.4(b) a
saddle point of the augmented Lagrangian relative to X ∩ V , it yields the inequality
in (6.7) for pV .

The partial derivative interpretation of Lagrange multipliers in (9.2) is very ap-
pealing, but it suffers from the lack of any verifiable assumption on problem (P) that
ensures the differentiability of p at 0 (and the same for the localized value function pV ,
which could be substituted for p in these considerations). It’s necessary therefore to be
content with looser interpretations. In the convex case, at least, there’s an especially
satisfying substitute which will be described in Theorem 9.3. To set the stage for it,
we have to supply a good criterion for p to be locally lower semicontinuous at 0.

Proposition 9.2. A sufficient condition for the canonical value function p to be
finite at 0 and locally lower semicontinuous there is the existence of a feasible solution
x̂ and an ε > 0 such that the set of points x ∈ X satisfying

f0(x) ≤ f0(x̂) + ε,

fi(x) ≤ ε for i = 0, 1 . . . , s,
|fi(x)| ≤ ε for i = s+ 1 . . . ,m,

(9.3)

is bounded (this being true certainly when X itself is bounded). Then for all u ∈ lRm

with |u| ≤ ε and p(u) < p(0)+ε, the perturbed problem
(
P (u)

)
has an optimal solution.

In particular, (P) has an optimal solution.
Proof. We have p(0) ≤ f0(x̂), so p(0) <∞. Let V denote the closed ε ball around

the origin of lRm. Our hypothesis gives the boundedness of the set

Sα =
{

(x, u) ∈ lRm × lRn
∣∣∣u ∈ U, x feasible in

(
P (u)

)
, f0(x) ≤ α

}
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for every α ≤ ᾱ = f0(x̂)+ε. Also, each such Sα is closed, hence compact. In particular,
for any u ∈ V with p(u) < f0(x̂)+ε the nonempty set consisting of the feasible solutions
x to

(
P (u)

)
with f0(x) ≤ f0(x̂) + ε is the section {x | (x, u) ∈ Sᾱ }, which is compact,

so an optimal solution to
(
P (u)

)
exists and p(u) > −∞. In particular, p(0) > −∞.

It follows that for each α < ᾱ the level set {u ∈ V | p(u) ≤ α } is the projection of
Sα on lRm, which is compact. Since ᾱ > p(0) we conclude that p is locally lower
semicontinuous at 0.

Theorem 9.3. In the convex case of problem (P), suppose at least one feasible
solution exists and p is locally lower semicontinuous at 0 (cf. Proposition 9.2). Then

∂p(0) =Y opt, where

Y opt =
[
set of all Lagrange multiplier vectors ȳ in (P)

]
.

(9.4)

This set is nonempty if and only if dp(0)(w) is finite for some w, in which case ∂p(0)
can be identified also with the set of optimal solutions to the dual problem (D) and one
has

dp(0)(w) = sup
ȳ∈Y opt

〈
ȳ, w

〉
for all w ∈ lRm. (9.5)

Proof. We have p convex by Proposition 6.2. By Proposition 8.5 and Theorem 6.1
the subgradients ȳ ∈ ∂p(0) are the Lagrange multiplier vectors in (P). When there is
such a vector, the set of them is the optimal solution set to (D) by Theorems 5.1 and
5.3. Since p is Clarke regular at ū by Proposition 8.11, we have (9.5) by Proposition
8.7.

The idea to digest here is that even though pmay not be differentiable at 0, there’s
a perfect duality between the multiplier vectors ȳ for (P) and the subderivative values
dp(0)(w). From the knowledge of either it’s possible to obtain the other. This, by
the way, is a point that usually gets garbled in elementary books on optimization,
especially linear programming texts. There Lagrange multipliers ȳi are often called
“shadow prices” and interpreted as if they were partial derivatives in the sense of (9.2),
but this is erroneous. What’s true and well known in convex analysis [1, §25] is that if
p is convex and ∂p(0) consists of a unique subgradient ȳ, then p must be differentiable
at 0 with ∇p(0) = ȳ. The partial derivative interpretation of Lagrange multipliers is
correct therefore as long as the multiplier vector is unique, or equivalently, the dual
problem has a unique optimal solution. But in general, increases and decreases in the
parameters ui relative to 0 may affect the optimal value at different rates, and the full
set of vectors ȳ ∈ Yopt may need to come into play as in (9.5).

The importance of this fact for applications in economics was brought out by Gale
[58]. Note that since Theorem 9.3 is directed to the convex case, the subderivatives
have through Proposition 8.4 a simpler expression as limits when p is finite on a
neighborhood of 0, which is the situation of main economic interest:

dp(0)(w) = lim
t ↓ 0

[
p(0 + tw)− p(0)

]
/t.

Then, taking w = e1 = (1, 0, . . . , 0) for instance, we can interpret dp(0)(e1) as the right
partial derivative of p at 0 with respect to u1, and −dp(0)(−e1) as the corresponding
left partial derivative. The equation in (9.5) informs us that the right partial derivative
is the highest value of the Lagrange multiplier ȳ1 relative to the set of all multiplier
vectors ȳ associated with (P), whereas the left partial derivative is the lowest value.
But even these left and right partial derivatives for every coordinate aren’t enough
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to determine dp(0)(w) for general w, because the function dp(0) won’t usually be
separable with respect to its different arguments wi.

Unfortunately, in the nonconvex case of (P) the epigraph of p won’t always be
Clarke regular as demanded by Proposition 8.7, so tight analogs of (9.5) can’t be
hoped for. At least we can sometimes ensure however that certain of the multiplier
vectors will be subgradients, as an extension of the facts in Theorem 9.1.

Theorem 9.4. Suppose in (P) that x̄ is a strict locally optimal solution in the
sense that for some compact neighborhood V of x̄ one has f0(x) > f0(x̄) for all x 6= x̄ in
C ∩V . If the basic constraint qualification (Q) is satisfied at x̄, there not only exists a
Lagrange multiplier vector ȳ for which (L) holds, but one such that ȳ ∈ ∂pV (0), where
pV is the value function obtained instead of p when X is replaced by X ∩ V in (P).

Proof. Replacing X by X∩V , we can simplify to the case where X is compact and
x̄ is the unique globally optimal solution to (P). Define the function ϕ on lRn × lRm

as in (6.4). The unique optimal solution to the problem of minimizing ϕ(x, u) subject
to u = 0 is (x̄, 0). For a sequence of values 0 < ηk → ∞ consider the penalty
approximation of this problem in which the function ϕ(x, u) = ϕ(x, u) + (ηk/2)|u|2 is
minimized over lRn × lRm. Because X is not only closed but bounded, ϕk achieves
its minimum at some point (xk, uk). The assumption that ηk → ∞ ensures in this
setting that (xk, uk) → (x̄, 0).

Since (xk, uk) minimizes ϕk(x, u) over all (x, u) ∈ lRn × lRm we know that
xk minimizes ϕk(x, uk) over lRn, while uk minimizes inf

x
ϕk(x, u) over lRm. But

inf
x
ϕk(x, u) = p(u) + (ηk/2)|u|2. Therefore xk is an optimal solution to problem(

P(uk)
)

and p(u) + (ηk/2)|u|2 ≥ p(uk) + (ηk/2)|uk|2 for all u. The latter can be
written in terms of yk = −ηkuk as

p(u) ≥ p(uk) +
〈
yk, u− uk

〉
− ηk

2

∣∣u− uk|2 for all u.

We deduce not only that yk is a regular subgradient of p at uk, but by Theorem 6.3 that
(xk, yk, ηk) gives a saddle point of the augmented Lagrangian L̃k for problem

(
P(uk)

)
,

this function being the same as L̃ except that the constraint functions fi are shifted
to fi + uk

i . Then also by Theorem 6.3, xk and yk satisfy the first-order optimality
condition relative to the ordinary Lagrangian Lk for

(
P(uk)

)
, which likewise differs

from L only by such a shift: Lk(x, y) = L(x, y) + 〈y, uk〉. Thus,

−∇xL(xk, yk) ∈ NX(xk), ∇yL(xk, yk) + uk ∈ NY (yk). (9.6)

If the sequence of vectors yk is bounded, we can suppose it converges to some ȳ,
and then, since (xk, uk) → (x̄, 0), we obtain ȳ ∈ ∂p(0) by Definition 8.2, and at the
same time −∇xL(x̄, ȳ) ∈ NX(x̄) and ∇yL(x̄, ȳ) ∈ NY (ȳ), which is condition (L). On
the other hand, if the yk sequence isn’t bounded, we can simplify to the case where
0 < |yk| → ∞ and by dividing both relations in (9.6) by |yk| have

− 1
|yk|

∇xL(xk, yk) ∈ NX(xk),
1
|yk|

∇yL(xk, yk) +
1
ηk

uk

|uk|
∈ NY

( yk

|yk|

)
. (9.7)

(Here we use the definition yk = −ηkuk along with the fact that normal cones contain
all positive multiples of their elements. We also invoke the fact that Y is itself a
cone, which implies that NY (y) coincides with NY (ty) for any t > 0.) Without loss
of generality we can suppose that yk/|yk| converges to some vector ȳ 6= 0, and then
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by taking the limit in (9.7) we’ll have in the notation of the singular Lagrangian
L0 that −∇xL0(x̄, ȳ) ∈ NX(x̄) and ∇yL0(x̄, ȳ) ∈ NY (ȳ), which is impossible under
assumption (Q). Thus, the yk sequence has to be bounded after all, and the properties
we want must hold.

Results like Theorem 9.4 are primarily of theoretical significance, inasmuch as the
assumptions may be hard to verify. The next result, however, has definite practical
import, because it provides estimates of the magnitude and location of Lagrange
multiplier vectors. It can be regarded as a kind of extension of Theorem 6.1 in which
a single multiplier vector is replaced by a set of candidates.

Theorem 9.5. For the canonical value function p, suppose there is a subderiva-
tive estimate of the form

dp(0)(w) ≥ min
y∈Yest

〈
y, w

〉
for all w, (9.8)

where the set Yest ⊂ lRm is nonempty, compact, and convex. Then every (globally)
optimal solution x̄ to (P) satisfies condition (L) for some multiplier vector ȳ ∈ Yest.

Proof. We postpone the proof of this result to the next section, right after The-
orem 10.1, because it will be much simpler in the broader framework that is available
there.

An immediate consequence of Theorem 9.5, which is stated here for the first
time, is an alternative criterion, not involving the basic constraint qualification (Q),
for optimal solutions to (P) to satisfy the first-order optimality condition (L).

Corollary 9.6. If problem (P) is calm in the sense that dp(0)(w) > −∞ for
all w 6= 0, then for every (globally) optimal solution x̄ to (P) there must exist at least
one multiplier vector ȳ such that x̄ and ȳ satisfy condition (L).

More specifically, if for some r > 0 one has dp(0)(w) ≥ −r for all vectors w with
|w| = 1, then for every optimal solution x̄ to (P) there is a multiplier vector ȳ with
|ȳ| ≤ r such that x̄ and ȳ satisfy condition (L).

Proof. This is the case of Theorem 9.5 where Yest is the closed Euclidean ball of
radius r around the origin.

Calmness in the sense of Corollary 9.6 was first used as a substitute for a direct
constraint qualification by Clarke [59]. Such norm estimates are important in the
theory of exact penalty methods based on linear penalties, cf. Burke [60].

Theorem 9.5 also furnishes additional insights on the matter of when Lagrange
multipliers can be interpreted as partial derivatives of p as in (9.2).

Corollary 9.7. If the canonical value function p happens to be differentiable at
0, then every (globally) optimal solution x̄ satisfies condition (L) with ȳ = ∇p(0) as the
multiplier vector. (But x̄ could also satisfy (L) for some multiplier vector ȳ 6= ∇p(0).)

Proof. Apply Theorem 9.5 with Yest =
{
∇p(0)

}
.

Other results connecting generalized differentiability properties of the canonical
value function p with Lagrange multipliers for (P) are provided in Rockafellar [21],
[61], [62].

Even though caution is advisable in interpreting multipliers ȳi as partial deriva-
tives (∂p/∂ui)(0), Corollary 9.7 furnishes some generic support for this view. The
convention of regarding the parameter vector u as a perturbation relative to 0 could
be relaxed, and we could think the entire family of problems

(
P(u)

)
on an equal foot-

ing. The multiplier vectors for any particular problem
(
P(ū)

)
would be analyzed in

the context of the properties of p around ū instead of 0. In this context Corollary
9.7 tells us that whenever p is differentiable at a point ū, the vector ȳ = ∇p(ū) gives
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Lagrange multipliers that work for every optimal solution x̄ to
(
P(ū)

)
. We can then

ask the question: Is it true in some situations that p fails to be differentiable only
for a “few” choices of ū? The answer is yes in the following sense. In circumstances
where p is sure to be lower semicontinuous locally at 0 (cf. Proposition 9.2), the con-
straint qualification (Q) for problem (P) implies that p is Lipschitz continuous relative
to a neighborhood of 0 (we won’t prove this here). A Lipschitz continuous function
is differentiable almost everywhere. Then, for almost every parameter vector ū in
some neighborhood of 0, the partial derivative interpretation of Lagrange multipliers
in

(
P(ū)

)
is valid at least for a certain choice of the multiplier vector ȳ in

(
P(ū)

)
.

10. Extension to composite problem models. Most of the Lagrange mul-
tiplier results we’ve been presenting carry over to a far more flexible statement of the
basic problem of optimization than (P). Many applications, while they can be forced
into the formulation of (P), don’t fit that very comfortably because their structure
has to be partially disguised. Let’s consider now, as a compromise between traditional
statements and full generality, the following composite problem model:

(P)
minimize f(x) = f0(x) + ρ

(
F (x)

)
over x ∈ X,

where F (x) =
(
f1(x), . . . , fm(x)

)
.

The assumptions on X and the fi’s are as before, but ρ is any convex, possibly
extended-real-valued function on lRm that’s lower semicontinuous and “proper” (ev-
erywhere > −∞, somewhere <∞). This problem is “composite” because its structure
emphasizes the composition of a mapping F : x 7→

(
f1(x), . . . , fm(x)

)
with a function

ρ on lRm. Smooth assumptions are centered on the data mapping F (and f0 as a
tag-along), while aspects of constraints, penalties and nonsmoothness are built into
the model function ρ.

To get a sense of what (P) covers, and why it might hold advantages over (P),
let’s start by considering cases where ρ is separable:

ρ(u) = ρ(u1, . . . , um) = ρ1(u1) + · · ·+ ρm(um) (10.1)

with each ρi a convex, proper, lower semicontinuous function on lR. Then f(x) has the
form (1.1) mentioned in §1 in which ρi might be a penalty function. The particular
choice (1.2) reduces (P) to (P). This is the sense in which we’ll view (P) as a special
case of (P) and be able to interpret results about (P) as consequences of more general
results for (P). We’ll refer to it as the traditional case of (P).

The linear penalty case of (P) is the one corresponding to (10.1) and (1.3). The
quadratic penalty case of (P) instead takes (10.1) and (1.4). This should be enough
to give the flavor. Various mixtures and sums of the ρi functions in (1.2), (1.3), and
(1.4) can be used along with other expressions.

It shouldn’t be overlooked that the Lagrangian functions whose minimum relative
x ∈ X was considered in §§5, 6, and 7 also fit this elementary pattern. The ordinary
Lagrangian L gives us expressions f0(x)+y1f1(x)+· · ·+ymfm(x) which can be thought
of as corresponding to linear functions ρi(ui) = yiui. This is an idle remark, but the
augmented Lagrangian L̃ involves expressions f0(x) + ρ1

(
f1(x)

)
+ · · · + ρm

(
fm(x)

)
in which the functions ρi, parameterized by yi and η, are linear-quadratic for i =
s+ 1, . . . ,m but only piecewise linear-quadratic for i = 1, . . . , s.

Besides the special cases of (P) where ρ is separable, there are others which
introduce nonsmoothness from a different angle. In the max function case of (P), we
take

f0 ≡ 0, ρ(u) = ρ(u1, . . . , um) = max{u1, . . . , um}, (10.2)
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the latter being a convex, piecewise linear function on lRm. The problem consists then
of minimizing f(x) = max

{
f1(x), . . . , fm(x)

}
over all x ∈ X. Again, this is just a

“pure” form of example which could readily be combined with others. For instance,
a function of such “max” type could be minimized over X subject to various equality
or inequality constraints or penalty expressions that substitute for them.

Because ρ can in general be extended-real-valued in (P), there may be implicit
constraints in this problem. These are brought out in terms of the set

D = domρ =
{
u ∈ lRm

∣∣ ρ(u) <∞
}
, (10.3)

which is convex and nonempty. In (P) we really minimize f(x) subject to F (x) ∈ D.
The set of feasible solutions isn’t X but

C =
{
x ∈ X

∣∣F (x) ∈ D
}
. (10.4)

Of course when ρ is finite everywhere on lRm, as in the linear penalty case, the
quadratic penalty case and the max function case, we do just have C = X, but in the
traditional case C is the feasible set for (P) as studied up to now. Other deviations
of C from X arise in various mixed cases.

Our immediate goal is to establish a Lagrange multiplier rule for (P) that sub-
sumes the one in Theorem 4.2 for (P). Since traditional equality and inequality
constraints have been relegated only to a special case in the problem formulation, the
very idea of what a Lagrange multiplier should now be might be questioned. How-
ever a satisfying extension will come to light in which, again, there’s a coefficient ȳi

associated with each of the functions fi, i = 1, . . . ,m. In the end we’ll also have a
Lagrangian function and an analog (L) of condition (L).

By the basic constraint qualification for the extended problem (P) at a feasible
solution x̄ we’ll mean the following condition in the notation (10.3):

(Q)

{
there is no vector y 6= 0 such that

y ∈ ND

(
F (x̄)

)
, −

[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄).

To bring this to specifics, note that in the conventional case where (P) reduces to (P)
the set D coincides with the cone U treated in Section 4, consisting of the vectors u
such that ui ≤ 0 for i = 1, . . . , s, but ui = 0 for i = s+1, . . . ,m. Then the requirement
y ∈ ND

(
F (x̄)

)
summarizes the sign relations (4.5) in (Q), according to Proposition

4.1, and (Q) reduces to (Q). In the examples mentioned where D is all of lRm, we
have ND

(
F (x̄)

)
= {0}, so condition (Q) is automatically fulfilled.

Theorem 10.1. If x̄ is a locally optimal solution to (P) at which the basic con-
straint qualification (Q) is satisfied, there must exist a vector ȳ such that

ȳ ∈ ∂ρ
(
F (x̄)

)
, −

[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄). (10.5)

Proof. We’ll follow the scheme used to prove Theorem 4.2 with appropriate gen-
eralizations. As in that proof, it suffices to treat the case where X is bounded and x̄
is the unique globally optimal solution to (P). Likewise we can suppose that the set
D = domρ in (10.3) is bounded; if necessary, we could redefine ρ(u) be ∞ outside
some closed ball in lRm big enough to include F (x) for every x ∈ X, which wouldn’t
affect the subgradients of ρ at F (x̄) or the fact that ρ is convex, lower semicontinuous
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and proper. In this framework f0(x)+ρ(u) has a finite minimum value µ on X× lRm.
The problem

(P̂) minimize f̂(x, u) = f0(x) + ρ(u) subject to F (x)− u = 0, (x, u) ∈ X × lRm,

has (x̄, ū) =
(
x̄, F (x̄)

)
as its unique optimal solution.

For a sequence of values εk ↓0, the approximate problems

(P̂k) minimize f̂k(x, u) = f0(x) + ρ(u) +
1

2εk

∣∣F (x)− u
∣∣2 over (x, u) ∈ X × lRm

have solutions (xk, uk), since the level sets in X × lRm where f̂k(x, u) ≤ α are closed
and bounded (because of the lower semicontinuity of ρ, the continuity of f0 and F ,
the closedness of X, and the boundedness of X and D). We have

µ+
1

2εk

∣∣F (xk)− uk
∣∣2 ≤ f̂k(xk, uk) ≤ f̂k(x̄, ū) = f0(x̄) + ρ(ū),

so any cluster point (x̂, û) of the sequence
{
(xk, uk)

}∞
k=1

, which is bounded, must
satisfy

∣∣F (x̂)− û
∣∣ = 0 and (because ρ is lower semicontinuous)

f0(x̄) + ρ(ū) ≥ limsup
k→∞

f̂k(xk, uk) = f0(x̂) + limsup
k→∞

ρ(uk)

≥ f0(x̂) + liminf
k→∞

ρ(uk) ≥ f0(x̂) + ρ(û).

Thus (x̂, û) must be an optimal solution to (P̂), coinciding therefore with (x̄, ū); nec-
essarily also, limk→∞ ρ(uk) = ρ(ū). This being true for any cluster point, we deduce
for the full sequence

{
(xk, uk)

}∞
k=1

that xk → x̄, uk → ū, and ρ(uk) → ρ(ū).
The optimality of (xk, uk) in (P̂ k) implies that xk minimizes f̂k(x, uk) in x ∈

X, and uk minimizes f̂k(xk, u) in u ∈ lRm. Hence by Proposition 3.5 the vector
−∇xf̂k(xk, uk) belongs to the normal cone NX(xk). To say that the minimum of
f̂k(xk, u) is attained at uk is to say that

ρ(uk) +
1

2εk

∣∣F (xk)− uk
∣∣2 ≤ ρ(u) +

1
2εk

∣∣F (xk)− u
∣∣2 for all u ∈ lRm,

which in terms of the function

hk(u) = ρ(uk) +
1

2εk

∣∣F (xk)− uk
∣∣2 − 1

2εk

∣∣F (xk)− u
∣∣2

means that hk(u) ≤ ρ(u) everywhere, with hk(uk) = ρ(uk). Then by Proposition 8.6
the vector ∇hk(uk) is a subgradient of ρ at uk. Let’s denote this vector by yk; its
components are yk

i =
[
fi(xk) − uk

i

]
/εk, and in such terms the vector ∇xf̂k(xk, uk)

calculates out to ∇f0(xk) + yk
1∇f1(xk) + · · ·+ yk

m∇fm(xk). We thus have

yk ∈ ∂ρ(uk), −
[
∇f0(xk) + yk

1∇f1(xk) + · · ·+ yk
m∇fm(xk)

]
∈ NX(xk). (10.6)

If the sequence of vectors yk is bounded, we can suppose it converges to some
ȳ. Then in taking the limit in (10.6) (where xk → x̄, uk → ū = F (x̄), and ρ(uk) →
ρ(ū) = ρ

(
F (x̄)

)
, so Proposition 8.3 is applicable), we obtain the targeted condition
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(10.5). If on the other hand the sequence of vectors yk is unbounded, we can suppose
(by passing to a subsequence if necessary) that 0 < |yk| → ∞ and that the vectors
ŷk = yk/|yk| converge to some ŷ 6= 0. Then from the second condition in (10.6) we
have

−
(
1/|yk|

)
∇f0(xk)−

[
ŷk
1∇f1(xk) + · · ·+ ŷk

m∇fm(xk)
]
∈ NX(xk)

and in the limit
−

[
ŷ1∇f1(x̄) + · · ·+ ŷm∇fm(x̄)

]
∈ NX(x̄). (10.7)

But at the same time, from yk ∈ ∂ρ(uk) and the convexity of ρ we have for any u ∈ D
that ρ(u) ≥ ρ(uk) + 〈yk, u− uk〉 so that

(
1/|ŷk|

)
ρ(u) ≥

(
1/|ŷk|

)
ρ(uk) +

〈
ŷk, u− uk

〉
.

Then in the limit we get 0 ≥
〈
ŷ, u− ū

〉
. This being true for arbitrary u ∈ D, we see

that ŷ ∈ ND(ū) = ND

(
F (x̄)

)
. A contradiction to assumption (Q) has been detected.

Our conclusion is that the unbounded case can’t arise.
Before continuing, we tie up a loose end from earlier by applying the extended

multiplier rule to deduce Theorem 9.5.
Proof of Theorem 9.5. First we prove the theorem under the assumption that the

estimate is strict in the sense that

dp(0)(w) > min
y∈Yest

〈
y, w

〉
for all w 6= 0. (10.9)

Let σ(w) denote the value on the right obtained with maximization instead of mini-
mization; the minimum is −σ(−w). This switch is advantageous because σ is a finite,
continuous, convex function. Our inequality can then be written dp(0)(w)+σ(−w) > 0
for all w 6= 0. It follows then from the limit definition of dp(0) that for some δ > 0 we
have [

p(0 + tw)− p(0)
]
/t+ σ(−w) > 0 when 0 < t ≤ δ, |w| = 1.

In view of the fact that tσ(−w) = σ(−tw) when t > 0, this can be expressed as

p(u) + σ(−u) > p(0) for all u 6= 0 with |u| ≤ δ.

Recalling the definition of p(u) at the beginning of Section 6, we see that the optimal
solutions to the problem

minimize f0(x) + σ(−u) subject to x ∈ X, |u| ≤ δ,

fi(x) + ui

{
≤ 0 for i = 1, . . . , s,
= 0 for i = s+ 1, . . . ,m,

are precisely the pairs (x̄, ū) such that x̄ is an optimal solution to (P) and ū = 0. Let
U denote the set of vectors u = (u1, . . . , um) such that ui ≤ 0 for i = 1, . . . , s but
ui = 0 for i = s + 1, . . . ,m. The inequality and equality constraints then have the
form F (x) + u = w ∈ U , and this allows us to write the problem instead as

minimize f0(x) + ρ
(
F (x)− w

)
subject to x ∈ X, w ∈W,

where ρ(u) = σ(u) when |u| ≤ δ, but ρ(u) = ∞ when |u| > δ. The solutions now are
precisely the pairs

(
x̄, F (x̄)

)
such that x̄ is an optimal solution to (P). We cast this

as a special case of problem (P) in the form

minimize f0(x,w) + ρ
(
F (x,w)

)
over all (x,w) ∈ X × U,

where f0(x,w) = f0(x), F (x,w) = F (x)− w.
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The optimal solutions (x̄, w̄) (if any) have w̄ = F (x̄) and therefore F (x̄, w̄) = 0, this
point being in the interior of the effective domain D = domρ, which is the closed ball
of radius δ around the origin of lRm. The constraint qualification (Q) is automatically
satisfied in this case, so we obtain from Theorem 10.1 the existence of a multiplier
vector ȳ ∈ ∂ρ(0) such that

−
[
∇f0(x̄, w̄) + ȳ1∇f1(x̄, w̄) + · · ·+ ȳm∇fm(x̄, w̄)

]
∈ NX×U (x̄, w̄), (10.10)

where f i(x,w) = fi(x)−wi. The condition ȳ ∈ ∂ρ(0) is identical to ȳ ∈ ∂σ(0), because
σ and ρ agree in a neighborhood of 0, and from the way σ was defined it means that
ȳ ∈ Yext. The condition in (10.10) reduces to

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄), ȳ ∈ NU

(
w̄

)
= NU

(
F (x̄)

)
,

which by Proposition 4.1 is equivalent to (L) holding for x̄ and ȳ.
So far we’ve concentrated on the case in (10.8) where the inequality is strict, but

the general case now follows easily. For any ε > 0 let Y ε
est be the set of all points

whose distance from Yest doesn’t exceed ε. This is another compact, convex set, and
we have

min
y∈Y ε

est

〈
y, w

〉
= min

y∈Yest

〈
y, w

〉
− ε|w|.

The argument we’ve given therefore works for Y ε
est: for any optimal solution x̄ to (P)

there’s a multiplier vector ȳε ∈ Y ε
est for which (L) holds. As ε ↓0, ȳε remains bounded

and its distance from Yest dwindles to 0. Taking ȳ to be any cluster point, we still
have (L), but also ȳ ∈ Yest.

The optimality result in Theorem 10.1 corresponds to the following calculus rule
for subgradients of nonsmooth functions.

Theorem 10.2. For the function

f(x) =
{
f0(x) + ρ

(
F (x)

)
if x ∈ X,

∞ if x /∈ X,

under the assumptions on f0, F , X and ρ in (P), suppose x̄ is a point where f(x̄) is
finite and (Q) is satisfied. Then ∂f(x̄) consists of the vectors of the form

v = ∇f0(x̄) + y1∇f1(x̄) + · · ·+ ym∇fm(x̄) + z with y ∈ ∂ρ
(
F (x̄)

)
, z ∈ NX(x̄).

Proof. This extends Theorem 10.1 and its proof by essentially the same argument
that was used in deriving Theorem 4.3 from Theorem 4.2.

Theorem 10.1 can be derived in turn from Theorem 10.2 through the vehicle of
the elementary necessary condition

0 ∈ ∂f(x̄) (10.10)

for x̄ to give local minimum of f over lRn—which is the same as x̄ being a locally
optimal solution to problem (P). To say that the vector 0 can be represented as
described in Theorem 10.2 is to say that condition (10.5) holds in Theorem 10.1. As
a simple illustration, if for a smooth function f0 and a closed set X we take

f(x) =
{
f0(x) when x ∈ X,
∞ when x /∈ X,
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we get ∂f(x̄) = ∂f0(x̄)+NX(x̄) at any point x̄ ∈ X; there’s no worry about condition
(Q) in this case because F and ρ fall away. This special rule when invoked in the
necessary condition (10.11) yields the normality condition in Theorem 3.6.

The subgradient formula in Theorem 10.2 is essentially a chain rule in subgradient
calculus. To see this most clearly, consider the case where f0 ≡ 0 and X = lRn.
Thinking of y1∇fi(x)+· · ·+ym∇fm(x) as y∇F (x) for the Jacobian∇F (x) ∈ lRm×lRn,
we get the following specialization.

Corollary 10.3. For a smooth mapping F : lRn → lRm and any convex, lower
semicontinuous, proper function ρ : lRm → [−∞,∞], the chain rule

∂(ρ◦F )(x̄) = ∂ρ
(
F (x̄)

)
∇F (x̄) =

{
y∇F (x̄)

∣∣∣ y ∈ ∂ρ(F (x)
) }

is valid at any x̄ such that ρ is finite at F (x̄) and the only vector y ∈ ND

(
F (x̄)

)
with

y∇F (x̄) = 0 is y = 0.
It’s remarkable that this chain rule covers not just the kinds of situations people

are used to thinking about in terms of composition, but geometric situations involving
normal vectors. For example, when ρ is the indicator of the set D consisting of the
vectors u such that ui ≤ 0 for i = 1, . . . , s but ui = 0 for i = s+1, . . . ,m, the composed
function ρ◦F is the indicator of the set C defined by the constraints fi(x) ≤ 0 for
i = 1, . . . , s and fi(x) = 0 for i = s + 1, . . . ,m. Then ∂ρ

(
F (x̄)

)
is the normal cone

ND

(
F (x̄)

)
, whereas ∂(ρ◦F )(x̄) is the normal cone NC(x̄). The chain rule thus gives

us a formula for NC(x̄); it corresponds to the formula in Theorem 4.3 for the case
where X = lRn.

Another case of the chain rule to be noted is the one where ρ is the function in
(10.3), so that ρ◦F is the pointwise max of f1, . . . , fm. Here the constraint qualification
is satisfied trivially, because ρ is finite everywhere; D = lRm. The subgradient set
ρ
(
F (x̄)

)
consists of the vectors y with yi ≥ 0, y1 + · · ·+ ym = 1, such that yi = 0 for

the “inactive” functions fi at x̄, i.e., the ones for which fi(x̄) falls short of the max.
To use these results, it’s necessary to be able to determine the subgradients of

the convex function ρ. An extensive calculus is available in convex analysis [1], but in
many applications elementary considerations suffice. For instance,

ρ(u) = ρ1(u1) + · · ·+ ρm(um) =⇒ ∂ρ(u) = ∂ρ1(u1)× · · · × ∂ρm(um). (10.11)

In the separable case, therefore, the condition on each multiplier ȳi in Theorem 10.1
depends only on the function ρi on lR and the value fi(x̄), and it takes the form
ȳi ∈ ρi

(
fi(x̄)

)
. This restricts ȳi to lie in a certain closed interval in lR whose bounds

are determined by the left and right derivatives of ρi at ūi = fi(x̄); see Rockafellar
[39, Chapter 8] for details and examples in this one-dimensional setting.

A Lagrangian expression for the necessary condition in Theorem 10.1 can be
developed through the notion of the convex function ρ∗ conjugate to ρ, which is
defined by

ρ∗(y) = sup
u∈lRm

{
〈y, u〉 − ρ(u)

}
for y ∈ lRm. (10.12)

Some fundamental facts in convex analysis [1] are that ρ∗ is again lower semicontinuous
and proper, and its conjugate function (ρ∗)∗ is in turn ρ: one has

ρ(u) = sup
y∈lRm

{
〈y, u〉 − ρ∗(y)

}
. (10.13)
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Furthermore, there’s the subgradient relationship

y ∈ ∂ρ(u) ⇐⇒ u ∈ ∂ρ∗(y). (10.14)

A substantial simplification often in the calculation of conjugates is the observation
that

ρ(u) = ρ1(u1) + · · ·+ ρm(um) =⇒ ρ∗(y) = ρ∗1(y1) + · · ·+ ρ∗m(ym). (10.15)

Thus, when ρ is separable, only the conjugates of convex functions of a single variable
need to be calculated in order to obtain ρ∗. This case is covered thoroughly in [39,
Chap. 8] with many illustrations.

Before taking up specific examples, let’s look at the main connections of this
duality concept with generalized optimality rules. We continue with the notation

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x).

Proposition 10.4. In terms of the function ρ∗ conjugate to ρ, the first-order
necessary condition in Theorem 10.1 can be expressed as

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ ∂ρ∗(ȳ). (10.17)

Proof. This is obvious from (10.14).
This form of the basic first-order optimality conditions could be elaborated fur-

ther. It could be symmetrized by replacing the indicator function δX implicit in (P)
by a convex function σ, so that the first part of (10.16) would read −∇xL(x̄, ȳ) ∈ σ(x̄).
But instead of heading off in that direction we prefer here to identify the context in
which a normal cone expression of optimality can be maintained.

Definition 10.5. The function ρ will be said to have a smooth dual representa-
tion if

ρ(u) = sup
y∈Y

{
〈y, u〉 − k(y)

}
(10.17)

with Y a nonempty, closed, convex subset of lRm (not necessarily lRs
+ × lRm−s) and k

some smooth function on lRm that is convex relative to Y (possibly k ≡ 0).
Theorem 10.6. Suppose in problem (P) that ρ has a dual smooth representation.

Then in terms of the extended Lagrangian function

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x)− k(y) (10.18)

the first-order necessary condition in Theorem 10.1 can be expressed as

(L) −∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

Proof. The function ψ on lRm defined by ψ(y) = k(y) when y ∈ Y , but ψ(y) = ∞
when y /∈ Y , is convex, lower semicontinuous, and proper. According to (10.17) its
conjugate ψ∗ is ρ, and so in turn we have ρ∗ = ψ. The vectors u ∈ ∂ρ∗(y) = ∂ψ(y)
are those of the form ∇k(y)+ z with z ∈ NY (y) (cf. the comments following Theorem
10.2). The condition ∇yL(x̄, ȳ) ∈ ∂ρ∗(ȳ) in Proposition 10.4 is the same therefore
as ∇yL(x̄, ȳ) − ∇k(ȳ) ∈ NY (ȳ). Since ∇xL(x̄, ȳ) = ∇xL(x̄, ȳ) and ∇yL(x̄, ȳ) =
∇yL(x̄, ȳ)−∇k(ȳ), we’re able to write (10.16) equivalently as (L).
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The existence of a smooth dual representation for ρ is being emphasized because
that fits with all the special examples of problem (P) mentioned until now. The
traditional case, where (P) reduces to (P), corresponds of course to k ≡ 0 and Y =
lRs

+ × lRm−s. The linear penalty case (1.3) corresponds to

k ≡ 0, Y = Y1 × · · · × Ym, with Yi =
{

[0, di] for i = 1, . . . , s,
[−di, di] for i = s+ 1, . . . ,m. (10.19)

For the quadratic penalty case (1.4) we have

k(y) =
m∑

i=1

y2
i

2di
, Y = lRs

+ × lRm−s. (10.20)

Finally, the max function case (10.3)—which isn’t separable—arises from

k ≡ 0, Y =
{
y

∣∣ yi ≥ 0, y1 + · · ·+ ym = 1
}
. (10.21)

The generalized Lagrangian format in Theorem 10.6 is a springboard for extending
the saddle point and duality results in Section 5 to composite models. By the convex
case of (P) in this setting, we’ll mean the case where X is convex and, for every y ∈ Y ,
the function f0 + y1f1 + · · ·+ ymfm is convex relative to X. (In the specialization of
(P) to (P), where Y = lRs

+ × lRm−s, this criterion gives the convex case of (P).)
Theorem 10.7. In the convex case of (P) when ρ has a smooth dual representa-

tion, the extended Lagrangian L(x, y) is convex in x ∈ X for each y ∈ Y , and concave
in y ∈ Y for each x ∈ X. The normality condition (L) means then that L has a saddle
point on X × Y at (x̄, ȳ).

Proof. The two normality conditions in Theorem 10.6 translate through Theorem
3.5 to the max and min conditions that define a saddle point.

As an example, in the max function case of (P) in (10.2) we obtain the fact that
the necessary and sufficient condition for the global optimality of x̄ in the minimization
of f(x) = max

{
f1(x), . . . , fm(x)

}
over X, when the fi’s and X are convex, is the

existence of ȳ such that (x̄, ȳ) is a saddle point of y1f1(x) + · · · + ymfm(x) on X ×
Y , where Y is the unit simplex in (10.21). Kuhn and Tucker stated this extended
Lagrangian optimality condition in their early paper [9]. It’s interesting to see that
for them the concept of a Lagrangian was thus much more general than it came to be
during the intervening years in which only cones were thought of as suitable candidates
for a multiplier space Y .

The saddle point result in Theorem 10.7 leads very naturally to the introduction
of the extended dual problem

(D) maximize g(y) = inf
x∈X

{
f0(x) + y1f1(x) + · · ·+ ymfm(x)

}
− k(y) over y ∈ Y

for the convex case of (P) when ρ has a smooth dual representation. Problems (P)
and (D) are the strategy problems for the two players in the game corresponding to
(X,Y, L), and they thus enjoy the basic relationships in Theorem 5.3. The multiplier
vectors ȳ associated by condition (L) with optimal solutions x̄ to (P) are then the
optimal solutions to (D).

Duality in this extended sense, which in particular covers the various penalty
problems that have been described, has many potential uses. The case where f0 and
k are quadratic functions (with affine as a special case), the other functions fi are
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affine and X and Y are polyhedral, has been developed as extended linear-quadratic
programming in Rockafellar and Wets [5], [6], [7], Rockafellar [8], [63], Rockafellar and
Zhu [64]. Forms of extended convex programming have been utilized in Rockafellar
[65], [66], and extended nonlinear programming in [67], [68]; the Lagrangian format in
Theorem 10.6 for a smooth dual representation of ρ appeared first in [67].

Second-order optimality conditions for have been developed (P) by Poliquin and
Rockafellar [69], [70] under the assumption that X is polyhedral and ρ is “piecewise
linear-quadratic.” For second-order theory under weaker assumptions, but also with
weaker accompanying properties, see Burke and Poliquin [71] and Ioffe [72]. For other
perspectives on nonsmooth analysis see Clarke [17], [18], Mordukhovich [24], Aubin
and Ekeland [73], Aubin and Frankowska [74]. The last of these books offers a full
theory of tangent cones and their applications.
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