
             

ABSTRACT This paper describes and analyses the history of the fundamental
equation of modern financial economics: the Black-Scholes (or Black-Scholes-Merton)
option pricing equation. In that history, several themes of potentially general
importance are revealed. First, the key mathematical work was not rule-following but
bricolage, creative tinkering. Second, it was, however, bricolage guided by the goal
of finding a solution to the problem of option pricing analogous to existing
exemplary solutions, notably the Capital Asset Pricing Model, which had successfully
been applied to stock prices. Third, the central strands of work on option pricing,
although all recognizably ‘orthodox’ economics, were not unitary. There was
significant theoretical disagreement amongst the pioneers of option pricing theory;
this disagreement, paradoxically, turns out to be a strength of the theory. Fourth,
option pricing theory has been performative. Rather than simply describing a pre-
existing empirical state of affairs, it altered the world, in general in a way that made
itself more true.

Keywords Black-Scholes, bricolage, option pricing, performativity, social studies of
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An Equation and its Worlds:
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Economics and economies are becoming a major focus for social studies of
science. Historians of economics such as Philip Mirowski and the small
number of sociologists of economics such as Yuval Yonay have been
applying ideas from science studies with increasing frequency in the last
decade or so.1 Established science-studies scholars such as Knorr Cetina
and newcomers to the field such as Izquierdo, Lépinay, Millo and Muniesa
have begun detailed, often ethnographic, work on economic processes,
with a particular focus on financial markets.2 Actor-network theorist
Michel Callon has conjoined the two concerns by arguing that an intrinsic
link exists between studies of economics and of economies. The economy is
not an independent object that economics observes, argues Callon (1998).
Rather, the economy is performed by economic practices. Accountancy
and marketing are among the more obvious such practices, but, claims
Callon, economics in the academic sense plays a vital role in constituting
and shaping modern economies.
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This paper contributes to the emergent science-studies literature on
economics and economies by way of a historical case study of option†

pricing theory (terms marked † are defined in the glossary in Table 1). The
theory is a ‘crown jewel’ of modern economics: ‘when judged by its ability
to explain the empirical data, option pricing theory is the most successful
theory not only in finance, but in all of economics’ (Ross, 1987: 332). Over
the last three decades, option theory has become a vitally important part of
financial practice. As recently as 1970, the market in derivatives† such as
options was tiny; indeed, many modern derivatives were illegal. By
December 2002, derivatives contracts totaling US$165.6 trillion were
outstanding worldwide, a sum equivalent to around US$27,000 for every
human being on earth.3 Because of its centrality to this huge market, the
equation that is my focus here, the Black-Scholes option pricing equation,
may be ‘the most widely used formula, with embedded probabilities, in
human history’ (Rubinstein, 1994: 772).

The development of option pricing theory is part of a larger trans-
formation of academic finance. Until the 1960s, the study of finance was a
marginal, low status activity: largely descriptive in nature, taught in busi-
ness schools not in economics departments, and with only weak in-
tellectual linkages to economic theory. Since the 1960s, finance has be-
come analytical, theoretical and highly quantitative. Although most
academic finance theorists’ posts are still in business schools, much of what
they teach is now unequivocally part of economics. Five finance theorists –
including two of the central figures discussed here, Robert C. Merton and
Myron Scholes – have won Nobel prizes in economics.

This intellectual transformation was interwoven with the rapid expan-
sion of business schools in the US. In the mid-1950s, US business schools
were producing around 3000 MBAs annually. By the late 1990s, that
figure had risen to over 100,000 (Skapiner, 2002). As business schools
grew, they also became more professional and ‘academic’, especially after
the influential Ford Foundation report, Higher Education for Business (Gor-
don and Howell, 1959). At the same time, the importance of the finance
sector in the US economy grew dramatically, and increasing proportions of
financial assets were held not directly by individuals but by organizations
such as mutual funds and pension funds. These organizations formed a
ready job market for the growing cohorts of students trained in finance.

The transformation of the academic study of finance is the subject of a
fine history by Bernstein (1992), and the interactions between this trans-
formation, the evolution of US business schools, and changing capital
markets have been analysed ably by Whitley (1986a, 1986b). However,
what the existing literature has not done fully is to ‘open the black box’ of
mathematical finance theory. That – at least for the theory of option pricing
– is this paper’s goal.4

Limitation of space means that the focus of this paper is on the
mathematics of option pricing theory and on its intellectual context. The
interaction between theory and practice – the processes of the adoption by
practitioners of option pricing theory, and the consequences of its adoption
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– is the subject of a ‘sister’ paper (MacKenzie and Millo, forthcoming),
although the issue of performativity means that the subject-matter of that
paper will be revisited briefly below.

In this article, four themes will emerge. I would not describe them as
‘findings’, because of the limitations on what can be inferred from a single
historical case-study, but they may be of general significance. The first
theme is bricolage. Creative scientific practice is typically not the following
of set rules of method: it is ‘particular courses of action with materials at

TABLE 1
Terminology

Arbitrage; arbitrageur Trading that seeks to profit from price discrepancies; a trader
who seeks to do so.

Call See option.

Derivative An asset, such as a future or option, the value of which de-
pends on the price of another, ‘underlying’, asset.

Discount To calculate the amount by which future payments must be
reduced to give their present value.

Expiration See option.

Future A contract traded as an organized exchange in which one party
undertakes to buy, and the other to sell, a set quantity of an
asset at a set price on a given future date.

Implied volatility The volatility of a stock or index consistent with the price of
options on the stock or index.

Log-normal A variable is log-normally distributed if its natural logarithm
follows a normal distribution.

Market maker In the options market, a market participant who trades on his/
her own account, is obliged continuously to quote prices at
which he/she will buy and sell options, and is not permitted to
execute customer orders.

Option A contract that gives the right, but not obligation, to buy (‘call’)
or sell (‘put’) an asset at a given price (the ‘strike price’) on, or
up to, a given future date (the ‘expiration’).

Put See option.

Riskless rate The rate of interest paid by a lender who creditors are certain
will not default.

Short selling The sale of a security one does not own, e.g. by borrowing it,
selling it, and later repurchasing and returning it.

Strike price See option.

Swap A contract to exchange two income streams, e.g. fixed-rate and
floating-rate interest on the same notional principal sum.

Volatility The extent of the fluctuations of the price of an asset, conven-
tionally measured by the annualized standard deviation of con-
tinuously-compounded returns on the asset.

Warrant A call option issued by a corporation on its own stock. Its
exercise typically leads to the creation of new stocks rather than
the transfer of ownership of existing stock.
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hand’ (Lynch, 1985: 5). While this has been documented in overwhelming
detail by ethnographic studies of laboratory science, this case-study sug-
gests it may also be the case in a deductive, mathematical science.
Economists – at least the particular economists focused on here – are also
bricoleurs.5

They are not, however, random bricoleurs, and the role of existing
exemplary solutions is the second issue to emerge. Ultimately, of course,
this is a Kuhnian theme. As is well known, at least two quite distinct
meanings of the key term ‘paradigm’ can be found in Kuhn’s work. One –
by far the dominant one in how Kuhn’s work was taken up by others – is
the ‘entire constellation of beliefs, values, techniques, and so on shared by
the members of a given [scientific] community’ (Kuhn, 1970: 175). The
second – rightly described by Kuhn as ‘philosophically . . . deeper’ – is the
exemplar, the problem-solution that is accepted as successful and that is
creatively drawn upon to solve further problems (Kuhn, 1970: 175; see
also Barnes, 1982).

The role of the exemplar will become apparent here in the contrast
between the work of Black and Scholes and that of mathematician and
arbitrageur† Edward O. Thorp. Amongst those who worked on option
pricing prior to Black and Scholes, Thorp’s work is closest to theirs.
However, while Thorp was seeking market inefficiencies to exploit, Black
and Scholes were seeking a solution to the problem of option pricing
analogous to an existing exemplary solution, the Capital Asset Pricing
Model. This was not just a general inspiration: in his detailed mathematical
work, Black drew directly on a previous mathematical analysis on which he
had worked with the Capital Asset Pricing Model’s co-developer, Jack
Treynor.

As Peter Galison and others have pointed out, the key shortcoming in
the view of the ‘paradigm’ as ‘constellation of beliefs, values, techniques,
and so on’ is that it overstates the unity and coherence of scientific fields
(Galison, 1997; Galison and Stump, 1996). Nowhere is this more true
than when outsiders discuss ‘orthodox’ neoclassical economics, and the
nature of economic orthodoxy is the third theme explored here. Black,
Scholes, Merton, several of their predecessors, and most of those who in
the 1970s subsequently worked on option pricing were all (with some
provisos in the case of Black, to be discussed below) recognizably ‘ortho-
dox’ economists. As others studying different areas of economics have
found, however, orthodoxy seems not to be a single unitary doctrine,
substantive or methodological (see Mirowski and Hands, 1998; Yonay and
Breslau, 2001). For example, Robert C. Merton, the economist whose
name is most closely yoked to those of Black and Scholes, did not accept
the original version of the Capital Asset Pricing Model, the apparent pivot
of their derivation, and Merton reached the Black-Scholes equation by
drawing on different intellectual resources. Black, in turn, never found
Merton’s derivation entirely compelling, and continued to champion the
derivation based on the Capital Asset Pricing Model. So no entirely unitary
‘constellation of beliefs, values, techniques, and so on’ can be found.
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Economic ‘orthodoxy’ is a reality – attend conferences of economists who
feel excluded by it, and one is left in no doubt on that – but it is a reality
that should perhaps be construed as a cluster of family resemblances, a
cluster that arises from imaginative bricolage drawing on an only partially
overlapping set of existing exemplary solutions. ‘Orthodox’ economics is
an ‘epistemic culture’ (Knorr Cetina, 1999), not a catechism.

A major aspect of Galison’s critique of the Kuhnian paradigm (con-
ceived as all-embracing ‘constellation’) is his argument that diversity is a
source of robustness, not a weakness. Though Galison’s topic is physics, his
conclusion also appears to hold true of economics. Philip Mirowski and
Wade Hands, describing the emergence of modern economic orthodoxy in
the postwar US, put the point as follows:

Rather than saying it [neoclassicism] simply chased out the competition –
which it did, if by ‘competition’ one means the institutionalists, Marxists,
and Austrians – and replaced diversity with a single monolithic homoge-
neous neoclassical strain, we say it transformed itself into a more robust
ensemble. Neoclassical demand theory gained hegemony by going from
patches of monoculture in the interwar period to an interlocking com-
petitive ecosystem after World War II. Rather than presenting itself as a
single, brittle, theoretical strand, neoclassicism offered a more flexible,
and thus resilient skein. (Mirowski and Hands, 1998: 289; see also Sent,
forthcoming)

As we shall see, that general characterization appears to hold for the
particular case of option pricing theory.

The final theme explored here, and in the sister paper referred to
above (MacKenzie and Millo, forthcoming), is performativity. As we shall
see, there is at least qualified support here for Callon’s conjecture, albeit in
a case that is favourable to the conjecture, since option pricing theory was
chosen for examination in part because it seemed a plausible case of
performativity. Option pricing theory seems to have been performative in a
strong sense: it did not simply describe a pre-existing world, but helped
create a world of which the theory was a truer reflection.

It is of course not surprising that a social science like finance theory
has the potential to alter its objects of study: the more difficult issue, which
fortunately does not need to be breached here, is to specify accurately the
non-trivial ways in which natural sciences are performative (see Hacking,
1992a, and from a different viewpoint, Bloor, 2003). That a social science
like psychology, for example, has a ‘necessarily reflexive character’ and that
psychologists influence as well as describe ‘the psychological lives of their
host societies’ has been argued by Richards (1997: xii), and Ian Hacking’s
work (such as Hacking, 1992b and 1995a) also demonstrates the point. As
I have argued elsewhere (MacKenzie, 2001), finance is a domain of what
Barnes (1983) calls ‘social-kind’ terms or what Hacking (1995b) calls
‘human kinds’, with their two-way ‘looping effects’ between knowledge
and its objects.

It is clearly possible in principle, in other words, for finance theory to
be performative rather than simply descriptive. However, that does not

MacKenzie: An Equation and its Worlds 835



remove the need for empirical examination. That the theory can be
performative does not imply that it has been performative. Indeed, as we
shall see, the performativity of classic option pricing theory is incomplete
and historically specific – it did not make itself wholly or permanently true
– and exploring the limits and the contingency of its performativity is of
some interest.

‘Too Much on Finance!’

Options are old instruments, but until the 1970s age had not brought them
respectability. Puts† and calls† on the stock of the Dutch East India
Company were being bought and sold in Amsterdam when de la Vega
discussed its stock market in 1688 (de la Vega, 1957), and subsequently
options were widely traded in Paris, London, New York and other financial
centres. They frequently came under suspicion, however, as vehicles for
speculation. Because the cost of an option was typically much less than
that of the underlying stock, a speculator who correctly anticipated price
rises could profit considerably by buying calls, or benefit from falls by
buying puts, and such speculation was often regarded as manipulative and/
or destabilizing. Buying options was often seen simply as gambling, as
betting on stock price movements. In Britain, options were banned from
1734 and again from 1834, and in France from 1806, although these bans
were widely flouted (Michie, 1999: 22, 49; Preda, 2001: 214). Several
American states, beginning with Illinois in 1874, also outlawed options
(Kruizenga, 1956). Although the main target in the USA was options on
agricultural commodities, options on securities were often banned as
well.

Options’ dubious reputation did not prevent serious interest in them.
In 1877, for example, the London broker Charles Castelli, who had been
‘repeatedly called upon to explain the various processes’ involved in buying
and selling options, published a booklet explaining them, directed appar-
ently at his fellow market professionals rather than popular investors. He
concentrated primarily on the profits that could be made by the purchaser,
and discussed only in passing how options were priced, noting that prices
tended to rise in periods of what we would now call high volatility.† His
booklet ended – in a nice corrective for those who believe the late 20th
century’s financial globalization to be a novelty – with an example of how
options had been used in bond arbitrage† between the London Stock
Exchange and the Constantinople Bourse to capture the high contango6

rate prevailing in Constantinople in 1874 (Castelli, 1877: 2, 7–8, 74–77).
Castelli’s ‘how to’ guide employed only simple arithmetic. Far more

sophisticated mathematically was the thesis submitted to the Sorbonne in
March 1900 by Louis Bachelier, a student of the leading French mathema-
tician and mathematical physicist, Henri Poincaré. Bachelier sought ‘to
establish the law of probability of price changes consistent with the market’
in French bonds. He assumed that the price of a bond, x, followed what we
would now call a stochastic process in continuous time: in any time
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interval, however short, the value of x changed probabilistically. Bachelier
constructed an integral equation that a continuous-time stochastic process
had to satisfy. Denoting by px,t dx the probability that the price of the bond
at time t would be between x and x 1 dx, Bachelier showed that the integral
equation was satisfied by:

px,t 5
H

Î t
exp – (pH2x2/t)

where H was a constant. (For the reader’s convenience, notation used
throughout this article is gathered together in Table 2.) For a given value of
t, the expression reduces to the normal or Gaussian distribution, the
familiar ‘bell-shaped’ curve of statistical theory. Although Bachelier had
not demonstrated that the expression was the only solution of the integral
equation (and we now know it is not), he claimed that ‘[e]vidently the
probability is governed by the Gaussian law, already famous in the calculus
of probabilities’. He went on to apply this stochastic process model – which
we would now call a ‘Brownian motion’ because the same process was later
used by physicists as a model of the path followed by a minute particle
subject to random collisions – to various problems in the determination of
the strike† price of options, the probability of their exercise and the
probability of their profitability, showing a reasonable fit between predicted
and observed values.7

When Bachelier’s work was ‘rediscovered’ by Anglo-Saxon authors in
the 1950s, it was regarded as a stunning anticipation both of the modern
theory of continuous-time stochastic processes and of late 20th-century
finance theory. For example, the translator of his thesis, option theorist A.
James Boness, noted that Bachelier’s model anticipated Einstein’s stochas-
tic analysis of Brownian motion (Bachelier, 1964: 77). Bachelier’s con-
temporaries, however, were less impressed. While modern accounts of the
neglect of his work are overstated (Jovanovic, 2003), the modesty of
Bachelier’s career in mathematics – he was 57 before he achieved a full

TABLE 2
Main Notation

b the covariance of the price of an asset with the general level of the market, divided by
the variance of the market

c strike† price of option
ln natural logarithm
N the (cumulative) normal or Gaussian distribution function
r riskless† rate of interest
s the volatility† of the stock price
t time
w warrant or option price
x stock price
x* stock price at expiration† of option

For items marked † see the glossary in Table 1.
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professorship, at Besançon rather than in Paris – seems due in part to his
peers’ doubts about his rigour and their lack of interest in his subject
matter, the financial markets. ‘Too much on finance!’ was the private
comment on Bachelier’s thesis by the leading French probability theorist,
Paul Lévy (quoted in Courtault et al., 2000: 346).

Option and Warrant Pricing in the 1950s and 1960s

The continuous-time random walk, or Brownian motion, model of stock
market prices became prominent in economics only from the late 1950s
onwards, and did so, furthermore, with an important technical modifica-
tion, introduced to finance by Paul Samuelson, MIT’s renowned mathe-
matical economist, and independently by statistical astronomer M.F.M.
Osborne (1959). On Bachelier’s model, there was a non-zero probability of
prices becoming negative. When Samuelson, for example, learned of
Bachelier’s model, ‘I knew immediately that couldn’t be right for finance
because it didn’t respect limited liability’ [Samuelson interview]:8 a stock
price could not become negative. So Samuelson and Osborne assumed not
Bachelier’s ‘arithmetic’ Brownian motion, but a ‘geometric’ Brownian
motion, or log-normal† random walk, in which prices could not become
negative.

In the late 1950s’ and 1960s’ US the random-walk model became a
key aspect of what became known as the ‘efficient market hypothesis’
(Fama, 1970). Though it initially struck many non-academic practitioners
as bizarre to posit that stock price movements were random, the growing
number of financial economists argued that all today’s information is
already incorporated in today’s prices: if it is knowable that the price of a
stock will rise tomorrow, it would already have risen today. Stock price
changes are influenced only by new information, which, by virtue of being
new, is unpredictable or ‘random’.9 Like Bachelier, a number of these
financial economists saw the possibility of drawing on the random walk
model to study option pricing. Typically, they studied not the prices of
options in general but those of warrants.† Options had nearly been banned
in the US after the Great Crash of 1929 (Filer, 1959), and were traded
only in a small, illiquid, ad hoc market based in New York. Researchers
could in general obtain only brokers’ price quotations from that market,
not the actual prices at which options were bought and sold, and the
absence of robust price data made options unattractive as an object of
study. Warrants, on the other hand, were traded in more liquid, organized
markets, particularly the American Exchange, and their market prices were
available.

To Case Sprenkle, a graduate student in economics at Yale University
in the late 1950s, warrant prices were interesting because of what they
might reveal about investors’ attitudes to and expectations about risk levels
(Sprenkle, 1961). Let x* be the price of a stock on the expiration† date of a
warrant. A warrant is a form of call option: it gives the right to purchase
the underlying stock at strike price, c. At expiration, the warrant will
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therefore be worthless if x* is below c, since exercising the warrant would
be more expensive than simply buying the stock on the market. If x* is
higher than c, the warrant will be worth the difference. So its value will
be:

0 if x* , c

x* – c if x* $ c

Of course, the stock price x* is not known in advance, so to calculate the
expected value of the warrant at expiration Sprenkle had to ‘weight’ these
final values by f(x*), the probability distribution of x*. He used the
standard integral formula for the expected value of a continuous random
variable, obtaining the following expression for the warrant’s expected
value at expiration:

#
∞

c

(x* – c) f(x*) dx*

To evaluate this integral, Sprenkle assumed that f(x*) was log-normal (by
the late 1950s, that assumption was ‘in the air’, he recalls [Sprenkle
interview]), and that the value of x* expected by an investor was the
current stock price x multiplied by a constant, k. The above integral
expression for the warrant’s expected value then became:

kxN [
ln(kx/c) 1 s2/2

s
] – cN [

ln(kx/c) 2 s2/2

s
] (1)

where ln is the abbreviation for natural logarithm, s2 is the variance of the
distribution of lnx*, and N is the (cumulative) Gaussian or normal
distribution function, the values of which could be found in tables used by
any statistics undergraduate.10

Sprenkle then argued that the expected value of a warrant would be
the price an investor would be prepared to pay for it only if the investor was
indifferent to risk or ‘risk neutral’. (To get a sense of what this means,
imagine being offered a fair bet with a 50 percent chance of winning
$1,000 and a 50 percent chance of losing $1,000, and thus an expected
value of zero. If you would require to be paid to take on such a bet you are
‘risk averse’; if you would pay to take it on you are ‘risk seeking’; if you
would take it on without inducement, but without being prepared to pay to
do so, you are ‘risk neutral’.) Warrants are riskier than the underlying stock
because of their leverage – ‘a given percentage change in the price of the
stock will result in a larger percentage change in the price of the option’ –
so an investor’s attitude to risk could be conceptualized, Sprenkle sug-
gested, as the price Pe he or she was prepared to pay for leverage. A risk-
seeking investor would pay a positive price, and a risk-averse investor a
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negative one: that is, a levered asset would have to offer an expected rate of
return sufficiently higher than an unlevered one before a risk-averse
investor would buy it. V, the value of a warrant to an investor was then
given, Sprenkle showed, by:

V 5 kxN [
ln(kx/c) 1 s2/2

s
] – (1 – Pe )cN [

ln(kx/c) 2 s2/2

s
] (2)

(The right hand side of this equation reduces to expression 1 in the case of
a risk neutral investor for whom Pe 5 0.) The values of k, s, and Pe were
posited by Sprenkle as specific to each investor, representing his or her
subjective expectations and attitude to risk. Values of V would thus vary
between investors, and ‘Actual prices of the warrant then reflect the
consensus of marginal investors’ opinions – the marginal investors’ ex-
pectations and preferences are the same as the market’s expectations and
preferences’ (Sprenkle, 1961: 199–201).

Sprenkle examined warrant and stock prices for the ‘classic boom and
bust period’ of 1923–32 and for the relative stability of 1953–59, hoping to
estimate from those prices ‘the market’s expectations and preferences’, in
other words the values of k, s, and Pe implied by warrant prices. His
econometric work, however, hit considerable difficulties: ‘it was found
impossible to obtain these estimates’. Only by arbitrarily assuming k 5 1
and testing out a range of arbitrary values of Pe could Sprenkle make
partial progress. His theoretically-derived formula for the value of a
warrant depended on parameters whose empirical values were extremely
problematic to determine (Sprenkle, 1961: 204, 212–13).

The same difficulty hit the most sophisticated theoretical analysis of
warrants from this period, by Paul Samuelson in collaboration with the
MIT mathematician Henry P. McKean, Jr. McKean was a world-class
specialist in stochastic calculus, the theory of stochastic processes in
continuous time, which in the years after Bachelier’s work had burgeoned
into a key domain of modern probability theory. Even with McKean’s help,
however, Samuelson’s model (which space constraints prevent me describ-
ing in detail) also depended, like Sprenkle’s, on parameters that seemed to
have no straightforward empirical referents: ra, the expected rate of return
on the underlying stock, and rb, the expected return on the warrant
(McKean, 1965; Samuelson, 1965). A similar problem was encountered in
the somewhat simpler work of University of Chicago PhD student, A.
James Boness. He made the simplifying assumption that option traders are
risk-neutral, but his formula also involved ra, which he could estimate only
indirectly by finding the value that minimized the difference between
predicted and observed option prices (Boness, 1964).

‘The Greatest Gambling Game on Earth’

Theoretical analysis of warrant and option prices thus seemed always to
lead to formulae involving parameters that were difficult or impossible to
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estimate. An alternative approach was to eschew a priori models and to
study the relationship between warrant and stock prices empirically. The
most influential work of this kind was conducted by Sheen Kassouf. After a
mathematics degree from Columbia University, Kassouf set up a success-
ful technical illustration firm. He was fascinated by the stock market and a
keen, if not always successful, investor. In 1961, he wanted to invest in the
defence company Textron, but could not decide between buying its stock
or its warrants [Kassouf interview]. He started to examine the relationship
between stock and warrant prices, finding empirically that a simple hyper-
bolic formula

w 5 Î c2 1 x2 – c

seemed roughly to fit observed curvilinear relationships between warrant
price, stock price and strike price (Kassouf, 1962: 26).

In 1962, Kassouf returned to Columbia to study warrant pricing for a
PhD in economics. His earlier simple curve fitting was replaced by econo-
metric techniques, especially regression analysis, and he posited a more
complex relationship determining warrant prices:

w/c 5 [(x/c)z 1 1]1/z – 1 (3)

where z was an empirically-determined function of the stock price, exercise
price, stock price ‘trend’,11 time to expiration, stock dividend, and the
extent of the dilution of existing shares that would occur if all warrants
were exercised (Kassouf, 1965).

Kassouf’s interest in warrants was not simply academic: he wanted ‘to
make money’ trading them [Kassouf interview]. He had rediscovered, even
before starting his PhD, an old form of securities arbitrage† (see Weinstein,
1931: 84, 142–45). Warrants and the corresponding stock tended to move
together: if the stock price rose, then so did the warrant price; if the stock
fell, so did the warrant. So one could be used to offset the risk of the other.
If, for example, warrants seemed overpriced relative to the corresponding
stock, one could short sell† them, hedging the risk by buying some of the
stock. Trading of this sort, conducted by Kassouf in parallel with his PhD
research, enabled him ‘to more than double $100,000 in just four years’
(Thorp and Kassouf, 1967: 32).

In 1965, fresh from his PhD, Kassouf was appointed to the faculty of
the newly established Irvine campus of the University of California. There,
he was introduced to mathematician Edward O. Thorp. Alongside research
in functional analysis and probability theory, Thorp had a long-standing
interest in casino games. While at MIT in 1959–61 he had collaborated
with the celebrated information theorist Claude Shannon on a tiny, weara-
ble, analog computer system to predict where the ball would be deposited
on a roulette wheel [Thorp interview]. Thorp went on to devise the first
effective methods for beating the casino at blackjack, by keeping track of
cards that had already been dealt and thus identifying situations favourable
to the player (Thorp, 1961; Tudball, 2002).
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Thorp and Shannon’s use of their wearable roulette computer was
limited by frequently broken wires, but card-counting was highly profit-
able. In the MIT spring recess in 1961, Thorp travelled to Nevada
equipped with a hundred US$100 bills provided by two millionaires with
an interest in gambling. After 30 hours of blackjack, Thorp’s US$10,000
had become US$21,000. He went on to devise, with computer scientist
William E. Walden of the nuclear weapons laboratory at Los Alamos, a
method for identifying favourable side bets in the version of baccarat
played in Nevada. Thorp found, however, that beating the casino had
disadvantages as a way of making money. At a time when US casinos were
controlled largely by organized criminals, there were physical risks: while
Thorp was playing baccarat in 1964, he was rendered almost unconscious
by knock-out drops added to his coffee. The need to travel to places where
gambling was legal was a further disadvantage to an academic with a family
[Thorp interview].

Increasingly, Thorp’s attention switched to the financial markets. ‘The
greatest gambling game on earth is the one played daily through the
brokerage houses across the country’, Thorp told the readers of the hugely
successful book describing his card-counting methods (Thorp, 1966: 182).
But could the biggest of casinos succumb to Thorp’s mathematical skills?
Predicting stock prices seemed too daunting: ‘there is an extremely large
number of variables, many of which I can’t get any fix on’. However, he
realized that ‘I can eliminate most of the variables if I think about warrants
versus common stock’ [Thorp interview]. Thorp began to sketch graphs of
the observed relationships between stock and warrant prices, and meeting
Kassouf provided him with a formula (equation 3 above) for these
curves.

Their book, Beat the Market (Thorp and Kassouf, 1967), explained
graphically the relationship between the price of a warrant, w, and of the
underlying common stock, x (see Figure 1). No warrant should ever cost
more than the underlying stock, since it is simply an option to buy the
latter, and this constraint yielded a ‘maximum value line’. At expiration, as
Sprenkle had noted, a warrant would be worthless if the stock price, x, was
less than the strike price, c; otherwise it would be worth the difference (x –
c). If, at any time, w , x – c, an instant arbitrage profit could be made by
buying the warrant and exercising it (at a cost of w 1 c) and selling the
stock thus acquired for x. So the warrant’s value at expiration was also a
minimum value for it at any time. As expiration approached, the ‘normal
price curves’ expressing the value of a warrant dropped closer to its value
at expiration.

These ‘normal price curves’ could then be used to identify overpriced
and underpriced warrants.12 The former could be sold short, and the latter
bought, with the resultant risks hedged by taking a position in the stock
(buying stock if warrants had been sold short; selling stock short if
warrants had been bought). The appropriate size of hedge, Thorp and
Kassouf explained (1967: 82), was determined by ‘the slope of the normal
price curve at our starting position’. If that slope were, say, 1:3, as it
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roughly is at point (A,B) in Figure 1, the appropriate hedge ratio was to
buy one unit of stock for every three warrants sold short. Any movements
along the normal price curve caused by small stock price fluctuations
would then have little effect on the value of the overall position, because
the loss or gain on the warrants would be balanced by a nearly equivalent
gain or loss on the stock. Larger stock price movements could of course
lead to a shift to a region of the curve in which the slope differed from 1:3,
and in their investment practice both Thorp and Kassouf adjusted their
hedges when that happened (Thorp, 2002; Kassouf interview).

Initially, Thorp relied upon Kassouf’s empirical formula for warrant
prices (equation 3 above): as he says, ‘it produced . . . curves qualitatively
like the actual warrant curves’. Yet he was not entirely satisfied with it:
‘quantitatively, I think we both knew that there was something more that
had to happen’ [Thorp interview]. He began his investigation of that
‘something’ in the same way as Sprenkle – applying the log-normal
distribution to work out the expected value of a warrant at expiration –
reaching a formula equivalent to Sprenkle’s (equation 1 above).

Like Sprenkle’s, Thorp’s formula (Thorp, 1969: 281) for the expected
value of a warrant involved the expected increase in the stock price, which
there was no straightforward way to estimate. He decided to approximate it
by assuming that the expected value of the stock rose at the riskless† rate of
interest: he had no better estimate, and he ‘didn’t think that enormous
errors would necessarily be introduced’ by the approximation. Thorp
found that the resultant formula was plausible – ‘I couldn’t find anything
wrong with its qualitative behavior and with the actual forecast it was

FIGURE 1

‘Normal price curves’ for a warrant. From Edward O. Thorp and Sheen T. Kassouf, Beat
the Market: A Scientific Stock Market System (New York: Random House, 1967), 31.
© Edward O. Thorp and Sheen T. Kassouf. Used by permission of Random House, Inc.
S is Thorp and Kassouf’s notation for the price of the common stock.
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making’ – and in 1967 he started to use it to identify grossly overpriced
options to sell [Thorp interview]. It was formally equivalent to the Black-
Scholes formula for a call option (equation 5 below), except for one
feature: unlike Black and Scholes, Thorp did not discount† the expected
value of the option at expiration back to the present. In the warrant
markets he was used to, the proceeds of the short sale of a warrant were
retained in their entirety by the broker, and were not available immediately
to the seller as Black and Scholes assumed.13 It was a relatively minor
difference: when Thorp read Black and Scholes, he was able quickly to see
why the two formulae differed and to add to his formula the necessary
discount factor to make them identical (Thorp, 2002). In the background,
however, lay more profound differences of approach.

Black and Scholes

In 1965, Fischer Black, with a Harvard PhD (Black, 1964) in what was in
effect artificial intelligence, joined the operations research group of the
consultancy firm Arthur D. Little, Inc. There, Black met Jack Treynor, a
financial specialist at Little [Treynor interview]. Treynor had developed,
though had not published, what later became known as the Capital Asset
Pricing Model (also developed, independently, by academics William
Sharpe, John Lintner, and Jan Mossin).14 It was Black’s (and also
Scholes’s) use of this model that decisively differentiated their work from
the earlier research on option pricing.

The Capital Asset Pricing Model provided a systematic account of the
‘risk premium’: the additional return that investors demand for holding
risky assets. That premium, Treynor pointed out, could not depend simply
on the ‘sheer magnitude of the risk’, because some risks were ‘insurable’:
they could be minimized by diversification, by spreading one’s investments
over a broad range of companies (Treynor, 1962: 13–14; 1999: 20). What
could not be diversified away, however, was the risk of general market
fluctuations. By reasoning of this kind, Treynor showed – and the other
developers of the model also demonstrated – that a capital asset’s risk
premium should be proportional to its b (its covariance with the general
level of the market, divided by the variance of the market). An asset whose
b was zero, in other words an asset the price of which was uncorrelated
with the overall level of the market, had no risk premium (any specific risks
involved in holding it could be diversified away), and investors in it should
earn only r, the riskless rate of interest. As the asset’s b increased, so should
its risk premium.

The Capital Asset Pricing Model was an elegant piece of theoretical
reasoning. Its co-developer Treynor became Black’s mentor in what was for
Black the new field of finance, so it is not surprising that when Black began
his own work in finance it was by trying to apply the model to a range of
assets other than stock (which had been its main initial field of applica-
tion). Also important as a resource for Black’s research was a specific piece
of joint work with Treynor on how companies should value cash flows in
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making their investment decisions. This was the problem that had most
directly inspired Treynor’s development of the Capital Asset Pricing
Model, and the aspect of it on which Black and Treynor collaborated had
involved Treynor writing an expression for the change in the value of a cash
flow in a short, finite time interval Dt; expanding the expression using the
standard calculus technique of Taylor expansion; taking expected values;
dropping the terms of order Dt2 and higher; dividing by Dt; and letting Dt
tend to zero so that the finite difference equation became a differential
equation. Treynor’s original version of the latter was in error because he
had left out a second derivative that did not vanish, but Black and he
worked out how to correct the differential equation by adding the corre-
sponding term.15

Amongst the assets to which Black tried to apply the Capital Asset
Pricing Model were warrants. His starting point was directly modelled on
his joint work with Treynor, with w, the value of the warrant, taking the
place of cash flow, and x, the stock price, replacing the stochastically time-
dependent ‘information variables’ of the earlier problem. If Dw is the
change in the value of the warrant in time interval (t, t 1 Dt),

Dw 5 w(x 1 Dx, t 1 Dt) – w(x,t)

where Dx is the change in stock price over the interval. Black then
expanded this expression in a Taylor series and took expected values:
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where E designates ‘expected value’ and higher order terms are dropped.
Black then assumed that the Capital Asset Pricing Model applied both to
the stock and warrant, so that E(Dx) and E(Dw) would depend on,
respectively, the b of the stock and the b of the warrant. He also assumed
that the stock price followed a log-normal random walk and that it was
permissible ‘to eliminate terms that are second order in Dt’. These assump-
tions, a little manipulation, and letting Dt tend to zero, yielded the
differential equation:
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– 
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2
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∂2w
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(4)

where r is the riskless rate of interest and s the volatility† of the stock
price.16

‘I spent many, many days trying to find the solution to that equation’,
Black later recalled: ‘I . . . had never spent much time on differential
equations, so I didn’t know the standard methods used to solve problems
like that’. He was ‘fascinated’ that in the differential equation apparently
key features of the problem (notably the stock’s b and thus its expected
return, a pervasive feature in earlier theoretical work on option pricing) no
longer appeared. ‘But I was still unable to come up with the formula. So I
put the problem aside and worked on other things’ (Black, 1989: 5–6).
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In the autumn of 1968, however, Black (still working for Arthur D.
Little in Cambridge, MA) met Myron Scholes, a young researcher who
had just joined the finance group in MIT’s Sloan School of Management.
The pair teamed up with finance scholar Michael Jensen to conduct an
empirical test of the Capital Asset Pricing Model, which was still largely a
theoretical postulate. Scholes also became interested in warrant pricing,
not, it seems, through Black’s influence but through supervising an MIT
Master’s dissertation on the topic (Scholes, 1998). Scholes’ PhD thesis
(Scholes, 1970) involved the analysis of securities as potential substitutes
for each other, with the potential for arbitrage ensuring that securities
whose risks are alike will offer similar expected returns. Scholes’ PhD
adviser, Merton H. Miller, had introduced this form of theoretical argu-
ment – ‘arbitrage proof’ – in what by 1970 was already seen as classic work
with Franco Modigliani (Modigliani and Miller, 1958). Scholes started to
investigate whether similar reasoning could be applied to warrant pricing,
and began to consider the hedged portfolio formed by buying warrants and
short selling the underlying stock (Scholes, 1998: 480).

The hedged portfolio had been the central idea of Thorp and Kas-
souf’s Beat the Market (1967), though Scholes had not yet read the book
[Scholes interview]. Scholes’ goal, in any case, was different. Thorp and
Kassouf’s hedged portfolio was designed to earn high returns with low risk
in real markets. Scholes’ was a desired theoretical artifact. He wanted a
portfolio with a b of zero: that is, with no correlation with the overall level
of the market. If such a portfolio could be created, the Capital Asset
Pricing Model implied that it would earn, not high returns, but only the
riskless rate of interest, r. It would thus not be an unduly enticing
investment, but knowing the rate of return on the hedged portfolio might
solve the problem of warrant pricing.

What Scholes could not work out, however, was how to construct a
zero-b portfolio. He could see that the quantity of shares that had to be
sold short must change with time and with changes in the stock price, but
he could not see how to determine that quantity. ‘[A]fter working on this
concept, off and on, I still couldn’t figure out analytically how many shares
of stock to sell short to create a zero-beta portfolio’ (Scholes, 1998: 480).
Like Black, Scholes was stymied. Then, in ‘the summer or early fall of
1969’, Scholes told Black of his efforts, and Black described the different
approach he had taken, in particular showing Scholes the Taylor series
expansion of the warrant price (Scholes, 1998: 480). The two men then
found how to construct a zero-b portfolio. If the stock price changed by the

small amount Dx, the option price would alter by ∂w
∂x

Dx. So the necessary

hedge was to short sell a quantity ∂w
∂x

of stock for every warrant held. This

was the same conclusion Thorp and Kassouf had arrived at: ∂w
∂x

is their

hedging ratio, the slope of the curve of w plotted against x as in Figure 1.
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While the result was in that sense equivalent, it was embedded in quite
a different chain of reasoning. Although the precise way in which Black and
Scholes argued the point evolved as they wrote successive versions of their
paper,17 the crux of their mathematical analysis was that the hedged
portfolio must earn the riskless rate of interest. The hedged portfolio was
not entirely free from risk, they argued in August 1970, because the
hedging would not be exact if the stock price altered significantly and
because the value of an option altered as expiration became closer. The
change in value of the hedged portfolio resulting from stock price move-
ments would, however, depend only on the magnitude of those movements
not on their sign. It was, therefore, the kind of risk that could be diversified
away. So, according to the Capital Asset Pricing Model, the hedged
portfolio could earn only the riskless rate of interest (Black and Scholes,
1970a: 6). In other words, the expected return on the hedged portfolio in
the short time interval (t, t 1 Dt) is just its price at time t multiplied by rDt.
Simple manipulation of the Taylor expansion of w(x 1 Dx, t 1 Dt) led to a
finite difference equation that could be transformed into a differential
equation by letting Dt tend to zero, and to equation 4 above: the Black-
Scholes option pricing equation, as it was soon to be called.

As noted above, Black had been unable to solve equation 4, but he and
Scholes now returned to the problem. It was, however, still not obvious
how to proceed. Like Black, Scholes was ‘amazed that the expected rate of
return on the underlying stock did not appear in [equation 4]’ (Scholes,
1998: 481). This prompted Black and Scholes to experiment, as Thorp had
done, with setting the expected return on the stock as the riskless rate, r.
They substituted r for k in Sprenkle’s formula for the expected value of a
warrant at expiration (equation 1 above). To get the warrant price, they
then had to discount† that terminal value back to the present. How could
they do that? ‘Rather suddenly, it came to us’, Black later recalled. ‘If the
stock had an expected return equal to the [riskless] interest rate, so would
the option. After all, if all the stock’s risk could be diversified away, so
could all the option’s risk. If the beta of the stock were zero, the beta of the
option would have to be zero too. . . . [T]he discount rate that would take
us from the option’s expected future value to its present value would always
be the [riskless] interest rate’ (Black, 1989: 6). These modifications to
Sprenkle’s formula led to the following formula for the value of a warrant
or call option:

w 5 xN[
ln(x/c) 1 (r 1 1

2s
2)(t* – t)

s Î t* – t
]

– c[exp{r(t – t*)}]N[
ln(x/c) 1 (r 2 1

2s
2)(t* – t)

s Î t* – t
] (5)

where c is the strike price, s the volatility of the stock, t* the expiration of
the option, and N the Gaussian distribution function. Instead of facing the
difficult task of directly solving equation 4, all Black and Scholes had now
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to do was show by differentiating equation 5 that it (the Black-Scholes call
option or warrant formula) was a solution of equation 4.

Merton

Black’s and Scholes’ tinkering with Sprenkle’s expected value formula
(equation 1 above) was in one sense no different from Boness’ or Thorp’s.
However, Boness’ justification for his choice of expected rate of return was
empirical – he chose ‘the rate of appreciation most consistent with market
prices of puts and calls’ (Boness, 1964: 170) – and Thorp freely admits he
‘guessed’ that the right thing to do was to set the stock’s rate of return
equal to the riskless rate: it was ‘guesswork not proof’ [Thorp interview].
Black and Scholes, on the other hand, could prove mathematically that
their call option formula (equation 5) was a solution to their differential
equation (equation 4), and the latter had a clear theoretical justification.

It was a justification apparently intimately bound up with the Capital
Asset Pricing Model. Not only was the model drawn on explicitly in both
the equation’s derivations, but it also made Black’s and Scholes’ entire
mathematical approach seem permissible. Like all others working on the
problem in the 1950s and 1960s (with the exception of Samuelson,
McKean, and Merton), Black and Scholes used ordinary calculus – Taylor
series expansion, and so on – but in a context in which x, the stock price,
was known to vary stochastically. Neither Black nor Scholes knew the
mathematical theory needed to do calculus rigorously in a stochastic
environment, but the Capital Asset Pricing Model provided an economic
justification for what might otherwise have seemed dangerously unrigorous
mathematics. ‘We did not know whether our formulation was exact’, says
Scholes, ‘but intuitively we thought investors could diversify away any
residual risk that was left’ (Scholes, 1998: 483).

As noted above, Black had been a close colleague of the Capital Asset
Pricing Model’s co-developer, Treynor, while Scholes had done his gradu-
ate work at the University of Chicago, one of the two leading sites of
financial economics, where the model was seen as an exemplary contribu-
tion to the field. However, at the other main site, MIT, the original version
of the Capital Asset Pricing Model was regarded much less positively. The
model rested upon the ‘mean-variance’ view of portfolio selection: that
investors could be modelled as guided only by their expectations of the
returns on investments and their risks as measured by the expected
standard deviation or variance of returns. Unless returns followed a joint
normal distribution (which was regarded as ruled out, because it would
imply, as noted above, a non-zero probability of negative prices), mean-
variance analysis seemed to rest upon a specific form of ‘utility function’
(the function that characterizes the relationship between the return on an
investor’s portfolio, y, and his or her preferences). Mean-variance analysis
seemed to imply that investors’ utility functions were quadratic: that is,
they contained only terms in y and y2.
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For MIT’s Paul Samuelson, the assumption of quadratic utility was
over-specific – one of his earliest contributions to economics (Samuelson,
1938) had been his ‘revealed preference’ theory, designed to eliminate the
non-empirical aspects of utility analysis – and a ‘bad . . . representation of
human behaviour’ [Samuelson interview].18 Seen from Chicago, Samuel-
son’s objections were ‘quibbles’ [Fama interview] when set against the
virtues of the Capital Asset Pricing Model: ‘he’s got to remember what
Milton Friedman said – “Never mind about assumptions. What counts is,
how good are the predictions?” ’ [Miller interview; see Friedman, 1953].
Nevertheless, they were objections that weighed heavily with Robert C.
Merton. Son of the social theorist and sociologist of science Robert
K. Merton, he switched in autumn 1967 from graduate work in applied
mathematics at the California Institute of Technology to study economics
at MIT. He had been an amateur investor since aged 10 or 11, had
graduated from stocks to options and warrants, and came to realize ‘that I
had a much better intuition and “feel” into economic matters than physical
ones’. In spring 1968, Samuelson appointed the mathematically-talented
young Merton as his research assistant, even allocating him a desk inside
his MIT office (Merton interview; Merton, 1998: 15–16).

It was not simply a matter of Merton finding the assumptions under-
pinning the standard Capital Asset Pricing Model ‘objectionable’ (Merton,
1970: 2). At the centre of Merton’s work was the effort to replace simple
‘one-period’ models of that kind with more sophisticated ‘continuous-
time’ models. In the latter, not only did the returns on assets vary in a
continuous stochastic fashion, but individuals took decisions about port-
folio selection (and also consumption) continuously, not just at discrete
points in time. In any time interval, however short, individuals could
change the composition of their investment portfolios. Compared with
‘discrete-time’ models, ‘the continuous-time models are mathematically
more complex’, says Merton. He quickly became convinced, however, that
‘the derived results of the continuous-time models were often more precise
and easier to interpret than their discrete-time counterparts’ (Merton,
1998: 18–19). His ‘intertemporal’ capital asset pricing model (Merton,
1973), for example, did not necessitate the ‘quadratic utility’ assumption
of the original.

With continuous-time stochastic processes at the centre of his work,
Merton felt the need not just to make ad hoc adjustments to standard
calculus but to learn stochastic calculus. It was not yet part of economists’
mathematical repertoire (it was above all Merton who introduced it), but
by the late 1960s a number of textbook treatments by mathematicians
(such as Cox and Miller, 1965 and Kushner, 1967) had been published,
and Merton used these to teach himself the subject [Merton interview].
He rejected as unsuitable the ‘symmetrized’ formulation of stochastic
integration by R.L. Stratonovich (1966): it was easier to use for those with
experience only of ordinary calculus, but when applied to prices it in effect
allowed investors an illegitimate peek into the future. Merton chose instead
the original 1940s’ definition of the stochastic integral by the Japanese
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mathematician, Kiyosi Itô, and Itô’s associated apparatus for handling
stochastic differential equations (Stroock and Varadhan, 1987).

Amongst the problems on which Merton worked, both with
Samuelson and independently, was warrant pricing, and the resultant work
formed two of the five chapters of his September 1970 PhD thesis
(Samuelson and Merton, 1969; Merton, 1970: chapters 4 and 5). Black
and Scholes read the 1969 paper in which Samuelson and Merton de-
scribed their joint work, but did not immediately tell them of the progress
they had made: there was ‘friendly rivalry between the two teams’, says
Scholes (1998: 483). In the early autumn of 1970, however, Scholes did
discuss with Merton his work with Black. Merton immediately appreciated
that this work was a ‘significant “break-through” ’ (Merton, 1973: 142),
and it was Merton, for example, who christened equation 4 the ‘Black-
Scholes’ equation. Given Merton’s critical attitude to the Capital Asset
Pricing Model, however, it is also not surprising that he also believed that
‘such an important result deserves a rigorous derivation’, not just the
‘intuitively appealing’ one Black and Scholes had provided (Merton, 1973:
161–62). ‘What I sort of argued with them [Black and Scholes]’, says
Merton, ‘was, if it depended on the [Capital] Asset Pricing Model, why is
it when you look at the final formula [equation 4] nothing about risk
appears at all? In fact, it’s perfectly consistent with a risk-neutral world’
[Merton interview].

So Merton set to work applying his continuous-time model and Itô
calculus to the Black-Scholes hedged portfolio. ‘I looked at this thing’, says
Merton, ‘and I realized that if you did  . . . dynamic trading  . . . if you
actually [traded] literally continuously, then in fact, yeah, you could get rid
of the risk, but not just the systematic risk, all the risk’. Not only did the
hedged portfolio have zero b in the continuous-time limit (Merton’s initial
doubts on this point were assuaged),19 ‘but you actually get a zero sigma’:
that is, no variance of return on the hedged portfolio. So the hedged
portfolio can earn only the riskless rate of interest, ‘not for the reason of
[the Capital] Asset Pricing Model but . . . to avoid arbitrage, or money
machine’: a way of generating certain profits with no net investment
[Merton interview]. For Merton, then, the ‘key to the Black-Scholes
analysis’ was an assumption Black and Scholes did not initially make:
continuous trading, the capacity to adjust a portfolio at all times and
instantaneously. ‘[O]nly in the instantaneous limit are the warrant price
and stock price perfectly correlated, which is what is required to form the
“perfect” hedge’ (Merton, 1972: 38).

Black and Scholes were not initially convinced of the correctness of
Merton’s approach. Merton’s additional assumption – his world of con-
tinuous-time trading – was a radical abstraction, and in a January 1971
draft of their paper on option pricing Black and Scholes even claimed that
equilibrium prices in capital markets could not have characteristics as-
sumed by Merton’s analysis (Black and Scholes, 1971: 20). Merton, in
turn, told Fischer Black in a 1972 letter that ‘I . . . do not understand your
reluctance to accept that the standard form of CAPM [Capital Asset
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Pricing Model] just does not work’ (Merton, 1972). Despite this disagree-
ment, Black and Scholes used what was essentially Merton’s revised form
of their derivation in the final, published version of their paper (Black and
Scholes, 1973), though they also presented Black’s original derivation,
which drew directly on the Capital Asset Pricing Model. Black, however,
remained ambivalent about Merton’s derivation, telling a 1989 interviewer
that ‘I’m still more fond’ of the Capital Asset Pricing Model derivation:
‘[T]here may be reasons why arbitrage is not practical, for example trading
costs’. (If trading incurs even tiny transaction costs, continuous adjustment
of a portfolio is infeasible.) Merton’s derivation ‘is more intellectual[ly]
elegant but it relies on stricter assumptions, so I don’t think it’s really as
robust’.20

Black, indeed, came to express doubts even about the central intuition
of orthodox financial economics, that modern capital markets were effi-
cient (in other words that prices in them incorporate all known informa-
tion). Efficiency held, he suggested, only in a diluted sense: ‘we might
define an efficient market as one in which price is within a factor of 2
of value’. Black noted that this position was intermediate between that of
Merton, who defended the efficient market hypothesis, and that of ‘behav-
ioural’ finance theorist Robert Shiller: ‘Deviations from efficiency seem
more significant in my world than in Merton’s, but much less significant in
my world than in Shiller’s’ (Black, 1986: 533; see Merton, 1987 and
Shiller, 1989).

The Equation and the World

It was not immediately obvious to all that what Black, Scholes and Merton
had done was a fundamental breakthrough. The Journal of Political Econ-
omy originally rejected Black and Scholes’ paper because, its editor told
Black, option pricing was too specialized a topic to merit publication in a
general economic journal (Gordon, 1970), and the paper was also rejected
by the Review of Economics and Statistics (Scholes, 1997: 484). True, the
emerging new breed of financial economists quickly saw the elegance of
the Black-Scholes solution. All the parameters in equations 4 and 5 seemed
readily observable empirically: there were none of the intractable estima-
tion problems of earlier theoretical solutions. That alone, however, does
not account for the wider impact of the Black-Scholes-Merton work. It
does not explain, for example, how a paper originally rejected by an
economic journal as too specialized should win a Nobel prize in economics
(Scholes and Merton were awarded the prize in 1997; Black died in
1995).

That the world came to embrace the Black-Scholes equation was in
part because the world was changing – see the remarks at the start of the
paper on the transformation of academic finance and the profession-
alization of US business schools – and in part because the equation (unlike,
for example, Bachelier’s work) changed the world.21The latter was the case
in four senses. First, the Black–Scholes equation seems to have altered
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patterns of option prices. After constructing their call-option pricing
formula (equation 5 above), Black and Scholes tested its empirical validity
for the ad hoc New York options market, using a broker’s diaries in which
were ‘recorded all option contracts written for his customers’. They found
only an approximate fit: ‘in general writers [the sellers of options] obtain
favorable prices, and . . . there tends to be a systematic mispricing of
options as a function of the variance of returns of the stock’ (Black and
Scholes, 1972: 403, 413). A more organized, continuous options exchange
was established in Chicago in 1973, but Scholes’ student Dan Galai also
found that prices there initially differed from the Black–Scholes model,
indeed to a greater extent than in the New York market (Galai, 1977).

By the second half of the 1970s, however, discrepancies between
patterns of option pricing in Chicago and the Black–Scholes model dimini-
shed to the point of economic insignificance (the ad hoc New York market
quickly withered after Chicago and other organized options exchanges
opened). The reasons are various, but they include the use of the Black-
Scholes model as a guide to arbitrage. Black set up a service selling sheets
of theoretical option prices to market participants (see Figure 2). Options
market makers† used those sheets and other material exemplifications of
the Black–Scholes model to identify relatively over-priced and under-
priced options on the same stock, sold the former and hedged their risk by
buying the latter. In so doing, they altered patterns of pricing in a way that
increased the validity of the model’s predictions, in particular helping the
model to pass its key econometric test: that the implied volatility† of all
options on the same stock with the same expiration should be identical
(MacKenzie and Millo, forthcoming).

The second world-changing, performative aspect of the Black–
Scholes–Merton work was deeper than its use in arbitrage. In its math-
ematical assumptions, the equation embodied a world, so to speak. (From
this viewpoint, the differences between the Black–Scholes world and
Merton’s world are less important than their commonalities.) In the final
published version of their option pricing paper in 1973, Black and Scholes
spelled out these assumptions, which included not just the basic assump-
tion that the ‘stock price follows a [lognormal] random walk in continuous
time’, but also assumptions about market conditions: that there are ‘no
transaction costs in buying or selling the stock or the option’; that it is
‘possible to borrow any fraction of the price of a security to buy it or to
hold it’, at the riskless rate of interest; and that these are ‘no penalties
to short selling’ (Black and Scholes, 1973: 640).

In 1973, these assumptions about market conditions were wildly
unrealistic. Commissions (a key transaction cost) were high everywhere.
Investors could not purchase stock entirely on credit – in the USA this was
banned by the Federal Reserve’s famous ‘Regulation T’ – and such loans
would be at a rate of interest in excess of the riskless rate. Short selling was
legally constrained and financially penalized: stock lenders retained the
proceeds of a short sale as collateral for the loan, and refused to pass on all
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(or sometimes any) of the interest earned on those proceeds [Thorp
interview].

Since 1973, however, the Black–Scholes–Merton assumptions have
become, while still not completely realistic, a great deal more so (see
MacKenzie and Millo, forthcoming). In listing these assumptions, Black
and Scholes wrote: ‘we will assume “ideal conditions” in the market for the
stock and for the option’ (Black and Scholes, 1973: 640). Of course, ‘ideal’
here means simplified and thus mathematically tractable, like the physi-
cist’s frictionless surface: non-zero transaction costs and constraints on
borrowing and short selling hugely complicate the option pricing problem.
‘Ideal’, however, also connotes the way things ought to be. This was not
Black and Scholes’ intended implication: neither was an activist in relation
to the politics of markets. From the early 1970s onwards, however, an
increasingly influential number of economists and others were activists for
the ‘free market’ ideal.

Their activities (along with other factors, such as the role of techno-
logical change in reducing transaction costs) helped make the world
embodied in the Black–Scholes–Merton assumptions about market condi-
tions more real. The Black–Scholes–Merton analysis itself assisted this
process by helping to legitimize options trading and thus helping to create
the efficient, liquid markets posited by the model. The Chicago Board
Options Exchange’s counsel recalls:

Black–Scholes was really what enabled the exchange to thrive. . . . [I]t
gave a lot of legitimacy to the whole notions of hedging and efficient
pricing, whereas we were faced, in the late 60s–early 70s with the issue of
gambling. That issue fell away, and I think Black–Scholes made it fall
away. It wasn’t speculation or gambling, it was efficient pricing. I think the
SEC [Securities and Exchange Commission] very quickly thought of
options as a useful mechanism in the securities markets and it’s probably
– that’s my judgement – the effects of Black–Scholes. I never heard the
word ‘gambling’ again in relation to options. [Rissman interview]

The Black–Scholes–Merton model also had more specific impacts on the
nature of the markets it analysed. Earlier upsurges of options trading had
typically been reversed, arguably because option prices had usually been
‘too high’ in the sense that they made options a poor purchase: options
could too seldom be exercised profitably (Kairys and Valerio, 1997). The
availability of the Black–Scholes formula, and its associated hedging tech-
niques, gave participants the confidence to write options at lower prices,
again helping options exchanges to grow and to prosper, becoming more
like the markets posited by the theory. The Black–Scholes analysis was also
used to free hedging by options market makers† from the constraints of
Regulation T. So long as their stock positions were close to the theoretical

hedging ratio ( ∂w
∂x

), they were allowed to construct such hedges using

entirely borrowed funds (Millo, forthcoming). It was a delightfully direct
loop of performativity: the model being used to make one of its key
assumptions a reality.
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Third, the Black–Scholes–Merton solution to the problem of option
pricing became paradigmatic in the deeper Kuhnian sense of ‘exemplary
solution’ (Kuhn, 1970: 175), indeed more deeply so than the Capital Asset
Pricing Model. The Black–Scholes–Merton analysis provided a range of
intellectual resources for those tackling problems of pricing derivatives†

of all kinds. Amongst those resources were the idea of perfect hedging (or
of a ‘replicating portfolio’, a portfolio whose returns would exactly match
those of the derivative in all states of the world); no-arbitrage pricing
(deriving prices from the argument that the only patterns of pricing that
can be stable are those that give rise to no arbitrage opportunities); and a
striking example of the use in economics of Itô’s stochastic calculus,
especially of the basic result known as ‘Itô’s lemma’, the stochastic equiva-
lent of Taylor expansion, which serves inter alia as a ‘bridging result’,
allowing those trained only in ordinary calculus to perform at least some
manipulations in Itô calculus. Open any textbook of modern mathematical
finance (for example, Hull, 2000), and one finds multiple uses of these
ideas. These uses are creative solutions to problems of sometimes great
difficulty, not rote applications of these ideas – a paradigm is a resource,
not a rule – but the family resemblance to the Black–Scholes–Merton
solution is clear. In the words of option trader and theorist Nassim Taleb,
far from an uncritical admirer of the Black-Scholes-Merton work, ‘most
everything that has been developed in modern finance since 1973 is but
a footnote on the BSM [Black–Scholes–Merton] equation’ (Taleb,
1998: 35).

The capacity to generate theoretical prices – not just for what soon
came to be called the ‘vanilla’ options analysed by Black, Scholes and
Merton but for a wide range of often exotic derivatives – played a vital role
in the emergence of the modern derivatives markets, especially when, as
was the case with the original Black–Scholes–Merton analysis, the theoreti-
cal argument that generated prices also generated rules for hedging the risk
of involvement in such derivatives. I have already touched on the role
played by theory in supporting the emergence and success of organized
options exchanges, but it was at least equally important in the growth of
what is known as the ‘over-the-counter’ (direct, institution-to-institution)
derivatives market, the overall volume of which is now larger. (In De-
cember 2002, the over-the-counter market accounted for 85.6 percent of
total notional value of derivatives contracts outstanding globally.22) Many
of the instruments traded in this market are highly specialized, and
sometimes no liquid market, or easily observable market price, exists for
them. However, both the vendors of them (most usually investment banks)
and at least the more sophisticated purchasers of them can often calculate
theoretical prices, and thus have a benchmark ‘fair’ price. The Black–
Scholes–Merton analysis and subsequent developments of it are also
central to the capacity of an investment bank to operate at large scale in
this market. They enable the risks involved in derivatives portfolios to be
decomposed mathematically. Many of these risks are mutually offsetting,
so the residual risk that requires to be hedged is often quite small in
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relation to the overall portfolio. Major investment banks can thus ‘operate
on such a scale that they can provide liquidity as if they had no transaction
costs’ (Taleb, 1998: 36).23 So the Black–Scholes–Merton assumption of
zero transaction costs is now close to true for major investment banks – in
part because the use of that theory and its developments by those banks
allow them to manage their portfolios in a way which minimizes trans-
action costs.

Fourth, option pricing theory allowed a reconceptualization of risk
that is only beginning to be recognized in the burgeoning literature on
‘risk society’.24 Since 1973, a wide range of situations involving uncertainty
have been reconceptualized as involving implicit options. Closest to tradi-
tional finance is the application of option theory to corporate liabilities
such as bonds. Black and Scholes (1973: 649–52) pointed out that when a
corporation’s bonds mature its shareholders can either repay the principal
(and own the corporation free of bond liabilities) or default (and thus pass
the corporation’s assets to the bond holders). A corporation’s bond
holders have thus in effect sold a call option to its shareholders. This kind
of reasoning allows, for example, calculation of implicit probabilities of
bankruptcy. More generally, many insurance contracts have at least some
of the structure of put options, and this way of thinking has facilitated the
growing integration of insurance and derivatives trading (such as the sale of
‘hurricane bonds’ as a marketized form of reinsurance). Even areas that at
first sight seem unlikely candidates for rethinking as involving implicit
options have been conceptualized in this way: for example, professorial
tenure, pharmaceuticals innovation, and decisions about the production of
film sequels (Merton, 1998). In the case of film sequels, for instance, it is
cheaper to make a sequel at the same time as the original, but postponing
the sequel grants a valuable option not to make it: option theory can be
used to calculate which is better. Option pricing theory has altered how
risk is conceptualized, by practitioners as well as by theorists.

Conclusion: Bricolage, Exemplars, Disunity and
Performativity

The importance of bricolage in the history of option pricing theory,
especially in Black and Scholes’ work, is clear. They followed no rules, no
set methodology, but worked in a creatively ad hoc fashion. Their math-
ematical work can indeed be seen as Lynch’s ‘particular courses of action
with materials at hand’ (Lynch, 1985: 5) – in this case, conceptual
materials. Consider, for example, Black and Scholes’ use of Sprenkle’s
work. The latter would rate scarcely a mention in a ‘Whig’ history of option
pricing: his model is, for example, dismissed in a footnote in Sullivan and
Weithers’ history as possessing ‘serious drawbacks’ (Sullivan and Weithers,
1994: 41). True, central to Sprenkle’s work was the hope that analysing
option pricing would reveal investors’ attitudes to risk, a goal that in the
Black–Scholes–Merton analysis (which implies that options are priced as if
all investors are entirely risk-neutral) is not achievable. Yet, as we have
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seen, Black and Scholes’ tinkering with Sprenkle’s equation was the key
step in their finding a solution to their differential equation, and ‘tinkering’
is indeed the right word.25

It was, however, tinkering inspired by an exemplar, the Capital Asset
Pricing Model. Here, the contrast with Thorp is revealing. He was far
better-trained mathematically than Black and Scholes were, and had
extensive experience of trading options (especially warrants), when they
had next to none. He and Kassouf also conceived of a hedged portfolio of

stock and options (with the same hedging ratio, ∂w
∂x

), and they, unlike

Black and Scholes, had implemented approximations to such hedged port-
folios in their investment practice. Thorp had even tinkered in essentially
the same way as Black and Scholes with an equation equivalent to
Sprenkle’s (equation 1 above). But while Black and Scholes were trying
to solve the option pricing problem by applying the Capital Asset Pricing
Model, Thorp had little interest in the latter: he was aware of it, but not ‘at
the expert level’.26 Indeed, for him the proposition (central to the mathe-
matics of Black and Scholes, and in a different way to Merton’s analysis as
well) that a properly hedged portfolio could earn only the riskless rate
would have stood in direct contradiction to his empirical experience. He
and Kassouf were regularly earning far more than that from their hedged
portfolios.

For Thorp, then, to have put forward Black and Scholes’ or Merton’s
central argument would have involved overriding what he knew of empiri-
cal reality. For Scholes (trained as he was in Chicago economics), and even
for Black (despite his doubts as to the precise extent to which markets were
efficient), it was reasonable to postulate that markets would not allow
money-making opportunities like a zero-b (or, in Merton’s version, zero-
risk) portfolio that earned more than the riskless rate. Thorp, however, was
equally convinced that such opportunities could be found in the capital
markets. The ‘conventional wisdom’ had been that ‘you couldn’t beat the
casino’: in the terminology of economics, that ‘the casino markets were
efficient’. Thorp had showed this was not true, ‘so why should I believe
these people who are saying the financial markets are efficient?’ [Thorp
interview].

Theoretical commitment was thus important to the development of
option pricing. It was not, however, commitment to the literal truth
of economics’ models. Black and Scholes, for example, knew (indeed, they
showed: see Black et al., 1972) that the Capital Asset Pricing Model’s
empirical accuracy was questionable. That, however, did not stop them
regarding the model as identifying an economic process of great im-
portance. Nor, crucially, did it deter them from using the model as a
resource with which to solve the option pricing problem. Similarly, neither
they, nor Merton, mistook their option model for a representation of
reality. Black, for example, delighted in pointing out ‘The Holes in Black–
Scholes’ (Black, 1988): economically consequential ways in which the
model’s assumptions were unrealistic. For Black, Scholes and Merton –
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like the economists studied by Yonay and Breslau (2001) – a model had to
be simple enough to be mathematically tractable, yet rich enough to
capture the economically most important aspects of the situations mod-
elled. Models were resources, not (in any simple sense) representations:
ways of understanding and reasoning about economic processes, not
putative descriptions of reality. If the latter is the criterion of truth, all of
the financial economists discussed here would agree with their colleague
Eugene Fama that any model is ‘surely false’ (Fama, 1991: 1590).

Nor were the theoretical inspirations and commitments of option
pricing theorists unitary. Black–Scholes–Merton option pricing theory is
central to the ‘orthodox’ modern economic analysis of financial markets.
But that does not mean that Black, Scholes and Merton adhered to the
same theoretical viewpoint. They disagreed, for example, on the validity of
the original form of the Capital Asset Pricing Model. As we have seen,
Merton considered the original derivations of the Black–Scholes equation
unrigorous; Black remained to a degree a sceptic as to the virtues of
Merton’s derivation. Nor did this kind of disagreement end in 1973. For
example, to Michael Harrison, an operations researcher (and essentially an
applied mathematician) at Stanford University, the entire body of work in
option pricing theory prior to the mid-1970s was insufficiently rigorous.
Harrison and his colleague David Kreps asked themselves, ‘Is there a
Black–Scholes theorem?’ From the viewpoint of the ‘theorem-proof culture
. . . I [Harrison] was immersed in’ [Harrison interview] there was not. So
they set to work to formulate and prove such a theorem, a process that
eventually brought to bear modern ‘Strasbourg’ martingale theory (an
advanced and previously a rather ‘pure’ area of probability theory).27

Divergences of this kind might seem to be a source of weakness. In the
case of option pricing theory, however, they are a source of strength, even
more directly so than in the more general case discussed by Mirowski and
Hands (1998). If the Black–Scholes equation could be derived in only one
way, it would be a fragile piece of reasoning. But it can be derived in
several: not just in the variety of ways described above, but also, for
example, as a limit case of the later finite-time Cox–Ross–Rubinstein
model (Cox et al., 1979). Plug the log-normal random walk and the
specific features of option contracts into Harrison and Kreps’ martingale
model, and Black–Scholes again emerges. Diversity indeed yields robust-
ness. For example, as Black pointed out, defending the virtues of the
original derivation from the Capital Asset Pricing Model, that derivation
‘might still go through’ even if the assumptions of the arbitrage-based
derivation failed.28

This rich diversity of ways of deriving the Black–Scholes equation may
prompt in the reader a profoundly unsociological thought: perhaps the
equation is simply true? This is where this article’s final theme, performa-
tivity, is relevant. As an empirical description of patterns of option pricing,
the equation started out as only a rough approximation, but then pricing
patterns altered in a way that made it more true. In part, this was because
the equation was used in arbitrage. In part, it was because the hypothetical
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world embedded in the equation (perhaps especially in Merton’s con-
tinuous-time derivation of it) has been becoming more real, at least in the
core markets of the Euro-American world. As Robert C. Merton, in this
context appropriately the son of Robert K. Merton (with his sensitivity to
the dialectic of the social world and knowledge of that world), puts it,
‘reality will eventually imitate theory’ (Merton, 1992: 470; see Merton,
1936, 1949).

Perhaps, though, the reader’s suspicion remains: that this talk of
performativity is just a fancy way of saying that the Black–Scholes equation
is the correct way to price options, but market practitioners only gradually
learned that. Not so. The phase of increasing empirical accuracy of the
Black-Scholes equation has been followed by a phase, since 1987, in which
the fit of the empirical prices to the model has again deteriorated (Rubin-
stein, 1994). One way of expressing this partial breakdown after 1987 of
the performativity of classic option theory is to note that while, as noted
above, some of its assumptions have become more true (in part because of
feedback loops from the theory), this has not been the case for the
assumption of the log-normality of the price movements of stocks or other
underlying assets. The gigantic one-day fall of the US stock market on 19
October 1987 was a grotesquely unlikely event on the assumption of log-
normality: for example, Jackwerth and Rubinstein (1996: 1612) calculate
the probability on that assumption of the actual fall in S&P index futures
as 10–160. In addition, 19 October was far more than the disembodied
rejection of the null hypothesis of log-normality. The fall in stock prices
came close to setting off a chain of market-maker bankruptcies that would
have threatened the very existence of organized derivatives exchanges in
the USA. The subsequent systematic departure from Black–Scholes option
pricing – the so-called ‘volatility skew’29 – is more than a mathematical
adjustment to empirical departures from log-normality: it is too large fully
to be accounted for in that way (Jackwerth, 2000). It can in a sense be seen
as the options market’s collective defence mechanism against systemic risk
(MacKenzie and Millo, forthcoming).

More generally, market practitioners’ adoption of financial economics
has not rendered fully performative economics’ pervasive, often implicit,
underlying assumption of rational egoism. Pace Callon (1998), homo
œconomicus has not in general been brought fully into being. What has not
to date been grasped in the debate over economics’ performativity (for
example Miller, 2002) is that there exists a reasonably precise probe as to
whether or not actors have been configured into homines œconomici: col-
lective action, in other words action that advances the interests of an entire
group but in regard to which the rational egoist will free-ride. (A classic
example of collective action is blood donation in a country such as the UK
where such donation is unremunerated [Titmus, 1970]. Well-stocked
blood banks are in the collective interest of the entire population of the
UK, but a rational egoist would nonetheless be unlikely to donate blood
because the minor inconvenience and discomfort involved would almost
certainly outweigh the miniscule probability of benefiting personally from
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his or her own donation.) As the analysis by Olson (1980) famously shows,
if all actors are homines œconomici they will all free-ride in such a situation,
and collective action will therefore be impossible.

However, participants in financial markets have, at least to some
extent, retained the capacity for collective action. The very creation of the
Chicago Board Options Exchange, which set in train the key processes that
have rendered option theory performative, involved donations of un-
remunerated time that were structurally akin to blood donation (Mac-
Kenzie and Millo, forthcoming). The classic social network analysis of
option pricing by Baker (1984) can, likewise, be read as showing the
persistence, at least in CBOE’s smaller trading crowds, of collective action,
and, as noted above, the volatility skew can also be interpreted, at least
tentatively, as collective action.

The analysis of economics’ performativity does not point, therefore, to
the smoothly performed world feared by Callon’s critics such as Miller
(2002). It points to contested terrain. When, in 1968, David Durand, a
leading figure in the older form of the academic study of finance, inspected
the mathematical models that were beginning to transform his field, he
commented that ‘The new finance men . . . have lost virtually all contact
with terra firma’ (Durand, 1968: 848). As we have seen, the decades since
1968 have seen the world of finance change in such a way that the
apparently ungrounded models that horrified Durand have gained verisi-
militude as they have become incorporated into the structures and prac-
tices of markets. However, the financial markets remain, and I suspect will
always remain, an only partially configured world. The struggles to con-
figure that world, and the forces opposing and undermining that configur-
ing, are, and will remain, at the heart of the history of our times.
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1. See, for example, Klaes (2000), Mirowski (1989 and 2002), Sent (1998), Weintraub
(1991), Yonay (1994), Yonay and Breslau (2001).

2. Examples include Izquierdo (1998, 2001), Knorr Cetina and Bruegger (2002), Lépinay
(2000), Lépinay and Rousseau (2000), MacKenzie (2001), Millo (forthcoming),
Muniesa (2000), Preda (2002). This body of work interacts with a pre-existing tradition
of the sociology and anthropology of financial markets, such as Abolafia (1996, 1998),
Baker (1984), Hertz (1998), Smith (1999).

3. Data from Bank for International Settlement, www.bis.org. These figures are adjusted
for the most obvious forms of double-counting, but still arguably exaggerate the
economic significance of derivatives markets. Swaps, for example, are measured by
notional principal, when this is not in fact exchanged. See also note 22 below.

4. Aside from the recollections of Black and Scholes themselves (Black, 1989; Scholes,
1998), the main existing history is Bernstein (1992: chapter 11), which eschews
detailed mathematical exposition. More mathematical, but unfortunately somewhat
Whiggish (see below), is Sullivan and Weithers (1994).

5. Bricoleur is French for odd-job person. Lévi-Strauss (1966) introduced the Anglo-
Saxon social sciences to the metaphor. Its appropriateness to describe science is argued
in Barnes (1974, chapter 3).

6. ‘Contango’ was the premium paid by the purchaser of a security to its seller in return
for postponing payment from one settlement date to the next.

7. Bachelier (1900: 21, 35, 37); the quotations are from the English translation
(Bachelier, 1964: 17, 28–29, 31). In the French market studied by Bachelier, option
prices were fixed and strike prices variable (the reverse of the situation studied by the
American authors discussed below), hence Bachelier’s interest in the determination of
strike prices rather than option prices.

8. Interviews by the author drawn on in this paper are listed as an appendix
9. Readers of Galison (1997) will not be surprised to discover there are deep issues here

as to the meaning of ‘random’, in particular as to the precise nature of the stochastic
dynamics of stock prices. Unfortunately, these cannot be discussed here.

10. To avoid confusion, I have made minor alterations (e.g. interchanging letters) to the
notation used by the authors whose work is described, and have sometimes slightly
rearranged the terms in equations. More substantial differences between their
mathematical approaches are preserved.

11. Stock price ‘trend’ was measured by ‘the ratio of the present price to the average of the
year’s high and low’ (Kassouf, 1965: 50).

12. The curves are of course specific to an individual warrant, but as well as providing their
readers with Kassouf’s formula for calculating them, Thorp and Kassouf (1967: 78–79)
provided standardized ‘average’ curves based on the prices of 1964–66.

13. As Thorp explained (Thorp, 1973: 526), ‘to sell warrants short [and] buy stocks, and
yet achieve the riskless rate of return requires a higher warrant short sale price than for
the corresponding call [option]’ under the Black-Scholes assumptions. Thorp had also
been selling options in the New York market, where the seller did receive the sale price
immediately (minus ‘margin’ retained by the broker), but the price discrepancies he
was exploiting were gross (so gross he felt able to proceed without hedging in stock),
and thus the requisite discount factor was not a salient consideration.

14. See Treynor (1962). The dating of this unpublished paper follows a private
communication to the author from Jack Treynor, 4 March 2003. See also Lintner
(1965), Mossin (1966), Sharpe (1964). Treynor’s typescript draft was eventually
published as Treynor (1999).
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15. Treynor interview; Black (1989: 5). Treynor and Black did not publish their work
immediately: it eventually appeared in 1976. The corrected differential equation is
equation 2 of their paper (Treynor and Black, 1976: 323).

16. Unfortunately, I have been unable to locate any contemporaneous documentary record
of this initial phase of Black’s work on option pricing, and it may be that none survives.
The earliest extant version appears to date from August 1970 (Black and Scholes,
1970a), and is in the personal files of Prof. Stewart Myers at MIT (I am grateful to
Perry Mehrling for a copy of this paper). There is an October 1970 version in Fischer
Black’s papers (Black and Scholes, 1970b). Black’s own account of the history of
option formula (Black, 1989: 5) contains only a verbal description of the initial
phase of his work. It seems clear, however, that what is being described is the
‘alternative derivation’ of the October paper (Black and Scholes, 1970b: 10–12): the
main derivation in that paper and in Black and Scholes (1970a) is the hedged portfolio
derivation described below, which was chronologically a later development.

17. Thus in Black and Scholes (1970b: 8–9) they show that the covariance of the hedged
portfolio with the overall level of the market was zero, assuming that in small enough
time intervals changes in stock price and in overall market level have a joint normal
distribution. Using the Taylor expansion of w, Black and Scholes showed that the

covariance of warrant price changes with market level changes is: 
1

2
∂w
∂x

cov (Dx2,

Dm), where ‘cov’ indicates covariance and Dm is the change in market level. If Dx
and Dm are jointly normally distributed over small time periods, cov (Dx2, Dm) is the
covariance of the square of a normal variable with a normal variable, which is always
zero. With a zero covariance with the market, the hedged portfolio must, according to
the Capital Asset Pricing Model, earn the riskless rate of interest.

18. A quadratic utility function has the form U(y) 5 l 1 my 1 ny2, where l, m, and n are
constant: n must be negative if, as will in general be the case, ‘the investor prefers
smaller standard deviation to larger standard deviation (expected return remaining the
same)’ (Markowitz, 1959: 288), and negative n implies that above a threshold value
utility will diminish with increasing returns. Markowitz’s position is that while quadratic
utility cannot reasonably be assumed, a quadratic function centred on expected return
is a good approximation to a wide range of utility functions: see Levy and Markowitz
(1979).

19. See note 17 above for how Black and Scholes demonstrated b 5 0 in the October 1970
version of their paper.

20. Fischer Black interviewed by Zvi Bodie, July 1989. I’m grateful to Prof. Bodie for a
copy of the transcript of this unpublished interview.

21. See Jarrow (1999), though Jarrow has in mind a sense of ‘changed the world’ weaker
than performativity.

22. Data from Bank for International Settlements, www.bis.org. Many over-the-counter
derivatives positions are closed out by entering into offsetting derivatives contracts, so
the comparison probably overstates the relative importance of the over-the-counter
market, but it is nonetheless substantial.

23. See also Hull (2000: 54) on the extent to which typical assumptions of finance theory
are true of major investment banks.

24. Beck (1992). For one of the few treatments bringing financial risk (but not option
theory) into the discussion, see Green (2000).

25. It is used in a one-sentence summary of Black’s own history (Black, 1989: 4), but the
summary is probably an editorial addition, not Black’s own.

26. Edward O. Thorp, email message to author, 19 October 2001.
27. See Harrison and Kreps (1979) and Harrison and Pliska (1981). The first derivation of

the Black–Scholes formula that Harrison and Kreps would allow as reasonably rigorous
is in Merton (1977). This latter paper explicitly responds to queries that had been
raised about the original derivation. For example, Smith (1976: 23) had noted that the
option price, w, is, in the original work, assumed but not proved ‘to be twice
differentiable everywhere’.
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28. Fischer Black interviewed by Zvi Bodie, July 1989.
29. In the Black–Scholes–Merton model, the relationship of implied† volatility to

strike† price is a flat line. Since October 1987, however, the relationship has become
skewed, with options with low strike prices having higher implied volatilities than those
with higher strike prices (Rubinstein, 1994). The option market has come to ‘expect’
crashes, in other words.
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