
Gödel’s Incompleteness Theorems

J. van Oosten

Department of Mathematics

Utrecht University

2009–2010

ii

Contents

1 Languages and Structures 1

1.1 Structure and Languages for the Real Numbers: an Example 1

1.2 Languages of First Order Logic 3

1.3 Structures for first order logic 7

1.4 Examples of first order languages and structures 11

1.4.1 Graphs . 11

1.4.2 Local Rings . 12

1.4.3 Vector Spaces . 13

1.4.4 Basic Plane Geometry 13

2 Proofs 15

2.1 Proof Trees . 16

2.1.1 Variations and Examples 23

2.1.2 Induction on Proof Trees 28

2.2 Soundness and Completeness 29

2.3 Extensions of Theories by Defined Notions 30

3 (Primitive) Recursive Functions 33

3.1 Primitive recursive functions and relations 33

3.2 Coding of pairs and tuples . 37

3.3 Partial recursive functions . 46

3.4 Smn-Theorem and Recursion Theorem 48

4 The Formal System of Peano Arithmetic 55

4.1 Elementary Number Theory in PA 58

4.2 Representing Recursive Functions in PA 64

4.2.1 The ‘Entscheidungsproblem’ 69

4.3 A Primitive Incompleteness Theorem 70

iii

iv CONTENTS

5 Gödel Incompleteness 73
5.1 Coding of Formulas and Diagonalization 73
5.2 Gödel’s First Incompleteness Theorem 76
5.3 Gödel’s Second Incompleteness Theorem 81

6 Introduction to Models of PA 89
6.1 The theory PA− and end-extensions 89
6.2 Cuts, Overspill and Underspill 91
6.3 The ordered Structure of Models of PA 92
6.4 MRDP Theorem and Gaifman’s Splitting Theorem 95
6.5 Prime Models and Elementary End-extensions 98

6.5.1 Prime Models . 99
6.5.2 Conservative Extensions and MacDowell-Specker The-

orem . 100

7 Further reading 107

Bibliography 108

Index 110

Chapter 1

Languages and Structures

1.1 Structure and Languages for the Real Num-
bers: an Example

This section is meant to serve as introduction and motivation for the formal
definition of an abstract language in the next section.

When we say that the real numbers R form a commutative ring with
1, we mean that there are two distinguished elements 0 and 1, as well as
operations + and ·, such that certain axioms hold, for example:

x·(y + z) = (x·y) + (x·z)

This is to be read as: whenever real numbers are substituted for the variables
x, y and z, we get an equality as above.

We call the whole of {0, 1,+, ·} the ring structure of R. Now of course
you know there are plenty of other rings. For example, let X be any set.
The power set P(X) can be made into a commutative ring with 1: take
X for 1, ∅ for 0, and let for U, V ⊆ X, U + V = (U ∪ V) − (U ∩ V) and
U ·V = U ∩ V .

Exercise 1 Check that this indeed gives a ring structure on P(X).

The example of P(X) makes it clear that the operation + does not, a priori,
mean addition of numbers, but is an abstract symbol generally used for
the operation in abelian groups; we might as well have used something like
a(x, y) and m(x, y) instead of x + y and x·y, respectively, and written the
distributivity axiom as

m(x, a(y, z)) = a(m(x, y),m(x, z))

1

2 CHAPTER 1. LANGUAGES AND STRUCTURES

Similarly, one should regard 0 and 1 as abstract symbols that only acquire
meaning once they are interpreted in a particular set.

Many axioms for rings have a very simple form: they are equalities
between terms, where a term is an expression built up using variables, the
symbols 0 and 1, and the operation symbols +, · (and brackets). From simple
equalities we can form more involved statements using logical operations: the
operations ∧ (“and”), ∨ (“or”), → (“if. . . then”), ↔ (“if and only if”) and
¬ (“not”); and quantifiers ∃ (“there is”) and ∀ (“for all”). For example, if
we want to express that R is in fact a field, we may write

∀x(¬(x = 0)→ ∃y(x·y = 1))

or equivalently
∀x∃y(x = 0 ∨ x·y = 1)

We say that the statement ∀x∃y(x = 0 ∨ x·y = 1) “is true in R” (of course,
what we really mean is: in R together with the meaning of 0, 1,+, ·). Such
statements can be used to distinguish between various rings: for example,
the statement

∃x(x·x = 1 + 1)

is true in R but not in the ring Q, and the statement

∀x(x·x = x)

is true in the ring P(X) but not in R.

Apart from operations on a set, one may also consider certain relations. In
R we have the relation of order, expressed by x < y. As before, we might
have used a different symbol for this relation, for example L(x, y) (“x is less
than y”). And we can form statements using this new symbol together with
the old ones, for example

∀x∀y∀z(x < y → x+ z < y + z)

which is one of the axioms for an ordered ring. In R, the order relation is
definable from the ring structure, because the statement

∀x∀y(x < y ↔ ∃z(¬(z = 0) ∧ x+ z·z = y))

is true in R. However, this statement is not true in the ordered ring Q. Also
the ring P(X) is (partially) ordered by U ⊂ V ; in this ring, the order is
definable, but now in a different way:

∀x∀y(x < y ↔ (¬(x = y) ∧ x·y = x))

1.2. LANGUAGES OF FIRST ORDER LOGIC 3

In yet another way, the order in Q is definable from the ring structure.
In this case, we use the theorem (first proved by Lagrange) which says that
every natural number may be written as the sum of four squares. Since every
positive rational number is the quotient of two positive natural numbers, we
have:

x > 0 ↔ x 6= 0 ∧ ∃y1 · · · y8 (x·(y2
1 + · · ·+ y2

4) = y2
5 + · · ·+ y2

8)

for x ∈ Q. Since x < y is equivalent to ∃z(z > 0∧ x+ z = y), we can define
the order on Q in terms of 0, + and · only.

We see that in general, when we wish to discuss a certain type of mathe-
matical structures, we choose symbols for the distinguished elements, the
operations and the relations which make up the structure, and using these
we write down statements. The use of such statements is varied: they may
be axioms, required to be true in all structures we wish to consider; they may
be true in some, but not in others; or they may be used to define elements
or subsets of a structure.

In Mathematical Logic, we study these statements, and their relation to
mathematical structures, formally; in order to do this, we define formal
statements as mathematical objects. This is done in the next section.

We shall see many examples of different types of structures in the coming
sections.

1.2 Languages of First Order Logic

This section is purely “linguistic” and introduces the formal languages for
first-order logic – or “predicate logic”.

Definition 1.1 A language L is given by three sets of symbols: constants,
function symbols and relation symbols. We may write

L = (con(L), fun(L), rel(L))

Moreover, for each function symbol f and each relation symbol R the number
n of arguments is specified, and called the arity of f (or R). If f or R has
arity n, we say that it is an n-ary (or n-place) function (relation) symbol.

For example, the language of rings has two constants, 0 and 1, and two 2-
place function symbols for addition and multiplication. There are no relation
symbols.

4 CHAPTER 1. LANGUAGES AND STRUCTURES

The language of orders has one 2-place relation symbol (S or <) for “less
than”.
Given such a language L, one can build terms (to denote elements) and
formulas (to state properties), using the following auxiliary symbols:

- An infinite set of variables. This set is usually left unspecified, and its
elements are denoted by x, y, z, . . . or x0, x1, . . .

- The equality symbol =

- The symbol ⊥ (“absurdity”)

- Connectives: the symbols ∧ (“and”) for conjunction, ∨ (“or”) for dis-
junction, → (“if. . . then”) for implication and ¬ (“not”) for negation

- Quantifiers: the universal quantifier ∀ (“for all”) and the existential
quantifier ∃ (“there exists”)

- Some readability symbols, like the comma, and brackets.

Definition 1.2 The set of terms of a language L is inductively defined as
follows:

- any constant c of L is a term of L;

- any variable x is a term of L;

- if t1, . . . , tn is an n-tuple of terms of L and f is an n-place function
symbol of L, then f(t1, . . . , tn) is a term of L.

A term which does not contain variables (and hence is built up from con-
stants and function symbols alone) is called closed.

Examples

a) Suppose L has a constant c and a 2-place function symbol f . The
following are terms of L: x, y, c, f(x, c), f(f(x, c), c), . . .

b) Suppose L has no function symbols. The only terms are variables and
constants.

Definition 1.3 The set of formulas of a given language L is inductively
defined as follows:

- If t and s are terms of L, then (t = s) is a formula of L.

1.2. LANGUAGES OF FIRST ORDER LOGIC 5

- If t1, . . . , tn is an n-tuple of terms of L and R is an n-place relation
symbol of L, then R(t1, . . . , tn) is a formula of L.

- ⊥ is a formula of L.

- If ϕ and ψ are formulas of L, then so are (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ)
and (¬ϕ).

- If ϕ is a formula of L, and x is a variable, then also ∀xϕ and ∃xϕ are
formulas of L.

Remarks/Examples.

a) Given a language L, let V be the set of variables, and A the set of
auxiliary symbols that we have listed. Let S = L ∪ V ∪ A. Then
formally, terms of L and formulas of L are finite tuples of elements of
S.

b) However, the sets of terms of a language and of formulas of a language
have a more meaningful structure. Suppose t is a term. Then there
are three possibilities: t is a variable, t is a constant, or there is an
n-place function symbol f of L, and terms t1, . . . , tn, such that t =
f(t1, . . . , tn). The terms t1, . . . , tn have the property that each one
of them contains fewer function symbols of L than t. One uses this
to prove properties of terms “by induction on the number of function
symbols occurring in them”. Similarly, one can prove properties of
formulas by induction on the number of symbols from the set {∧,∨,→
,¬,∀,∃} in them. If this number is zero, we call the formula atomic.

c) The use of brackets and commas is only for the sake of readability
and to avoid ambiguity, such as ϕ ∨ ψ → χ. Outermost brackets are
usually omitted.

d) Suppose the language L has one constant c, one 2-place function sym-
bol f and one 3-place relation symbol R. Then

∀x∀yR(c, x, f(y, c))
∀x(x = f(x, x)→ ∃yR(x, c, y))

R(f(x, f(c, f(y, c))), c, y) ∧ (x = y ∨ ¬R(c, c, x))

are formulas of L (note how we use the brackets!), but

∀R¬R(x, x, c)

isn’t (this might be called a “second order formula”; quantifying over
relations).

6 CHAPTER 1. LANGUAGES AND STRUCTURES

Free and bound variables. Roughly speaking, a variable which is “quan-
tified away” in a formula, is called bound in that formula; otherwise, it is
called free.

For example, in the formula

∀x(R(x, y)→ ∃zP (x, z))

the variables x and z are bound whereas y is free. The x in “∀x” is not
considered to be either free or bound, nor z in “∃z”.

The intuition is, that the formula above states a property of the variable
y but not of the variables x, z; it should mean the same thing as the formula

∀u(R(u, y)→ ∃vP (u, v))

A formula with no free variables is called closed, or a sentence. Such a
formula should be thought of as an assertion.

It is an unfortunate consequence of the way we defined formulas, that
expressions like

∀x∀y∀xR(x, y)
∀y(R(x, y)→ ∀xR(x, x))

are formulas. The first one has the strange property that the variable x
is bound twice; and the second one has the undesirable feature that the
variable x occurs both bound and free. In practice, we shall always stick to
the following

CONVENTION ON VARIABLES In formulas, a variable will always
be either bound, or free, but not both; and if it is bound, it is only bound
once

Definition 1.4 (Substitution) Suppose ϕ is a formula of L, and t a term
of L. By the substitution ϕ[t/x] we mean the formula which results by
replacing each occurrence of the variable x by the term t, provided x is a
free variable in ϕ, and no variable in the term t becomes bound in ϕ (in this
definition, the Convention on variables is in force!).

Examples. Suppose ϕ is the formula ∀xR(x, y). If t is the term f(u, v),
then ϕ[t/x] is just ϕ, since x is bound in ϕ; ϕ[t/y] is ∀xR(x, f(u, v)).

Suppose t is the term f(x, y). Now the substitution ϕ[t/y] presents us
with a problem; if we carry out the replacement of y by t we get ∀xR(x, f(x, y)),
which intuitively does not “mean” that the property expressed by ϕ, holds
for the element denoted by t! Therefore, we say that the substitution is not

1.3. STRUCTURES FOR FIRST ORDER LOGIC 7

defined in this case. In practice though, as said before, we shall consider ϕ
as the “same” formula as ∀uR(u, y), and now the substitution makes sense:
we get ∀uR(u, f(x, y)).

If the term t is closed (in particular, if t is a constant), the substitution
ϕ[t/x] is always defined, as is easy to see.

First order logic and other kinds of logic. In these lecture notes, we
shall limit ourselves to the study of “first order logic”, which is the study
of the formal languages and formulas as we have described here, and their
relation to structures, as we will see in the next section.

This logic has good mathematical properties, but it has also severe limi-
tations. Our variables denote, as we shall see, elements of structures. So we
can only say things about all elements of a structure, not about all subsets,
or about sequences of elements. For example, consider the language of or-
ders: we have a 2-place relation symbol < for “less than”. We can express
that < really is a partial order:

(∀x¬(x < x)) ∧ (∀x∀y∀z((x < y ∧ y < z)→ x < z))

and that < is a linear order:

∀x∀y(x < y ∨ x = y ∨ y < x)

but we can not express that < is a well-order, since for that we have to say
something about all subsets.

It is possible to consider logics where such statements can be done: these
are called “higher order” logics. There are also logics in which it is possible
to form the conjunction, or disjunction, of an infinite set of formulas (so,
formulas will be infinite objects in such a logic).

1.3 Structures for first order logic

In this section we consider a fixed but arbitrary first order language L, and
discuss what it means to have a structure for L.

Definition 1.5 An L-structure M consists of a nonempty set, also denoted
M , together with the following data:

- for each constant c of L, an element cM of M ;

- for each n-place function symbol f of L, a function

fM : Mn →M

8 CHAPTER 1. LANGUAGES AND STRUCTURES

- for each n-place relation symbol R of L, a subset

RM ⊆Mn

We call the element cM the interpretation of c in M , and similarly, fM and
RM are called the interpretations of f and R, respectively.

Given an L-structure M , we consider the language LM (the language
of the structure M): LM is L together with, for each element m of M , an
extra constant (also denoted m). Here it is assumed that con(L) ∩M = ∅.
If we stipulate that the interpretation in M of each new constant m is the
element m, then M is also an LM -structure.

Definition 1.6 (Interpretation of terms) For each closed term t of the
language LM , we define its interpretation tM as element of M , by induc-
tion on t, as follows. If t is a constant, then its interpretation is already
defined since M is an LM -structure. If t is of the form f(t1, . . . , tn) then
also t1, . . . , tn are closed terms of LM , so by induction hypothesis their in-
terpretations tM1 , . . . , t

M
n have already been defined; we put

tM = fM (tM1 , . . . , t
M
n)

Next, we define for a closed formula ϕ of LM what it means that “ϕ is true
in M” (other ways of saying this, are: ϕ holds in M , or M satisfies ϕ).
Notation:

M |= ϕ

Definition 1.7 (Interpretation of formulas) For a closed formula ϕ of
LM , the relation M |= ϕ is defined by induction on ϕ:

- If ϕ is an atomic formula, it is equal to ⊥, of the form (t1 = t2), or of
the form R(t1, . . . , tn) with t1, t2, . . . , tn closed terms; define:

M |= ⊥ never holds
M |= (t1 = t2) iff tM1 = tM2

M |= R(t1, . . . , tn) iff (tM1 , . . . , tMn) ∈ RM

where the tMi are the interpretations of the terms according to defini-
tion 1.6, and RM the interpretation of R in the structure M .

- If ϕ is of the form (ϕ1 ∧ ϕ2) define

M |= ϕ iff M |= ϕ1 and M |= ϕ2

1.3. STRUCTURES FOR FIRST ORDER LOGIC 9

- If ϕ is of the form (ϕ1 ∨ ϕ2) define

M |= ϕ iff M |= ϕ1 or M |= ϕ2

(the “or” is to be read as inclusive: as either. . . or, or both)

- If ϕ is of the form (ϕ1 → ϕ2) define

M |= ϕ iff M |= ϕ2 whenever M |= ϕ1

- If ϕ is of the form (¬ψ) define

M |= ϕ iff M 6|= ψ

(here 6|= means “not |=”)

- If ϕ is of the form ∀xψ define

M |= ϕ iff M |= ψ[m/x] for all m ∈M

- If ϕ is of the form ∃xψ define

M |= ϕ iff M |= ψ[m/x] for some m ∈M

(in the last two clauses, ψ[m/x] results by substitution of the new
constant m for x in ψ)

In a way, this truth definition 1.7 simply translates the formulas of LM (and
hence, of L) into ordinary language. For example, if R is a binary (2-place)
relation symbol of L and M is an L-structure, then M |= ∀x∃yR(x, y) if and
only if for each m ∈ M there is an n ∈ M such that (m,n) ∈ RM ; that is,
RM contains the graph of a function M →M .

Validity and Equivalence of Formulas

The symbol ↔ is usually treated as an abbreviation: ϕ ↔ ψ abbreviates
(ϕ → ψ) ∧ (ψ → ϕ). So, M |= ϕ ↔ ψ if and only if the two statements
M |= ϕ and M |= ψ are either both true or both false. We call the formulas
ϕ and ψ (logically) equivalent if this is the case for all M .

Note, that the closed formula ∃x(x = x) is always true, in every structure
(this is a formula of every language!), since structures are required to be
nonempty. In general, if ϕ is a formula in a language L such that for every
L-structure M and every substitution of constants from M for the free

10 CHAPTER 1. LANGUAGES AND STRUCTURES

variables of ϕ, M |= ϕ, then ϕ is called valid. So, ϕ and ψ are equivalent
formulas, if and only if the formula

ϕ↔ ψ

is valid.
The next couple of exercises provide you with a number of useful equiv-

alences between formulas.

Exercise 2 Show that the following formulas are valid:

ϕ↔ ¬¬ϕ
¬ϕ↔ (ϕ→ ⊥)
(ϕ→ ψ)↔ (¬ϕ ∨ ψ)
(ϕ ∨ ψ)↔ ¬(¬ϕ ∧ ¬ψ)
(ϕ ∧ ψ)↔ ¬(¬ϕ ∨ ¬ψ)
∃xϕ↔ ¬∀x¬ϕ
∀xϕ↔ ¬∃x¬ϕ

(ϕ ∧ (ψ ∨ χ))↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
(ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))
(ϕ→ (ψ ∨ χ))↔ ((ϕ→ ψ) ∨ (ϕ→ χ))
(ϕ→ (ψ ∧ χ))↔ ((ϕ→ ψ) ∧ (ϕ→ χ))

In the following, assume that x does not occur in ϕ
(ϕ→ ∃xψ)↔ ∃x(ϕ→ ψ)
(∃xψ → ϕ)↔ ∀x(ψ → ϕ)
(∀xψ → ϕ)↔ ∃x(ψ → ϕ)

Exercise 3 Prove that for every formula ϕ, ϕ is equivalent to a formula
which starts with a string of quantifiers, followed by a formula in which no
quantifiers occur. Such a formula is called in prenex normal form.

Exercise 4 a) Let ϕ be a formula in which no quantifiers occur. Show
that ϕ is logically equivalent to a formula of the form:

ψ1 ∨ · · · ∨ ψk

where each ψi is a conjunction of atomic formulas and negations of
atomic formulas. This form is called a disjunctive normal form for ϕ.

b) Let ϕ as in a); show that ϕ is also equivalent to a formula of the form

ψ1 ∧ · · · ∧ ψk

where each ψi is a disjunction of atomic formulas and negations of
atomic formulas. This form is called a conjunctive normal form for ϕ.

1.4. EXAMPLES OF FIRST ORDER LANGUAGES AND STRUCTURES11

In the following exercises you are asked to give L-sentences which “express”
certain properties of structures. This means: give an L-sentence φ such that
for every L-structure M it holds that M |= φ if and only if the structure M
has the given property.

Exercise 5 Let L be the empty language. An L-structure is “just” a
nonempty set M .

Express by means of an L-sentence that M has exactly 4 elements.

Exercise 6 Let L be a language with one 2-place relation symbol R. Give
L-sentences which express:

a) R is an equivalence relation.

b) There are exactly 2 equivalence classes.

[That is, e.g. for a): M |= φ if and only if RM is an equivalence relation on
M , etc.]

Exercise 7 Let L be a language with just one 1-place function symbol F .
Give an L-sentence φ which expresses that F is a bijective function.

Exercise 8 Let L be the language with just the 2-place function symbol
·. We consider the L-structures Z and Q where · is interpreted as ordinary
multiplication.

a) “Define” the numbers 0 and 1. That is, give L-formulas ϕ0(x) and
ϕ1(x) with one free variable x, such that in both Q and Z, ϕi(a) is
true exactly when a = i (i = 0, 1).

b) Give an L-sentence which is true in Z but not in Q.

1.4 Examples of first order languages and struc-
tures

1.4.1 Graphs

A directed graph is a structure with vertices (points) and edges (arrows)
between them, such as:

•

�� ��
@@

@@
@@

@ •

�� ��
@@

@@
@@

@ •

�� !!
BB

BB
BB

BB
. . .

• • • . . .

12 CHAPTER 1. LANGUAGES AND STRUCTURES

The language Lgraph of directed graphs has two 1-place relation symbols, E
and V (for “edge” and “vertex”), and two 2-place relation symbols S and T
(for “source” and “target”; S(x, y) will mean “the vertex x is the source of
the edge y”).

An Lgraph-structure is a set G together with two subsets EG, V G of G,
and two subsets SG, TG of G2. G is a directed graph precisely when G
satisfies the following ‘axioms’ for directed graphs:

∀x(E(x) ∨ V (x)) ∀x¬(E(x) ∧ V (x))
∀x∀y(S(x, y)→ (V (x) ∧E(y))) ∀x∀y(T (x, y)→ (V (x) ∧E(y)))
∀x∀y∀z((S(x, z) ∧ S(y, z))→ x = y) ∀x∀y∀z((T (x, z) ∧ T (y, z))→ x = y)
∀z(E(z)→ ∃x∃y(S(x, z) ∧ T (y, z)))

1.4.2 Local Rings

The language Lrings of rings has constants 0 and 1, two 2-place function
symbols for multiplication and addition, denoted · and +. There are no
relation symbols.

A commutative ring with 1 is an Lrings-structure which satisfies the ax-
ioms for commutative rings with 1:

∀x(x+ 0 = x) ∀x(x·1 = x)
∀xy(x+ y = y + x) ∀xy(x·y = y·x)
∀xyz(x+ (y + z) = (x+ y) + z) ∀xyz(x·(y·z) = (x·y)·z)
∀x∃y(x+ y = 0) ∀xyz(x·(y + z) = x·y + x·z)

(We have started to abbreviate a string of quantifiers of the same kind:
instead of ∀x∀y write ∀xy)
A local ring is a commutative ring with 1 which has exactly one maximal
ideal. This is a condition that involves quantifying over subsets (ideals) of
the ring, and cannot be formulated in first order logic. However, one can
show that a commutative ring with 1 is local, precisely when for each pair
of elements x, y it holds that if x+ y is a unit, then either x or y must be a
unit. That is, a commutative ring R with 1 is local, if and only if

R |= ∀xy(∃z(z·(x+ y) = 1)→ (∃v(v·x = 1) ∨ ∃w(w·y = 1)))

Exercise 9 Let L be Lrings together with an extra 1-place relation symbol
I. Give L-formulas which express that the subset defined by I is:

a) an ideal;

b) a prime ideal;

c) a maximal ideal.

1.4. EXAMPLES OF FIRST ORDER LANGUAGES AND STRUCTURES13

1.4.3 Vector Spaces

Fix a field k. We can write down a language Lk of first order logic, and
axioms in this language, such that the Lk-structures which satisfy the axioms
are precisely the k-vector spaces.

The language Lk has a constant 0 and a binary function symbol + to
describe the abelian group structure. Furthermore, it has a 1-place function
symbol fm for every element m of k, to describe scalar multiplication. Apart
from the axioms for an abelian group (which are the left side of the axioms
for rings given above), there are the axioms:

fm(0) = 0 ∀xy(fm(x+ y) = fm(x) + fm(y))
∀x(f1(x) = x) ∀x(fm(fm′(x)) = fmm′(x))
∀x(fm+m′(x) = fm(x) + fm′(x)) ∀x (f0(x) = 0)

In the second line of these axioms, 1 is the unit of the field k, and mm′

refers to multiplication in k. In the third line, m+m′ refers to addition in
k, and the 0 in f0(x) is the 0 in k. Note, that if the field k is infinite, there
are infinitely many axioms to satisfy!

Exercise 10 The language Lk and the axioms for vector spaces given above,
are not very satisfactory in the sense that there are many important things
about vectors that cannot be expressed by Lk-formulas; for example, that x
and y are linearly independent vectors.

Devise yourself a different language and different axioms which do allow
you to express that two vectors are linearly independent over k. Mimicking
the example of graphs, have two 1-place relation symbols S and V (for
“scalar” and “vector” respectively). How do you express addition of vectors
and scalar multiplication?

1.4.4 Basic Plane Geometry

The language Lgeom of basic plane geometry has two 1-place relation symbols
P and L for “point” and “line”, and a 2-place relation symbol I for “point
x lies on line y”. The axioms are:

∀x(P (x) ∨ L(x))
∀x¬(P (x) ∧ L(x))
∀xy(I(x, y)→ (P (x) ∧ L(y)))
∀xx′(P (x) ∧ P (x′)→ ∃y(I(x, y) ∧ I(x′, y)))
∀xx′yy′((I(x, y) ∧ I(x′, y) ∧ I(x, y′) ∧ I(x′, y′))→ (x = x′ ∨ y = y′))

14 CHAPTER 1. LANGUAGES AND STRUCTURES

Convince yourself that these axioms mean: everything is either a point or a
line (and not both), for every two points there is a line they lie on, and two
distinct lines can have at most one point in common.

Exercise 11 A famous extra axiom says, that for every line l and point
x not on l, there is a unique line m through x, which does not intersect l.
Show how to express this axiom in Lgeom.

We conclude this chapter with a couple of definitions, for further reference.

Definition 1.8 Let L be a language. A theory in L, or an L-theory, is a set
of L-sentences. If Γ is an L-theory, a model of Γ is an L-structure M such
that M |= φ for every φ ∈ Γ. An L-theory Γ is called consistent if Γ has
a model. Furthermore we have the following notation: Γ |= φ means that
M |= φ for every model M of Γ.

Exercise 12 Prove that an L-theory Γ is consistent if and only if Γ 6|= ⊥.

Definition 1.9 An L-theory Γ is called complete if for every L-sentence φ
we have Γ |= φ or Γ |= ¬φ. If Γ is not complete and φ is an L-sentence such
that Γ 6|= φ and Γ 6|= ¬φ, we call φ independent of Γ.

Exercise 13 An L-theory Γ is consistent and complete precisely when there
is an L-structure M such that

Γ = {φ |M |= φ}

Chapter 2

Proofs

In Chapter 2, we have introduced languages and formulas as mathematical
objects: formulas are just certain finite sequences of elements of a certain
set. Given a specific model, such formulas become mathematical statements
via the definition of truth in that model.

In mathematical reasoning, one often observes that one statement “fol-
lows” from another, without reference to specific models or truth, as a purely
“logical” inference. More generally, statements can be conjectures, assump-
tions or intermediate conclusions in a mathematical argument.

In this chapter we shall give a formal, abstract definition of a concept
called ‘proof’. A proof will be a finite object which has a number of as-
sumptions which are formulas, and a conclusion which is a formula. Given
a fixed language L, there will be a set of all proofs in L, and we shall be
able to prove the Completeness Theorem:

For a set Γ of L-sentences and an L-sentence φ, the relation
Γ |= φ holds if and only if there exists a proof in L with conclusion
φ and assumptions from the set Γ.

Recall that Γ |= φ was defined as: for every L-structure M which is a model
of Γ, it holds that M |= φ.

Therefore, the Completeness Theorem reduces a universal (“for all”)
statement about a large class of structures, to an existential (“there is”)
statement about one set (the set of proofs). Furthermore, we shall see that
proofs are built up by rules that can be interpreted as elementary reasoning
steps (we shall not go into the philosophical significance of this). Finally, we
wish to remark that it can be effectively tested whether or not an object of
appropriate kind is a ‘proof’, and that the set of all sentences φ such that

15

16 CHAPTER 2. PROOFS

Γ |= φ can be effectively generated by a computer (we refer to the lecture
course in Recursion Theory for a precise meaning of this).

2.1 Proof Trees

In a well-structured mathematical argument, it is clear at every point what
the conclusion reached so far is, what the current assumptions are and on
which intermediate results each step depends.

We model this mathematically with the concept of a tree.

Definition 2.1 A tree is a partial order (T,≤) which has a least element,
and is such that for every x ∈ T , the set

↓(x) ≡ {y ∈ T | y ≤ x}

is well-ordered by the relation ≤.

We shall only be concerned with finite trees; that is, finite posets T with
least element, such that each ↓(x) is linearly ordered.

This is an example of a tree:

e

b c d ◦

a ◦

>>>>>>>>

��������
◦

��������

r

@@@@@@@

oooooooooooooo

We use the following dendrological language when dealing with trees: the
least element is called the root (in the example above, the element marked
r), and the maximal elements are called the leaves (in the example, the
elements marked a, b, c, d, e).

When we see a proof as a tree, the leaves are the places for the assump-
tions, and the root is the place for the conclusion. The information that
the assumptions give, may be compared to the carbon dioxide in real trees,
which finds its way from the leaves to the root.

The following exercise gives some alternative ways of characterizing trees.

2.1. PROOF TREES 17

Exercise 14 a) Show that a finite tree is the same thing as a finite se-
quence of nonempty finite sets and functions

An → · · · → A1 → A0

where A0 is a one-element set.

b) Show that a finite tree is the same thing as a finite set V together with
a function f : V → V which has the properties that f has exactly one
fixed point r = f(r), and there are no elements x 6= r such that
x = fn(x) for some n ∈ N.

c) If V is a finite set, a hierarchy on V is a collection C of subsets of V ,
such that V ∈ C, and for any two elements C1 6= C2 of C, we have
C1 ⊂ C2 or C2 ⊂ C1 or C1∩C2 = ∅. Let us call C a T1-hierarchy if for
each x, y ∈ V with x 6= y, there is C ∈ C such that either x ∈ C and
y 6∈ C, or y ∈ C and x 6∈ C. Call C connected if there is an element
r ∈ V such that the only element C ∈ C such that r ∈ C, is V itself.

Show that a finite tree is the same thing as a finite set V together with
a connected T1-hierarchy on V .

d) Let B be a set of finite trees such that for every finite tree there is
exactly one element of B which is isomorphic to it. Let L be the lan-
guage with one constant c and for every n ∈ N≥1 exactly one function
symbol Fn of arity n. Show that B can be made into an L-structure
such that for every other L-structure M and every m ∈M , there is a
unique function f : B →M with the properties:

i) f(c) = m, and

ii) for all n ∈ N≥1 and every n-tuple (b1, . . . , bn) from B,

f(Fn(b1, . . . , bn)) = (Fn)
M (f(b1), . . . , f(bn))

We shall be interested in L-labelled trees; that is: trees where the elements
have ‘names’ which are L-formulas or formulas marked with a symbol †. For

18 CHAPTER 2. PROOFS

example:

χ

φ ψ †ω ∃yψ

†χ χ ∧ ψ

AAAAAAA

������

φ ∨ ψ

zzzzzz

∀xχ

AAAAAA

oooooooooo

The following definition formalizes this:

Definition 2.2 Let L be a language. We fix an extra symbol †. A marked
L-formula is a pair (†, ϕ); we shall write †ϕ for (†, ϕ). Let F (L) be the
set of L-formulas, and let †F (L) be the disjoint union of F (L) and the set
{†} × F (L) of marked L-formulas.

An L-labelled tree is a finite tree T together with a function f from T
to the set †F (L), such that the only elements x of T such that f(x) is a
marked formula, are leaves of T .

The function f is called the labelling function, and f(x) is called the label
of x.

Among the L-labelled trees, we shall single out a set of ‘proof trees’. The
definition (Definition 2.3 below) uses the following two operations on L-
labelled trees:

1). Joining a number of labelled trees by adding a new root labelled φ
Suppose we have a finite number of labelled trees T1, . . . , Tk with labelling
functions f1, . . . , fk. Let T be the disjoint union T1 + · · ·+Tk together with
a new element r, and ordered as follows: x ≤ y if and only if x = r, or for
some i, x, y ∈ Ti and x ≤ y holds in Ti.

Let the labelling function f on T be such that it extends each fi on Ti
and has f(r) = φ.

We denote this construction by Σ(T1, . . . , Tk;φ).

2). Adding some markings
Suppose T is a labelled tree with labelling function f . If V is a set of leaves
of T , we may modify f to f ′ as follows: f ′(x) = f(x) if x 6∈ V or f(x) is a
marked formula; otherwise, f ′(x) = (†, f(x)).

We denote this construction by Mk(T ;V).

2.1. PROOF TREES 19

Exercise 15 Show that every L-labelled tree can be constructed by a finite
number of applications of these two constructions, starting from one element
trees with unmarked labels.

For the rest of this section, we shall assume that we have a fixed language
L which we won’t mention (we say ‘labelled’ and ‘formula’ instead of ‘L-
labelled’, ‘L-formula’ etc.). Let us also repeat that for us from now on,
‘tree’ means finite tree.

If T is a labelled tree with labelling function f , root r and leaves a1, . . . , an,
we shall call the formula f(r) (if it is a formula, that is: unmarked) the
conclusion of T and the formulas f(ai) the assumptions of T . Assumptions
of the form †ϕ are called eliminated assumptions.

We can now give the promised definition of ‘proof tree’. Instead of
reading through the definition in one go, the reader is advised to work
through a few clauses, and then have a look at the examples given after
the definition; referring back to it when necessary.

Definition 2.3 The set P of proof trees is the smallest set of labelled trees,
satisfying:

Ass For every formula ϕ, the tree with one element r and labelling function
f(r) = ϕ, is an element of P. Note that ϕ is both assumption and
conclusion of this tree. We call this tree an assumption tree.

∧I If T1 and T2 are elements of P with conclusions ϕ1 and ϕ2 respectively,
then Σ(T1, T2;ϕ1∧ϕ2) is an element of P. We say this tree was formed
by ∧-introduction.

∧E If T is an element of P with conclusion φ ∧ ψ then both Σ(T ;φ)
and Σ(T ;ψ) are elements of P. These are said to be formed by ∧-
elimination.

∨I If T is an element of P with conclusion ϕ, and ψ is any formula, then
both Σ(T ;ϕ∨ψ) and Σ(T ;ψ∨ϕ) are elements of P. We say these are
formed by ∨-introduction.

∨E Suppose that T, S1, S2 are elements of P such that the conclusion of T
is ϕ∨ψ and the conclusions of S1 and S2 are the same (say, χ). Let V1

be the subset of the leaves of S1 labelled ϕ, and let V2 be the subset
of the leaves of S2 labelled ψ. Let S ′

1 = Mk(S1;V1), S
′
2 = Mk(S2;V2).

Then Σ(T, S ′
1, S

′
2;χ) is an element of P (∨-elimination).

20 CHAPTER 2. PROOFS

→ I Suppose T is an element of P with conclusion ϕ, and let ψ be any
formula. Let V be the subset of the set of leaves of T with label ψ,
and T ′ = Mk(T ;V). Then Σ(T ′;ψ → ϕ) is an element of P (→-
introduction).

→ E Suppose T and S are elements of P with conclusions ϕ → ψ and ϕ,
respectively. Then Σ(T, S;ψ) is an element of P (→-elimination).

¬I Suppose T is an element of P with conclusion ⊥. Let ϕ be any formula,
and V be the subset of the set of leaves of T labelled ϕ. Let T ′ =
Mk(T ;V). Then Σ(T ′;¬ϕ) is an element of P (¬-introduction).

¬E Suppose T and S are elements of P with conclusions ϕ and ¬ϕ, re-
spectively. Then Σ(T, S;⊥) is an element of P (¬-elimination).

⊥E Suppose T is an element of P with conclusion ⊥. Let ϕ be any formula,
and V the subset of the set of leaves of T labelled ¬ϕ. Let T ′ =
Mk(T ;V). Then Σ(T ′;ϕ) is an element of P (⊥-elimination; one also
hears reductio ad absurdum or proof by contradiction).

Subst Suppose T and S are elements of P such that the conclusion of T is
ϕ[t/x] and the conclusion of S is (t = s). Suppose furthermore that the
substitutions ϕ[t/x] and ϕ[s/x] are defined (recall from Chapter 2: this
means that no variable in t or s becomes bound in the substitution).
Then Σ(T, S;ϕ[s/x]) is an element of P (Substitution).

∀I Suppose T is an element of P with conclusion ϕ[u/v], where u is a
variable which does not occur in any unmarked assumption of T or
in the formula ∀vϕ (and is not bound in ϕ). Then Σ(T ;∀vϕ) is an
element of P (∀-introduction).

∀E Suppose T is an element of P with conclusion ∀uϕ, and t is a term
such that the substitution ϕ[t/u] is defined. Then Σ(T ;ϕ[t/u]) is an
element of P (∀-elimination).

∃I Suppose T is an element of P with conclusion ϕ[t/u], and suppose
the substitution ϕ[t/u] is defined. Then Σ(T ;∃uϕ) is an element of P
(∃-introduction).

∃E Suppose T and S are elements of P with conclusions ∃xϕ and χ,
respectively. Let u be a variable which doesn’t occur in ϕ or χ, and is
such that the only unmarked assumptions of S in which u occurs, are of
the form ϕ[u/x]. Let V be the set of leaves of S with label ϕ[u/x], and
S′ = Mk(S;V). Then Σ(T, S ′;χ) is an element of P (∃-elimination).

2.1. PROOF TREES 21

Examples. The following labelled trees are proof trees. Convince yourself
of this, and find out at which stage labels have been marked:
a)

†ϕ †ψ

ϕ ∧ ψ

KKKKKKKKK

sssssssss

ϕ

ψ → ϕ

ϕ→ (ψ → ϕ)

b)

†(ϕ ∧ ψ) †(ϕ ∧ ψ)

ψ ϕ

ψ ∧ ϕ

RRRRRRRRRRRRR

lllllllllllll

(ϕ ∧ ψ)→ (ψ ∧ ϕ)

c)

⊥

ϕ

“Ex falso sequitur quodlibet”
d)

22 CHAPTER 2. PROOFS

†(¬ϕ) †(¬ψ)

†(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ †(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ

⊥

VVVVVVVVVVVVV
⊥

lllllllll

ϕ ψ

†(¬(ϕ ∧ ψ)) ϕ ∧ ψ

VVVVVVVVVVVVVVVVV

⊥

VVVVVVVVVVVVVV

hhhhhhhhhhhhhhhhh

¬ϕ ∨ ¬ψ

¬(ϕ ∧ ψ)→ (¬ϕ ∨ ¬ψ)

e)
†(ϕ ∧ ψ) †(ϕ ∧ ψ)

†(¬ϕ) ϕ †(¬ψ) ψ

⊥

VVVVVVVVVVVVVVVV
⊥

NNNNNNN

†(¬ϕ ∨ ¬ψ) ¬(ϕ ∧ ψ) ¬(ϕ ∧ ψ)

¬(ϕ ∧ ψ)

VVVVVVVVVV

fffffffffffffffffff

(¬ϕ ∨ ¬ψ)→ ¬(ϕ ∧ ψ)

f) The following “example” illustrates why, in formulating the rule ∀I, we
have required that the variable u does not occur in the formula ∀vϕ. For,
let ϕ be the formula u = v. Consider that (u = v)[u/v] is u = u, so were it
not for this requirement, the following tree would be a valid proof tree:

∀x(x = x)

u = u

∀v(u = v)

2.1. PROOF TREES 23

Clearly, we would not like to accept this as a valid proof!

Definition 2.4 We define the relation

Γ ` ϕ

as: there is a proof tree with conclusion ϕ and whose unmarked assumptions
are either elements of Γ or of the form ∀x(x = x) for some variable x. We
abbreviate {ϕ} ` ψ as ϕ ` ψ, we write ` ψ for ∅ ` ψ, and Γ, ϕ ` ψ for
Γ ∪ {ϕ} ` ψ.

Exercise 16 (Deduction Theorem) Prove, that the relation Γ, ϕ ` ψ is
equivalent to Γ ` ϕ→ ψ.

2.1.1 Variations and Examples

One variation in the notation of proof trees is, to write the name of each
construction step next to the labels in the proof tree.

For example, the proof tree

†ϕ

ϕ→ ϕ

is constructed from the assumption tree ϕ by →-introduction (at which
moment the assumption ϕ is marked). One could make this explicit by
writing

†ϕ

→ I ϕ→ ϕ

Another notational variation is one that is common in the literature:
the ordering is indicated by horizontal bars instead of vertical or skew lines,
and next to these bars, it is indicated by which of the constructions of
Definition 2.3, the new tree results from the old one(s). Assumptions are
numbered, such that different assumptions have different numbers, but dis-
tinct occurrences of the same assumption may get the same number. If, in
the construction, assumptions are marked, this is indicated by their numbers
next to the name of the construction.

24 CHAPTER 2. PROOFS

In this style, the proof tree

†ϕ

ϕ→ ϕ

looks as follows:

†ϕ1

→ I, 1
ϕ→ ϕ

We shall call this a decorated proof tree. Although (or maybe: because!)
they contain some redundant material, decorated proof trees are easier to
read and better suited to practise the construction of proof trees.

In decorated style, examples a)–e) of the previous section are as follows:

a)

†ϕ1 †ψ2

∧I
ϕ ∧ ψ

∧Eϕ
→ I, 2

ψ → ϕ
→ I, 1

ϕ→ (ψ → ϕ)

The assumption ϕ, numbered 1, gets marked when construction → I with
number 1 is performed; etc.

b)

†ϕ ∧ ψ1

∧E
ψ

†ϕ ∧ ψ1

∧Eϕ
∧I

ψ ∧ ϕ
→ I, 1

(ϕ ∧ ψ)→ (ψ ∧ ϕ)

c)

⊥
⊥Eϕ

d)

2.1. PROOF TREES 25

†¬(ϕ ∧ ψ)4

†¬(¬ϕ ∨ ¬ψ)3

†¬ϕ1

∨I
¬ϕ ∨ ¬ψ

¬E
⊥ ⊥E, 1
ϕ

†¬(¬ϕ ∨ ¬ψ)3

†¬ψ2

∨I
¬ϕ ∨ ¬ψ

¬E
⊥ ⊥E, 2
ψ
∧I

ϕ ∧ ψ
¬E

⊥ ⊥E, 3
¬ϕ ∨ ¬ψ

→ I, 4
¬(ϕ ∧ ψ)→ (¬ϕ ∨ ¬ψ)

e)

†¬ϕ ∨ ¬ψ5

†¬ϕ3

†ϕ ∧ ψ1

∧Eϕ
¬E

⊥ ¬I, 1
¬(ϕ ∧ ψ)

†¬ψ4

†ϕ ∧ ψ2

∧E
ψ
¬E

⊥ ¬I, 2
¬(ϕ ∧ ψ)

∨E, 3, 4
¬(ϕ ∧ ψ)

→ I, 5
(¬ϕ ∨ ¬ψ)→ ¬(ϕ ∧ ψ)

Some more examples:
f) A proof tree for t = s ` s = t:

∀x(x = x)
∀Et = t t = s

Substs = t

The use of Subtitution is justified since t = t is (u = t)[t/u]. Quite similarly,
we have a proof tree for {t = s, s = r} ` t = r:

t = s s = r
Substt = r

g)

†¬∃xϕ(x)2

†ϕ(y)1
∃I

∃xϕ(x)
¬E

⊥ ¬I, 1
¬ϕ(y)

∀I
∀x¬ϕ(x)

→ I, 2
¬∃xϕ(x)→ ∀x¬ϕ(x)

26 CHAPTER 2. PROOFS

You should check why application of ∀I is justified in this tree.

h) The following tree gives an example of the ∃E-construction:

†∃xϕ(x)2

†∀x¬ϕ(x)3
∀E

¬ϕ(y) †ϕ(y)1
¬E

⊥
∃E, 1

⊥ ¬I, 2
¬∃xϕ(x)

→ I, 3
∀x¬ϕ(x)→ ¬∃xϕ(x)

i)

†¬∀x¬ϕ(x)3

†¬∃xϕ(x)2

†ϕ(y)1
∃I

∃xϕ(x)
¬E

⊥ ¬I, 1
¬ϕ(y)

∀I
∀x¬ϕ(x)

¬E
⊥ ⊥E, 2

∃xϕ(x)
→ I, 2

¬∀x¬ϕ(x)→ ∃xϕ(x)

j) The following tree is given in undecorated style; it is a good exercise
to decorate it. It is assumed that the variable x does not occur in φ; check
that without this condition, it is not a correct proof tree:

2.1. PROOF TREES 27

†¬ψ(u) †ψ(u)

†∀x(φ ∨ ψ(x)) ⊥

WWWWWWWWWWWWWWWWWWW †φ †¬φ

φ ∨ ψ(u) ⊥

����

⊥

XXXXXXXXXXXXXXXXXXX

iiiiiiiiiiiiiiii

ψ(u)

∀xψ(x)

†¬(φ ∨ ∀xψ(x)) φ ∨ ∀xψ(x)

⊥

XXXXXXXXXXXXXXX

φ

†¬(φ ∨ ∀xψ(x)) φ ∨ ∀xψ(x)

⊥

XXXXXXXXXXXXXXX

φ ∨ ∀xψ(x)

∀x(φ ∨ ψ(x))→ (φ ∨ ∀xψ(x))

A bit of heuristics. When faced with the problem of constructing a proof
tree which has a specified set of unmarked assumptions Γ and a prescribed
conclusion φ (often formulated as: “construct a proof tree for Γ ` φ”), it
is advisable to use the following heuristics (but there is no guarantee that
they work! Or, that they produce the most efficient proof):

If φ is a conjunction φ1 ∧ φ2, break up the problem into two problems
Γ ` φ1 and Γ ` φ2;

If φ is an implication φ1 → φ2, transform the problem into Γ∪ {φ1} `
φ2;

If φ is a negation ¬ψ, transform into Γ ∪ {ψ} ` ⊥;

If φ is of form ∀xψ(x), transform into Γ ` ψ(u);

28 CHAPTER 2. PROOFS

In all other (non-obvious) cases, try Γ ∪ {¬φ} ` ⊥.

Exercise 17 Construct proof trees for the equivalences of Exercise 2. Recall
that ↔ is an abbreviation: for example, a proof tree for ` (ϕ → ψ) ↔
(¬ϕ∨ψ) will be constructed out of two proof trees, one for {ϕ→ ψ ` ¬ϕ∨ψ,
and one for ¬ϕ ∨ ψ ` ϕ→ ψ, by applying →- and ∧-introduction.

2.1.2 Induction on Proof Trees

Since the set P of proof trees is defined as the least set of labelled trees which
contains the assumption tree ϕ and is closed under a number of constructions
(definition 2.3), P is susceptible to proofs by induction over proof trees: if
A is any set of labelled trees which contains ϕ and is closed under the
constructions, then A contains P as a subset.

Some examples of properties of proof trees one can prove by this method:

1. No proof tree has a marked formula at the root.

2. In every proof tree T , for every x ∈ T there are at most 3 elements of
T directly above x (we say that every proof tree is a ternary tree).

3. If T is a proof tree such that the conclusion of T is of the form ϕ[c/u],
where c is a constant that does not occur in any unmarked assumption
of T , and v is a variable which doesn’t occur anywhere in T , then
replacing c by v throughout in T , results in a new proof tree.

In the proof of the Soundness Theorem (section 2.2 below) we shall also
apply induction over proof trees.

Exercise 18 Let Γ `H ϕ be defined as the least relation between sets of L-
formulas Γ and L-formulas ϕ, such that the following conditions are satisfied:

i) If ϕ ∈ Γ, then Γ `H ϕ;

ii) if Γ `H ϕ and Γ `H ψ then Γ `H (ϕ ∧ ψ), and conversely;

iii) if Γ `H ϕ or Γ `H ψ, then Γ `H (ϕ ∨ ψ);

iv) if Γ ∪ {ϕ} `H χ and Γ ∪ {ψ} `H χ, then Γ ∪ {ϕ ∨ ψ} `H χ;

v) if Γ ∪ {ϕ} ` ⊥, then Γ `H ¬ϕ;

vi) if Γ `H ϕ and Γ `H ¬ϕ then Γ `H ⊥;

vii) if Γ ∪ {¬ϕ} `H ⊥ then Γ `H ϕ;

2.2. SOUNDNESS AND COMPLETENESS 29

viii) if Γ ∪ {ϕ} `H ψ then Γ `H ϕ→ ψ;

ix) if Γ `H ϕ and Γ `H ϕ→ ψ then Γ `H ψ;

x) if Γ `H ψ(u) and u does not occur in Γ, then Γ `H ∀xψ(x);

xi) if Γ `H ∀xψ(x) then if ψ[t/x] is defined, Γ `H ψ[t/x];

xii) if ψ[t/x] is defined and Γ `H ψ[t/x], then Γ `H ∃xψ(x);

xiii) if Γ∪{ψ(u)} `H χ and u does not occur in Γ or χ, then Γ∪{∃xψ(x)} `H
χ.

Show that the relation Γ `H ϕ coincides with the relation Γ ` ϕ from
Definition 2.4.

2.2 Soundness and Completeness

We compare the relation Γ ` φ from Definition 2.4 to the relation Γ |= φ
from definition 1.8 in Chapter 1; recall that the latter means: in every model
M of Γ, the sentence φ holds.

Here we just state the two fundamental theorems of Logic, for a set of
sentences Γ and a sentence φ :

Theorem 2.5 (Soundness Theorem) If Γ ` φ then Γ |= φ.

Theorem 2.6 (Completeness Theorem; Gödel, 1930) If Γ |= φ then
Γ ` φ.

Exercise 19 Prove that Theorems 2.5–2.6 together are equivalent to the
statement: let Γ be a theory. The Γ is consistent if and only if Γ 6` ⊥.

Exercise 20 [Compactness Theorem; Gödel 1930] Prove from Theorems 2.5–
2.6 the Compactness Theorem: if every finite subset of a theory Γ is consis-
tent, then Γ is consistent.

Conclude from this the following equivalent formulation: if Γ is a theory
in a language L, and φ is an L-sentence such that Γ |= φ, then there is a
finite subset Γ′ of Γ such that Γ′ |= φ.

30 CHAPTER 2. PROOFS

2.3 Extensions of Theories by Defined Notions

If one is to write out a real mathematical proof of an interesting theorem
as a proof tree, then almost always the formulas become way too long to
be readable. Therefore, we are led to make abbreviations, but also, to
introduce new function symbols and relation symbols for ‘defined’ functions
and relations. However, when we want to say something about a fixed theory
Γ, we need to make sure that if we enlarge the language with new function
and relation symbols, and enlarge the theory with axioms about these new
symbols, we still have a theory which is ‘close enough’ to Γ, in the sense of
the following definition.

Definition 2.7 Let L and L′ be two languages such that L ⊂ L′; let Γ be
an L-theory and Γ′ be an L′-theory such that Γ ⊂ Γ′. Then Γ′ is said to be
a conservative extension of Γ, if for every L-sentence φ such that Γ′ |= φ, it
already holds that Γ |= φ.

Exercise 21 Suppose we have a chain of languages L0 ⊂ L1 ⊂ · · · , and for
every i we have an Li-theory Γi, such that Γ0 ⊂ Γ1 ⊂ · · · . Let L =

⋃∞
i=0 Li

and Γ =
⋃∞
i=0 Γi.

Prove: if for every i ≥ 0, Γi+1 is a conservative extension of Γi, then Γ
is a conservative extension of Γ0.

[Hint: use the Compactness Theorem]

A very common way to construct conservative extensions is the introduction
of Skolem functions. Suppose Γ is an L-theory and ϕ(x1, . . . , xk, y) is an L-
formula with free variables x1, . . . , xk, y. Suppose:

Γ |= ∀x1 · · · ∀xk∃yϕ(x1, . . . , xk, y)

Now let F be a new k-place function symbol, not in L. Let L′ be L ∪ {F},
and Γ′ be the L′-theory defined by

Γ′ = Γ ∪ {∀x1 · · · ∀xkϕ(x1, . . . , xk, F (x1, . . . , xk))}

Then Γ′ is a conservative extension of Γ (we also say Γ′ is conservative over
Γ). This can be seen as follows: suppose ψ is an L-sentence such that
Γ′ |= ψ. We need to prove that Γ |= ψ. To this end, let M be a model of Γ.
Then we have:

M |= ∀x1 · · · ∀xk∃yϕ(x1, . . . , xk, y)

so for every k-tuple m1, . . . ,mk of elements of M we can find an element n
of M such that M |= ϕ(m1, . . . ,mk, n). That means, we can find a function

2.3. EXTENSIONS OF THEORIES BY DEFINED NOTIONS 31

f : Mn → M such that for every k-tuple m1, . . . ,mk of elements of M ,
M |= ϕ(m1, . . . ,mk, f(m1, . . . ,mk)).

Now let M ′ be the L′-structure with the same underlying set as M , and
the same interpretations of all the symbols from L, as M ; and moreover,
FM

′

= f . Then clearly the following two statements are true:

i) M and M ′ satisfy the same L-sentences;

ii) M ′ is a model of Γ′.

From these two statements it follows immediately that M |= ψ, as desired.

Something similar can be done for relation symbols: for any formula ϕ with
k free variables, one can (relative to an L-theory Γ, extend the language by
one k-place relation symbol Rϕ, and extend the theory by one axiom

∀x1 · · · ∀xk(Rϕ(x1, . . . , xk)↔ ϕ(x1, . . . , xk))

Then the new theory is conservative over Γ.

A special kind of conservative extensions are so-called definitional exten-
sions.

Definition 2.8 Let L ⊂ L′, Γ ⊂ Γ′ be as in definition 2.7. Γ′ is called a
definitional extension of Γ if there is a function (·)∗ from L′-sentences to
L-sentences such that for every L′-sentence φ the following holds:

i) Γ′ |= φ↔ (φ)∗

ii) if Γ′ |= φ, then Γ |= (φ)∗

iii) if φ is an L-sentence, then Γ |= φ↔ (φ)∗

Exercise 22 Prove that every definitional extension is a conservative ex-
tension.

Exercise 23 Prove, in the situation of definition 2.8, that the function (·)∗

preserves equivalence: if Γ′ |= φ↔ ψ then Γ |= (φ)∗ ↔ (ψ)∗.

Exercise 24 Let Li, Γi, L and Γ be as in exercise 21. Prove: if for every i,
Γi is a definitional extension of Γi, then Γ is a definitional extension of Γ0.

32 CHAPTER 2. PROOFS

An example of a definitional extension arises if we introduce Skolem func-
tions for uniquely defined elements. Let us introduce an important notation.
Notation. The quantifier ∃!x · · · means: there is exactly one x such that. . . .
So the expression ∃!xϕ(x) can be seen as an abbreviation for the formula

∃x∀u(ϕ(u)↔ u = x)

Now suppose ϕ(x1, . . . , xk, y) is an L-formula such that

Γ |= ∀x1 · · · ∀xk∃!yϕ(x1, . . . , xk, y)

Let Γ′ be the extension of Γ by one Skolem function F for ϕ.
In this case, Γ′ is a definitional extension of Γ. For an arbitrary L′-

sentence ψ, we define (ψ)∗ inductively, by induction on the number of oc-
currences of F in ψ. If F does not occur in ψ, then ψ is an L-sentence, and
we put (ψ)∗ = ψ. Otherwise, there must be an occurrence of F in ψ such
that F occurs in a term F (t1, . . . , tk) with all ti’s L-terms (not containing
F). Take the first such occurrence, and let ψ(u) be the formula resulting
from ψ by replacing this occurrence of F (t1, . . . , tk) by the new variable u.
Then define

(ψ)∗ ≡ (∃u(ϕ(t1, . . . , tk, u) ∧ ψ(u)))∗

This is well-defined because the formula ∃u(ϕ(t1, . . . , tk, u) ∧ ψ(u)) has one
occurrence of F less than ψ.

Exercise 25 Show that (·)∗ makes Γ′ a definitional extension of Γ. Show
also, that we might as well have put

(ψ)∗ ≡ (∀u(ϕ(t1, . . . , tk, u)→ ψ(u)))∗

Chapter 3

(Primitive) Recursive
Functions

3.1 Primitive recursive functions and relations

Notation for functions. In mathematical texts, it is common to use
expressions containing variables, such as x+ y, x2, x log(y) etc., both for a
(variable) number and for the function of the occurring variables: we say
“the function x+y”. However, when we are doing Logic and we think about
ways of defining functions, it is better to distinguish these different meanings
by different notations. The expression x log y may mean, for example:

• a real number

• a function of (x, y), that is a function: R2 → R

• a function of (y, x), i.e. another function: R2 → R

• a function of y (with parameter x, so actually a parametrized family
of functions: R→ R)

• a function of (x, y, z), that is a function: R3 → R

In order to distinguish these meanings we employ the so-called λ-notation:
if ~x is a sequence of variables x1 · · · xk which might occur in the expression
G, then λ~x.G denotes the function which assigns to the k-tuple n1 · · ·nk
the value G(n1, . . . , nk) (substitute the ni for xi in G). In this notation the
5 meanings above can be distuinguished by notation as follows: x log(y),
λxy.x log(y), λyx.x log(y), λy.x log(y) and λxyz.x log(y).

33

34 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Definition 3.1 The class of primitive recursive functions Nk → N (where
k is allowed to vary over N) is generated by the following clauses:

i) the zero function Z = λx.0 is primitive recursive;

ii) the successor function S = λx.x+ 1 is primitive recursive;

iii) the projections Πk
i = λx1 · · · xk.xi (for 1 ≤ i ≤ k) are primitive recur-

sive;

iv) If G1, . . . , Gl : Nk → N and H : Nl → N are primitive recursive, then
so is

λ~x.H(G1(~x), . . . , Gl(~x))

this function is said to be defined from G1, . . . , Gl and H by composi-
tion;

v) If G : Nk → N and H : Nk+2 → N are primitive recursive, then so is
the function F defined from G and H by primitive recursion:

F (0, ~x) = G(~x)
F (y + 1, ~x) = H(y, F (y, ~x), ~x)

Remark: in clause v) van definition 3.1 we don’t exclude the case k = 0;
in that case we take the definition to mean that if H : N2 → N is primitive
recursive and n ∈ N, then the function F , defined by

F (0) = n
F (y + 1) = H(y, F (y))

is also primitive recursive.

When we speak of a k-ary relation, we mean a subset of Nk. We shall stick
to the following convention for the characteristic function χA : Nk → N of
the k-ary relation A:

χA(~x) χA(~x) =

{
0 if ~x ∈ A
1 else

A relation is said to be primitive recursive if its characteristic function is.

Examples of primitive recursive functions. The following derivations
show for a couple of simple functions that they are primitive recursive:

3.1. PRIMITIVE RECURSIVE FUNCTIONS AND RELATIONS 35

a) λxy.x+ y. For, 0 + y = y = Π1
1(y), and

(x+1)+ y = S(x+ y) = S(Π3
2(x, x+ y, y)), hence λxy.x+ y is defined

by primitive recursion from Π1
1 and a function defined by composition

form S and Π3
2;

b) λxy.xy. For, 0y = 0 = Z(y), and
(x + 1)y = xy + y = (λxy.x + y)(Π3

2(x, xy, y),Π
3
3(x, xy, y)), hence

λxy.xy is defined by primitive recursion from Z and a function defined
by composition from λxy.x+ y and projections;

c) λx.pd(x) (the predecessor function: pd(x) = x − 1 if x > 0, and
pd(0) = 0). For, pd(0) = 0, and
pd(x+ 1) = x = Π2

1(x,pd(x))

Exercise 26 Prove that the following functions are primitive recursive:

i) λxy.xy

ii) λxy.x−̇y. This is cut-off subtraction: x−̇y = x − y if x ≥ y, and
x−̇y = 0 if x < y.

iii) λxy.min(x, y)

iv) sg (the sign function), where

sg(x) =

{
1 if x > 0
0 else

v) sg, where

sg(x) =

{
0 if x > 0
1 else

vi) λxy.|x− y|

vii) λx.n for fixed n

viii) λx.x!

ix) λxy.rm(x, y) where rm(x, y) = 0 if y = 0, and the remainder of x on
division by y otherwise.

Exercise 27 Prove that the following relations are primitive recursive:

36 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

i) {(x, y) | x = y}

ii) {(x, y) | x ≤ y}

iii) {(x, y) | x|y}

iv) {x | x is a prime number}

Exercise 28 Show that the function C is primitive recursive, where C is
given by

C(x, y, z) =

{
x if z = 0
y else

Therefore, we can define primitive recursive functions by ‘cases’, using prim-
itive recursive relations.

Proposition 3.2

a) If the function F : Nk+1 → N is primitive recursive, then so are the
functions:

λ~xz.
∑

y<z F (~x, y)

λ~xz.
∏
y<z F (~x, y)

λ~xz.(µy < z.F (~x, y) = 0)

The last of these is said to be defined from F by bounded minimization,
and produces the least y < z for which F (~x, y) = 0; if such an y < z
does not exist, it outputs z);

b) If A and B are primitive recursive k-ary relations, then so are A∩B,
A ∪B, A−B en Nk −A;

c) If A is a primitive recursive k + 1-ary relation, then the relations
{(~x, z) | ∃y < z(~x, y) ∈ A} and {(~x, z) | ∀y < z(~x, y) ∈ A} are also
primitive recursive.

Proof.

a)
∑

y<0 F (~x, y) = 0 and
∑

y<z+1 F (~x, y) =
∑

y<z F (~x, y) + F (~x, z);∏
y<0 F (~x, y) = 1 and

∏
y<z+1 F (~x, y) = (

∏
y<z F (~x, y))F (~x, z);

(µy < 0.F (~x, y) = 0) = 0 and (µy < z + 1.F (~x, y) = 0) = (µy <
z.F (~x, y) = 0) + sg(

∏
y<z+1 F (~x, y))

b) χA∩B = λx.sg(χA(x) + χB(x))
χA∪B = λx.χA(x)χB(x)

3.2. CODING OF PAIRS AND TUPLES 37

Exercise 29 Finish the proof of Proposition 3.2.

Exercise 30 If F : N2 → N is primitive recursive, then so is λn.
∑

k<n F (n, k).

Proposition 3.3 If G1, G2 and H are primitive recursive functions Nn →
N, then so is the function F , defined by

F (~x) =

{
G1(~x) if H(~x) = 0
G2(~x) else

Proof. For, F (~x) = C(G1(~x), G2(~x),H(~x)), where C is the function from
exercise 28.

Exercise 31 Let p0, p1, . . . be the sequence of prime numbers: 2, 3, 5, . . .
Show that the function λn.pn is primitive recursive.

3.2 Coding of pairs and tuples

One of the basic ideas in Gödel’s proof is that all kinds of structures (in
particular: terms, formulas and proofs) can be coded as natural numbers.
If a bit of care is taken with the coding, one can then also show that basic
operations on these structures are given as primitive recursive functions on
their codes. For example, if the code of a formula ϕ is denoted by pϕq and
the code of the term t is ptq then there is a primitive recursive function F
such that F (pϕq, ptq) = pϕ[t/v]q.

We shall have to code sequences of numbers as one number, in such a
way that important operations on sequences, such as: taking the length of
a sequence, the i’th element of the sequence, forming a sequence out of two
sequences by putting one after the other (concatenating two sequences), are
primitive recursive in their codes. This is carried out below.

Any bijection N × N → N is called a pairing function: if f : N× N→N
is bijective we say that f(x, y) codes the pair (x, y). An example of such an
f is the primitive recursive function λxy.2x(2y + 1) − 1.

Exercise 32 Let f(x, y) = 2x(2y + 1) − 1. Prove that the functions k1 :
N → N and k2 : N → N which satisfy f(k1(x), k2(x)) = x for all x, are
primitive recursive.

38 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

A simpler pairing function is given by the “diagonal enumeration” j of N×N:

...

(0, 2)

""FF
FF

FF
FF

F
...

(0, 1)

##GGGGGGGG
(1, 1)

##GGGGGGGG
· · ·

(0, 0)

OO

(1, 0)

YY44
4
44

4
44

44
4
44

4
44

4

(2, 0) · · ·

So, j(0, 0) = 0, j(0, 1) = 1, j(1, 0) = 2, j(0, 2) = 3 etc. We have:

j(n,m) = #{(k, l) ∈ N×N | k + l < n+m ∨ (k + l = n+m ∧ k < n)}

in other words

j(n,m) =
1

2
(n+m)(n+m+ 1) + n =

(n+m)2 + 3n+m

2

The function j is given by a polynomial of degree 2. By the way, there is
a theorem (the Fueter-Pólya Theorem, see [22]) which says that j and its
‘twist’ i.e. the function λnm.j(m,n) are the only polynomials of degree 2
that induce a bijection: N× N→ N.

It is convenient that x ≤ j(x, y) and y ≤ j(x, y), so if we define:

j1(z) = µx ≤ z.[∃y ≤ z.j(x, y) = z]
j2(z) = µy ≤ z.[∃x ≤ z.j(x, y) = z]

then j(j1(z), j2(z)) = z.

Exercise 33 Prove this and prove also that j1 and j2 are primitive recur-
sive.

Exercise 34 (Simultaneous recursion) Suppose the functionsG1, G2 : Nk →
N and H1, H2 : Nk+3 → N are primitive recursive. Define the functions F1

and F2 : Nk+1 → N ‘simultaneously’ by the following scheme:

F1(0, ~x) = G1(~x) F1(y + 1, ~x) = H1(y, F1(y, ~x), F2(y, ~x), ~x)
F2(0, ~x) = G2(~x) F2(y + 1, ~x) = H2(y, F1(y, ~x), F2(y, ~x), ~x)

Check that F1 en F2 are well-defined, and use the pairing function j and its
projections j1 and j2 to show that F1 and F2 are primitive recursive.

3.2. CODING OF PAIRS AND TUPLES 39

We are also interested in good bijections: Nn → N for n > 2. In general,
such bijections can be given by polynomials of degree n, but we shall use
polynomials of higher degree:

Definition 3.4 The bijections jm : Nm → N for m ≥ 1 are defined by:

j1 is the identity function
jm+1(x1, . . . , xm, xm+1) = j(jm(x1, . . . , xm), xm+1)

Then we also have projection functions jmi : N→ N for 1 ≤ i ≤ m, satisfying

jm(jm1 (z), . . . , jmm(z)) = z

for all z ∈ N, and given by:

j11 (z) = z

jm+1
i (z) =

{
jmi (j1(z)) if 1 ≤ i ≤ m

j2(z) if i = m+ 1

Exercise 35 Prove:

i) jmi (jm(x1, . . . , xm)) = xi for 1 ≤ i ≤ m; and

ii) the functions jm and jmi are primitive recursive.

Exercise 35 states that for every m and i, the function jmi is primitive
recursive. However, the functions jmi are connected in such a way, that one
is led to suppose that there is also one big primitive recursive function which
takes m and i as variables. This is articulated more precisely in the following
proposition.

Proposition 3.5 The function F , defined by

F (x, y, z) =

{
0 if y = 0 or y > x

jxy (z) else

is primitive recursive.

Proof. We first note that the function G(w, z) = (j1)
w(z) (the function j1

iterated w times) is primitive recursive. Indeed: G(0, z) = z and G(w +
1, z) = j1(G(w, z)). Now we have:

F (x, y, z) =





0 als y = 0 of y > x
G(x− 1, z) als y = 1

j2(G(x− y, z)) als y > 1

Hence F is defined from the primitive recursive function G by means of
repeated distinction by cases.

40 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Exercise 36 Fill in the details of this proof. That is, show that the given
definition of F is correct, and that from this definition it follows that F is a
primitive recursive function

The functions jm and their projections jmi give primitive recursive bijections:
Nm → N. Using proposition 3.5 we can now define a bijection:

⋃
m≥0 Nm →

N with good properties. An element of Nm for m ≥ 1 is an ordered m-tuple
or sequence (x1, . . . , xm) of elements of N; the unique element of N0 is the
empty sequence (−). The result of the function

⋃
m≥0 Nm → N to be defined,

on input (x1, . . . , xm) or (−) will be written as 〈x1, . . . , xm〉 or 〈 〉 and will
be called the code of the sequence.

Definition 3.6

〈 〉 = 0
〈x0, . . . , xm−1〉 = j(m− 1, jm(x0, . . . , xm−1)) + 1 if m > 0

Exercise 37 Prove that for every y ∈ N the following holds: either y = 0
or there is a unique m > 0 and a unique sequence (x0, . . . , xm−1) such that
y = 〈x0, . . . , xm−1〉.

Remark. In coding arbitrary sequences we have started the convention of
letting the indices run from 0; this is more convenient and also consistent
with the convention that the natural numbers start at 0.

We now need a few primitive recursive functions for the effective manip-
ulation of sequences.

Definition 3.7 The function lh(x) gives us the length of the sequence with
code x, and is given as follows:

lh(x) =

{
0 if x = 0

j1(x− 1) + 1 if x > 0

The functions (x)i give us the i-th element of the sequence with code x
(count from 0) if 0 ≤ i < lh(x), and 0 otherwise, and is given by

(x)i =

{
j
lh(x)
i+1 (j2(x− 1)) if x > 0 and 0 ≤ i < lh(x)

0 else

Exercise 38 Prove that the functions λx.lh(x) and λxi.(x)i are primitive
recursive;
Show that (〈x0, . . . , xm−1〉)i = xi and that (〈 〉)i = 0;
Show that for all x: either x = 0 or x = 〈(x)0, . . . , (x)lh(x)−1〉.

3.2. CODING OF PAIRS AND TUPLES 41

The concatenation function gives for each x and y the code of the sequence
which we obtain by putting the sequences coded by x and y after each other,
and is written x ? y. That means:

〈 〉 ? y = y
x ? 〈 〉 = x

〈(x)0, . . . , (x)lh(x)−1〉 ? 〈(y)0, . . . (y)lh(y)−1〉 = 〈(x)0, . . . (x)lh(x)−1, (y)0,

. . . , (y)lh(y)−1〉

Exercise 39 Show that λxy.x ? y primitive recursive. (Hint: you can first
define a primitive recursive function λxy.x ◦ y, satisfying

x ◦ y = x ? 〈y〉

Then, define by primitive recursion a function F (x, y, w) by putting

F (x, y, 0) = x
F (x, y, w + 1) = F (x, y, w) ◦ (y)w

Finally, put x ? y = F (x, y, lh(y)).)

Course-of-values recursion The scheme of primitive recursion:

F (y + 1, ~x) = H(y, F (y, ~x), ~x)

allows us to define the value of F (y + 1, ~x) directly in terms of F (y, ~x).
Course-of-values recursion is a scheme which defines F (y+ 1, ~x) in terms of
all previous values F (0, ~x), . . . , F (y, ~x).

Definition 3.8 Let G : Nk → N and H : Nk+2 → N be functions. De
function F : Nk+1 → N, defined by the clauses

F (0, ~x) = G(~x)

F (y + 1, ~x) = H(y, F̃ (y, ~x), ~x)

(where F̃ (y, ~x) = jy+1(F (0, ~x), . . . , F (y, ~x))

is said to be defined from G and H by course-of-values recursion.

Proposition 3.9 Suppose G : Nk → N and H : Nk+2 → N are primitive
recursive functions and F : Nk+1 → N is defined from G and H by course-
of-values recursion. Then F is primitive recursive.

42 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Proof. Define the function F ′ as follows:

F ′(0, ~x) = G(~x)
F ′(y + 1, ~x) = j(F ′(y, ~x),H(y, F ′(y, ~x), ~x))

Then clearly the function F ′ is primitive recursive. Now we get by induction
on y that F ′(y, ~x) = F̃ (y, ~x):
F ′(0, ~x) = G(~x) = j1(G(~x)) = j1(F (0, ~x)) = F̃ (0, ~x)
F ′(y + 1, ~x) = j(F ′(y, ~x),H(y, F ′(y, ~x), ~x)) =
(by induction hypothesis, used twice)
= j(jy+1(F (0, ~x), . . . , F (y, ~x)), F (y + 1, ~x)) =
= jy+2(F (0, ~x), . . . , F (y + 1, ~x))
= F̃ (y + 1, ~x).

We conclude: F (y, ~x) =

{
G(~x) if y = 0

j2(F
′(y, ~x)) else

,

hence F (y, ~x) = C(G(~x), j2(F
′(y, ~x)), y) where C is the function from exer-

cise 28. Therefore F is primitive recursive.

We might also consider the following generalization of the course-of-values
recursion scheme: instead of allowing only the values F (w, ~x) for w ≤ y to
be used in the definition of F (y + 1, ~x), we could allow all values F (w, ~x′)
(for w ≤ y). This should be well-defined, for inductively we have already
defined all functions Fw = λ~x.F (w, ~x) when we are defining Fy+1. That
this is indeed possible (and does not lead us outside the class of primitive
recursive functions) if ~x′ is a primitive recursive function of ~x, is shown in
the following exercise.

Exercise 40 Let K : N → N, G : Nk+1 → N and H : Nk+3 → N be
functions. Define F by:

F (0, ~y, x) = G(~y, x)
F (z + 1, ~y, x) = H(z, F (z, ~y,K(x)), ~y, x)

Suppose that G, H and K are primitive recursive.

a) Prove directly, using the pairing function j and suitably adapting the
proof of proposition 3.9: if ∀x(K(x) ≤ x), then F is primitive recur-
sive.

b) Define a new function F ′ by:

F ′(0,m, ~y, x) = G(~y,Km(x))

F ′(n+ 1,m, ~y, x) = H(n, F ′(n,m, ~y, x), ~y,Km−̇(n+1)(x))

3.2. CODING OF PAIRS AND TUPLES 43

Prove: if n ≤ m then ∀k[F ′(n,m+ k, ~y, x) = F ′(n,m, ~y,Kk(x))]

c) Prove by induction: F (z, ~y, x) = F ′(z, z, ~y, x) and conclude that F is
primitive recursive, also without the assumption that K(x) ≤ x.

Double recursion. However, the matter is totally different if, in the defi-
nition of F (y + 1, ~x), we allow values of Fy at arguments in which already
known values of Fy+1 may appear. In this case we speak of double recursion.
We treat a simple case, with a limited number of variables.

Definition 3.10 Let G : N → N, H : N2 → N, K : N4 → N, J : N →
N, en L : N3 → N be functions; the function F is said to be defined from
these by double recursion if

F (0, z) = G(z)
F (y + 1, 0) = H(y, F (y, J(y)))

F (y + 1, z + 1) = K(y, z, F (y + 1, z), F (y, L(y, z, F (y + 1, z))))

Proposition 3.11 If G, H, K, J and L are primitive recursive and F is
defined from these by double recursion as in definition 3.10 then all functions
Fy = λz.F (y, z) are primitive recursive, but F itself need not be primitive
recursive.

Proof. It follows from the definition that all functions Fy are primitive
recursive. We give an example of a non-primitive recursive function that
can be defined by double recursion. The idea is, to code all definitions of
primitive recursive functions N→ N as numbers, in the following way:

• The basic functions are the functions λx.0, λx.x + 1 and jmi , which
get codes 〈0〉, 〈1〉 and 〈2, i,m〉 respectively;

• ifH,G1, . . . , Gp have codes n,m1, . . . ,mp respectively, and F is defined
by

F (x) = H(jp(G1(x), . . . , Gp(x)))

then F has code 〈3, n,m1, . . . ,mp〉;

• if H and G have codes n and m and F is defined by

F (j(x, 0)) = G(x)
F (j(x, y + 1)) = H(j3(x, F (j(x, y)), y))

then F has code 〈4, n,m〉.

44 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Check for yourself that every primitive recursive function of one variable
can be defined by the clauses above, and hence has a code (actually, more
than one, because there are many definitions of one and the same primitive
recursive function).

The next step in the proof is now to define a function Val (actually
by double course-of-value recursion) of two variables k and n, such that
the following holds: if k is the code of a definition of a primitive recursive
function F , then Val(k, n) = F (n). This is done as follows:

Val(k, x) =





0 if k = 〈0〉
x+ 1 if k = 〈1〉

jmi (x) if k = 〈2, i,m〉
Val(n, jp(Val(m1, x), . . . ,Val(mp, x)))

if k = 〈3, n,m1, . . . ,mp〉
Val(m, j1(x)) if k = 〈4, n,m〉 and j2(x) = 0

Val(n, j3(j1(x),Val(k, j(j1(x), j2(x)− 1)), j2(x)− 1))
if k = 〈4, n,m〉 and j2(x) > 0

0 else

Note that Val(k, x) is defined in terms of Val(n, y) for n < k or n = k and
y < x; so Val is well-defined as a function.

The apotheosis of the proof is an example of diagonalisation, a form of
reasoning similar to Cantor’s proof of the uncountability of the set of real
numbers; this is a technique we shall meet more often.

Suppose the function Val is primitive recursive. Then so is the func-
tion λx.Val(x, x) + 1, which is a function of one variable; this function has
therefore a code, say k.
But now by construction of Val, we have that Val(k, k) = Val(k, k) + 1;
which is a contradiction. We conclude that the function Val, which was de-
fined by double recursion from primitive recursive functions, is not primitive
recursive, which is what we set out to show.

Comparing the definition schemes of primitive recursion and double recur-
sion, we see that in the first case the function Fy = λx.F (y, x) is applied
to the argument x, whereas in the second case Fy is applied to arguments
which may contain values of Fy+1. This allows functions defined by double
recursion to ”grow very fast”.

In 1927, the Romanian mathematician Sudan ([24]) gave an example of a
“computable” function (a function, for which an algorithm exists to compute
it) which is not primitive recursive. In 1928, W. Ackermann ([1]) gave an
example of a function G(x, y) of two variables, defined by double recursion

3.2. CODING OF PAIRS AND TUPLES 45

from primitive recursive functions, which has the following property: for
every unary primitive recursive function F (x) there is a number x0 such
that for all x > x0, F (x) < G(x, x). Check yourself that it follows that
G cannot be primitive recursive! Such functions G are called Ackermann
functions.

Ackermann’s example was later simplified by Rosza Péter; this simplifi-
cations is presented in the exercise below.

Exercise 41 (Ackermann-Péter) Define by double recursion:

A(0, x) = x+ 1
A(n+ 1, 0) = A(n, 1)

A(n+ 1, x+ 1) = A(n,A(n+ 1, x))

Again we write An for λx.A(n, x). For a primitive recursive function F :
Nk → N, we say that F is bounded by An, written F ∈ B(An), if for all
x1, . . . , xk we have F (x1, . . . , xk) < An(x1 + · · · + xk). Prove by inductions
on n and x:

i) n+ x < An(x)

ii) An(x) < An(x+ 1)

iii) An(x) < An+1(x)

iv) An(An+1(x)) ≤ An+2(x)

v) nx+ 2 ≤ An(x) for n ≥ 1

vi) λx.x+ 1, λx.0 and λ~x.xi ∈ B(A1)

vii) if F = λ~x.H(G1(~x), . . . , Gp(~x)) and H,G1, . . . , Gp ∈ B(An) for some
n > p, then F ∈ B(An+2)

viii) for every n ≥ 1 we have: if F (0, ~x) = G(~x) and F (y + 1, ~x) =
H(y, F (y, ~x), ~x) and G,H ∈ B(An), then F ∈ B(An+3)

Concluide that for every primitive recursive function F there is a number n
such that F ∈ B(An); hence, that A is an Ackermann function.

46 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Exercise 42 Define a sequence of functions G0, G1, . . . : N→ N by

G0(y) = y + 1
Gx+1(y) = (Gx)

y+1(y)

and then define G by putting G(x, y) = Gx(y). Give a definition of G
by double rcursion and composition (use a definition scheme for double
recursion which allows an extra variable) and prove that G is an Ackermann
function.

A few simple exercises to conclude this section:

Exercise 43 Show that the following “recursion scheme” does not define a
function:

F (0, 0) = 0
F (x+ 1, y) = F (y, x+ 1)
F (x, y + 1) = F (x+ 1, y)

Exercise 44 Show that the following “recursion scheme” is not satisfied by
any function:

F (0, 0) = 0
F (x+ 1, y) = F (x, y + 1) + 1
F (x, y + 1) = F (x+ 1, y) + 1

3.3 Partial recursive functions

Definition 3.12 Let X and Y be sets. A partial function F from X to Y
is a function F : U → Y where U is a subset of X. We call U the domain of
F , and write dom(F). We write F : X ⇀ Y to indicate that F is a partial
function from X to Y . The function F is total if dom(F) = X. We treat
total functions as a special case of partial functions; a partial function may
be total.

If x ∈ X, we say “F (x) is defined” if x ∈ dom(F).

Partial functions can be composed: if F : X ⇀ Y and G : Y ⇀ Z
then GF : X ⇀ Z is the function whose domain is the subset {x ∈ X |x ∈
dom(F) and F (x) ∈ dom(G)} of X.

We shall use the symbol ' (Kleene equality) between expressions F (x)
and G(x) for partial functions: F (x) ' G(x) means that F (x) is defined
precisely when G(x) is defined, and whenever this is the case, F (x) = G(x).
In particular, F (x) ' G(x) holds if both sides are undefined.

3.3. PARTIAL RECURSIVE FUNCTIONS 47

Composite terms built up from partial functions are interpreted in the
way we have defined composition. That means, that a term cannot be
defined unless all its subterms are defined. Example: if Π2

1 denotes the first
projection N2 → N as before, and G : N ⇀ N is a partial function, then
Π2

1(x,G(y)) is only defined when G(y) is defined, and Π2
1(x,G(y)) ' x need

not hold.

Definition 3.13 The class of partial recursive functions Nk ⇀ N (for vari-
able k) is generated by the following clauses:

i) all primitive recursive functions are partial recursive;

ii) the partial recursive functions are closed under composition: ifG1, . . . , Gl :
Nk ⇀ N en H : Nl ⇀ N are partial recursive, then so is the func-
tion λ~x.H(G1(~x), . . . , Gl(~x)). This function is defined for all ~x ∈⋂l
i=1 dom(Gi) for which

(G1(~x), . . . , Gl(~x)) ∈ dom(H);

iii) if G : Nk+1 ⇀ N is partial recursive, then also F when F is defined
from G by minimization: we write

F (~x) ' µy.G(~x, y) = 0

F (~x) is defined precisely when there exists a y such that ∀i ≤ y.(~x, i) ∈
dom(G) and G(~x, y) = 0. F (~x) then denotes the least y with that
property.

Definition 3.14 A relation A ⊆ Nk is called recursive if its characteristic
function χA is partial recursive.

A partial recursive function is total recursive or recursive if it is total. Be-
cause χA is always a total function for every relation A, there is no notion
of “partial recursive relation”.

Proposition 3.15

i) If R is a k + 1-ary recursive relation and F : Nk ⇀ N is defined by

F (~x) ' µy.R(~x, y)

then F is partial recursive;

48 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

ii) If R is a recursive relation and G is a partial recursive function, and
F is defined by

F (x) '

{
G(x) if ∃y.R(y, x)
undefined else

then F is partial recursive;

Proof. For,

i) F (~x) ' µy.χR(~x, y) = 0

ii) F (x) ' G((µy.χR(y, x) = 0)0 + x). Recall our convention about when
terms are defined!

3.4 Smn-Theorem and Recursion Theorem

In the 1930’s, logicians were concerned with the question what a “com-
putable” function should be: a (possibly partial) function F : Nk ⇀ N for
which there exists an algorithm that allows a person (or a computer) to
calculate, step by step, the value of F at given arguments. There may be
arguments for which the algorithm, when carried out, never reaches a final
state.

Now what is an algorithm? Before we can think further about com-
putable functions, we should have a clear notion of this. It turned out
that several competing definitions of the notion of “algorithm” (advanced
by Alonzo Church, Stephen Cole Kleene and Alan Turing) yielded the same
notion of partial computable function: namely, partial recursive function.

The notion of a partial recursive function is therefore a very natural
one, and is studied in the area of Logic called Recursion Theory or Com-
putability Theory. In a course in Recursion Theory, you will learn about the
equivalence between partial recursive and algorithmically computable. In
this course, we don’t have time for such a treatment, and therefore we state
some theorems without proof.

Theorem 3.16 (Kleene Enumeration Theorem) There is a quaternary
(4-ary) primitive recursive relation T and a unary primitive recursive func-
tion U such that for every partial recursive function F : Nk ⇀ N there exists
a number e (the index of the function F) with the following properties:

3.4. SMN -THEOREM AND RECURSION THEOREM 49

i) For all k-tuples n1, . . . , nk we have: F (n1, . . . , nk) is defined precisely
when there is a number y such that T (k, e, jk(n1, . . . , nk), y) holds (that
is, (k, e, jk(n1, . . . , nk), y) ∈ T);

ii) If F (n1, . . . , nk) is defined then F (n1, . . . , nk) = U(y) for the least y
as in i).

If e corresponds to the k-ary partial recursive function F as in Theorem 3.16
we have therefore:

F (~n) ' U(µy.T (k, e, jk(~n), y))

and we write ϕ
(k)
e for F .

The letters T and U are standard in Computability Theory. The rela-
tion T is also called the Kleene T-predicate (predicate is another word for
relation) and U is the result extraction function.

Since the relation T is primitive recursive, the partial function

Ψ(m, e, x) ' U(µy.T (m, e, x, y))

is partial recursive, and every k-ary partial recursive function is of the form
λx1 · · · xk.Ψ(k, e, jk(x1, . . . , xk)) for some e. An algorithm for the function
Ψ is therefore called a universal algorithm.

In contrast with this, we do not have a “universal algorithm” for total
recursive functions:

Proposition 3.17 There is no total recursive function Ψ(m, e, x) such that
every total recursive function F : Nm → N equals

λx1 · · · xm.Ψ(m, e, jm(x1, . . . , xm))

for a certain e.

Proof. For suppose to the contrary that such a function Ψ exists. Then
the function

λx1 · · · xm.Ψ(m, jm(x1, . . . , xm), jm(x1, . . . , xm)) + 1

is total recursive, hence equal to λx1 · · · xm.Ψ(m, e, jm(x1, . . . , xm)) for a
certain e; but for that e we would have

Ψ(m, e, e) = Ψ(m, e, e) + 1

50 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

and we obtain a contradiction (note that this is a diagonalisation similar to
the proof of 3.11).

The following important theorem has the funny (and non-descriptive) name
of “Smn Theorem”. A better name would be “Parametrization Theorem”,
because it says that indices of partial recursive functions with parameters
can be obtained primitive-recursively in the parameters. We do not go into
the proof.

Theorem 3.18 (Smn-Theorem; Kleene) For every m ≥ 1 and n ≥ 1
there is an m + 1-ary primitive recursive function Smn such that for all
e, x1, . . . , xm, y1, . . . , yn we have:

ϕ
(n)
Sm

n (e,x1,...,xm)(y1, . . . , yn) ' ϕ
m+n
e (x1, . . . , xm, y1, . . . , yn)

Corollary 3.19 There is a primitive recursive function H such that for all
e, f, x we have:

ϕ
(1)
H(e,f)(x) ' ϕ

(1)
e (ϕ

(1)
f (x))

Proof. The function λefx.ϕ
(1)
e (ϕ

(1)
f (x)) is partial recursive; for

ϕ(1)
e (ϕ

(1)
f (x)) ' U(j2(µz.[T (1, f, x, j1(z)) ∧ T (1, e, U(j1(z)), j2(z))]))

Hence ϕ
(1)
e (ϕ

(1)
f (x)) ' ϕ

(3)
g (e, f, x) for a certain index g; put H(e, f) =

S2
1(g, e, f)

Our next consequence of the Smn-Theorem looks rather bizarre at first
sight. It allows us to find an index for a partial recursive function, satisfying
a property which depends on the index we want to find!

Corollary 3.20 (Recursion Theorem, Kleene 1938) For every partial
recursive function F : Nk+1 ⇀ N with k ≥ 1 there is an index e such that
for all x1, . . . , xk the following holds:

ϕ(k)
e (x1, . . . xk) ' F (x1, . . . , xk, e)

Proof. Let f be an index for F , so ϕ
(k+1)
f (x1, . . . , xk+1) ' F (x1, . . . , xk+1)

voor alle x1, . . . , xk+1. Now let g be an index which satisfies, for all h, y, x1, . . . , xk:

ϕ(k+2)
g (h, y, x1, . . . , xk) ' ϕ

(k+1)
h (x1, . . . , xk, S

1
k(y, y))

(Note that the expression on the RHS is a partial recursive function of
h, y, x1, . . . , xk, so such an index g exists)

3.4. SMN -THEOREM AND RECURSION THEOREM 51

Now define

e = S1
k(S

1
k+1(g, f), S1

k+1(g, f))

Then we have:

ϕ
(k)
e (x1, . . . , xk) '

ϕ
(k)

S1
k
(S1

k+1(g,f),S1
k+1(g,f))

(x1, . . . , xk) ' by the Smn-Theorem

ϕ
(k+1)

S1
k+1(g,f)

(S1
k+1(g, f), x1, . . . , xk) '

ϕ
(k+2)
g (f, S1

k+1(g, f), x1, . . . , xk) ' by choice of g

ϕ
(k+1)
f (x1, . . . , xk, S

1
k(S

1
k+1(g, f), S1

k+1(g, f))) ' by definition of e

ϕ
(k+1)
f (x1, . . . , xk, e) ' by choice of f

F (x1, . . . , xk, e)

Exercise 45 Let R1, . . . , Rn ⊆ Nk be recursive relations such that Ri∩Rj =
∅ for i 6= j; suppose G1, . . . , Gn : Nk ⇀ N are partial recursive. Then the
partial function F , defined by

F (~x) '





G1(~x) if R1(~x)
...

...
Gn(~x) if Rn(~x)

ongedefinieerd anders

is also partial recursive. Prove this.

Corollary 3.21 The class of partial recursive functions is closed under
primitive recursion: if G : Nk ⇀ N and H : Nk+2 ⇀ N are partial re-
cursive, and F is defined from G and H by primitive recursion, then F is
also partial recursive.

Proof. Let g and h be indices for G and H, respectively. By the Recursion
Theorem there is an index f such that for all y, ~x:

ϕ
(k+1)
f (y, ~x) =

{
ϕ

(k)
g (~x) if y = 0

ϕ
(k+2)
h (y − 1, ϕ

(k+1)
f (y − 1, ~x), ~x) if y > 0

Check yourself that ϕ
(k+1)
f (y, ~x) ' F (y, ~x) voor alle y, ~x.

52 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Corollary 3.22 The recursive relations are closed under bounded quanti-
fiers: if R ⊆ Nk+1 is recursive, then

{(~x, y) | ∀w < y.R(~x,w)}

and
{(~x, y) | ∃w < y.R(~x,w)}

are also recursive.

Proof. For, the characteristic functions of these relations are defined by
primitive recursion from the characteristic function of R.

Having another look at the proof of the Recursion Theorem, we see that
the index e we found there, is actually the result of a primitive recursive
function applied to an index f of F . In other words:

There is a primitive recursive functionGn such that for all x1, . . . , xn, f :

ϕ
(n)
Gn(f)(x1, . . . , xn) ' ϕ

(n+1)
f (x1, . . . , xn, Gn(f))

Exercise 46 Show that the following indices for partial recursive functions
can be found:

i) Given a recursive relation R, find e such that for all ~x:

ϕ(k)
e (~x) =

{
0 if R(~x, e)
1 else

ii) Given a recursive relation R and a partial recursive function F , find e
such that for all ~x:

ϕ(k)
e (~x) =

{
F (~x) if ∃y.R(~x, y, e)

undefined else

Exercise 47 Prove the Recursion Theorem in parameters: there is a prim-
itive recursive function F such that for all f, y1, . . . , yn, x1, . . . , xm:

ϕ
(m)
F (f,~y)(~x) ' ϕ

(n+1)
f (F (f, ~y), ~y, ~x)

and also: there is a primitive recursive F ′ such that for all f, y1, . . . , yn and
x1, . . . , xm:

ϕ
(m)
F ′(f,~y)(~x) ' ϕ

(m)

ϕ
(n+1)
f

(F ′(f,~y),~y)
(~x)

3.4. SMN -THEOREM AND RECURSION THEOREM 53

Concluding this chapter, let us prove that the class of total recursive func-
tions is closed under double recursion. Suppose therefore that G,H, J,K
and L are total recursive, and let F be defined by:

F (0, z) = G(z)
F (y + 1, 0) = H(y, F (y, J(y)))

F (y + 1, z + 1) = K(y, z, F (y + 1, z), F (y, L(y, z, F (y + 1, z))))

Then F is also total recursive; for we can use the Recursion Theorem in
order to find an index f such that

ϕ
(2)
f (y, z) =





G(z) if y = 0

H(y−1, ϕ
(2)
f (y−1, J(y−1))) if y > 0 and z = 0

K(y−1, z−1, ϕ
(2)
f (y, z−1), ϕ

(2)
f (y−1, L(y−1, z−1, ϕ

(2)
f (y, z−1))))

if y > 0 and z > 0

Exercise 48 Prove by double induction (on y and z) that the function ϕf
defined above, is total and equal to F .

One last exercise.

Exercise 49 Prove Smullyan’s Double Recursion Theorem: given two 2-ary
partial recursive functions F and G, for every k there are indices a and b
such that for all x1, . . . , xk:

ϕ(k)
a (x1, . . . , xk) ' ϕ

(k)
F (a,b)(x1, . . . , xk)

en
ϕ

(k)
b (x1, . . . , xk) ' ϕ

(k)
G(a,b)(x1, . . . , xk)

For further reference, a definition, and a theorem without proof.

Definition 3.23 A subset A ⊆ Nk is called recursively enumerable or r.e.
if there is a primitive recursive subset U ⊆ Nk+1 such that

A = {~x ∈ Nk | ∃y.(y, ~x) ∈ U)}

Exercise 50 Show that a subset A ⊆ Nk is recursively enumerable if and
only if there is a k-ary partial recursive function F such that A = dom(F).

Clearly, every recursive set is r.e.

Exercise 51 Prove, that a set A ⊆ Nk is recursive, precisely when A and
Nk −A are both recursively enumerable.

54 CHAPTER 3. (PRIMITIVE) RECURSIVE FUNCTIONS

Theorem 3.24 (Turing) The set

{(e, ~x) ∈ Nk+1 | ~x ∈ dom(ϕ(k)
e)}

is recursively enumerable, but not recursive.

Chapter 4

The Formal System of Peano
Arithmetic

The system of first-order Peano Arithmetic or PA, is a theory in the language
LPA = {0, 1;+, ·} where 0, 1 are constants, and +, · binary function symbols.
It has the following axioms:

1) ∀x¬(x+ 1 = 0)

2) ∀xy(x+ 1 = y + 1→ x = y)

3) ∀x(x+ 0 = x)

4) ∀xy(x+ (y + 1) = (x+ y) + 1)

5) ∀x(x·0 = 0)

6) ∀xy(x·(y + 1) = (x·y) + x)

7) ∀~x[(ϕ(0, ~x) ∧ ∀y(ϕ(y, ~x)→ ϕ(y + 1, ~x)))→ ∀yϕ(y, ~x)]

Item 7 is meant to be an axiom for every formula ϕ(y, ~x). These axioms are
called induction axioms. Such a set of axioms, given by one or more generic
symbols “ϕ” which range over all formulas, is called an axiom scheme; in
our case we talk about the induction scheme.

So, PA is given by infinitely many axioms and this infinitude is essential:
there is no finite LPA-theory which has the same models as PA.

Clearly, the set N together with the elements 0,1 and usual addition
and multiplication, is a model of PA, which we call the standard model and
denote by N . It is easy to see that PA has also non-standard models. First

55

56 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

define, for every n ∈ N, a term n of LPA by recursion: 0 = 0 and n+ 1 = n+1
(mind you, this is not the identity function! E.g., 3 = ((0 + 1) + 1) + 1).
Terms of the form n are called numerals and we shall use them a lot later
on. Now let c be a new constant, and consider in the language LPA ∪ {c}
the set of axioms:

{axioms of PA} ∪ {¬(c = n) |n ∈ N}

Since every finite subset of this theory has a straighforward interpretation
in N, this is (by the Compactness Theorem, Exercise 20) a consistent set
of axioms and has therefore a model M, which has a nonstandard element
cM.

The theory PA is surprisingly strong: it can represent (in a suitable
sense, soon to be made precise) all recursive functions, and most elemen-
tary number theory can be carried out in this system. Ironically though,
it is exactly this strength that lies at the basis of its being incomplete as
Gödel was the first to show. Since we wish to arrive at these famous In-
completeness Theorems, our first aim is to develop some elementary number
theory in PA. Our first proposition establishes basic properties of addition
and multiplication.

Proposition 4.1

i) PA ` ∀x(x = 0 ∨ ∃y(x = y + 1))

ii) PA ` ∀xyz(x+ (y + z) = (x+ y) + z)

iii) PA ` ∀xy(x+ y = y + x)

iv) PA ` ∀xyz(x+ z = y + z → x = y)

v) PA ` ∀xyz(x·(y·z) = (x·y)·z)

vi) PA ` ∀xy(x·y = y·x)

vii) PA ` ∀xyz(x·(y + z) = (x·y) + (x·z))

viii) PA ` ∀xyz(¬(z = 0) ∧ x·z = y·z → x = y)

Proof. All of these are proved using the induction axioms. For i), let ϕ(x)
be x = 0∨∃y(x = y+1). Clearly, PA ` ϕ(0)∧∀yϕ(y+ 1), so PA ` ∀xϕ(x).

For ii), use “induction on z” that is, let ϕ(z) be the formula ∀xy(x+(y+
z) = (x+ y) + z). Then PA ` ϕ(0) by axiom 3, and PA ` ϕ(z) → ϕ(z + 1)
by axiom 4, since

ϕ(z) ` (x+ (y + z)) + 1 = x+ ((y + z) + 1) = x+ (y + (z + 1))

57

The proof of the other statements is a useful exercise (sometimes, as in iii),
you will need to perform a double induction).

Exercise 52 Prove statements iii)-viii) of proposition 4.1.

Proposition 4.2 Let ϕ(x, y) be the formula ∃z(x+ (z + 1) = y). Then in
PA, ϕ defines a discrete linear order with least element which satisfies the
least number principle, i.e.

i) PA ` ¬ϕ(x, x)

ii) PA ` ϕ(x, y) ∧ ϕ(y, z)→ ϕ(x, z)

iii) PA ` ϕ(x, y) ∨ x = y ∨ ϕ(y, x)

iv) PA ` x = 0 ∨ ϕ(0, x)

v) PA ` ϕ(x, y)→ (y = x+ 1 ∨ ϕ(x+ 1, y))

vi) PA ` ∃wψ(w)→ ∃y(ψ(y) ∧ ∀x(ϕ(x, y)→ ¬ψ(x)))

vii) PA ` ϕ(x, x+ 1)

Exercise 53 Prove proposition 4.2

The scheme vi) of proposition 4.2 is called the least number principle LNP.

Exercise 54 Prove that LNP is equivalent to the scheme of induction, in
the following sense: let PA′ be the theory with the first 6 axioms of PA,
and the statements of proposition 4.2 as axioms. Then PA and PA′ are
equivalent theories, in the sense that they have the same models.

The order defined in proposition 4.2 is so important that we introduce
a new symbol for it: henceforth we write x < y for ∃z(x + (z + 1) =
y). We shall also use the abbreviations ∃x < y and ∀x < y for ∃x(x <
y ∧ . . .) and ∀x(x < y → . . .), respectively. We shall write x ≤ y for
x = y ∨ x < y, and x 6= y for ¬(x = y). This process of introducing
abbreviations will continue throughout; it is absolutely essential if we want to
write meaningful formal statements (but, especially later when we shall also
introduce function symbols, we shall have to make sure that the properties
of the meant functions are provable in PA).

What we do is actually this: we shall successively introduce Skolem
functions for uniquely defined elements, and enlarge the theory PA by axioms

58 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

for these function symbols, in such a way as to obtain a chain of definitional
extensions of PA in the sense of section 2.3.

Exercise 55 Prove the principle of well-founded induction, that is:

PA ` ∀w(∀v < wψ(v) → ψ(w))→ ∀wψ(w)

Exercise 56 Prove:

PA ` ∀xy(y 6= 0→ x ≤ x·y)

4.1 Elementary Number Theory in PA

The starting point for our treatment of elementary number theory in PA is
the theorem of Euclidean division.

Theorem 4.3 (Division with remainder)

PA ` ∀xy(y 6= 0→ ∃ab(x = a·y + b ∧ 0 ≤ b < y))

Moreover, PA proves that such a, b are unique.

Proof. By induction on x. Clearly, 0 = 0·y + 0; if x = a·y + b ∧ 0 ≤ b < y
then by 4.2v), b+ 1 < y ∨ b+ 1 = y. If b+ 1 < y, x+ 1 = a·y + (b+ 1) and
if b+ 1 = y, x+ 1 = (a+ 1)·y + 0.

For uniqueness, suppose x = a·y + b = a′·y + b′ with 0 ≤ b, b′ < y. If
a < a′ then a+ 1 ≤ a′ hence

a′·y ≥ a·y + y > a·y + b = x

with a contradiction. So a′ ≤ a and by symmetry, a = a′. Then b = b′

follows by 4.1iv).

In the notation of theorem 4.3, we call b the remainder of x on division by
y, and a the integer part of x divided by y.

Again, we introduce shorthand notation:

x|y ≡ ∃z(x·z = y)
irred(x) ≡ ∀v ≤ x(v|x→ v = 1 ∨ v = x)

prime(x) ≡ x > 1 ∧ ∀yz(x|(y·z)→ x|y ∨ x|z)

4.1. ELEMENTARY NUMBER THEORY IN PA 59

Furthermore, since PA ` ∀xy∃!z((z = 0 ∧ x < y) ∨ x = z + y), we may
introduce a function symbol − to the language, with axiom

∀xy((x < y ∧ x− y = 0) ∨ (x = y + (x− y)))

I hope the notations are familiar. The notions “irreducible” and “prime”
element are from ring theory.

Proposition 4.4

PA ` ∀x(x > 1→ (irred(x)↔ prime(x)))

Proof. If prime(x) and v|x so v·z = x then either x|v whence v = x, or
x|z whence v = 1. So irred(x). Conversely suppose irred(x) and x > 1. Let
P (v) be the formula

∀yz ≤ v(y·z ≤ v ∧ x|(y·z)→ x|y ∨ x|z)

We show ∀w(∀v < wP (v) → P (w)), so by well-founded induction we may
conclude ∀wP (w) which clearly implies prime(x).

So suppose ∀v < wP (v) and y, z ≤ w such that y·z ≤ w, x|(y·z), x - y,
x - z. Then y, z > 1 and using 4.3 we may assume y < x since otherwise
replace y by its remainder on division by x. Again using 4.3, let x = a·y+ b
with 0 ≤ b < y. If b = 0 then by irreducibility of x, y = 1 ∨ y = x, a
contradiction in both cases. If b > 0 we have

b·z = (x− a·y)·z = x·z − a·y·z

so x|(b·z), x - b, x - z and b·z < y·z ≤ w; contradiction with ∀v < wP (v).
Therefore P (w), and we are done.

Proposition 4.5 PA ` ∀x(x > 1→ ∃v(prime(v) ∧ v|x))

Proof. If x > 1, since x|x we have ∃w(w > 1 ∧ w|x). By LNP, there is a
least such w. The least such w is irreducible, hence prime by proposition 4.4.

Exercise 57 Prove that “PA proves the existence of infinitely many primes”,
i.e. the statement

∀x∃y(x < y ∧ prime(y))

[Hint: first prove, by induction in PA, ∀x∃y > 0∀i(1 ≤ i ≤ x→ i|y). Given
such y, consider y + 1 and apply proposition 4.5]

60 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

We define two predicates, “x is a power of the prime v” and “x is a prime
power” respectively:

pow(x, v) ≡ x ≥ 1 ∧ prime(v) ∧ ∀w ≤ x(w > 1 ∧ w|x→ v|w)
pp(x) ≡ ∃v ≤ xpow(x, v)

Exercise 58 a) PA ` ∀xv(pow(x, v)→ pow(x·v, v))

b) PA ` ∀xyv(pow(x, v) ∧ pow(y, v)→ x|y ∨ y|x)

c) PA ` ∀xyv(pow(x, v) ∧ pow(y, v) ∧ x < y → (x·v)|y)

For prime(v), we want to define for each number y > 0 its v-part, that is the
highest power of v that divides y. We denote this by y � v. For example,
12 � 3 = 3, 12 � 2 = 4 and 12 � 5 = 1.

We assume as axiom:

pow(y � v, v) ∧ (y � v)|y ∧ (y � v)·v - y

Of course, to be able to do this we have to prove that

PA ` ∀yv∃!z((z = 0 ∧ (y = 0 ∨ ¬prime(v))) ∨ pow(z, v) ∧ z|y ∧ z·v - y)

If pow(y, v) take z = y. Otherwise, ∃w ≤ y(w|y ∧ v - w) hence ∃z ≤ y∃w ≤
y(y = w·z ∧ v - w), so by LNP there is a least such z. Then pow(z, v) and
z|y. If z·v|y so y = w′·z·v = w·z, then w′·v = w, contradiction with v - w.
So z exists; its uniqueness follows from the Exercise above.

The following lemma states that x|y iff every prime power which divides
x also divides y.

Lemma 4.6

PA ` ∀xy(x|y ↔ ∀v ≤ x(pp(v) ∧ v|x→ v|y))

Proof. The direction from left to right is trivial, as is the case y = 0∨x = 1
in the other direction. For a contradiction, let x > 1 be least such that

∃y ≥ 1(∀v ≤ x(pp(v) ∧ v|x→ v|y) ∧ x - y)

and take the least such y. Its remainder on division by x satisfies the same
property, so we may assume y < x. Let x = a·y+ b with 0 ≤ b < y. If 0 < b
we have a contradiction with the minimality of y. So b = 0 and x = a·y.

4.1. ELEMENTARY NUMBER THEORY IN PA 61

Suppose a > 1. Then a has a prime divisor v by 4.5. Since pp(v) and v|x,
v|y. But now we have

pp((y � v)·v) ∧ (y � v)·v|x ∧ (y � v)·v - y

which is a contradiction.

We can now define the least common multiple and greatest common divisor
of two numbers, and prove their basic properties in PA.

Let x, y ≥ 1. Since x|x·y and y|x·y there is a unique least w > 0 with
x|w ∧ y|w; we denote this w by lcm(x, y). Clearly, lcm(x, y) ≤ x·y.

Writing x·y = a·lcm(x, y) + b, 0 ≤ b < lcm(x, y) we see that x|b ∧ y|b so
if b > 0 we get a contradiction with the minimality of lcm(x, y). So x·y =
a·lcm(x, y) for a unique a, which we denote by gcd(x, y). Writing lcm(x, y) =
y·z, we have x·y = gcd(x, y)·y·z so x = gcd(x, y)·z and gcd(x, y)|x; similarly,
gcd(x, y)|y.

Exercise 59 Define yourself the function symbols max(x, y) and min(x, y)
and prove their basic properties in PA. Prove furthermore:

a) PA ` prime(v)→ lcm(x, y) � v = max(x � v, y � v)

b) PA ` prime(v)→ gcd(x, y) � v = min(x � v, y � v)

Proposition 4.7

a) PA ` ∀xyu(x, y ≥ 1 ∧ x|u ∧ y|u→ lcm(x, y)|u)

b) PA ` ∀xyu(x, y ≥ 1 ∧ u|x ∧ u|y → u|gcd(x, y))

Proof. For a), consider the remainder of u on division by lcm(x, y); if it is
non-zero, it is < lcm(x, y) and still a common multiple of x and y.

For b), use proposition 4.6. Let pow(z, v)∧z|u. Then z|(x � v)∧z|(y � v)
so z|(gcd(x, y) � v) (by the Exercise), so z|gcd(x, y). By 4.6, u|gcd(x, y).

Exercise 60 Prove:

a) PA ` ∀xy ≥ 1∀x′y′(x = x′·gcd(x, y) ∧ y = y′·gcd(x, y) → gcd(x′, y′) =
1)

b) PA ` ∀xyab(y = a·x+ b ∧ 0 ≤ b < x→ gcd(x, y) = gcd(x, b))

62 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

Theorem 4.8 (Bézout’s Theorem for PA)

PA ` ∀xy ≥ 1∃a ≤ y, b ≤ x(a·x = b·y + gcd(x, y)))

Proof. By induction on x. For x = 1 take a = 1, b = 0.
For x > 1 let y = c·x+d, 0 ≤ d < x. Dividing this equation by gcd(x, y)

we have y′ = c·x′ + d′ with d′ < x′ ≤ x and gcd(x′, d′) = 1; by induction
hypothesis we have

u·d′ = v·x′ + 1

for suitable u, v; so v·x′ = u·d′ − 1. Squaring both sides gives

a′·x′ = b′·d′ + 1

for some a′, b′; multiplying by gcd(x, y) gives

(a′ + b′·c)·x = b′·y + gcd(x, y)

Finally, let (a′ + b′·c) = c′·y + a′′, 0 ≤ a′′ < y. Then

a′′·x = (b′ − c′·x)·y + gcd(x, y)

with a′′ < y and since (b′ − c′·x)·y ≤ a′′·x < x·y, we have (b′ − c′·x) < x.

Theorem 4.8 plays a central role in the development of a rudimentary coding
of sequences in PA, which was in fact Gödel’s first crucial idea for the proof
of his Incompleteness Theorems.

For a good understanding of what follows, it is useful first to see the
algebraic trick underlying it. Suppose we are given a sequence of numbers
x0, . . . , xn−1.

Let m = max(x0, . . . , xn−1, n)!. Then for all i, j with 0 ≤ i < j < n we
have that the numbers m(i+1)+1 and m(j+1)+1 are relatively prime, for
if p is a prime number which divides both of them, it divides their difference
which ism(j−i). Since p is prime, it follows that p|m, but also p|(i+1)m+1,
a contradiction. Since xi < (i + 1)m + 1 for all i, we have by the Chinese
remainder theorem a number a such that

a ≡ xi mod m(i+ 1) + 1

for all i. The number a, or rather the pair (a,m), codes the sequence
x0, . . . , xn−1 in a sense.

The following theorem establishes three essential properties of this cod-
ing in PA: for every x, there is a sequence starting with x; every sequence
can be extended; and a technical condition necessary later on.

We use the following abbreviations: rm(x, y) denotes the remainder of x
on division by y, and (a,m)i denotes rm(a,m·(i+ 1) + 1).

4.1. ELEMENTARY NUMBER THEORY IN PA 63

Theorem 4.9

i) PA ` ∀x∃a,m((a,m)0 = x)

ii) PA ` ∀yxam∃bn(∀i < y((a,m)i = (b, n)i) ∧ (b, n)y = x)

iii) PA ` ∀ami((a,m)i ≤ a)

Proof. For i), take m = x and a = 2x+ 1; then

rm(a,m·(0 + 1) + 1) = rm(2x+ 1, x+ 1) = x

iii) is trivial, so we are left to prove ii). Let us observe:

PA ` ∀yxam∃u(∀i < y((a,m)i < u) ∧ x < u ∧ y < u) (1)
PA ` ∀u∃v ≥ 1∀i ≤ u (i ≥ 1→ i|v) (2)
PA ` ∀uv(∀i ≤ u(i ≥ 1→ i|v)→
∀ij(0 ≤ i < j ≤ u→ gcd((i+ 1)·v + 1, (j + 1)·v + 1) = 1)) (3)

((1) is proved by induction on y, (2) by induction on u, and (3) by formalizing
the informal argument given above, using the properties about gcd that we
know)

So, given y, x, a,m, take successively u satisfying (1) and v satisfying (2)
for u; put n = v. We have:

∀i < y((a,m)i < (i+ 1)·n+ 1)
x < (y + 1)·n+ 1

∀ij(0 ≤ i < j ≤ y → gcd((i+ 1)·n+ 1, (j + 1)·n+ 1) = 1)

and we want to find b such that

(∀i < y((a,m)i = (b, n)i)) ∧ x = (b, n)y

To do this we employ induction. Suppose for k < y there is b′ satisfying

(∀i < k((a,m)i = (b′, n)i)) ∧ x = (b′, n)y

We want to find b satisfying

(∀i ≤ k((a,m)i = (b, n)i)) ∧ x = (b, n)y

Now it is easy to show that for all k < y,

∃w((y + 1)·n+ 1|w ∧ ∀i < k((i+ 1)·n+ 1|w) ∧ gcd(w, (k + 1)·n+ 1) = 1)

64 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

(use induction on k and the properties of n). Take such w. Then by 4.8,
there is u ≤ (k + 1)·n+ 1 such that

rm(u·w, (k + 1)·n+ 1) = 1

Put b = b′ + u·w·(b′·n·(k + 1) + (a,m)k). Then (b, n)y = (b′, n)y = x since
(y+1)·n+1|w, and i < k → (b, n)i = (b′, n)i = (a,m)i since (i+1)·n+1|w.
Finally,

(b, n)k = rm(b, (k + 1)·n+ 1)
= rm(b′ + b′·n·(k + 1) + (a,m)k, (k + 1)·n+ 1)
= rm(b′·((k + 1)·n+ 1) + (a,m)k, (k + 1)·n+ 1)
= (a,m)k

which completes the induction step and the proof.

We shall shortly see (in Theorem 4.13 below) how to use theorem 4.9 to de-
fine every primitive recursive function in PA, after the necessary definitions
to make precise what this means. But to give the idea already now, let’s
“define” the exponential function x, y 7→ xy. Let θ(x, y, z) be the formula

∃am((a,m)0 = 1 ∧ ∀i < y((a,m)i+1 = x·(a,m)i) ∧ (a,m)y = z)

Exercise 61 Prove that PA ` ∀xy∃!zθ(x, y, z). Introduce a function sym-
bol exp to LPA, with axiom ∀xyθ(x, y, exp(x, y)). Prove:

PA ` ∀xyy′(exp(x, y + y′) = exp(x, y)·exp(x, y′))
PA ` ∀xyy′(exp(x, y·y′) = exp(exp(x, y), y′))
PA ` ∀xv(pow(x, v)→ ∃y < x(x = exp(v, y)))

And try your hand at:

Exercise 62 Formulate and prove in PA the theorem of unique prime fac-
torization.

4.2 Representing Recursive Functions in PA

Definition 4.10 An LPA-formula ϕ is called a ∆0-formula if all quantifiers
are bounded in ϕ, that is of the form ∀x < t or ∃x < t, for a term t not
containing the variable x. A formula ϕ is a Σ1-formula if it is of the form
∃y1 . . . ytψ with ψ a ∆0-formula. We also write ϕ ∈ ∆0, ϕ ∈ Σ1.

4.2. REPRESENTING RECURSIVE FUNCTIONS IN PA 65

Exercise 63 Prove the Collection Principle in PA:

PA ` ∀i < t∃vψ → ∃v∀i < t∃u < vψ

and deduce that if ϕ is equivalent to a Σ1-formula, so is ∀i < tϕ.

We now discuss the so-called “Σ1-completeness” of PA: the statement that
PA proves all Σ1-sentences which are true in the standard model N . Recall
the definition of the numerals n from page 56.

Exercise 64 Prove:

(PA ` n+m = k) ⇔ n+m = k for all n,m, k ∈ N
(PA ` n·m = k) ⇔ n·m = k for all n,m, k ∈ N

(PA ` n < m) ⇔ n < m for all n,m ∈ N
PA ` ∀x(x < n↔ x = 0 ∨ . . . ∨ x = n− 1) for all n > 0

From this exercise we can see by induction on the LPA-term t(x1, . . . , xk)
with variables x1, . . . , xk: if tN is its interpretation in the model N , as
function Nk → N, then for all n1, . . . , nk ∈ N:

PA ` t(n1, . . . , nk) = tN (n1, . . . , nk)

Exercise 65 [Σ1-completeness of PA] Prove that for every ∆0-formula ϕ
with free variables x1, . . . , xk and all n1, . . . , nk ∈ N:

PA ` ϕ(n1, . . . , nk)⇔ N |= ϕ[n1, . . . , nk]

and deduce that the same equivalence holds for Σ1-formulas. Conclude that
a Σ1-sentence is provable in PA if and only if it is true in N .

Warning. The equivalence does not hold for negations of Σ1-formulas, as
we shall soon see!

Definition 4.11 Let A ⊆ Nk a k-ary relation. An LPA-formula ϕ(x1, . . . , xk)
of k free variables is said to represent A (numeralwise) if for all n1, . . . , nk ∈
N we have:

(n1, . . . , nk) ∈ A ⇒ PA ` ϕ(n1, . . . , nk) and
(n1, . . . , nk) 6∈ A ⇒ PA ` ¬ϕ(n1, . . . , nk)

Let F : Nk → N a k-ary function. An LPA-formula ϕ(x1, . . . , xk, z) of k + 1
free variables represents F numeralwise if for all n1, . . . , nk ∈ N:

PA ` ϕ(n1, . . . , nk, F (n1, . . . , nk)) and
PA ` ∃!zϕ(n1, . . . , nk, z)

66 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

Exercise 66 If F : Nk → N is numeralwise represented then so is its graph,
considered as k + 1-ary relation.

We say that a relation or function is Σ1-represented if there is a Σ1-formula
representing it. Later, we shall see that if a function is represented at all, it
must be Σ1-represented, and recursive (and vice versa).

Definition 4.12 A function F : Nk → N is called provably recursive in PA
if it is represented by a Σ1-formula ϕ(x1, . . . , xk, z) for which

PA ` ∀x1 . . . xk∃!zϕ(x1, . . . , xk, z)

Theorem 4.13 Every primitive recursive function is provably recursive in
PA.

Proof. We prove this by induction on the generation of the primitive re-
cursive function. The basic functions λx1 · · · xk.xi, λx.x + 1 and λx.0 are
clearly provably recursive.

If F (~x) is defined by composition from G,H1, . . . ,Hm, so

F (~x) = G(H1(~x), . . . ,Hm(~x))

suppose by induction hypothesis that G,H1, . . . ,Hm are represented by the
Σ1-formulas ψ, χ1, . . . , χm respectively. Then F is represented by the for-
mula

ϕ(~x, z) ≡ ∃z1 · · · zm(χ1(~x, z1) ∧ · · · ∧ χm(~x, zm) ∧ ψ(z1, . . . , zm, z))

which is equivalent to a Σ1-formula; that PA ` ∀~x∃!zϕ(~x, z) follows from
the corresponding property for ψ, χ1, . . . , χm.

The crucial induction step is primitive recursion; it is here that we use
theorem 4.9. Suppose that F (~x, y) is defined by primitive recursion from G
and H, so

F (~x, 0) = G(~x) and F (~x, y + 1) = H(~x, F (~x, y), y)

By induction hypothesis, G andH are Σ1-represented by ψ(~x, z) and χ(~x, u, v, w)
respectively. Then F is represented by the formula ϕ(~x, y, u) defined as

∃am(ψ(~x, (a,m)0) ∧ ∀i < y χ(~x, (a,m)i, i, (a,m)i+1) ∧ (a,m)y = u)

To be sure, this should really be seen as an abbreviation, since there is no
term (a,m)i in LPA, so e.g. ψ(~x, (a,m)0) is shorthand for

∃c, d < a(a = c·(m+ 1) + d ∧ 0 ≤ d < m+ 1 ∧ ψ(~x, d))

4.2. REPRESENTING RECURSIVE FUNCTIONS IN PA 67

but still one sees that the formula ϕ is equivalent to a Σ1-formula. The
proof that PA ` ∀~x, y∃!uϕ(~x, y, u) is done by induction (in PA!) on u, where
one uses the properties listed in theorem 4.9. The details of this proof, as
well as the proof that ϕ represents F , are left to the reader.

Exercise 67 Carry out the filling in of missing details in the proof of the-
orem 4.13.

The study of the class of all functions which are provably recursive in PA,
is important for the proof theory of PA. It is an old result that the provably
recursive functions in PA are the ε0-recursive functions. This refers to an
ordinal hierarchy of total recursive functions, and ε0 is the least ordinal α
such that there exists a recursive binary relation ≺ on N with the properties:

• (N,≺) is a well-order of order-type α;

• PA does not prove the scheme

∀x(∀y ≺ xψ(y)→ ψ(x))→ ∀xψ(x)

(where, of course, we use a Σ1-formula representing ≺ in PA)
There are several equivalent definitions of ε0; another one is: the least

ordinal which is closed under the operation β 7→ ωβ.
We do not enter this study in this course, but just point out that there

are lots of provably total functions which are not primitive recursive. To
give the simplest possible case:

Exercise 68 Prove that the Ackermann function:

A(0, x) = x+ 1
A(n+ 1, 0) = A(n, 1)

A(n+ 1, x+ 1) = A(n,A(n+ 1, x))

is provably recursive in PA.

Theorem 4.14 Every total recursive function is Σ1-represented in PA.

Proof. By basic recursion theory, there is a primitive recursive predicate T ,
a primitive recursive function U such that for every k-ary recursive function
F we have a number e such that:

F (n1, . . . , nk) = m⇔ ∃y(T (e, n1, . . . , nk, y) ∧ U(y) = m)

68 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

The set {(n1, . . . , nk, y,m) |T (e, n1, . . . , nk, y) ∧ U(y) = m} is primitive re-
cursive and so, by 4.13, represented by a Σ1-formula ϕ(x1, . . . , xk, y, w),
which we can write as

∃z1 . . . zlP (x1, . . . , xk, y, w, z1, . . . , zl)

for a ∆0-formula P .
If R(z, ~x,w) is the ∆0-formula ∃y < z∃z1 < z · · · ∃zl < zP , then clearly

PA ` ∃ywϕ(~x, y, w)↔ ∃zwR(z, ~x,w)

Finally, let S(z, ~x,w) be the ∆0-formula

w < z ∧R(z, ~x,w) ∧ ∀u < z¬∃v < uR(u, ~x, v)

Then PA ` ∃zwR(z, ~x,w)↔ ∃!z∃wS(z, ~x,w) by LNP.
I claim that the Σ1-formula ∃zS(z, ~x,w) represents the function F . First,

for n1, . . . , nk ∈ N is

∃zS(z, n1, . . . , nk, F (n1, . . . , nk))

a true Σ1-formula, hence provable in PA by Σ1-completeness. To show that

PA ` ∃!w∃zS(z, n1, . . . , nk, w)

let a ∈ N such that S(a, n1, . . . , nk, F (n1, . . . , nk)) is true. By unicity of z
in S we have

PA ` ∀zw(S(z, n1, . . . , nk, w)→ z = a ∧w < a)

and since PA ` ∀w < a (w = 0 ∨ · · · ∨ w = a− 1), we have

PA ` F (n1, . . . , nk) < a and

PA ` ¬S(a, n1, . . . , nk, b) for all b < a, b 6= F (n1, . . . , nk)

since S ∈ ∆0. So, PA ` ∃!w∃zS(z, n1, . . . , nk, w).

Exercise 69 In the next chapter we shall see that there are Σ1-sentences
which are false in N but consistent with PA. Use this to show that the
following implication does not hold: for a Σ1-formula ϕ(w) with only free
variable w, if ∃!wϕ(w) is true in N , then PA ` ∃!wϕ(w).

Exercise 70 Prove that every recursive set is Σ1-represented in PA.

4.2. REPRESENTING RECURSIVE FUNCTIONS IN PA 69

Exercise 71 Let D1, D2, D3, . . . be a sequence of definitions of primitive
recursive functions with the properties that for every k, the function fk
defined by Dk is either a basic function or defined from functions fl with
l < k, and every primitive recursive function is fk for some k.

Introduce, for every k, a new function symbol Fk and an axiom ϕk,
corresponding to the definition Dk of fk.

Let PA′ be the theory in the language LPA∪{F1, F2, . . .}, axiomatized by
the axioms of PA, together with the axioms ϕk, and the scheme of induction
extended to the full new language.

Prove that there is a mapping (·)∗ from LPA′-formulas to LPA-formulas,
which is the identity on LPA-formulas, such that

PA′ ` ϕ↔ (ϕ)∗

PA′ ` ϕ⇒ PA ` (ϕ)∗

for all LPA′ -formulas ϕ. Conclude that PA′ is conservative over PA: this
means that every LPA-sentence which is provable in PA′, is provable in PA.

Exercise 72 Devise a coding of the definitions Dk in the previous exer-
cise, and show that a recursive sequence D1, D2, . . . exists with the required
properties. Can it be primitive recursive?

4.2.1 The ‘Entscheidungsproblem’

The Entscheidungsproblem (decision problem) was posed by Hilbert and
Ackermann in [13]. In modern terms, the question is: is there an algo-
rithm which decides whether a given formula in predicate logic (as we have
formulated it in chapter 1) is valid?

It was Alonzo Church ([3]) who noted that as a consequence of the theory
developed in this chapter, a negative answer can be given to this question
(provided we take theorem 3.24, which we have formulated without proof,
for granted).

Let F denote the primitive recursive function defined by:

F (e, x, y) =

{
0 if T (1, e, x, y)
1 else

where T is the Kleene T -predicate.

Then F is provably recursive in PA by theorem 4.13; let χ(e, x, y, n) be
a Σ1-formula representing F . Then in the proof that χ represents F and

70 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

represents a total function in PA, we have employed a finite number of
induction axioms. Also, the proof of Σ1-completeness for PA uses finitely
many induction axioms. Let S be the subtheory of PA consisting of all those
induction axioms, together with the first 6 axioms of PA. Then S is a finite
theory; and for any sentence φ of LPA, we have that φ is a consequence of S
if and only if the sentence (

∧
ψ∈S ψ)→ φ is valid in the predicate calculus.

Therefore, if we can show that there can be no algorithm which decides
for such φ whether or not φ is a consequence of S, we have proved that the
Entscheidungsproblem is unsolvable.

We have, for arbitrary numbers e and x, the following equivalences:

x ∈ dom(ϕ
(1)
e) ⇔ by Chapter 3

there is a y such that F (e, x, y) = 0 ⇔ since χ represents F
N |= ∃yχ(ē, x̄, y, 0) ⇔ by Σ1-completeness
S |= ∃yχ(ē, x̄, y, 0)

Therefore, any algorithm which decides whether or not a given LPA-
sentence is a consequence of S, gives us an algorithm which decides whether

or not x ∈ dom(ϕ
(1)
e). But this means that this latter set is recursive, which

contradicts theorem 3.24.

4.3 A Primitive Incompleteness Theorem

The representability of recursive functions allows us to prove already that
PA is not a complete theory: there is an LPA-sentence φ such that PA 6` φ
and PA 6` ¬φ (this, however, is not quite Gödel’s theorem; the latter gives
more information). We have to leave one detail to the reader’s imagination
(it will be fully treated in the next chapter, but it is easy): for every LPA-
formula ϕ(w) with exactly one free variable w, the set

{n ∈ N |PA ` ϕ(n)}

is recursively enumerable.

Now we do know, that for every recursively enumerable set X ⊆ N, there
is a Σ1-formula ϕ(w), such that for all n ∈ N:

n ∈ X ⇔ PA ` ϕ(n)

(Use the characterization of r.e. sets as projections of recursive sets, repre-
sentability of recursive sets in PA, and Σ1-completeness of PA)

4.3. A PRIMITIVE INCOMPLETENESS THEOREM 71

Now, let X be a nonrecursive, r.e. set (which exists by Theorem 3.24)
and suppose the Σ1-sentence ϕ defines X in this sense. Let Y = {n ∈
N |PA ` ¬ϕ(n)}. Then since PA is consistent, X and Y are disjoint r.e. sets
and since X is not recursive, Y is not the complement of X (by Exercise 51).
Take m 6∈ X ∪Y . Since PA ` ϕ(m) implies m ∈ X and PA ` ¬ϕ(m) implies
m ∈ Y , we see that none of these can hold; therefore, ϕ(m) is a sentence
which is independent of PA.

The following exercise is a result which will be needed in the next chapter.
We call a formula ϕ(x1, . . . , xk) ∆1, or a ∆1-formula, if both ϕ and ¬ϕ are
equivalent (in PA) to a Σ1-formula.

Exercise 73 Show that the proof of theorem 4.13 can be adapted to give the
following stronger result: for every primitive recursive function F : Nk → N
there is a ∆1-formula ϕF (x1, . . . , xk+1) which represents F and is such that

PA ` ∀x1 · · · xk∃!xk+1ϕF (x1, . . . , xk+1)

72 CHAPTER 4. THE FORMAL SYSTEM OF PEANO ARITHMETIC

Chapter 5

Gödel Incompleteness

5.1 Coding of Formulas and Diagonalization

We start by applying the primitive recursive coding of sequences from Chap-
ter 3 to code formulas of PA.

We use sequence encoding to assign to any formula ϕ of LPA a code
pϕq ∈ N and this in such a way that all relevant operations on formulas
translate into primitive recursive functions on codes.

We assume that in our language, variables are numbered v0, v1, Con-
sider the following “code book” (from now on we take < as a primitive
symbol of LPA):

0 1 v + · = < ∧ ∨ → ¬ ∀ ∃
0 1 2 3 4 5 6 7 8 9 10 11 12

For each term t define its code ptq by recursion on t: p0q = 〈0〉, p1q = 〈1〉,
pviq = 〈2, i〉; pt+ sq = 〈3, ptq, psq〉, pt·sq = 〈4, ptq, psq〉.

It is now immediate that the properties “x is the code of a term”, “x
codes a constant”, “the variable vi occurs in the term coded by x”, etcetera,
are all primitive recursive in their arguments.

Likewise, we define codes for formulas: pt = sq = 〈5, ptq, psq〉, pt < sq =
〈6, ptq, psq〉, pϕ ∧ ψq = 〈7, pϕq, pψq〉, pϕ ∨ ψq = 〈8, pϕq, pψq〉 and so on;
p∀viϕq = 〈11, i, pϕq〉 and p∃viϕq = 〈12, i, pϕq〉.

And we have that the properties “x codes a formula”, “the main con-
nective of the formula coded by x is ∧”, “the variable vi occurs freely in the
formula coded by x” and so forth, are primitive recursive in their arguments.

73

74 CHAPTER 5. GÖDEL INCOMPLETENESS

Exercise 74 Verify this for some of the mentioned properties.

Exercise 75 Verify that the property “x codes a formula ϕ and y codes a
term t and t is free for vi in ϕ” is primitive recursive in x, y, i; and show
that there is a primitive recursive function Sub, such that

Sub(x, y, i) =

{
pϕ[s/vi]q if y = pϕq and x = psq

0 else

Exercise 76 Convince yourself that the properties “x is the code of a ∆0-
formula” and “x codes a Σ1-formula” are primitive recursive.

Having done this work, we now arrive at the second main idea of Gödel, the
Diagonalization Lemma.

We say that ϕ is a Π1-formula if it is of the form ∀y1 · · · ∀ynψ with ψ ∈ ∆0.

Lemma 5.1 (Diagonalization Lemma) For any LPA-formula ϕ with free
variable v0 there is an LPA-formula ψ with the same free variables as ϕ ex-
cept v0, such that

PA ` ψ ↔ ϕ[pψq/v0]

Moreover, if ϕ ∈ Π1 then ψ can be chosen to be Π1 too.

Proof. Recall the function Sub(x, y, i) from Exercise 75. It is primitive
recursive hence so is λxy.Sub(x, y, 0); let S be a Σ1-formula representing this
function in PA. Let T be a Σ1-formula representing the primitive recursive
function n 7→ pnq. Then we have

∀nm ∈ N.PA ` S(n,m,Sub(n,m, 0)) (1)

∀n ∈ N.PA ` T (n, pnq) (2)
PA ` ∀xy∃!zS(x, y, z) (3)

PA ` ∀x∃!yT (x, y) (4)

Now let ϕ have v0 free. Define the formula C by

C ≡ ∀xy(T (v0, x) ∧ S(x, v0, y)→ ϕ[y/v0])

and let ψ be defined by

ψ ≡ C[pCq/v0] (5)

5.1. CODING OF FORMULAS AND DIAGONALIZATION 75

Clearly, if ϕ ∈ Π1 then so are C and ψ. Now we have by (2) and (4),

PA ` ∀y(∃x(T (pCq, x) ∧ S(x, pCq, y))↔ S(ppCqq, pCq, y))

and (1) and (3) give us

PA ` ∀y(S(ppCqq, pCq, y)↔ y = pC[pCq/v0]q)

By (5) then,

PA ` ∀y(∃x(T (pCq, x) ∧ S(x, pCq, y))↔ y = pψq)

so
PA ` ψ ↔ ∀y(∃x(T (pCq, x) ∧ S(x, pCq, y))→ ϕ[y/v0])

↔ ∀y(y = pψq→ ϕ[y/v0])

↔ ϕ[pψq/v0]

Remark. One should compare the proof of Lemma 5.1 with the proofs of
very similar theorems, such as the recursion theorem (or, if you are familiar
with it, the fixpoint theorem in λ-calculus).

I include the following corollary, which is analogous to Smullyan’s si-
multaneous recursion theorem (Exercise 49), or Bekić’ Lemma in Domain
Theory, for its own interest. We shall not apply it.

Corollary 5.2 (Simultaneous Diagonalization) Let ϕ and ψ be formu-
las both having the variables v0, v1 free. Then there are formulas θ and χ,
such that θ has the same free variables as ϕ minus v0, v1, and ditto for χ
and ψ, such that

PA ` θ↔ ϕ[pθq/v0, pχq/v1]

PA ` χ↔ ψ[pθq/v0, pχq/v1]

And, if ϕ,ψ ∈ Π1, so are θ, χ.

Proof. Let T be the same formula as in the proof of Lemma 5.1, and
S1 similar, that is: S1 now represents substitution for the variable v1. So
PA ` S1(psq, pϕq, pϕ[s/v1]q), etc. Let ϕ and ψ be given. First, apply
Lemma 5.1 to find θ1 such that

PA ` θ1 ↔ ∀zy(T (v1, z) ∧ S1(z, pθ1q, y)→ ϕ[y/v0, v1])

and then χ such that

PA ` χ↔ ∀xy(T (pχq, z) ∧ S1(z, pθ1q, y)→ ψ[y/v0, pχq/v1])

76 CHAPTER 5. GÖDEL INCOMPLETENESS

Put θ ≡ θ1[pχq/v1]. Then as in the proof of Lemma 5.1, we have:

PA ` T (pχq, ppχqq) ∧ S1(ppχqq, pθ1q, pθ1[pχq/v1]q)

PA ` ∀y(∃z(T (pχq, z) ∧ S1(z, pθ1q, y))↔ y = pθq)

PA ` θ↔ θ1[pχq/v1]↔ ϕ[pθq, pχq]

and so, also PA ` χ↔ ψ[pθq, pχq].

5.2 Gödel’s First Incompleteness Theorem

Just as we have coded formulas, we can code proofs in PA by natural num-
bers. Since the idea is essentially the same, we give only a sketch. We
use natural deduction. Again we make a code book, now of construction
steps for natural deduction trees (I have not tried to make the system as
economical as possible!):

Ass 0 ∨I− r 5 ∀E 10 ⊥ 15
∧I 1 ∨I− l 6 ∃I 11 ¬¬ 16

∧E− r 2 → E 7 ∃E 12
∧E− l 3 → I 8 ¬I 13
∨E 4 ∀I 9 ¬E 14

We view natural deduction proofs as labelled trees; every node is labelled
by a formula, and by a rule. Most connectives have an introduction and
an elimination rule, sometimes more than one, for example the rule ∧E− r
(conjunction elimination to the right) infers ψ from φ ∧ ψ. The rule ¬E
infers ⊥ from φ,¬φ; the rule ⊥ infers ψ from ⊥, the rule ¬¬ infers ψ from
¬¬ψ. The rule Ass (assumption) is the only starting rule: it allows one
to construct a one-node tree, labelled with a formula ϕ. I hope that the
meaning of every rule is now clear.

Now every tree has a set of so-called open (or undischarged) assumptions.
An assumption is a formula which labels a leaf of the tree. Assumptions are
discharged with the steps→ I, ¬I, ∨E and ∃E. We follow the so-called crude
discharge convention: that is, whenever we introduce ϕ → ψ by → I, we
discharge all assumptions ϕ above this application.

Let us outline the coding of trees. The tree with one node, labelled
ϕ, gets code 〈0, pϕq〉; suppose D1, D2 are trees with roots labelled by ϕ,ψ
respectively; the tree resulting from D1 and D2 by applying ∧I gets code
〈1, pD1q, pD2q, pϕ ∧ ψq〉, where pD1q denotes the code of D1. If D2 results
from D1 by applying ∧E − r, so the root of D1 is labelled ϕ ∧ ψ and the

5.2. GÖDEL’S FIRST INCOMPLETENESS THEOREM 77

root of D2 is labelled ψ, we have pD2q = 〈2, pD1q, pψq〉. If D4 results from
D1, D2, D3 by ∨-elimination, that is: the root of D1 is labelled ϕ ∨ ψ, D2

and D3 have χ at the root, and D4 also has χ at the root, whereby in D2,
all open assumptions ϕ are discharged and in D3 all open assumptions ψ
are discharged, we have pD4q = 〈4, pD1q, pD2q, pD3q, pχq〉.

I hope the process is now clear: the length of pDq is n+2 where n is the
number of branches from the root (in fact, always n ≤ 3), the first element
of pDq is the code of the last rule applied, and the last element of pDq is the
formula which labels the root of D. In this way, we can easily recover the
whole tree D from its code pDq. We can also define a primitive recursive
function OA, which, given pDq, gives a code for the set of undischarged
assumptions of D. Therefore, we can, primitive recursively, check whether
D is in fact a correct proof tree (for example, when introducing ∀uϕ(u) by
∀I from ϕ(v), we need to know that the variable v does not occur in any
undischarged assumption, and so on). The conclusion is that we have a
primitive recursive predicate NDT(x, y): NDT(x, y) says that y is the code
of a formula and x is the code of a correct natural deduction tree with root
labelled by the formula coded by y.

In order that x codes a proof in PA, we need to know that all open
assumptions of the tree coded by x are axioms of PA, or axioms of the
predicate calculus governing the equality sign =: the axioms u = u, u =
v ∧ v = w → u = w and t = s ∧ ϕ[t/u]→ ϕ[s/u] (subject to the well-known
conditions).

Exercise 77 Show that the predicate Ax(x): x is the code of an axiom of
PA or the predicate calculus, is primitive recursive.

Let Prf(x, y) be the predicate: y is the code of a formula, and x is the
code of a correct proof in PA of the formula coded by y:

Prf(x, y)↔ NDT(x, y) ∧ ∀z ∈ OA(x)Ax(z)

Let Prf, NDT and Ax be ∆1-formulas representing the predicates Prf, NDT,
Ax in PA.

The predicate Prf is defined by a course-of-values recursion, and we can
assume that PA proves this course of values recursion for the representing
formula Prf. That is,

PA ` Prf(x, y)↔ C0(x, y) ∨ · · · ∨ C16(x, y)

78 CHAPTER 5. GÖDEL INCOMPLETENESS

(referring to our code book of natural deduction rules), where C0(x, y) is
the formula

x = 〈0, y〉 ∧Ax(y)

C1(x, y) will be the formula

∃abvw < x(y = 〈7̄, v, w〉 ∧ Prf(a, v) ∧ Prf(b, w) ∧ x = 〈1̄, a, b, y〉)

and so on. In some cases, where open assumptions are discharged, we have
to write conditions; e.g., C8 (corresponding to → I) will read:

∃avw < x(x = 〈8̄, a, y〉∧y = 〈9̄, v, w〉∧NDT(a,w)∧∀z ∈ OA(a)(Ax(z)∨z = v))

(slightly abusing notation: “z ∈ OA(a)” means of course the intended for-
malization)

It is now straightforward to see that we have the following proposition:

Proposition 5.3

i) PA ` ϕ⇒ PA ` ∃xPrf(x, pϕq)

ii) PA ` ∀xy(Prf(x, pϕ→ ψq) ∧ Prf(y, pψq)→ Prf(〈7̄, x, y, pψq〉, pψq))

We introduce an abbreviation: �ϕ for ∃xPrf(x, pϕq). Proposition 5.3 now
says:

D1 PA ` ϕ⇒ PA ` �ϕ
D2 PA ` �ϕ ∧�(ϕ→ ψ)→ �ψ

Theorem 5.4 (Gödel’s First Incompleteness Theorem) Apply Lemma 5.1
to the formula ¬∃xPrf(x, v0), to obtain a Π1-sentence G such that

PA ` G↔ ¬�G

Then G is independent of PA.

Proof. Since Prf(x, y) is ∆1, clearly G can be chosen to be Π1. If PA ` G
then by D1, PA ` �G, so PA ` ¬G by the choice of G. So PA is inconsistent,
quod non.

On the other hand, if PA ` ¬G then PA ` �G by the choice of G. Then
�G is true in N , which means that there is a proof of G, i.e. PA ` G, and
again PA is inconsistent.

Remarks.

5.2. GÖDEL’S FIRST INCOMPLETENESS THEOREM 79

i) The sentence G is the famous “Gödel sentence”. Roughly speaking it
says “I am not provable”, and it has therefore been compared with
several liar paradoxes (see the work by Smullyan and Smorynski).

ii) The sentence G is true in N , because if it were false, then ¬G would
be a true Σ1-sentence, hence provable in PA by Σ1-completeness.

iii) In the proof of Theorem 5.4, we have used the reasoning: “if PA ` ϕ
then N |= ϕ” (in fact, we only used this for the Σ1-sentence ¬G). This
is not satisfactory, because we would like to extend Gödel’s method to
consistent extensions of PA, which need not have this property, even
for Σ1-sentences (for example, PA∪ {¬G} is such a theory). A way of
avoiding this reasoning was found by Rosser, a few years after Gödel.
Let ϕ(v0) be the formula

∀x(Prf(x, v0)→ ∃y < xPrf(y, 〈10, v0〉))

Check that ϕ(v0) is equivalent to a Π1-formula! Apply Lemma 5.1 to
ϕ(v0), to obtain a Π1-sentence R such that

PA ` R↔ ∀x(Prf(x, pRq)→ ∃y < xPrf(y, p¬Rq))

We can show that R is independent of PA, just using that PA is con-
sistent and Σ1-complete. Suppose PA ` R. By consistency of PA,
PA 6` ¬R, whence the sentence

∃x(Prf(x, pRq) ∧ ∀y < x¬Prf(y, p¬Rq))

is a true Σ1-sentence, hence by Σ1-completeness provable in PA. But
this sentence is equivalent to ¬R, contradiction. Conversely, if PA `
¬R we have for some n ∈ N that PA ` Prf(n̄, p¬Rq) and PA ` ∀y <
n̄¬Prf(y, pRq), since these are true Σ1-sentences. It follows that PA `
∀x(Prf(x, pRq) → ∃y < xPrf(y, p¬Rq)), that is PA ` R. Again, a
contradiction with the consistency of PA.

iv) As a consequence of the previous item, we can apply Gödel’s method
to finite (consistent) extensions of PA. This can be used to give a for-
mulation of Gödel’s theorem which does not even need the consistency
of PA.

Call a partial order dense if whenever x < y, there is a z with x < z <
y.

80 CHAPTER 5. GÖDEL INCOMPLETENESS

The Lindenbaum algebra of PA is the set of LPA-sentences modulo PA-
provable equivalence. Denote the equivalence class of φ by [φ]. The
Lindenbaum algebra is ordered by: [φ] ≤ [ψ] iff PA ` φ → ψ. With
this ordering, the Lindenbaum algebra of PA is a Boolean algebra,
with least element ⊥ and top element ¬⊥.

We claim that the Lindenbaum algebra of PA is dense. Note that this
certainly holds if PA is inconsistent, because then the algebra has only
one element, and every one-element poset is trivially dense.

Suppose [φ] < [ψ], so PA ` φ→ ψ and PA 6` ψ → φ. Then the theory
T = PA ∪ {ψ,¬φ} is consistent, so we can apply the Gödel method
to it, and find a sentence ρ which is independent of T . Now let χ
be the sentence (ψ ∧ ρ) ∨ φ. We leave it to you to check that indeed
[φ] < [χ] < [ψ]. So, the Lindenbaum algebra is dense.

Now conversely, if the Lindenbaum algebra is dense, we can apply the
denseness property (in the case that PA is consistent) to the inequality
[⊥] < [¬⊥] to find a sentence φ such that [⊥] < [φ] < [¬⊥]; but then
φ is independent of PA. So the denseness of the Lindenbaum algebra
implies (if PA is consistent) Gödel’s theorem.

v) The sentence ¬�⊥ is called the sentence expressing the consistency
of PA, and often written as ConPA. It is an easy consequence of D2
that PA ` �⊥→ �ψ for any ψ, so we have PA ` G→ ConPA. In the
next section, we shall see that in fact, PA ` G ↔ ConPA, from which
it follows that PA 6` ConPA. This is Gödel’s Second Incompleteness
Theorem: PA does not prove its own consistency”.

A number of exercises to finish this section:

Exercise 78 Show that for any formula ϕ(v) with one free variable v, the
set

{n ∈ N |PA ` ϕ[n̄/v]}

is recursively enumerable. Conclude that if a function is numeralwise repre-
sentable in PA, it is recursive, hence Σ1-representable.

Exercise 79 Define a function F : N→ N by:

F (n) = max{µm.N |= θ[n, j0(m), j1(m)] | θ ∈ Θ(n)}+ 1

5.3. GÖDEL’S SECOND INCOMPLETENESS THEOREM 81

where Θ(n) is the set of all ∆0-formulas θ(u, v, w) such that

pθ(u, v, w)q < n and ∃y < nPrf(y, p∀u∃v∃wθ(u, v, w)q)

(and the maximum of the empty set is 0).

i) Show that F is total recursive;

ii) show that F cannot be provably recursive.

Exercise 80 [Tarski’s theorem on the non-definability of truth]. Apply
Lemma 5.1 to show that there is no formula of LPA which defines the set of
true LPA-sentences, i.e. if

A = {n ∈ N |n is the code of a sentence ϕ such that N |= ϕ}

then there is no formula ψ(v) such that for all n ∈ N:

n ∈ A⇔ N |= ψ[n]

5.3 Gödel’s Second Incompleteness Theorem

As we said in the preceding section, Gödel’s Second Incompleteness Theorem
asserts that “PA does not prove its own consistency”. More formally: PA 6`
ConPA (recall that ConPA is the sentence ¬�⊥).

Recall that we had derived (proposition 5.3) the following rules governing
the operation �:

D1 PA ` ϕ ⇒ PA ` �ϕ
D2 PA ` �(ϕ→ ψ) ∧�ϕ → �ψ

Exercise 81 Prove that for any operation �, satisfying D1 anfd D2, one
has:

PA ` �(ϕ ∧ ψ)↔ �ϕ ∧�ψ

Our aim in this section is to prove that we have a third rule:

D3 PA ` �ϕ→ ��ϕ

Let us see that this implies what we want:

Theorem 5.5 For any operation � satisfying D1–D3 and any G such that
PA ` G↔ ¬�G, we have

PA ` G↔ ¬�⊥

82 CHAPTER 5. GÖDEL INCOMPLETENESS

Proof. Since PA ` ⊥ → G, by D1 and D2 we have PA ` �⊥ → �G, so
PA ` G→ ¬�G→ ¬�⊥.

For the converse implication, we have from D2 and the assumption on
G, PA ` �G → �(¬�G); by D3 we have PA ` �G → ��G. Combining
the two, we have PA ` �G → �⊥, so PA ` ¬G → �G → �⊥, whence
PA ` ¬�⊥→ G.

Corollary 5.6 (Gödel’s Second Incompleteness Theorem)

PA 6` ConPA

Proof. Immediate.

The rule D3, which we want to prove, is in fact a consequence of a more
general theorem, which is known as “Formalized Σ1-completeness”. This is
because �ϕ is a Σ1-sentence.

Theorem 5.7 (Formalized Σ1-completeness of PA) For every Σ1-sentence
of PA,

PA ` ϕ→ �ϕ

The rest of this section is devoted to the proof of theorem 5.7. Let us
recall how we proved ordinary Σ1-completeness. We proved that for any ∆0-
formula ϕ(v0, . . . , vk−1) and for every k-tuple of natural numbers n0, . . . , nk−1:

(†) N |= ϕ[n0, . . . , nk−1] ⇒ PA ` ϕ[n0/v0, . . . , nk−1/vk−1]

We follow a similar line in the formalized case. We now assume that LPA

is augmented with function symbols 〈·, . . . , ·〉, lh, (·)i for the manipulation
of sequences. We also take a function symbol T , representing the primi-
tive recursive function n 7→ pnq; and we want function symbols Sf and St
representing the primitive recursive substitution operations on formulas and
terms, respectively:

Sf (y, x) =





pϕ[s0/v0, . . . , sk−1/vk−1]q if y is a code for ϕ,
lh(x) = k, and for each i < k
(x)i is a code for si

0 else

St(y, x) =





pt[s0/v0, . . . , sk−1/vk−1]q if y is a code for t,
lh(x) = k, and for each i < k
(x)i is a code for si

0 else

5.3. GÖDEL’S SECOND INCOMPLETENESS THEOREM 83

As before, we may assume that PA proves the recursions for these functions.
In particular, we may assume that the sentences

T (0) = 〈0〉

T (x+ 1) = 〈3̄, T (x), 〈1〉〉
St(〈3̄, ptq, psq〉, x) = 〈3̄, St(ptq, x), St(psq, x)〉
St(〈4̄, ptq, psq〉, x) = 〈4̄, St(ptq, x), St(psq, x)〉
Sf (〈5̄, ptq, psq〉, x) = 〈5̄, St(ptq, x), St(psq, x)〉

...

are provable in PA. The formalization of statement (†) above is:

Lemma 5.8 For every ∆0-formula ϕ(v0, . . . , vk−1) we have:

PA ` ∀x0 · · · xk−1(ϕ(~x)→ ∃yPrf(y, Sf (pϕq, 〈T (x0), . . . , T (xk−1)〉)))

The proof of Lemma 5.8 goes via the auxiliary lemmas 5.9, 5.10 and 5.11
below.

Lemma 5.9

PA ` ∀xy∃zPrf(z, 〈5̄, T (x+ y), St(pv0 + v1q, 〈T (x), T (y)〉)〉)
PA ` ∀xy∃zPrf(z, 〈5̄, T (x·y), St(pv0·v1q, 〈T (x), T (y)〉)〉)

Proof. Check, that these statements are formalizations of the statements
that PA ` n+m = n+m and PA ` n·m = n·m.

By the recursion equations for St we have that

St(pv0 + v1q, 〈T (x), T (y)〉) = 〈3̄, T (x), T (y)〉

so we must prove

∃zPrf(z, 〈5̄, T (x+ y), 〈3̄, T (x), T (y)〉〉)

which we do by induction on y. For y = 0, T (y) = 〈0〉 and we observe that

〈5̄, T (x), 〈3̄, T (x), 〈0〉〉〉 = Sf (pv0 = v0 + 0q, 〈T (x)〉)

Since ∀v0(v0 = v0 + 0) is the universal closure of a PA-axiom, we have by
one step (∀E),

∃zPrf(z, Sf (pv0 = v0 + 0q, 〈T (x)〉))

For the induction step, assume

∃zPrf(z, 〈5̄, T (x+ y), 〈3̄, T (x), T (y)〉〉)

84 CHAPTER 5. GÖDEL INCOMPLETENESS

Then by applying a substitution axiom for equality, also

∃zPrf(z, 〈5̄, 〈3̄, T (x+ y), 〈1〉〉, 〈3̄, 〈3̄, T (x), T (y)〉, 〈1〉〉〉)

By an application of the axiom ∀uv((u+ v) + 1 = u+ (v + 1)) we have

∃zPrf(z, 〈5̄, 〈3̄, 〈3̄, T (x), T (y)〉, 〈1〉〉, 〈3̄, T (x), 〈3̄, T (y), 〈1〉〉〉〉)

But 〈3̄, T (y), 〈1〉〉 = T (y + 1) by the recursion equations for T , which also
give 〈3̄, T (x + y), 〈1〉〉 = T (x + (y + 1)) = T ((x + y) + 1), so by applying
transitivity of equality we get

∃zPrf(z, 〈5̄, T (x+ (y + 1)), 〈3̄, T (x), T (y + 1)〉〉)

as desired.
The proof of the second statement is similar (and uses the first!).

The proof of lemma 5.9 was, of course, quite unreadable, but the point is
that one has a precise idea of what one is doing. One cannot write, for
example, that 〈3̄, T (x), T (y)〉 = pT (x) + T (y)q; but, T (x) and T (y) are, “in
PA”, codes for terms x̃ and ỹ, so that “〈3̄, T (x), T (y)〉 = px̃+ ỹq” but again
this is imprecise, because our coding acts on real terms only. The following
notational convention gives a precise way of getting some clarification: for
any formula ϕ(v0, . . . , vk−1), we let

pϕ(x̃0, . . . , x̃k−1)q

be an abbreviation for Sf (pϕq, 〈T (x0), . . . , T (xk−1)〉). We write

�ϕ(x̃0, . . . , x̃k−1)

for ∃zPrf(z, pϕ(x̃0, . . . , x̃k−1)q). With these conventions, Lemma 5.9 be-
comes:

PA ` ∀xy � (x̃+ y = x̃+ ỹ)
PA ` ∀xy � (x̃·y = x̃·ỹ)

It is now straightforward (by induction on the term) to show that for any
term t(v0, . . . , vk−1) we have:

PA ` ∀x0 · · · xk−1 � ˜t(x0, . . . , xk−1) = t(x̃0, . . . , x̃k−1)

Exercise 82 Carry out this proof.

The following lemma is an immediate consequence.

5.3. GÖDEL’S SECOND INCOMPLETENESS THEOREM 85

Lemma 5.10 For terms t(v0, . . . , vk−1) and s(v0, . . . , vk−1) we have

PA ` ∀x0 · · · xk−1(t(~x) = s(~x)→ �(t(x̃0, . . . , x̃k−1) = s(x̃0, . . . , x̃k−1)))
PA ` ∀x0 · · · xk−1(t(~x) < s(~x)→ �(t(x̃0, . . . , x̃k−1) < s(x̃0, . . . , x̃k−1)))

We are now ready for the final induction.

Lemma 5.11 Let Φ be the set of formulas ϕ(v0, . . . , vk−1) for which

PA ` ∀x0 · · · xk−1(ϕ(x0, . . . , xk−1)→ �ϕ(x̃0, . . . , x̃k−1))

Then Φ contains all formulas of form t = s and t < s, and Φ is closed under
conjunction, disjunction and bounded quantification.

Proof. That Φ contains all formulas t = s and t < s, is lemma 5.10. The
induction steps for ∧ and ∨ are easy.

Now suppose ϕ(v0, . . . , vk−1) has the form ∃vk < v0ψ(v0, . . . , vk), for
ψ ∈ Φ. Then ∀x0 · · · xk−1(ϕ(~x) → �ϕ(x̃0, . . . , x̃k−1)) is equivalent (in PA)
to

∀x0 · · · xk(xk < x0 ∧ ψ(x0, . . . , xk)→ �(∃vk < x̃0 ψ(x̃0, . . . , x̃k−1, vk)))

Since ψ ∈ Φ, vk < v0 ∈ Φ and by the induction step for ∧, we have

PA ` ∀x0 · · · xk(xk < x0 ∧ ψ(x0, . . . , xk)→ �(x̃k < x̃0 ∧ ψ(x̃0, . . . , x̃k)))

so the desired conclusion follows by an application of ∃I.
Now suppose ϕ is ∀vk < v0ψ(v0, . . . , vk) with ψ ∈ Φ. We prove the implica-
tion:

∀vk < x0ψ(x0, . . . , xk−1, vk)→ �(∀vk < x̃0ψ(x̃0, . . . , x̃k−1, vk))

by induction on x0. For x0 it holds trivially; for the induction step we
observe that

∀vk < x0 + 1ψ ↔ ∀vk < x0ψ ∧ ψ(x0, . . . , xk−1, x0)

so that

∀vk < v0ψ → �(∀vk < x̃0ψ(x̃0, . . . , x̃k−1, vk) ∧ ψ(x̃0, . . . , x̃k−1, x̃0))

We also have ∀x0 � (x̃0 + 1 = x̃0 + 1) and

∀x0 � (∀vk(vk < x̃0 + 1↔ vk < x̃0 ∨ vk = x̃0))

so we obtain the desired implication

∀vk < x0 + 1ψ → �∀vk < x̃0ψ(x̃0, . . . , x̃k−1, vk)

86 CHAPTER 5. GÖDEL INCOMPLETENESS

Exercise 83 i) Show that lemma 5.11 is sufficient to prove Lemma 5.8.
That is, show that the set Φ contains all ∆0-formulas;

ii) show that, in turn, Lemma 5.8 implies Theorem 5.7.

Remark The proof of Gödel’s Incompleteness Theorems can be carried
out for any recursively enumerable extension of PA. By this we mean: a
theory, formulated in a language which is coded in a recursive way, and
with axioms whose codes form an r.e. set. In fact, we don’t need the full
force of PA here. Any recursively enumerable theory T which has enough
arithmetic to represent (and prove the recursion equations of) the necessary
primitive recursive functions, can formulate its own consistency ConT , and
if T is consistent, then T 6` ConT .

An important example is ZFC: set theory with the axiom of Choice. Here
is an example of an application of Gödel’s Second Incompleteness Theorem
to ZFC. A cardinal number κ is called strongly inaccessible if κ > ℵ0, κ is
regular, and ∀λ < κ(2λ < κ). One can prove, in ZFC, that if κ is strongly
inaccessible, then Vκ is a model of ZFC. Therefore, in ZFC, if κ is strongly
inaccessible, ZFC is consistent. By Gödel’s Second Incompleteness Theorem,
ZFC 6` I where I is the statement: there is a strongly inaccessible cardinal.
But one may wish to know whether ZFC+I is consistent. The question
becomes: assuming ConZFC, can we prove ConZFC+I? Again no, for we
have seen that ZFC + I ` ConZFC, so if ZFC + ConZFC ` ConZFC+I, then
ZFC + I ` ConZFC+I which contradicts the Second Incompleteness Theorem,
applied to the theory ZFC+I.

Another application of Theorem 5.6 to an extension of PA is Löb’s The-
orem. Löb’s theorem says that although the formula �ϕ→ ϕ is true in N ,
it is provable in PA only if ϕ is provable in PA:

Theorem 5.12 (Löb’s Theorem) If PA ` �ϕ→ ϕ, then PA ` ϕ.

Proof. If PA 6` ϕ then PA + ¬ϕ is consistent, so by the Second Incom-
pleteness Theorem, applied to PA+¬ϕ, PA+¬ϕ 6` ConPA+¬ϕ. But now, in
PA, ConPA+¬ϕ is equivalent to ¬�ϕ. So we have PA + ¬ϕ 6` ¬�ϕ, whence
PA 6` �ϕ→ ϕ.

Exercise 84 Prove Löb’s Theorem directly from Lemma 5.1, by taking a
sentence ψ such that

PA ` ψ ↔ �(ψ → ϕ)

Use the properties D1–D3.

5.3. GÖDEL’S SECOND INCOMPLETENESS THEOREM 87

Exercise 85 As before, but now take ψ satisfying

PA ` ψ ↔ (�ψ → ϕ)

88 CHAPTER 5. GÖDEL INCOMPLETENESS

Chapter 6

Introduction to Models of
PA

6.1 The theory PA− and end-extensions

From now on, we take the symbol < as part of the language LPA, so every
LPA-structureM carries a binary relation <M.

The symbol N will always denote the standard model.

We shall find it useful to consider some LPA-structures that are not mod-
els of PA, but of a weaker theory PA−, which we therefore now introduce.

Definition 6.1 PA− is the {+, ·;<; 0, 1}-theory with axioms stating that:

1) + and · are commutative and associative and · distributes over +;

2) ∀x(x·0 = 0 ∧ x·1 = x ∧ x+ 0 = x)

3) < is a linear order satisfying ∀x(0 ≤ x) and ∀x(0 < x↔ 1 ≤ x)

4) ∀xyz(x < y → x+ z < y + z)

5) ∀xyz(0 < z ∧ x < y → x·z < y·z)

6) ∀xy(x < y → ∃z(x+ z = y))

So, every model of PA− is a linear order. IfM1 andM2 are LPA-structures
and M1 is a substructure of M2, we say that M1 is an initial segment of
M2, or M2 is an end-extension of M1, if for all m ∈ M2 and n ∈ M1, if
M2 |= m < n then m ∈ M1. Notation: M1 ⊆eM2 (see also definition 6.7
below).

89

90 CHAPTER 6. INTRODUCTION TO MODELS OF PA

If M is any model of PA−, the function n 7→ nM : N → M is an
embedding of LPA-structures.

Exercise 86 Prove this, and prove also that this mapping embeds N as
initial segment inM.

If Γ is a set of LPA-formulas, and M1 an LPA-substructure of M2, we say
that M1 is a Γ-elementary substructure of M2, notation: M1 ≺Γ M2, if
for every ϕ(v1, . . . , vk) ∈ Γ and all k-tuples m1, . . . ,mk ∈M1,

M1 |= ϕ[m1, . . . ,mk]⇔M2 |= ϕ[m1, . . . ,mk]

We also say that M2 is a Γ-elementary extension of M1. If Γ is the set
of all LPA-formulas, we drop Γ in the notation and speak of “elementary
substructure/extension”.

Exercise 87 Let M1 ⊆e M2 and M1, M2 models of PA−. Show that
M1 ≺∆0 M2.

A useful criterion for testing whether an inclusion of models of PA is an
elementary extension, is the ‘Tarski-Vaught test’, given below as an exercise.

Exercise 88 [Tarski-Vaught test] Suppose M1 is an LPA-substructure of
M2. Then it is an elementary substructure if and only if for every formula
ϕ(x1, . . . , xk, y) and every k-tuple a1, . . . , ak of elements ofM1, the following
holds: if M2 |= ∃yϕ(a1, . . . , ak, y) then there exists a c ∈ M1 such that
M2 |= ϕ(a1, . . . , ak, c).

Exercise 89 Show that for any inclusionM1 ⊆M2 of models of PA, that
M1 ≺∆0 M2 implies M1 ≺∆1 M2.

Exercise 90 Show that PA− proves all true Σ1-sentences.

Exercise 91 Show that for LPA-structuresM1 andM2: ifM1 ⊆eM2 and
M2 is a model of PA−, thenM1 is a model of PA−.

6.2. CUTS, OVERSPILL AND UNDERSPILL 91

6.2 Cuts, Overspill and Underspill

Let M be a model of PA. A cut of M is a nonempty subset I ⊆ M such
that x < y and y ∈ I implies x ∈ I, and x ∈ I implies x+ 1 ∈ I. A cut I is
proper if I 6=M. The following easy lemma is of fundamental importance
in the study of nonstandard models of PA.

Lemma 6.2 Let M be a model of PA, and I ⊂ M a proper cut. Then
I is not definable in parameters from M, that is: there is no LPA-formula
ϕ(v1, . . . , vk+1) such that for some m1, . . . ,mk ∈M:

I = {m ∈M|M |= ϕ[m1, . . . ,mk,m]}

Proof. Since I is nonempty, 0 ∈ I. Moreover, m ∈ I implies m + 1 ∈ I.
Were I definable by ϕ in parameters m1, . . . ,mk as in the Lemma, then
sinceM satisfies induction, we would have I =M.

Corollary 6.3 (Overspill Lemma) Let M be a model of PA and I ⊂M
a proper cut. If m1, . . . ,mk ∈M andM |= ϕ[m1, . . . ,mk, b] for every b ∈ I,
then there is c ∈M \ I such that

M |= ∀y ≤ cϕ[m1, . . . ,mk, y]

Proof. Certainly, for all c ∈ I we have M |= ∀y ≤ cϕ[m1, . . . ,mk, y]; so if
such c ∈M \ I would not exist, we would have

I = {c |M |= ∀y ≤ cϕ[m1, . . . ,mk, y]}

contradicting the non-definability of I of Lemma 6.2.

Corollary 6.4 Again let M be a model of PA and I ⊂ M a proper cut.
Suppose that for ϕ, m1, . . . ,mk ∈ M we have: for all x ∈ I there is y ∈ I
with

M |= y ≥ x ∧ ϕ[m1, . . . ,mk, y]

Then for each c ∈M \ I there is b ∈M \ I with

M |= b < c ∧ ϕ[m1, . . . ,mk, b]

Proof. Apply Corollary 6.3 to the formula

∃y(x ≤ y < c ∧ ϕ[m1, . . . ,mk, y])

92 CHAPTER 6. INTRODUCTION TO MODELS OF PA

Corollary 6.5 (Underspill Lemma) Let M a model of PA and I ⊂ M
a proper cut.

i) If for all c ∈ M \ I, M |= ϕ[m1, . . . ,mk, c], then there is b ∈ I such
that M |= ∀x ≥ bϕ[m1, . . . ,mk, x];

ii) if for all c ∈M\I there is x ∈M\I withM |= x < c∧ϕ[m1, . . . ,mk, x],
then for all b ∈ I there is y ∈ I with M |= b < y ∧ ϕ[m1, . . . ,mk, y].

Exercise 92 Prove Corollary 6.5.

6.3 The ordered Structure of Models of PA

We study now the order-type of models of PA; that is, their {<}-reduct.

If A and B are two linear orders, we order the set A×B lexicographically,
that is: (a, b) < (a′, b′) iff a < a′ or a = a′ ∧ b < b′. A × B is then also a
linear order, and the picture is: replace every a ∈ A by a copy of B. By
A+B we mean the ordered set which is the disjoint union of A and B, and
in which every element of A is below every element of B.

Theorem 6.6 Let M be a nonstandard model of PA. Then as ordered set,
M∼= N+A×Z where A is a dense, linear order without end-points. There-
fore, if M is countable, M ∼= N + Q× Z

Proof. M has N as initial segment, so M ∼= N +X for some linear order
X. For nonstandard a ∈M, let Z(a) the set of elements ofM which differ
from a by a standard element: a′ ∈ Z(a) iff for some n ∈ N, M |= a′ + n =
a ∨ a + n = a′. If a, b ∈ M are nonstandard elements and a 6∈ Z(b), then
Z(a) ∩ Z(b) = ∅, and if moreover a < b, we have x < y for every x ∈ Z(a)
and y ∈ Z(b). Since clearly, every Z(a) is order-isomorphic to Z, we have
M ∼= N + A × Z, where A is the collection of all sets Z(a), ordered by:
Z(a) < Z(b) iff a < b.

Now A is dense, for given a, b nonstandard, if Z(a) < Z(b) then Z(a) <
Z([a+b2]) < Z(b) (check!).

A has no endpoints: for every nonstandard a we have Z([a2]) < Z(a) <
Z(a+ a) (check this too!).

The final statement of the theorem follows from the well-known fact that
every countable dense linear order without end-points is order-isomorphic
to Q.

We shall now see some examples of proper cuts of a nonstandard modelM.

6.3. THE ORDERED STRUCTURE OF MODELS OF PA 93

Definition 6.7 An initial segment of an LPA-structureM is a cut which is
closed under the operations +, · inM (such cuts are then LPA-substructures
ofM, and hence models of PA−, ifM is).

Examples.

1) Let M be a nonstandard model of PA, and a ∈ M nonstandard. By
aN we mean the set

{m ∈M| for some n ∈ N,M |= m < an}

Convince yourself that aN is closed under the operations +, · of M.
Moreover, a ∈ aN. It is easy to see, that aN is the smallest initial
segment of M that contains a. It is also easy to see, that aN 6= M,
for aa 6∈ aN. By the same token, aN is not a model of PA.

2) Let a ∈M be nonstandard as before. By a1/N we mean the set

{m ∈M| for all n ∈ N, M |= mn < a}

Again, a1/N is closed under +, · and is a proper initial segment since
a 6∈ a1/N. Since N ⊆ a1/N, for every n ∈ N we have M |= nn < a;
by the Overspill Lemma, there is a nonstandard element c ∈ M such
that M |= cc < a. Clearly then, c ∈ a1/N \ N.

The following exercises both require use of the Overspill Lemma.

Exercise 93 Show that for a ∈M nonstandard, m ∈M\ aN if and only if
ac < m for some nonstandard c ∈M.

Exercise 94 Let a ∈M be nonstandard.

a) Show that for each n ∈ N there is b ∈ M such that M |= bn ≤ a <
(b+ 1)n+1. Show that for each such b,M |= bb > a;

b) show that a1/N is not a model of PA, by showing that there is c ∈ a1/N

withM |= cc > a.

The following exercise explains the name “cut”.

94 CHAPTER 6. INTRODUCTION TO MODELS OF PA

Exercise 95 Let M be a countable nonstandard model of PA and I ⊆M
a proper cut which is not the standard cut N. Suppose that I is closed under
+. Then under the identification M ∼= N + Q × Z of 6.6, I corresponds to
N +A×Z, where A ⊂ Q is a Dedekind cut: a set of form {q ∈ Q | q < r} for
some real number r.

Exercise 96 LetM be a nonstandard model of PA; by theorem 6.6, write
M∼= N +A× Z as ordered structures, with A a dense linear order without
end-points. Show that A cannot be order-isomorphic to the real line R [Hint:
let m ∈M be nonstandard and consider the set {Z(m·n̄) |n ∈ N} as subset
of A].

Theorem 6.8 Let M be a countable, nonstandard model of PA. Then M
has 2ℵ0 proper cuts which are closed under + and ·.

Proof. Define an equivalence relation on the set of nonstandard elements
of M by: a ∼ b iff for some n ∈ N,

a ≤ b < an or b ≤ a < bn

Clearly, this is an equivalence relation, and the set A of ∼-equivalence classes
ofM\N is linearly ordered by [a] <A [b] iff a < b inM. Suppose [a] <A [b].
Then an < b for each n ∈ N. So for each n ∈ N, there is x with an < x <
xn+2 < b; that is, the formula

∃x(ay < x < xy+2 < b)

is satisfied (in M) by all standard elements y. By the Overspill Lemma,
there is a nonstandard c such that for some x ∈M,

ac < x < xc < b

It follows that [a] <A [x] <A [b]. So the ordering (A,<A) is dense, and by a
similar overspill argument one deduces that it has no end points.

Therefore, since M was countable, there is an isomorphism (A,<A) ∼=
(Q, <) and hence a surjective, ≤-preserving map

M\ N→ (Q, <)

The inverse image of each Dedekind cut in Q defines a proper cut in M,
which is closed under + and ·. Since there are 2ℵ0 Dedekind cuts in Q, the
theorem is proved.

6.4. MRDP THEOREM AND GAIFMAN’S SPLITTING THEOREM 95

6.4 MRDP Theorem and Gaifman’s Splitting The-

orem

Initial segments are one extreme of inclusions of models; the other extreme
is the notion of a cofinal submodel. If M1 ⊆ M2 are models of PA−, we
say that M1 is cofinal in M2, or M2 is a cofinal extension of M1, if for
every m ∈ M2 there is m′ ∈ M1 such that m < m′ in M2. Notation:
M1 ⊆cf M2.

We extend the notions of Σ1 and Π1-formulas to arbitrary n, by putting
inductively: a formula is Σn+1 iff it is of form ∃~yψ with ψ ∈ Πn; a formula
is Πn+1 iff it is of form ∀~yψ with ψ ∈ Σn. Clearly, every formula is (up to
equivalence in predicate logic) Σn for some n. In the definition of Σn and Πn

we allow the string ~y to be empty, so that every Σn-formula is automatically
Σn+1 and Πn+1. A formula which is both Σn and Πn is called a ∆n-formula.

First an easy lemma which gives a simplified condition for when an
extension is Σn-elementary.

Lemma 6.9 Let M1 ⊆ M2 be an inclusion of LPA-structures. If n > 0
and for each Σn-formula θ(~x) and every tuple ~a of elements of M1 we have

M2 |= θ[~a]⇒M1 |= θ[~a]

then M1 ≺Σn M2.

Proof. For the converse direction, let θ(~x) ≡ ∃~yϕ(~x, ~y) (with ϕ ∈ Πn−1)
and supposeM1 |= θ[~a] soM1 |= ϕ[~a,~b] for some tuple ~b of elements ofM1.
Since ¬ϕ is trivially Σn, we cannot have M2 |= ¬ϕ[~a,~b]; so M2 |= ϕ[~a,~b]
henceM2 |= θ[~a].

Theorem 6.10 Let M1 ⊆cf M2 be a cofinal extension of models of PA−

such that M1 ≺∆0 M2. If M1 is a model of PA then M1 ≺M2.

Proof. First we prove, using the criterion of lemma 6.9, thatM1 ≺Σ2 M2;
and then that for n ≥ 2, ifM1 ≺Σn M2 thenM1 ≺Σn+1 M2.

Let θ(~x) be a Σ2-formula, θ(~x) ≡ ∃~y∀~zψ(~x, ~y, ~z) with ψ ∈ ∆0, and
suppose for ~a ∈ M1 that M2 |= θ[~a], so there is ~b = b1, . . . , bk in M2

such that M2 |= ∀~zψ[~a,~b, ~z]. Now M1 ⊆cf M2, so there is b ∈ M1 with
b1, . . . , bk < b; thenM2 |= ∃~y < b∀~zψ[~a, ~y, ~z]. Then certainly for all c ∈M1

we have
M2 |= ∃~y < b∀~z < cψ[~a, ~y, ~z]

This is a ∆0-formula, so because M1 ≺∆0 M2 we have

M1 |= ∀w∃~y < b∀~z < wψ[~a, ~y, ~z]

96 CHAPTER 6. INTRODUCTION TO MODELS OF PA

Now we use the assumption thatM1 is a model of PA and satisfies therefore
the Collection Principle: it follows, that

M1 |= ∃~y < b∀~zψ[~a, ~y, ~z]

(since its negation ∀~y < b∃~z¬ψ implies, by Collection, ∃w∀~y < b∃~z < w¬ψ)
In particular, M1 |= ∃~y∀~zψ[~a, ~y, ~z]. By lemma 6.9 we may conclude that
M1 ≺Σ2 M2.

For the inductive step, now assume M1 ≺Σn M2 for n ≥ 2. Then since
M1 is a model of PA and M1 ≺Σ2 M2, the pairing function is a bijection
from M2

2 to M2 (because this is expressed by a Π2-formula which is true
in M1). This has for effect that we can contract strings of quantifiers into
single quantifiers, so for a Πn+1-formula ψ(~x) we may assume it has the form
ψ ≡ ∀y∃zϕ(~x, y, z) with ϕ ∈ Πn−1.

Suppose for ~a ∈ M1 that M1 |= ψ[~a]. In order to show M2 |= ψ[~a], we
show that for each b ∈ M1, M2 |= ∀y < b∃zϕ[~a, y, z], which suffices since
M1 ⊆cf M2.

Recall Theorem 4.9; since M1 |= ∀y∃zϕ and M1 is a model of PA, by
the induction axioms of PA we have

M1 |= ∃a,m∀y < b∀z(z = (a,m)y → ϕ[~a, y, z])

But this is Σn (check!), so

M2 |= ∃a,m∀y < b∀z(z = (a,m)y → ϕ[~a, y, z])

Since certainlyM2 |= ∀a,m∀y∃z(z = (a,m)y) (because this is a Π2-formula),
we have that M2 |= ∀y < b∃zϕ[~a, y, z], as desired.

We have proved: M1 |= ψ[~a] ⇒ M2 |= ψ[~a] for every Πn+1-formula
ψ(~x) and every tuple ~a from M1; so M2 |= ψ[~a] ⇒ M1 |= ψ[~a] for every
Σn+1-formula ψ(~x) and every tuple ~a fromM1; by lemma 6.9, we are done.

The following result we need, although very easy to state, is quite deep, and
we won’t prove it. It is the famous Matiyasevich-Robinson-Davis-Putnam
Theorem, which was used to show that Hilbert’s 10th Problem cannot be
solved (there is no algorithm which decides for an arbitrary polynomial P (~x)
with integer coefficients and an arbitrary number of unknowns, whether the
equation P (~x) = 0 has a solution in the integers).

Theorem 6.11 (MRDP Theorem) For every Σ1-formula ϕ(~x) there is
a formula ψ(~x) of form ∃~yχ(~x, ~y) with χ quantifier-free, such that

PA ` ∀~x(ϕ(~x)↔ ψ(~x))

6.4. MRDP THEOREM AND GAIFMAN’S SPLITTING THEOREM 97

The MRDP Theorem means we can eliminate bounded quantifiers from
Σ1-formulas. The following exercise gives its relevance to Hilbert’s 10th
Problem.

Exercise 97 Show that for every quantifier-free LPA-formula ϕ(y, ~x) there
are polynomials P (y, ~x) and Q(y, ~x) such that for all tuples ~n of natural
numbers: N |= ∃yϕ[y, ~n] if and only if the equation P (y, ~n) = Q(y, ~n) has a
solution in N.

Corollary 6.12 Any inclusion between models of PA is ∆0-elementary.

Proof. Let θ(~x) be ∆0. Since both θ and ¬θ are Σ1, by the MRDP Theorem
there are quantifier-free formulas ϕ and ψ such that

PA ` ∀~x(θ(~x)↔ ∃~yϕ(~x, ~y))
PA ` ∀~x(¬θ(~x)↔ ∃~zψ(~x, ~z))

Now let M1 ⊆M2 be an inclusion of models of PA. If, for ~a ∈ M1, M1 |=
θ[~a] then for certain ~b ∈ M1, M1 |= ϕ[~a,~b]. Since ϕ is quantifier-free,
M2 |= ϕ[~a,~b] and soM2 |= θ[~a], sinceM2 is a model of PA. The argument
in the other direction uses the equivalence for ¬θ, and is the same.

Theorem 6.13 (Gaifman’s Splitting Theorem) Let M1 ⊆ M2 be an
inclusion of models of PA. Then there is a unique model K with M1 ⊆cf

K ⊆eM2. Moreover, M1 ≺ K, so K is a model of PA too.

Proof. Clearly, there is at most one K withM1 ⊆cf K ⊆eM2; we have to
take

K = {m ∈M2 | for some n ∈M1,m < n}

Then K is a LPA-substructure of M2, as well as an initial segment of it, so
K is a model of PA− and K ≺∆0 M2. SinceM1 ≺∆0 M2 by Corollary 6.12,
also M1 ≺∆0 K (check this!). Theorem 6.10 now gives M1 ≺ K.

Corollary 6.14 Every nonstandard model of PA has proper elementary co-
final extensions.

Proof. Let M be a nonstandard model of PA. Let L′ be LPA augmented
with constants m for every m ∈M, as well as a new constant c. Let b ∈M
be nonstandard and consider the theory

Th(M) ∪ {c 6= m |m ∈M} ∪ {c < b}

By compactness, this theory has a model M′ which is an elementary ex-
tension of M; applying theorem 6.13 to the inclusion M ⊆ M′ gives
M ⊆cf K ⊆e M

′ with M ≺ K. Moreover, c ∈ K \M, so the extension is
proper.

98 CHAPTER 6. INTRODUCTION TO MODELS OF PA

6.5 Prime Models and Elementary End-extensions

In this section we shall ultimately see that every model M of PA has a
proper elementary end-extension. For countable M, this is a relatively easy
Omitting Types argument, given below; but the general case needs a more
sophisticated approach. We shall review the theory of prime models of
complete theories extending PA, and then, by a rather tricky argument,
find a proper elementary end-extension of any given modelM as a particular
prime model. First, let us do the countable case. From now on, LPA(M)
always denotes the language LPA augmented with constants from the model
M. Let c be a new constant, and consider, in the language LPA(M) ∪ {c},
the theory TM(c):

TM(c) = {θ ∈ LPA(M) |M |= θ} ∪ {c > m |m ∈M}

For every a ∈M, let Σa(x) be the type

Σa(x) = {x < a} ∪ {x 6= b | b ∈M}

Every model of TM(c) is a proper elementary extension of M, and it is an
end-extension if and only if it omits each Σa(x). Since M is countable, we
may, by the Extended Omitting Types Theorem, conclude that there is such
a model, provided we can show that TM(c) locally omits each Σa(x).

Suppose that there is an LPA(M)-formula ϕ(u, v) such that:

(1) TM(c) ` ϕ(u, c)→ u < a
(2) For all b ∈M : TM(c) ` ϕ(u, c)→ u 6= b

By definition of TM(c), (1) implies that there is n1 ∈M such that

(3) M |= ∀x > n1∀u(ϕ(u, x)→ u < a))

And similarly (2) implies that for every b ∈ M there is nb ∈ M such that
M |= ∀x > nb∀u(ϕ(u, x)→ u 6= b)). By induction in M, it follows that

(4) M |= ∀z∃y∀x > y∀u(ϕ(u, x)→ u > z))

If n2 is such that M |= ∀x > n2∀u(ϕ(u, x) → u > a)), then for n =
max(n1, n2) we have

M |= ∀x > n∀u¬ϕ(u, x)

and therefore, TM(c) ` ∀u¬ϕ(u, c). So we see that our assumption leads
to the conclusion that ϕ(u, c) is inconsistent with TM(c), which therefore
locally omits Σa(x).

Since the Omitting Types theorem is false for uncountable languages and
for uncountably many types (see, e.g., Chang & Keisler), the general case
turns out to be more complicated.

6.5. PRIME MODELS AND ELEMENTARY END-EXTENSIONS 99

6.5.1 Prime Models

Let M be a model of PA and A ⊆ M. By K(M;A) we denote the set of
elements of M which are definable over A. That is, those elements a for
which there is a formula θa(x, u1, . . . , un) of LPA and elements a1, . . . , an ∈ A
such that

M |= ∀x(θa(x, a1, . . . , an)↔ x = a)

Let LPA(A) the language with constants from A added, and Th(M)A the
LPA(A)-theory which is true inM.

Theorem 6.15

i) K(M;A) is an LPA(A)-substructure of M, and A ⊆ LPA(A) ≺M as
LPA(A)-structures;

ii) For every model M′ of Th(M)A there is a unique LPA(A)-elementary
embedding from K(M;A) into M′;

iii) K(M;A) has no proper LPA(A)-elementary substructures and no non-
trivial LPA(A)-automorphisms.

Proof. i) Certainly A ⊆ K(M;A) since every a ∈ A is defined over A by
the formula x = a. If a and b are defined by LPA(A)-formulas θa(x) and
θb(x) respectively, then a+ b is defined by ∃zw(θa(z) ∧ θb(w) ∧ x = z + w);
similarly a·b is defined over A. So K(M;A) is an LPA(A)-substructure of
M. To see that K(M;A) ≺ M we employ the Tarski-Vaught test. Let
∃xϕ be an LPA(A)-sentence which is true inM. SinceM satisfies the least
number principle, we have

M |= ∃x(ϕ(x) ∧ ∀y < x¬ϕ(y))

The formula ϕ(x)∧∀y < x¬ϕ(y) now defines an element of K(M;A) which
satisfies ϕ, so K(M;A) |= ∃xϕ

ii) For every a ∈ K(M;A) let θa(x) be an LPA(A)-formula defining a.
For a model M′ of Th(M)A, send a to the unique element a′ of M′ such
that M′ |= θa(a

′). This defines a mapping h : K(M;A) → M′. This does
not depend on the choices for θa, because if a is also defined by ζa, then
M and M′ satisfy the formula ∀x(θa(x) ↔ ζa(x)). One sees that h is an
embedding of LPA(A)-structures, and the proof that it is elementary, is by
a similar application of the Tarski-Vaught test as in i). Finally, h must be
unique with these properties, since h(a) must satisfy θa(x).

100 CHAPTER 6. INTRODUCTION TO MODELS OF PA

iii) Since every LPA(A)-automorphism ofK(M;A) is an LPA(A)-elementary
embedding, there can be at most one such by ii); so the identity function is
the only one.

If M′ ≺ K(M;A) is a proper LPA(A)-elementary substructure, by ii)
there is a unique LPA(A)-elementary embedding h : K(M;A)→M′. Com-
posing with the identity gives an elementary embedding of K(M;A) into
itself. By ii), there is only one such, which is the identity. But this cannot
factor through a proper subset, of course.

From the proof of theorem 6.15 we see that if M′ is a model of Th(M)A
and A′ ⊆ M′ is the set of interpretations of the constants from A, then
the unique h : K(M;A) → M′ takes values in K(M′;A′). By symmetry,
we must have that the models K(M;A) and K(M′;A′) are isomorphic.
Therefore, the model K(M;A) is determined by the theory Th(M)A, and
does not depend on M or A.

If A = ∅, we write K(M) for K(M;A). In view of the remark above,
for every consistent, complete LPA-theory T extending PA we have a prime
model KT which we can take to be K(M) for any modelM of T .

Exercise 98 This exercise recalls some notions from Model Theory. Given
a complete theory T in a countable language L, we say that an L-formula
ϕ(x1, . . . , xn) is complete in T if it is consistent with T and for any other
L-formula ψ(x1, . . . , xn), either T ` ∀x1 · · · xn(ϕ(~x)→ ψ(~x)) or
T ` ∀x1 · · · xn(ϕ(~x) → ¬ψ(~x)) (Equivalently, T ∪ {ϕ(c1, . . . , cn)} is a com-
plete L∪{c1, . . . , cn}-theory, where c1, . . . , cn are new constants). The theory
T is called atomic if for every L-formula ϕ(~x) which is consistent with T ,
there is a complete formula ψ(~x) such that T ` ∀~x(ψ(~x)→ ϕ(~x)).

Show that every complete extension of PA is atomic.

6.5.2 Conservative Extensions and MacDowell-Specker The-
orem

The MacDowell-Specker Theorem asserts what we announced as our main
result for this section: every model of PA has a proper elementary end-
extension. The way we shall prove it, it comes out as a corollary of another
theorem.

If M1 ⊆ M2 is an inclusion of models of PA, we say that M2 is a
conservative extension of M1, if for every subset X of M2, if X is defin-
able in M2 in parameters from M2 (that is: there is θ(x, u1, . . . , un) and
a1, . . . , a2 ∈ M2 such that X = {m ∈ M2 |M2 |= θ(x, a1, . . . , an)}) then
X ∩M1 is definable inM1 in parameters fromM1.

6.5. PRIME MODELS AND ELEMENTARY END-EXTENSIONS 101

The theorem we shall prove, is:

Theorem 6.16 Every model of PA has a proper elementary conservative
extension.

Let us see that this implies what we want:

Lemma 6.17 Every conservative extension is an end-extension.

Proof. Let M1 ⊆ M2 a conservative extension; let a ∈ M1, b ∈ M2 and
suppose b < a. The set {m ∈ M2 |m ≤ b} is clearly definable in M2 with
parameter b, so {m ∈M1 |m ≤ b} is definable in parameters fromM1, say

{m ∈M1 |m ≤ b} = {m ∈M1 |M1 |= θ(m,a1, . . . , an)}

Since a ∈ M1 and b < a we have M1 |= ∀x(θ(x, a1, . . . , an) → x ≤ a). By
the least number principle inM1, there is a least a′ ∈M1 such that

M1 |= ∀x(θ(x, a1, . . . , an)→ x ≤ a′)

It follows thatM1 |= θ(a′, a1, . . . , an), so a′ ≤ b. But if a′ < b then a′+1 ≤ b
whenceM1 |= θ(a′+1, a1, . . . , an), but of courseM1 6|= a′+1 ≤ a′. Therefore
we must have a′ = b, so b ∈M1, as desired.

Hence, for the record:

Corollary 6.18 (MacDowell-Specker) Every model of PA has a proper
elementary end-extension.

We now embark on the proof of theorem 6.16. We introduce the abbreviation
Qxϕ(x) for ∀y∃x(x > y∧ϕ(x)) (“there exist unboundedly many x satisfying
ϕ(x)”).

Lemma 6.19 LetM be a model of PA, ϕ(x) an LPA(M)-formula such that
M |= Qxϕ(x), and θ(x, y) an arbitrary LPA(M)-formula. Then there is an
LPA(M)-formula ψ(x) with the properties:

i) M |= Qxψ(x)

ii) M |= ∀x(ψ(x)→ ϕ(x))

iii) M |= ∀y¬(Qx(ψ(x) ∧ θ(x, y)) ∧Qx(ψ(x) ∧ ¬θ(x, y)))

102 CHAPTER 6. INTRODUCTION TO MODELS OF PA

Proof. An equivalent for item iii) is:

M |= ∀y∃z(∀x > z(ψ(x)→ θ(x, y)) ∨ ∀x > z(ψ(x)→ ¬θ(x, y)))

The idea of the proof is as follows. We shall construct an LPA(M)-formula
χ(y, x) such that

(1) M |= ∀x(χ(0, x)↔ (ϕ(x) ∧ (θ(x, 0)↔ Qv(ϕ(v) ∧ θ(v, 0))))
(2) M |= ∀yx(χ(y + 1, x)↔ χ(y, x) ∧ (θ(x, y + 1)↔ Qv(χ(y, v) ∧ θ(v, y + 1))))

For the moment, assume that χ(y, x) has been defined. It follows, by in-
duction in M, that M |= ∀yQxχ(y, x); for Qxχ(y, x) implies Qx(χ(y, x) ∧
θ(x, y + 1)) ∨ Qx(χ(y, x) ∧ ¬θ(x, y + 1)), so Qxχ(y + 1, x). We note also,
that M |= ∀yx(χ(y, x)→ ϕ(x) ∧ ∀v ≤ yχ(v, x)).

In order to define ψ(x) from χ(y, x) we use theorem 4.9. We write (s)i
instead of (a,m)i as in that theorem, putting s = j(a,m):

(s)i = rm(j1(s), (i+ 1)j2(s) + 1)

Let us also write x = µzϕ(z) for ϕ(x) ∧ ∀y < x¬ϕ(y).
Since ∀yQxχ(y, x) holds in M, we have by induction on z and theo-

rem 4.9 that the sentence

∀z∃s((s)0 = µxχ(0, x) ∧ ∀i < z((s)i+1 = µx(x > (s)i ∧ χ(i+ 1, x))))

is true inM; write this as ∀z∃sΦ(z, s). Define

(3) ψ(x) ≡ ∃s(Φ(x, s) ∧ ∃i ≤ x(s)i = x)

ThenM |= Qxψ(x), so statement i) of the Lemma is satisfied. Statement ii),
that ∀x(ψ(x) → ϕ(x)), follows from ∀yx(χ(y, x) → ϕ(x)). As to statement
iii), first note that if w ≤ z ∧ Φ(z, s) ∧ Φ(w, t), then ∀v ≤ w((s)v = (t)v).
So for all z ≥ y, if Φ(z, s) then ∀w(y ≤ w ≤ z → χ(y, (s)w). So if Φ(y, s) ∧
ψ(x) ∧ x ≥ (s)y then θ(y, x)↔ θ(y, (s)y), which ensures that statement iii)
holds.

It remains to define the formula χ(y, x) and prove the equivalences (1)
and (2). Again, we use the sequence coding (s)i. Let P (s, y) be the formula

∀u ≤ y((s)u = 0↔ Qz(ϕ(z) ∧ θ(z, u) ∧ ∀v < u(θ(z, v)↔ (s)v = 0)))

and define χ(y, x) as

∃s(P (s, y) ∧ ∀u ≤ y(θ(x, u)↔ (s)u = 0) ∧ ϕ(x))

6.5. PRIME MODELS AND ELEMENTARY END-EXTENSIONS 103

Since P (s, 0)↔ ((s)0 = 0↔ Qz(ϕ(z) ∧ θ(z, 0))), we have

ψ(0, x) ↔ ϕ(x) ∧ (θ(x, 0)↔ Qz(ϕ(z) ∧ θ(z, 0)))

so (1) holds.

For (2), first note that P (s, y)∧P (t, y) implies ∀u ≤ y((s)u = 0↔ (t)u =
0); from this and the definition of χ(y, x) it follows directly that

(4) P (s, y)→ ∀u ≤ y∀x(ψ(u, x)↔
ϕ(x) ∧ ∀v ≤ u(θ(x, v)↔ (s)v = 0))

holds. We prove the equivalence of (2):

→: Suppose χ(y + 1, x), so

P (s, y + 1) ∧ ∀u ≤ y + 1(θ(x, u)↔ (s)u = 0) ∧ ϕ(x)

for some s. Applying (4) with y + 1 for y we have

∀z(χ(y + 1, z)↔ ϕ(z) ∧ ∀v ≤ y + 1(θ(z, v)↔ (s)v = 0))

so ϕ(x) ∧ (θ(x, y + 1)↔ (s)y+1 = 0). Combining this with the definition of
P (s, y+ 1), the fact that χ(y, x) implies ϕ(x)∧∀v ≤ yχ(v, x), and applying
(4) again (inside the part Qz(. . .)), we get

(5) χ(y, x) ∧ (θ(x, y + 1)↔ Qz(θ(z, y + 1) ∧ χ(y, z))

←: Conversely, assume (5) and P (s, y). By theorem 4.9 there is t such
that ∀u ≤ y((s)u = (t)u, and

(t)y+1 = 0↔ Qz(ϕ(z) ∧ θ(z, y + 1) ∧ ∀v ≤ y(θ(z, v)↔ (s)v = 0))

Then P (t, y + 1) holds. We have to show:

∀u ≤ y + 1(θ(x, u)↔ (t)u = 0) ∧ ϕ(x)

Since χ(y, x) we have ϕ(x), and for u ≤ y this is clear, since P (s, y). For
u = y + 1 we have:

θ(x, y + 1) ↔ Qz(θ(z, y + 1) ∧ χ(y, z))
↔ Qz(ϕ(z) ∧ θ(z, y + 1) ∧ ∀v ≤ y

(θ(z, v)↔ (t)v = 0))
↔ (t)y+1 = 0

104 CHAPTER 6. INTRODUCTION TO MODELS OF PA

(the first equivalence by (5); the second by (4); the third by definition of t)
We have proved the equivalence (2), and hence the lemma.

We finish the proof of Theorem 6.16. Fix an enumeration θ0(c, ~y
(0)), θ1(c, ~y

(1)), . . .
of all formulas of LPA ∪ {c} (so θi(x, ~y

(i)) is an LPA-formula and ~y(i) is the
list of free variables of θi(c, ~y

(i))). We construct a sequence of LPA-formulas
ϕ0(x), ϕ1(x), . . . in one free variable x, such that M |= Qxϕi(x) for all i,
as follows. Put ϕ0(x) ≡ x = x. Given ϕi(x) such that M |= Qxϕi(x), we
apply lemma 6.19 to find ϕi+1(x) such that:

M |= Qxϕi+1(x)
M |= ∀x(ϕi+1(x)→ ϕi(x))

M |= ∀~y(i)∃z(∀x > z(ϕi+1(x)→ θi(x, ~y
(i)))∨

∀x > z(ϕi+1(x)→ ¬θi(x, ~y
(i))))

Consider the LPA(M) ∪ {c}-theory T given by the axioms

{θ(~a) ∈ LPA(M) |M |= θ(~a)}∪
{c > a | a ∈M} ∪ {ϕi(c) | i ∈ N}

Since every finite subset of this has an interpretation inM, T is consistent.
Let M′ be a model of T and let K = K(M′;M∪ {c}). We have M ≺M′

as LPA(M)-structures, M ⊆ K and K ≺ M′ as LPA(M) ∪ {c}-structures;
it follows that M ≺ K as LPA(M)-structures. Also, c ∈ K \ M, so K is
a proper elementary extension of M. We want to show that the extension
M⊆ K is conservative.

Suppose s subset S ⊆ K is defined by S = {k |K |= θ(k, b1, . . . bn)} with
b1, . . . , bn ∈ K. By definition of K, every bi is defined in M′ by a formula
ηi(v, a1, . . . , ak, c) with a1, . . . , ak ∈M. Now the formula

∃v1 · · · vn(
n∧

i=1

ηi(vi, y1, . . . , yk, x) ∧ θ(y0, v1, . . . , vn))

is an LPA-formula, so occurs in our enumeration as θj(x, ~y
(j)), with ~y(j) =

y0, . . . , yk. We claim:

d ∈M∩ S ⇔
M |= ∃w∀x > w(ϕj+1(x)→ θj(x, d, a1, . . . , ak)))

so that M∩ S is definable in M over M. Observe, that for d ∈ M, d ∈ S
if and only if K |= θ(d, b1, . . . , b1), if and only if K |= θj(c, d, a1, . . . , ak).

6.5. PRIME MODELS AND ELEMENTARY END-EXTENSIONS 105

By construction of ϕj+1, we have either

i) M |= ∃w∀x > w(ϕj+1(x)→ θj(x, d, a1, . . . , ak))

or
ii) M |= ∃w∀x > w(ϕj+1(x)→ ¬θj(x, d, a1, . . . , ak))

These are formulas with parameters in M, so since M ≺ K, each one is
satisfied in M if and only if it holds in K. So, i) is the case if and only if
K |= θj(c, d, a1, . . . , ak), if and only if d ∈ S, as desired.

106 CHAPTER 6. INTRODUCTION TO MODELS OF PA

Chapter 7

Further reading

Logic is a very old topic, but one can argue that its development as a mathe-
matical discipline starts with Gödel’s Completeness Theorem (theorem 2.6),
published in 1930 ([7]). However, most textbooks in Logic use the proof of
the same result, that was later given by Leon Henkin ([11]).

One year after the Completeness Theorem, Gödel published the First
Incompleteness Theorem in [8]. An English translation of this paper is in
the booklet [9] and also in [5], which is a very nice and affordable collection
of basic, seminal papers by Gödel, Church, Turing, Kleene and Post.

The Second Incompleteness Theorem was announced by Gödel, but first
proved by Hilbert and Bernays in [14]. There are many modern expositions
of the Incompleteness Theorems: we mention [2, 21, 23]. A classic book with
lots of information on arithmetization techniques and subsystems of PA, is
[10].

A good read about Gödel’s life is the biography [16].

The theory of recursive functions, pioneered by Hilbert and Ackermann,
was fully developed in the 1930’s by Alonzo Church, Stephen Cole Kleene
and Alan Turing. Classic textbooks on this theory are [20, 18, 19]; a more
accessible student text is [4]. In the collection [12] one finds papers by dis-
tinguished computability theorists on the genesis of the concepts of recursive
function theory.

Turing’s very interesting life is described in [15].

A very original and well-written book on the number theory that plays
a role in this area of Logic, is [22].

For models of PA, we recommend the text book [17].
Finally, Gödel’s theorems have occupied many great minds and trig-

gered philosophical debate from different angles. Among the many people
who have tried to interpret the theorems from a philosophical or artistic

107

108 CHAPTER 7. FURTHER READING

point of view, are Douglas Hofstadter, Morris Kline and Roger Penrose. An
extremely well-written, and at places amusing, book about the sense and
nonsense of this, is [6]. Warmly recommended if you wish to extend your
understanding of the significance of the Icompleteness theorems beyond the
technical side.

Bibliography

[1] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische
Annalen, 99:118–133, 1928.

[2] G. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic. Cambridge
University Press, 2007. Fifth edition.

[3] Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1:40–41, 1936. Correction in same volume, pp. 101–102.

[4] N.J. Cutland. Computability. Cambridge University Press, 1980.

[5] Martin Davis (ed). The Undecidable - Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems and Computable Functions. Dover, 2004. Reprint
of 1965 edition by Raven Press Books.

[6] T. Franzén. Gödel’s Theorem - An Incomplete Guide to Its Use and Abuse.
AK Peters, 2005.

[7] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls.
Monatsh.Math.Phys., 37:349–360, 1930.

[8] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198,
1931.

[9] K. Gödel. On Formally Undecidable Propositions of Principia Mathematica
and Related Systems. Dover, 1992. Reprint of 1962 edition by Basic Books;
translation of [8].

[10] P Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Perspec-
tives in Mathematical Logic. Springer, 1993. Second printing 1998.

[11] L. Henkin. The completeness of the first-order functional calculus. Journal of
Symbolic Logic, 14:159–166, 1949.

[12] R. Herken (ed). The Universal Turing Machine - A Half-Century Survey.
Oxford University Press, 1988. Collection of papers by Hodges, Kleene, Gandy,
Feferman, Davis and others.

109

110 BIBLIOGRAPHY

[13] D. Hilbert and W. Ackermann. Grundzügen der theoretischen Logik. Springer
Verlag, 1928.

[14] D. Hilbert and P. Bernays. Grundlagen der Mathematik I. Springer Verlag,
1934.

[15] A. Hodges. Alan Turing: the enigma. Random House, London, 1992.

[16] John W. Dawson jr. Logical Dilemmas - The Life and Work of Kurt Gödel.
AK Peters, 1997.

[17] R. Kaye. Models of Peano Arithmetic, volume 15 of Oxford Logic Guides.
Oxford University Press, Oxford, 1991.

[18] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic.
North-Holland, 1989.

[19] P. Odifreddi. Classical Recursion Theory II, volume 143 of Studies in Logic.
North-Holland, 1999.

[20] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. (reprinted by MIT Press, Cambridge MA, 1987).

[21] P. Smith. An Introduction to Gödel’s Theorems. Cambridge University Press,
2009. Fourth printing with corrections.

[22] Craig Smoryński. Logical Number Theory I - An Introduction. Springer-Verlag,
1991.

[23] R. Smullyan. Gödel’s Incompleteness Theorems, volume 19 of Oxford Logic
Guides. Oxford University Press, 1992.

[24] G. Sudan. Sur le nombre transfini ωω. Bulletin Mathématique de la Société
Roumaine des Sciences, 30:11–30, 1927.

Index

K(M;A), 99
M |= ϕ, 8
X ⇀ Y , 46
∆0, 64
∆n-formula, 95
Πn-formula, 95
Σ1, 64
Σn-formula, 95
N , 55
pDq, 77
γ ` ϕ, 23
µy < z, 36
⊆e, 89
ptq, 73
pϕq, 73
∃!, 32
ε0, 67

ϕ
(k)
e , 49

a1/N, 93
x−̇y, 35
x ? y, 41
LPA(A), 99
M1 ≺Γ M2, 90
Th(M)A, 99
lh(x), 40
Ackermann functions, 45
arity

of a function (relation) sym-
bol, 3

assumption
of a tree, 19

assumption tree, 19

assumptions

eliminated, 19

atomic formula, 5

atomic theory, 100

Bézout’s Theorem for PA, 62

bound variable, 6

characteristic function, 34

closed formula, 6

closed term, 4

code of sequence, 40

cofinal submodel, 95

Collection Principle in PA, 65

Compactness Theorem, 29

complete formula, 100

complete theory, 14

Completeness Theorem, 15, 29

composition

definition by, 34

concatenation function, 41

conclusion

of a tree, 19

conjunction symbol, 4

conjunctive normal form, 10

ConPA, 80

conservative, 69

conservative extension, 30

conservative extension of models
of PA, 100

conservative over, 30

consistent theory, 14

111

112 INDEX

constant, 3
Convention on variables, 6

course-of-values recursion, 41
crude discharge convention, 76
cut of a model of PA, 91

proper, 91

cut-off subtraction, 35

definitional extension, 31
∆0-formula, 64
dense partial order, 79

diagonalisation, 44
Diagonalization Lemma, 74
disjunction symbol, 4
disjunctive normal form, 10
double recursion, 43

(Γ-)elementary extension, 90
(Γ-)elementary substructure, 90
elimination
∧, ∨, etc., 19

Entscheidungsproblem, 69
equivalent formulas, 9
Euclidean division, 58
existential quantifier, 4

First Incompleteness Theorem, 78
Formalized Σ1-completeness, 82
formula

marked, 18

∆0-formula, 64
Σ1-formula, 64
formulas of a language, 4
free variable, 6
Fueter-Polya Theorem, 38

function symbol, 3

Gödel sentence, 79
Gaifman’s Splitting Theorem, 97

implication symbol, 4

independent sentence, 14
induction scheme, 55

initial segment of a model of PA,
93

interpretation of a language, 8
introduction
∧, ∨, etc., 19

irreducible element, 59

labelling function, 18
language, 3
leaf

of a tree, 16
least number principle, 57
Lindenbaum algebra of PA, 80
LNP, 57

L-structure, 7

MacDowell-Specker Theorem, 101
Matiyasevich-Robinson-Davis-Putnam

Theorem, 96
minimization, 47

bounded, 36
model of a theory, 14

N , 89
negation symbol, 4

numeral, 56

Overspill, 91

PA, 55
PA−, 89
pairing function, 37
partial function, 46

partial recursive function, 47
Peano Arithmetic, 55
predecessor function, 35
prenex normal form, 10
Prf, 77

prime element, 59

INDEX 113

primitive recursive function, 34
proof tree, 19
provably recursive, 66
ptimitive recursion

definition by, 34

r.e. set, 53
Recursion Theorem, 50
recursive, 47
recursive relation, 47
recursively enumerable set, 53
relation, 34
relation symbol, 3
remainder (on division), 58
represent a function (relation) nu-

meralwise, 65
result extraction function, 49
root

of a tree, 16

Second Incompleteness Theorem,
82

sentence, 6
sg, 35
Σ1-completeness, 65
Σ1-formula, 64
sign function, 35
simultaneous recursion, 38
Skolem functions, 30
Smn-Theorem, 50
Smullyan’s Double Recursion The-

orem, 53
Soundness Theorem, 29
standard model of PA, 55
Sub, 74
substitution, 6

T-predicate, 49
Tarski’s Theorem, 81
Tarski-Vaught test, 90
terms of a language, 4

theory, 14
total function, 46
total recursive, 47
tree, 16

labelled, 18
true in a structure, 8

Underspill, 92
universal quantifier, 4

valid formula, 10
variable, 4

well-founded induction, 58

