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Abstract

In this paper I try to describe both the role of mathematics in shap-
ing our understanding of how neural networks operate, and the curious
new mathematical concepts generated by our attempts to capture neu-
ral networks in equations. My target reader being the non-expert, I will
present a biased selection of relatively simple examples of neural network
tasks, models and calculations, rather than try to give a full encyclopedic
review-like account of the many mathematical developments in this �eld.
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1 Introduction: Neural Information Processing

Our brains perform sophisticated information processing tasks, using hardware
and operation rules which are quite di�erent from the ones on which conven-
tional computers are based. The processors in the brain, the neurons (see �gure
1), are rather noisy elements1 which operate in parallel. They are organised in
dense networks, the structure of which can vary from very regular to almost
amorphous (see �gure 2), and they communicate signals through a huge num-
ber of inter-neuron connections (the so-called synapses). These connections
represent the `program' of a network. By continuously updating the strengths
of the connections, a network as a whole can modify and optimise its `program',
`learn' from experience and adapt to changing circumstances.

Figure 1: Left: a Purkinje neuron in the human cerebellum. Right: a pyramidal
neuron of the rabbit cortex. The black blobs are the neurons, the trees of wires
fanning out constitute the input channels (or dendrites) through which signals
are received which are sent o� by other �ring neurons. The lines at the bottom,
bifurcating only modestly, are the output channels (or axons).

From an engineering point of view neurons are in fact rather poor processors,
they are slow and unreliable (see the table below). In the brain this is overcome
by ensuring that always a very large number of neurons are involved in any task,
and by having them operate in parallel, with many connections. This is in sharp
contrast to conventional computers, where operations are as a rule performed
sequentially, so that failure of any part of the chain of operations is usually
fatal. Furthermore, conventional computers execute a detailed speci�cation of
orders, requiring the programmer to know exactly which data can be expected
and how to respond. Subsequent changes in the actual situation, not foreseen
by the programmer, lead to trouble. Neural networks, on the other hand,
can adapt to changing circumstances. Finally, in our brain large numbers of
neurons end their careers each day unnoticed. Compare this to what happens
if we randomly cut a few wires in our workstation.

1By this we mean that their output signals are to some degree subject to random variation;
they exhibit so-called spontaneous activity which appears not to be related to the information
processing task they are involved in.
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Figure 2: Left: a section of the human cerebellum. Right: a section of the
human cortex. Note that the staining method used to produce such pictures
colours only a reasonably modest fraction of the neurons present, so in reality
these networks are far more dense.

Roughly speaking, conventional computers can be seen as the appropriate
tools for performing well-de�ned and rule-based information processing tasks,
in stable and safe environments, where all possible situations, as well as how to
respond in every situation, are known beforehand. Typical tasks �tting these
criteria are e.g brute-force chess playing, word processing, keeping accounts
and rule-based (civil servant) decision making. Neural information processing
systems, on the other hand, are superior to conventional computers in dealing
with real-world tasks, such as e.g. communication (vision, speech recognition),
movement coordination (robotics) and experience-based decision making (clas-
si�cation, prediction, system control), where data are often messy, uncertain or
even inconsistent, where the number of possible situations is in�nite and where
perfect solutions are for all practical purposes non-existent.
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One can distinguish three types of motivation for studying neural networks.
Biologists, physiologists, psychologists and to some degree also philosophers aim
at understanding information processing in real biological nervous tissue. They
study models, mathematically and through computer simulations, which are
preferably close to what is being observed experimentally, and try to understand
the global properties and functioning of brain regions.

conventional computers biological neural networks

processors neurons
operation speed � 108Hz operation speed � 102Hz
signal=noise �1 signal=noise � 1
signal velocity � 108m=sec signal velocity � 1m=sec
connections � 10 connections � 104

sequential operation parallel operation
program & data connections, neuron thresholds
external programming self-programming & adaptation

hardware failure: fatal robust against hardware failure
no unforseen data messy, unforseen data

Engineers and computer scientists would like to understand the princi-
ples behind neural information processing in order to use these for designing
adaptive software and arti�cial information processing systems which can also
`learn'. They use highly simpli�ed neuron models, which are again arranged
in networks. As their biological counterparts, these arti�cial systems are not
programmed, their inter-neuron connections are not prescribed, but they are
`trained'. They gradually `learn' to perform tasks by being presented with ex-
amples of what they are supposed to do. The key question then is to understand
the relationships between the network performance for a given type of task, the
choice of `learning rule' (the recipe for the modi�cation of the connections) and
the network architecture. Secondly, engineers and computer scientists exploit
the emerging insight into the way real (biological) neural networks manage to
process information e�ciently in parallel, by building arti�cial neural networks
in hardware, which also operate in parallel. These systems, in principle, have
the potential of being incredibly fast information processing machines.

Finally, it will be clear that, due to their complex structure, the large num-
bers of elements involved, and their dynamic nature, neural network models
exhibit a highly non-trivial and rich behaviour. This is why also theoretical
physicists and mathematicians have become involved, challenged as they are
by the many fundamental new mathematical problems posed by neural net-
work models. Studying neural networks as a mathematician is rewarding in
two ways. The �rst reward is to �nd nice applications for one's tools in biology
and engineering. It is fairly easy to come up with ideas about how certain in-
formation processing tasks could be performed by (either natural or synthetic)
neural networks; by working out the mathematics, however, one can actually
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quantify the potential and restrictions of such ideas. Mathematical analysis fur-
ther allows for a systematic design of new networks, and the discovery of new
mechanisms. The second reward is to discover that one's tools, when applied
to neural network models, create quite novel and funny mathematical puzzles.
The reason for this is the `messy' nature of these systems. Neurons are not at
all well-behaved: they are microscopic elements which do not live on a regular
lattice, they are noisy, they change their mutual interactions all the time, etc.

Since this paper aims at no more than sketching a biased impression of a
research �eld, I will not give references to research papers along the way, but
mention textbooks and review papers in the �nal section, for those interested.
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2 From Biology to Mathematical Models

We cannot expect to solve mathematical models of neural networks in which all
electro-chemical details are taken into account (even if we knew all such details
perfectly). Instead we start by playing with simple networks of model neurons,
and try to understand their basic properties �rst (i.e. we study elementary
electronic circuitry before we volunteer to repair the video recorder).

2.1 From Biological Neurons to Model Neurons

Neurons operate more or less in the following way. The cell membrane of a
neuron maintains concentration di�erences between inside and outside the cell,
of various ions (the main ones are Na+, K+ and Cl�), by a combination of
the action of active ion pumps and controllable ion channels. When the neu-
ron is at rest, the channels are closed, and due to the activity of the pumps
and the resultant concentration di�erences, the inside of the neuron has a net
negative electric potential of around �70 mV, compared to the 
uid outside. A
su�ciently strong local electric excitation, however, making the cell potential
temporarily less negative, leads to the opening of speci�c ion channels, which in
turn causes a chain reaction of other channels opening and/or closing, with as a
net result the generation of an electrical peak of height around +40 mV, with a
duration of about 1 msec, which will propagate along the membrane at a speed
of about 5 m/sec: the so-called action potential. After this electro-chemical
avalanche it takes a few milliseconds to restore peace and order. During this
period, the so-called refractory period, the membrane can only be forced to
generate an action potential by extremely strong excitation. The action po-
tential serves as an electric communication signal, propagating and bifurcating
along the output channel of the neuron, the axon, to other neurons. Since
the propagation of an action potential along an axon is the result of an active
electro/chemical process, the signal will retain shape and strength, even after
bifurcation, much like a chain of tumbling domino stones.

typical time-scales

action potential: � 1msec
reset time: � 3msec
synapses: � 1msec
pulse transport: � 5m=sec

typical sizes

cell body: � 50�m
axon diameter: � 1�m
synapse size: � 1�m
synaptic cleft: � 0:05�m

The junction between an output channel (axon) of one neuron and an input
channel (dendrite) of another neuron, is called synapse (see �gure 3). The
arrival at a synapse of an action potential can trigger the release of a chemical,
the neurotransmitter, into the so-called synaptic cleft which separates the cell
membranes of the two neurons. The neurotransmitter in turn acts to selectively
open ion channels in the membrane of the dendrite of the receiving neuron. If
these happen to be Na+ channels, the result is a local increase of the potential
at the receiving end of the synapse, if these are Cl� channels the result is a
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Figure 3: Left: drawing of a neuron. The black blobs attached to the cell body
and the dendrites (input channels) represent the synapses (adjustable terminals
which determine the e�ect communicating neurons will have on one another's
membrane potential and �ring state). Right: close-up of a typical synapse.

decrease. In the �rst case the arriving signal will increase the probability of
the receiving neuron to start �ring itself, therefore such a synapse is called
excitatory. In the second case the arriving signal will decrease the probability
of the receiving neuron being triggered, and the synapse is called inhibitory.
However, there is also the possibility that the arriving action potential will not
succeed in releasing neurotransmitter; neurons are not perfect. This introduces
an element of uncertainty, or noise, into the operation of the machinery.

Whether or not the receiving neuron will actually be triggered into �ring
itself, will depend on the cumulative e�ect of all excitatory and inhibitory
signals arriving, a detailed analysis of which requires also taking into account
the electrical details of the dendrites. The region of the neuron membrane most
sensitive to be triggered into sending an action potential is the so-called hillock
zone, near the root of the axon. If the potential in this region, the post-synaptic
potential, exceeds some neuron-speci�c threshold (of the order of �30 mV), the
neuron will �re an action potential. However, the �ring threshold is not a strict
constant, but can vary randomly around some average value (so that there will
always be some non-zero probability of a neuron not doing what we would
expect it to do with a given post-synaptic potential), which constitutes the
second main source of uncertainty into the operation.

The key to the adaptive and self-programming properties of neural tissue
and to being able to store information, is that the synapses and �ring thresholds
are not �xed, but are being updated all the time. It is not entirely clear,
however, how this is realised at a chemical/electrical level. Most likely the
amount of neurotransmitter in a synapse, available for release, and the e�ective
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S = 1 : neuron �ring; �
S = 0 : neuron at rest; �

input > � : S ! 1
input < � : S ! 0

Figure 4: The simplest model neuron: a neuron's �ring state is represented by
a single instantaneous binary state variable S, whose value is solely determined
by whether or not its input exceeds a �ring threshold.

contact surface of a synapse are modi�ed.

The simplest caricature of a neuron is one where its possible �ring states are
reduced to just a single binary variable S, indicating whether it �res (S = 1)
or is at rest (S = 0). See �gure 4. Which of the two states the neuron will
be in, is dictated by whether or not the total input it receives (i.e. the post-
synaptic potential) does (S ! 1) or does not (S ! 0) exceed the neuron's
�ring threshold, denoted by � (if we forget about the noise). As a bonus this
allows us to illustrate the collective �ring state of networks by colouring the
constituent neurons: �ring = �, rest = �. We further assume the individual
input signals to add up linearly, weighted by the strengths of the associated
synapses. The latter are represented by real variables w`, whose sign denotes
the type of interaction (w` > 0: excitation, w` < 0: inhibition) and whose
absolute value jw`j denotes the magnitude of the interaction:

input = w1S1 + : : :+ wNSN

Here the various neurons present are labelled by subscripts ` = 1; : : : ; N . This
rule indeed appears to capture the characteristics of neural communication.
Imagine, for instance, the e�ect on the input of a quiescent neuron ` suddenly
starting to �re:

S` ! 1 : input! input+ w`

�
w` > 0 : input "; excitation
w` < 0 : input #; inhibition

We now adapt these rules for each of our neurons. We indicate explicitly at
which time t (for simplicity to be measured in units of one) the various neuron
states are observed, we denote the synaptic strength at a junction j ! i (where
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j denotes the `sender' and i the `receiver') by wij , and the threshold of a neuron
i by �i. This brings us to the following set of microscopic operation rules:

wi1S1(t) + : : :+ wiNSN (t) > �i : Si(t+ 1) = 1
wi1S1(t) + : : :+ wiNSN (t) < �i : Si(t+ 1) = 0

(1)

These rules could either be applied to all neurons at the same time, giving
so-called parallel dynamics, or to one neuron at a time (drawn randomly or
according to a �xed order), giving so-called sequential dynamics.2 Upon spec-
ifying the values of the synapses fwijg and the thresholds f�ig, as well as the
initial network state fSi(0)g, the system will evolve in time in a deterministic
manner, and the operation of our network can be characterised by giving the
states fSi(t)g of the N neurons at subsequent times, e.g.

S1 S2 S3 S4 S5 S6 S7 S8 S9

t = 0 : 1 1 0 1 0 0 1 0 0
t = 1 : 1 0 0 1 0 1 1 1 1
t = 2 : 0 0 1 1 1 0 0 0 1
t = 3 : 1 0 0 1 1 1 1 0 1
t = 4 : 0 1 1 1 0 0 1 0 1

or, equivalently, by drawing the neuron states at di�erent times as a collection
of coloured circles, according to the convention `�ring' = �, `rest' = �, e.g.

t = 0

���������

t = 1

���������

t = 2

���������

t = 3

���������

t = 4

���������
We have thus achieved a reduction of the operation of neural networks to a
well-de�ned manipulation of a set of (binary) numbers, whose rules (1) can
be seen as an extremely simpli�ed version of biological reality. The binary
numbers represent the states of the information processors (the neurons), and
therefore describe the system operation. The details of the operation to be be
performed depend on a set of control parameters (synapses and thresholds),
which must accordingly be interpreted as representing the program. Moreover,
manipulating numbers brings us into the realm of mathematics; the formulation
(1) describes a non-linear discrete-time dynamical system.

2.2 Universality of Model Neurons

Although it is not a priori clear that our equations (1) are not an oversimpli�-
cation of biological reality, there are at least two reasons for not making things
more complicated yet. First of all, solving (1) for arbitrary control parameters
and nontrivial system sizes is already impossible, in spite of its apparent sim-
plicity. Secondly, networks of the type (1) are found to be universal information

2Strictly speaking, we also need to specify a rule for determining Si(t+1) for the marginal
case, where wi1S1(t)+ : : :+wiNSN (t) = �i. Two common ways of dealing with this situation
are to either draw Si(t + 1) at random from f0; 1g, or to simply leave Si(t + 1) = Si(t).
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processing systems, in that (roughly speaking) they can perform any compu-
tation that can be performed by conventional digital computers, provided one
chooses the synapses and thresholds appropriately.

The simplest way to show this is by demonstrating that the basic logical
units of digital computers, the operations AND: (x; y) ! x ^ y, OR: (x; y) !
x _ y and NOT: x ! :x (with x; y 2 f0; 1g), can be built with our model
neurons. Each logical unit (or `gate') is de�ned by a so-called truth table,
specifying its output for each possible input. All we need to do is to de�ne for
each of the above gates a model neuron of the type

w1x+w2y�� > 0 : S = 1
w1x+w2y�� < 0 : S = 0

by choosing appropriate values of the control parameters fw1; w2; �g, which has
the same truth table. This turns out to be fairly easy:

AND:

x y x ^ y x+y� 3
2 S

0 0 0 �3=2 0
0 1 0 �1=2 0
1 0 0 �1=2 0
1 1 1 1=2 1

c
c
c

y

x

S
w1 = w2 = 1

� = 3
2

�

R

�
�

@
@

OR:

x y x _ y x+y� 1
2 S

0 0 0 �1=2 0
0 1 1 1=2 1
1 0 1 1=2 1
1 1 1 3=2 1

c
c
c

y

x

S
w1 = w2 = 1

� = 1
2

�

R

�
�

@
@

NOT:
x :x �x+ 1

2 S
0 1 1=2 1
1 0 �1=2 0

c cx S
w1 = �1
� = � 1

2

-

This shows that we need not worry about a-priori restrictions on the types of
tasks our simpli�ed model networks (1) can handle.

Furthermore, one can also make statements on the architecture required.
Provided we employ model neurons with potentially large numbers of input
channels, it turns out that every operation involving binary numbers can in
fact be performed with a feed-forward network of at most two layers. Again
this is proven by construction. Every binary operation f0; 1gN ! f0; 1gK
can be reduced (split-up) into speci�c sub-operations M , each performing a
separation of the input signals x (given by N binary numbers) into two classes:

M : f0; 1gN ! f0; 1g
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Figure 5: Universal architecture, capable of performing any classi�cation M :
f0; 1gN ! f0; 1g, provided synapses and thresholds are choosen adequately.

(described by a truth table with 2N rows). Each suchM can be built as a neural
realisation of a look-up exercise, where the aim is simply to check whether an
x 2 f0; 1gN is in the set for which M(x) = 1. This set is denoted by 
, with
L � 2N elements which we label as follows: 
 = fy1; : : : ;yLg. The basic tools
of our construction are the so-called `grandmother-neurons'3 G`, whose sole
task is to be on the look-out for one of the input signals y` 2 
:

w1x1 + : : :+ wNxN > � : G` = 1
w1x1 + : : :+ wNxN < � : G` = 0

with w` = 2(2y` � 1) and � = 2(y1 + : : : + yN ) � 1. Inspection shows that
with these de�nitions the output G`, upon presentation of input x, is indeed
(as required) given by

x = y` : G` = 1
x 6= y` : G` = 0

Finally the outputs of the grandmother neurons are fed into a model neuron S,
which is to determine whether or not one of the grandmother neurons is active:

y1 + : : :+ yL > 1=2 : S = 1
y1 + : : :+ yL < 1=2 : S = 0

3This name was coined to denote neurons which only become active upon presentation
of some unique and speci�c sensory pattern (visual or otherwise), e.g. an image of one's
grandmother. Such neurons were at some stage claimed to have been observed experimentally.
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The resulting feed-forward network is shown in �gure 5. For any input x, the
number of active neurons G` in the �rst layer is either 0 (leading to the �nal
output S = 0) or 1 (leading to the �nal output S = 1). In the �rst case the
input vector x is apparently not in the set 
, in the second case it apparently
is. This shows that the network thus constructed performs the separation M .

2.3 Directions and Strategies

Here the �eld e�ectively splits in two. One route leading away from equation
(1) aims at solving it with respect to the evolution of the neuron states, for
increasingly complicated but prescribed choices of synapses and thresholds.
Here the key phenomenon is operation, the central dynamical variables are the
neurons, whereas synapses and thresholds play the role of parameters. The
alternative route is to concentrate on the complementary problem: which are
the possible modes of operation equation (1) would allow for, if we were to vary
synapses and thresholds in a given architecture, and how can one �nd learning
rules (rules for the modi�cation of synapses and thresholds) that will generate
values such that the resulting network will meet some speci�ed performance
criterion. Here the key phenomenon is learning, the central dynamical variables
are the synapses and thresholds, whereas neuron states (or, more often, their
statistics) induce constraints and operation targets.

Operation Learning

variables: neurons variables: synapses, thresholds
parameters: synapses, thresholds parameters: required neuron states

Although quite prominent, in reality this separation is, of course, not perfect;
in the �eld of learning theory one often speci�es neuron states only in part of
the system, and solves for the remaining neuron states, and there even exist
non-trivial but solvable models in which both neurons and synapses/thresholds
evolve in time. In the following sections I will describe examples from both
main problem classes.

A general rule in dealing with mathematical models, whether they describe
phenomena in biology, physics, economics or any other discipline, is that one
usually �nds that the equations involved are most easily solved in extreme
limits for the control parameters. This is also true for neural network models,
in particular with respect to the system size N and the spatial distance over
which the neurons are allowed to interact. Analysing models with just two or
three neurons (on one end of the scale of sizes) is not much of a problem, but
realistic systems happen to scale di�erently, both in biology (where even small
brain regions are at least of size N � 106) and in engineering (where at least
N � 103). Therefore one usually considers the opposite limit N ! 1. In
turn, one can only solve the equations descibing in�nitely large systems when
either interactions are restricted to occur only between neighbouring neurons
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(which is quite unrealistic), or when a large number (if not all) of the neurons
are allowed to interact (which is a better approximation of reality).

The strategy of the model solver is then to identify global observables which
characterise the system state at a macroscopic level (this is often the most di�-
cult bit), and to calculate their values. For instance, in statistical mechanics one
is not interested in knowing the positions and velocities of individual molecules
in a gas, but rather in knowing the values of global obervables like pressure;
in modelling (and predicting) exchange rates we do not care about which in-
dividuals buy certain amounts of a currency, but rather in the sum over all
such buyers. Which macroscopic observables constitute the natural language
for describing the operation of neural networks turns out to depend strongly on
their function or task (as might have been expected). If the exercise is carried
out properly, and if the model at hand is su�ciently friendly, one will observe
that in the N ! 1 limit clean and transparent analytical relations emerge.
This happens for various reasons. If there is an element of randomness involved
(noise) it is clear that in �nite systems we can only speak about the probability
of certain averages occurring, whereas in the N !1 limit one would �nd aver-
ages being replaced by exact expressions. Secondly, as soon as spatial structure
of a network is involved, the limit N ! 1 allows us to take continuum limits
and to replace discrete systems by continuous ones.

The operation a neural network performs depends on its program: the choice
made for architecture, synaptic interactions and thresholds (equivalently, on
the learning rule used to generate these parameters). I will now give several
examples involving di�erent types of information processing tasks and, conse-
quently, di�erent types of analysis (although all share the reductionist strategy
of calculating global properties from underlying microscopic laws).
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3 Neural Networks as Associative Memories

Our de�nition of model neurons has led to a relatively simple scenario, where
a global network state is described by specifying for each neuron the value of
its associated binary variable. It can be conveniently drawn in a picture with
black circles denoting active neurons and white circles denoting neurons at rest.
If we choose the neural thresholds such that a disconnected neuron would be
precisely critical (with a potential at threshold), we can simplify our equations
further by choosing f�1; 1g as the two neuron states (rest/�ring), instead of
f0; 1g (see below), giving the rules

wi1S1(t) + : : :+ wiNSN (t) > 0 : Si(t+ 1) = 1
wi1S1(t) + : : :+ wiNSN (t) < 0 : Si(t+ 1) = �1 (2)

to be depicted as

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

� : Si = 1 (neuron i �ring)
� : Si =�1 (neuron i at rest)

inputi > 0 : Si ! 1
inputi < 0 : Si !�1
inputi = wi1S1+: : :+wiNSN

If this network is to operate as a memory, for storing and retrieving patterns
(pictures, words, sounds, etc.), we must assume that the information is (phys-
ically) stored in the synapses, and that pattern retrieval must correspond to a
dynamical process of neuron states. We are thus led to representing patterns
to be stored as global network states, i.e. each pattern corresponds to a spe-
ci�c set of binary numbers fS1; : : : ; SNg, or, equivalently, to a speci�c way of
colouring circles in the picture above. This is similar to what happens in con-
ventional computers. However, in computers one retrieves such information by
specifying the label of the pattern in question, which codes for the address of its
physical memory location. This will be quite di�erent here. Let us introduce
the principles behind the neural way of storaging and retrieving information,
by working out the details for a very simple model example.

Biologically realistic learning rules for synapses are required to meet the
constraint that the way a given synapse wij is modi�ed can depend only on
information locally available: the electro-chemical state properties of the neu-
rons i and j.4 One of the simplest such rules is the following: increase wij if
the neurons i and j are in the same state, decrease wij otherwise. With our
de�nition of the allowed neuron states being f�1; 1g, this can be written as

Si = Sj : wij "
Si 6= Sj : wij # wij ! wij + SiSj (3)

4This constraint is to be modi�ed if in addition we wish to take into account the more
global e�ects of modulatory chemicals like hormones and drugs.
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If we apply this rule to just one speci�c pattern, denoted by f�1; : : : ; �Ng (each
component �i 2 f�1; 1g represents a speci�c state of a single neuron), we obtain
the following recipe for the synapses: wij = �i�j . How would a network with
such synapses behave ? Note, �rstly, that

inputi = wi1S1 + : : :+ wiNSN = �i [�1S1 + : : :+ �NSN ]

so the dynamical rules (2) for the neurons become

�i [�1S1(t) + : : :+ �NSN (t)] > 0 : Si(t+ 1) = 1
�i [�1S1(t) + : : :+ �NSN (t)] < 0 : Si(t+ 1) = �1 (4)

Note also that �iSi(t) = 1 if �i = Si(t), and that �iSi(t) = �1 if �i 6= Si(t).
Therefore, if at time t more than half of the neurons are in the state Si(t) = �i
then �1S1(t) + : : :+ �NSN (t) > 0. It subsequently follows from (4) that

for all i : sign(inputi) = �i so Si(t+ 1) = �i

If the dynamics (4) is of the parallel type (all neurons change their state at
the same time), this convergence (S1; : : : ; SN )! (�1; : : : ; �N ) is completed in a
single iteration step. For sequential dynamics (neurons change states one after
the other), the convergence is a gradual process. In both cases, the choice wij =
�i�j achieves the following: the state (S1; : : : ; SN ) = (�1; : : : ; �N ) has become
a stable state of the network dynamics. The network dynamically reconstructs
the full pattern (�1; : : : ; �N ) if it is prepared in an initial state which bears
su�cient resemblance to the state corresponding to this pattern.

3.1 Recipes for Storing Patterns and Pattern Sequences

If the operation described above for the case of a single stored pattern, turns
out to carry over to the more general case of an arbitrary number p of patterns,
we arrive at the following recipe for information storage and retrieval:

� Represent each patterns as a speci�c network state (��1 ; : : : ; �
�
N ).

� Construct synapses fwijg such that these patterns become stable states

(�xed-point attractors) for the network dynamics.

� An input to be recognised will serve as the initial state fSi(t = 0)g.
� The �nal state reached fSi(t = 1)g can be interpreted as the pattern
recognised by the network from the input fSi(t = 0)g.

From any given initial state, the system will, by construction, evolve towards
the `nearest'5 stable state, i.e. towards the stored pattern which most closely
resembles the initial state (see �gure 6). The system performs so-called associa-

tive pattern recall: patterns are not retrieved from memory by giving an address

5The distance between two system states (S1; : : : ; SN ) and (S0

1
; : : : ; S0

N
) is de�ned in terms

of the number of neurons for which Si 6= S0

i
.
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Figure 6: Information storage through the creation of attractors in the space of
states. The state vector (S1; : : : ; SN ) evolves towards the nearest stable state.
If the stable states are the patterns stored, and the initial state is an input
pattern to be recognised, this system performs associative pattern recall.

label (as in computers), but by an association process. By construction, this
system will also recognise corrupted or incomplete patterns.

If we apply the learning rule (3) to a collection of p patterns, (��1 ; : : : ; �
�
N ),

where the superscript � 2 f1; : : : ; pg labels the patterns, we obtain

wij = �1i �
1
j + : : :+ �pi �

p
j (5)

Due to their simplicity it is easy and entertaining to write a computer program
which simulates equations (2) for the choice (5), in order to verify that the
recipe described above works. An example is shown in �gures 7 and 8. We
choose a set of ten patterns, each represented by N = 841 binary variables
(pixels), see �gure 7, and calculate synapses according to (5). For the initial
state of the network equipped with these synapses we choose a corrupted version
of one of the patterns. Following this initialisation the system is left to itself,
and the dynamical rules (2) then generate processes such as those shown in
�gure 8. If the corruption of the state to be recognised is modest, the system
indeed evolves towards (i.e. `recognises') the desired pattern. Note, however,
that the particular recipe (5) en passant creates additional attractors, in the
form of mixtures of the p stored patterns, to which the system is found to
evolve if started from a completely random initial state (see �gure 8). Such
`mixture' states can be removed easily, either by adding noise to the dynamical
rules, by introducing a non-zero threshold in the equations (2) or by using more
sophisticated learning rules.
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Figure 7: Ten patterns represented as speci�c microscopic states of an N = 841
attractor network. Individual pixels represent neuron states: f�; �g = f1;�1g.

Figure 8: Two simulation examples: snapshots of the microscopic system state
fS1; : : : ; SNg at times t = 0; 1; 2; 3; 4 iteration steps per neuron. Dynamics:
sequential. Top row: associative recall of a stored pattern from an initial state
which is a corrupted version thereof. Bottom row: evolution towards a spurious
(mixture) state from a randomly drawn initial state.

It turns out that the game described so far can be generalised to the sit-
uation where one wants to store not just individual (static) patterns, but se-
quences of patterns (�lms rather than individual pictures, sentences rather than
words, or even an arbitrary set of required state transitions). To see this, let
us make a small modi�cation in the simple learning rule (3):

wij ! wij + S0iSj (6)

Now two microscopic con�gurations (S1; : : : ; SN ) and (S01; : : : ; S
0
N) play a role.

Rules like (6) emerge naturally if one takes transmission delays into account. If
we apply (6) to a single pair of speci�c patterns, (�1; : : : ; �N ) and (�01; : : : ; �

0
N ),
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Figure 9: Information storage through the creation of attractors in the space
of states. The state vector (S1; : : : ; SN ) evolves towards the nearest attractor.
If the attractors are the pattern sequences stored, and the initial state is a
constituent pattern, this system performs associative sequence recall.

we obtain wij = �0i�j , giving

inputi = wi1S1 + : : :+ wiNSN = �0i [�1S1 + : : :+ �NSN ]

so that the dynamical rules (2) for the neuron states become

�1S1(t) + : : :+ �NSN (t) > 0 : Si(t+ 1) = �0i
�1S1(t) + : : :+ �NSN (t) < 0 : Si(t+ 1) = ��0i (7)

If at time t more than half of the neurons are in the state Si(t) = �i then for all
i: Si(t+ 1) = �0i. In other words: if the system is in a state su�ciently `close'
to state (�1; : : : ; �N ) it will tend to evolve towards state (�01; : : : ; �

0
N ).

6

This simple example shows several interesting things. Firstly, we can ap-
parently store pattern sequences with the following rule:

� Represent each pattern sequence as a sequence of network state

� Construct synapses fwijg such that these sequences become attractors
for the network dynamics.

� An input to trigger a squence will be the initial network state fSi(t = 0)g.
� The �nal attractor reached fSi(t)g (large t) can be interpreted as the
sequence recalled by presenting input fSi(t = 0)g.

6The original recipe (3) just corresponds to the special case (�1; : : : ; �N ) = (�0

1
; : : : ; �0

N
).
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For example, we can achieve the storage of a given sequence of p states by
applying the rule (7) to each of the individual constituent state transitions
(��1 ; : : : ; �

�
N )! (��+1

1 ; : : : ; ��+1
N ) that we want to build in, giving the recipe

wij = �2i �
1
j + : : :+ �pi �

p�1
j (8)

It turns out that (8) indeed leads to the required operation described above,
provided that the dynamics is of the parallel type. If the neurons change their
states sequentially, an additional mechanism is found to be needed to stabilise
the sequences (such as delayed interactions between the neurons).

Secondly, at least for parallel dynamics we now see how one might `teach'
these networks any arbitrary set of instructions, since it appears that the fol-
lowing interpretation holds:

synaptic change : wij ! wij + �0i�j

rule learned : if in state (�1; : : : ; �N ) go to state (�01; : : : ; �
0
N )

(9)

The resulting synapses are the sum over all individual stored instructions (9).
Note the invariance of the synaptic change under (�i; �

0
i) ! (��i;��0i) for all i.

Although thinking in terms of instruction sets is reminiscent of conventional
computers, the way these instructions are executed and combined is di�erent.
Let me just note a few points, some of which are immediately obvious, some of
which require some more analysis which I will not discuss here:

� The procedure works best for orthogonal or random patterns.

� The microscopic realisation of the patterns is irrelevant. They de�ne the
language in terms of which instructions are written; if the `words' of the
language are su�ciently di�erent from one another, any language will do.

� The system still operates by association: if it �nds itself in a state not
identical to any of the patterns in the instruction set, it will do the oper-
ation(s) corresponding to the pattern(s) it resembles most.

� Contradictory instructions just annihilate one another: �0i�j+(��0i)�j = 0.

3.2 Symmetric Networks: the Energy Picture

The simple learning rule (3) for storing (static) patterns will give rise to sym-
metric synapses, i.e. wij = wji for all (ij), whereas the more general presciption
(6) for storing attractors which are not �xed-points will generate predominantly
non-symmetric synapses. It turns out that there is a deeper reason for this dif-
ference. For symmetric networks without self-interactions, i.e. wij = wji for

c cSi Sj-�
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all (ij) and wii = 0 for all i, one can easily show that the evolution of the
neuron states is such that a certain quantity (termed the `energy') is always
decreasing. For sequential dynamics this energy is found to be

E = �1

2
[S1:input1 + : : :+ SN :inputN ] (10)

For parallel dynamics one �nds a di�erent but related quantity.7 Since the
energy (10) is bounded from below, and since with each state change the energy
decreases by at least some minimum amount (which depends on the values of
the synapses), this process will have to stop at some point. We conclude:
whatever the synapses (provided they are symmetric), the state dynamics will
always end up in a �xed-point. The converse statement is not true: although
in most cases this will not happen, the states of non-symmetric networks could
also evolve towards a �xed-point (depending on the details of the synapses).

During the march for the lowest energy state, each individual transition
(S1; : : : ; SN ) ! (S01; : : : ; S

0
N ) must decrease the energy, i.e. E0 < E, which

implies that one need not end up in the state with the lowest energy. Just
imagine a downhill walk in a hilly landscape; in order to arrive at the lowest
point one will occasionally have to cross a ridge to go from one valley to another.
The network cannot do this, and can consequently end up in a local minimum
of E, di�erent from the global one.

Although quite natural in the context of neural networks, having asymmetry
in the interactions of pairs of elements is in fact for the modeller an unusual sit-
uation. In physics the equivalent would be, for instance, a pair of two molecules
A and B, with A exerting an attractive force on B and at the same time B re-
pelling A. Or, likewise, a pair of magnets A and B such that magnet A prefers
to have its poles (north and south) opposite to the poles of B, whereas B is
keen on con�gurations where similar poles point in the same direction. If we
add noise to symmetric systems we �nd that interaction symmetry implies de-
tailed balance, which guarantees an evolution towards equilibrium. Since this
is what all physical systems do, most analytical techniques developed to study
interaction particle systems are based on this property. This makes neural net-
works the more interesting: since they are mostly non-symmetric, they will in
general not evolve to equilibrium (compared to the possible modes of operation
of non-symmetric networks, the symmetric ones are in fact quite boring), and
they require novel intuition and techniques for analysis.

3.3 Solving Models of Noisy Attractor Networks

So far we have been concerned with qualitative properties of attractor networks.
Let us turn to analysis now, and show how one proceeds to solve such models.
I will skip details and only discuss the solution for sequential dynamics (for
parallel dynamics one proceeds in a similar way). I will also introduce noise
into the dynamics; this simpli�es many calculations and often turns out to be
bene�cial to the operation of the system.

7For parallel dynamics the condition that self-interactions must be absent can be dropped.
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Stage 1: de�ne the dynamical rules

The simplest way to add noise to the dynamics is to add to the each of the
neural inputs at each time-step t an independent zero-average random number
zi(t). This changes the noise-free dynamical laws (2) to

wi1S1(t) + : : :+ wiNSN (t) + Tzi(t) > 0 : Si(t+ 1) = 1
wi1S1(t) + : : :+ wiNSN (t) + Tzi(t) < 0 : Si(t+ 1) = �1 (11)

Here T is an overall parameter to control the amount of noise (T = 0: no noise,
T =1: noise only). We store various operations of the type (9), de�ned using
a set of p patterns:

wij =
1

N

pX
�;�=1

A���
�
i �

�
j

pattern 1z }| {
(�11 ; : : : ; �

1
N ) : : :

pattern pz }| {
(�p1 ; : : : ; �

p
N ) (12)

The prefactor 1
N is inserted to ensure that the inputs will not diverge in the

limit N ! 1 which we will eventually take. The associative memory rule (5)
corresponds to A�� = ��� (i.e. A�� = 1 for all � and A�� = 0 for � 6= �).

Stage 2: rewrite dynamical rules in terms of probabilities

To suppress notation I will abbreviate S = (S1; : : : ; SN ). Due to the noise we
can only speak about the probability pt(S) to �nd a given state S at a given time
t. In order to arrive at a description where time is a continuous variable, we
choose the individual durations of the update steps at random from a Poisson
distribution8, with an average step duration of 1

N , i.e. the probability �`(t)
that at time t exactly ` neurons states have been updated is de�ned as

�`(t) =
1

`!
(Nt)`e�Nt

In one unit of time each neuron will on average have had one state update (as
in the simulations of �gure 8). What remains is to do the bookkeeping of the
possible sequential transitions properly, which results in an equation for the
rate of change of the microscopic probability distribution:

d

dt
pt(S) =

NX
i=1

fwi(FiS)pt(FiS)� wi(S)pt(S)g (13)

Here wi(S) denotes the rate at which the transition S ! FiS occurs if the
system is in state S, and Fi is the operation `change the state of neuron i:
FiS = (S1; : : : ; Si�1;�Si; Si+1; : : : ; SN )'. Equation (13) is quite transparent:
the probability to �nd the state S increases due to transitions of the type
FiS ! S, and decreases due to transitions of the type S ! FiS. The values

8This particular choice turns out to generate the simplest equations later.
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of the transition rates wi(S) depend on the choice made for the distribution
P (z) of the noise variables zi(t). One convenient choice is

P (z) =
1

2
[1�tanh2(z)] : wi(S) =

1

2

2
41�tanh[Si NX

j=1

wijSj=T ]

3
5 (14)

We have now translated our problem into solving a well-de�ned linear di�eren-
tial equation (13). Unfortunately this is still too di�cult (except for networks
obtained by making trivial choices for the synapses fwijg or the noise level T ).

Stage 3: �nd the relevant macroscopic features

We now try to �nd out which are the key macroscopic quantities (if any) that
characterise the dynamical process. Unfortunately there is no general method
to do this; one must rely on intuition, experience and common sense. Combin-
ing equations (11,12) shows that the neural inputs depend on the instantaneous
state S only through the values of p speci�c macroscopic quantities m�(S):

inputi =

pX
��=1

A���
�
i m�(S) + Tzi

m�(S) =
1

N
[S1�

�
1 + : : :+ SN�

�
N ] (15)

Note that these so-called `overlaps' m�(S) measure the similarity between the
state S and the stored patterns,9 e.g.:

m�(S) = 1 : (S1; : : : ; SN ) = (��1 ; : : : ; �
�
N )

m�(S) = �1 : (S1; : : : ; SN ) = (���1 ; : : : ;���N )
Further evidence for their status as our macroscopic level of description is pro-
vided by measuring their values during simulations, see e.g. �gure 10. Since a
description in terms of the observables fm1(S); : : : ;mp(S)g will only be sim-
pler than the microscopic one in terms of (S1; : : : ; SN ) for modest numbers
of patterns, i.e. for p � N , we will assume p to be �nite (if p � N we will
simply have to think of something else). Having identi�ed our macroscopic
description, we can now de�ne the macroscopic equivalent Pt(m1; : : : ;mp) of
the microscopic probability distribution pt(S), and calculate the macroscopic
equivalent of the di�erential equation (13), which for N !1 reduces to

d

dt
Pt(m1; : : : ;mp) = �

pX
�=1

@

@m�
fPt(m1; : : : ;mp)F�(m1; : : : ;mp)g (16)

F�(m1; : : : ;mp) =
X

�2f�1;1gp

p(�) �� tanh[

pX
�;�=1

A����m�=T ]�m� (17)

9They are linearly related to the distance between the system state and the stored patterns.
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Figure 10: The two simulation examples of �gure 8: here we show the values
of the p pattern overlaps m�(S), as measured at times t = 0; 1; 2; 3; 4 iteration
steps per neuron. Top row: associative recall of a stored pattern from an initial
state which is a corrupted version thereof. Bottom row: evolution towards a
spurious (mixture) state from a randomly drawn initial state.

p(�) = lim
N!1

1

N

NX
i=1

��1
i
;�1 � � � ��pi ;�p (18)

Here � = (�1; : : : ; �p). For N ! 1 the microsopic details of the pattern
components are irrelevant; only the probability distribution (18) plays a role.
For randomly drawn patterns one �nds p(�) = 2�p for all �. Note that equation
(16) is closed, i.e. the evolution of Pt(m1; : : : ;mp) is given by a law in which
knowledge of the microscopic realisations S or their distribution pt(S) is not
required. The level of description of the overlaps is found to be autonomous.

Stage 4: solve the equation for Pt(m1; : : : ;mp)

The partial di�erential equation (16) has deterministic solutions: in�nitely
sharp probability distributions, which depend on time only through the location
of the peak. In other words: in the limit N !1 the 
uctuations in the values
of (m1; : : : ;mp) become negligable, so that we can forget about probabilities
and speak about the actual value of the macroscopic state (m1; : : : ;mp). This
value evolves in time according to the p coupled non-linear di�erential equations

d

dt

0
B@ m1

...
mp

1
CA =

0
B@ F1(m1; : : : ;mp)

...
Fp(m1; : : : ;mp)

1
CA (19)

with the functions F� given by (17). This is our �nal solution. One can now
analyse these equations, calculate stationary states and their stability proper-
ties (if any), sizes of attraction domains, relaxation times, etc.
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Figure 11: Solutions of the coupled equations (19) for the overlaps, with p = 2,
obtained numerically and drawn as trajectories in the (m1;m2) plane. Row
one: A�� = ��� , associative memory. Each of the four stable macroscopic states
found for su�ciently low noise levels (T < 1) corresponds to the reconstruction
of either a stored pattern (��1 ; : : : ; �

�
N ) or its negative (���1 ; : : : ;���N ). Row two:

A =
�

1 1
�1 1

�
. For su�ciently low noise levels T this choice gives rise to the

creation of a limit-cycle of the type �1 ! (��2)! (��1)! �2 ! �1 ! : : :.

Figure 12: Comparison of the macroscopic dynamics in the (m1;m2) plane, as
observed in �nite-size numerical simulations, and the predictions of the N =1
theory, for the limit-cycle model with A =

�
1 1
�1 1

�
at noise level T = 0:8.
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Equivalently we can solve the equations numerically, resulting in �gures like
11 and 12. The �rst row of �gure 11 corresponds to A�� = ��� and p = 2, rep-
resenting a simple associative memory network of the type (5) with two stored
patterns. The second row corresponds to a non-symmetric synaptic matrix,
with p = 2, generating limit-cycle attractors. Finally, �gure 12 illustrates how
the behaviour of �nite networks (as observed in numerical simulations) for in-
creasing values of the network size N approaches that described by the N =1
theory (described by the numerical solutions of (19)).
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4 Creating Maps of the Outside World

Any 
exible and robust autonomous system (whether living or robotic) will
have to be able to create, or at least update, an internal `map' or represen-
tation of its environment. Information on its environment, however, is usu-
ally obtained in an indirect manner, through a redundant set of sensors which
each provide only partial and indirect information. The system responsible for
forming this map needs to be adaptive, as both environment and sensors can
change their characteristics during the system's life-time. Our brain performs
recallibration of sensors all the time; e.g. simply because we grow will the neu-
ronal information about limb positions (generated by sensors which measure
the stretch of muscles) have to be reinterpreted continually. Anatomic changes,
and even learning new skills (like playing an instrument), are found to induce
modi�cations of internal maps. At a more abstract level, one is confronted with
a complicated non-linear mapping from a relatively low-dimensional and 
at
space (the `physical world') into a high-dimensional one (the space of sensory
signals), and the aim is to �nd the inverse of this operation. The key to achiev-
ing this is to exploit continuity and correlations in sensory signals, assuming
similar sensory signals to represent similar positions in the environment, which
therefore must correspond to similar positions in the internal map.

4.1 Map Formation Through Competitive Learning

Let us give a simple example. Image a system operating in a simple two-
dimensional world, where positions are represented by two Cartesian coordi-
nates (x; y), observed by sensors and fed into a neural network as input signals.
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Each neuron i receives information on the input signals (x; y) in the usual way,
through modi�able synaptic interaction strengths: inputi = wixx + wiyy. If
this network is to become an internal coordinate system, faithfully re
ecting the
events (x; y) observed in the outside world (in the present example its topology
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must accordingly be that of a two-dimensional array), the following objectives
are to be met

1. each neuron S` is more or less `tuned' to a speci�c type of signal (x`; y`)

2. neighbouring neurons are tuned to similar signals

3. external `distance' is monotonically related to internal `distance'

Here the internal `distance' between two signals (xA; yA) and (xB ; yB) is de-
�ned as the physical distance between the two (groups of) neurons that would
respond to these two signals.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

) training )

(xA; yA) :

(xB ; yB) :

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

It turns out that in order to achieve these objectives one needs learning rules
where neurons e�ectively enter a competition for having signals `allocated' to
them, whereby neighbouring neurons stimulate one another to develop similar
synaptic interactions and distant neurons are prevented from developing similar
interactions. Let us try to construct the simplest such learning rule. Since
our equations take their simplest form in the case where the input signals
are normalised, we de�ne (x; y) 2 [�1; 1]2 and add a dummy variable z =

�
p
1�x2�y2 (together with an associated synaptic interaction wz), so

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

� : Si = 1 (neuron i �ring)
� : Si =�1 (neuron i at rest)

inputi > 0 : Si ! 1
inputi < 0 : Si !�1
inputi = wixx+wiyy+wizz

A learning rule with the desired e�ect is, starting from random synaptic in-
teraction strengths, to iterate the following recipe until a (more or less) stable
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situation is reached:

choose an input signal : (x; y; z)

�nd most excited neuron : i; inputi � inputk (for all k)

for i and its neighbours :

8<
:

wix ! (1��)wix+�x
wiy ! (1��)wiy+�y
wiz ! (1��)wiz+�z

for all others :

8<
:

wix ! (1��)wix��x
wiy ! (1��)wiy��y
wiz ! (1��)wiz��z

(20)

In words: the neuron that was already the one most responsive to the signal
(x; y; z) will be made even more so (together with its neighbours). The other
neurons are made less responsive to (x; y; z). This is more obvious if we inspect
the e�ect of the above learning rule on the actual neural inputs, using the
built-in property x2+y2+z2 = 1:

for i and its neighbours : inputi ! (1��)inputi + �

for all others : inputi ! (1��)inputi � �

In practice one often adds extra ingredients to this basic recipe, like explicit
normalisation of synaptic interaction strengths to deal with non-uniform dis-
tributions of input signals (x; y; z), or a monotonically decreasing modi�cation
step size �(t) to enforce and speed up convergence.

A nice way to illustrate what happens during the learning stage is based on
exploiting the property that, apart from normalisation, one can interpret the
synaptic strengths (wix; wiy; wiz) of a neuron as the signal (x; y; z) to which
it is tuned. We can now draw each set of synaptic strengths (wix; wiy; wiz) as
a point in space, and connect the points corresponding to neurons which are
neighbours in the network. We end up with a graphical representation of the
synaptic structure of a network in the form of a `�shing net', with the positions
of the knots representing the signals in the world to which the neurons are
tuned and with the cords indicating neighbourship, see �gure 13. The three
objectives of map formation set out at the beginning of this section thereby
translate into

1. all knots in the net are separated

2. all cords are similarly stretched

3. there are no regions with overlapping pieces of net

In �gure 13 all knots are more or less on the surface of the unit sphere, i.e.
w2
ix+w2

iy+w2
iz � 1 for all i. This re
ects the property that the length of the

input vector (x; y; z) contains no information, due to x2+y2+z2 = 1.
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Figure 13: Graphical representation of the synaptic structure of a map forming
network in the form of a `�shing net'. The positions of the knots represent the
signals in the world to which the neurons are `tuned' and the cords connect the
knots of neighbouring neurons.

4.2 Solving Models of Map Formation

Let us now try to describe such learning processes analytically. The speci�c
learning rules I will discuss here serve to illustrate only; they are by no means
the most sophisticated or e�cient ones, but they are su�ciently simple and
transparent to allow for understanding and analysis. In addition they provide
a nice example of how similarities between mathematical problems in remote
scienti�c areas can be exploited, as will become clear shortly.

One computationally nasty (and biologically unrealistic) feature of the learn-
ing rule described above is the need to �nd the neuron that is triggered most
by a particular input signal (x; y; z) (to be given a special status, together
with its neighbours). A more realistic but similar procedure is to base the
decision about how synapses are to be modi�ed only on the actual �ring state
of the neurons, and to realise the neighbours-must-team-up e�ect by a spatial
smoothening of all neural inputs10. To be speci�c: before synaptic strengths
are modi�ed we replace

inputi ! Inputi = hinputjinear i � Jhinputiall (21)

in which brackets denote taking the average over a group of neurons and J is a
positive constant. This procedure has the combined e�ects that (i) neighbour-
ing neurons will tend to have similar neural inputs (due to the �rst term in
(21)), and (ii) the presence of a signi�cant response somewhere in the network
will evoke a global suppression of activity everywhere else, so that neurons are

10In certain brain regions spatial smoothening is indeed known to take place, via di�using
chemicals and gases such as NO
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e�ectively encouraged to `tune' to di�erent signals (due to the second term in
equation (21)).

Stage 1: de�ne the dynamical rules

Thus we arrive at the following recipe for the modi�cation of synaptic strengths,
to replace (20):

choose an input signal : (x; y; z)

smooth out all inputs : inputi ! Inputi
Inputi = hinputjinear i�Jhinputiall

for all i with Si = 1 :

8<
:

wix ! (1��)wix+�x
wiy ! (1��)wiy+�y
wiz ! (1��)wiz+�z

for all i with Si =�1 :
8<
:

wix ! (1��)wix��x
wiy ! (1��)wiy��y
wiz ! (1��)wiz��z

(22)

As before, the `world' from which the input signals (x; y; z) are drawn is the
surface of a sphere: x2+y2+z2 = C2.

Stage 2: consider small modi�cations �! 0

The dynamical rules (22) de�ne a stochastic process, in that at each time-
step the actual synaptic modi�cation depends on the (random) choice made
for the input (x; y; z) at that particular instance. However, in the limit of
in�nitesimally small modi�cation size � one �nds the procedure (22) being
transformed into a deterministic di�erential equation (if we also choose � as
the duration of each modi�cation step), which involves only averages over the
distribution p(x; y; z) of inputs signals:

d
dtwix =

R
dxdydz p(x; y; z) x sgn[Inputi(x; y; z)]� wix

d
dtwiy =

R
dxdydz p(x; y; z) y sgn[Inputi(x; y; z)]� wiy

d
dtwiz =

R
dxdydz p(x; y; z) z sgn[Inputi(x; y; z)]� wiz

(23)

in which the spatially smoothed out neural inputs Inputi(x; y; z) are given by
(21), and the function sgn[::] gives the sign of its argument (i.e. sgn[u > 0] =
1; sgn[u < 0] = �1). The spherical symmetry of the distribution p(x; y; z)
allows us to do the integrations in (23). The result of the integrations involves
only the smoothed out synaptic weights fWix;Wiy ;Wizg, de�ned as

Wix = hwjxinear i � Jhwxiall
Wiy = hwjyinear i � Jhwyiall
Wiz = hwjzinear i � Jhwziall

(24)
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and takes the form:

d

dt
wix =

1

2
C

Wixq
W 2

ix +W 2
iy +W 2

iz

� wix

d

dt
wiy =

1

2
C

Wiyq
W 2

ix +W 2
iy +W 2

iz

� wiy (25)

d

dt
wiz =

1

2
C

Wizq
W 2

ix +W 2
iy +W 2

iz

� wiz

Stage 3: exploit equivalence with dynamics of magnetic systems

If the constant J in (24) (controlling the global competition between the neu-
rons) is below some critical value Jc, one can show that the equations (25),
with the smoothed out weights (24), evolve towards a stationary state. In sta-
tionary states, where d

dtwix = d
dtwiy = d

dtwiz = 0, all synaptic strengths will
be normalised according to w2

ix+w
2
iy+w

2
iz =

1
4C

2, according to (25). In terms
of the graphical representation of �gure 13 this corresponds to the statement
that in stationary states all knots must lie on the surface of a sphere. From
now on we take C = 2, leading to stationary synaptic strengths on the surface
of the unit sphere.

If one works out the details of the dynamical rules (25) for synaptic strengths
which are normalised according to w2

ix+w
2
iy+w

2
iz = 1, one observes that they are

suspiciously similar to the ones that describe a system of microscopic magnets,
which interact in such a way that neighbouring magnets prefer to point in
the same direction (NN and SS), whereas distant magnets prefer to point in
opposite directions (NS and SN).

synapses to neuron i : (wix; wiy ; wiz)
neighbouring neurons : prefer similar synapses
distant neurons : prefer di�erent synapses

orientation of magnet i : (wix; wiy ; wiz)
neighbouring magnets : prefer ""; ##
distant magnets : prefer "#; #"

This relation suggests that one can use physical concepts again. More speci�-
cally, such magnetic systems would evolve towards the minimum of their energy
E, in the present language given by

E = �1

2
[w1xW1x+w1yW1y+w1zW1z ]� 1

2
[w2xW2x+w2yW2y+w2zW2z ]

: : : � 1

2
[wNxWNx+wNyWNy] (26)
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If we check this property for our equations (25), we indeed �nd that, provided
J < Jc, from some stage onwards during the evolution towards the stationary
state the energy (26) will be decreasing monotonically. The situation thus
becomes quite similar to the one with the dynamics of the attractor neural
networks in a previous section, in that the dynamical process can ultimately
be seen as a quest for a state with minimal energy. We now know that the
equilibrium state of our map forming system is de�ned as the con�guration of
weights that satis�es:

I : w2
ix + w2

iy + w2
iz = 1 for all i

II : E is minimal
(27)

with E given by (26). We now forget about the more complicated dynamic
equations (25) and concentrate on solving (27).

Stage 4: switch to new coordinates, and take the limit N !1
Our next step is to implement the conditions w2

ix + w2
iy + w2

iz = 1 (for all
i) by writing for each neuron i the three synaptic strengths (wix; wiy ; wiz) in
terms of the two polar coordinates (�i; �i) (a natural step in the light of the
representation of �gure 13):

wix = cos�i sin �i wiy = sin�i sin �i wiz = cos �i (28)

Furthermore, for large systems we can replace the discrete neuron labels i by
their position coordinates (x1; x2) in the network, i.e. i! (x1; x2), so that

�i ! �(x1; x2) �i ! �(x1; x2)

In doing so we have to specify how in the limit N ! 1 the average over
neighbours in (21) is to be carried out. If one just expands any well-behaved
local and normalised averaging distribution up to �rst non-trivial order in its
width �, and chooses the parameter J > Jc (the critical value depends on �),
one �nds, after some non-trivial bookkeeping, that the solution of (27) obeys
the following coupled non-linear partial di�erential equations:

sin �

�
@2�

@x21
+
@2�

@x22

�
+ 2 cos �

�
@�

@x1

@�

@x1
+

@�

@x2

@�

@x2

�
= 0 (29)

@2�

@x21
+

@2�

@x22
� sin � cos �

"�
@�

@x1

�2

+

�
@�

@x2

�2
#
= 0 (30)

with the constraintsZ
dx1dx2 cos� sin � =

Z
dx1dx2 sin� sin � =

Z
dx1dx2 cos � = 0 (31)

The corresponding value for the energy E is then given by the expression

E = �1

2
+

�

2

Z
dx1dx2

(
sin2 �

"�
@�

@x1

�2

+

�
@�

@x1

�2
#
+

�
@�

@x1

�2

+

�
@�

@x1

�2
)
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Stage 5: use symmetries and pendulums ...

Finding the general solution of �erce equations like (29,30,31) is out of the
question. However, we can �nd special solutions, namely those which are of
the form suggested by the simulation results shown in �gure 13. These con�g-
urations appear to have many symmetries, which we can exploit. In particular
we make an `ansatz' for the angles �(x1; x2), which states that if the array of
neurons would have been a circular disk, the con�guration of synaptic strengths
would have had rotational symmetry:

cos�(x1; x2) =
x1p

x21 + x22
sin�(x1; x2) =

x2p
x21 + x22

(32)

Insertion of this ansatz into our equations (29,30,31) shows that solutions with
this property indeed exist, and that they imply a simple law for the remaining
angle: �(x1; x2) = �(r), with r =

p
x21+x

2
2) and

r2
d2�

dr2
+ r

d�

dr
� sin � cos � = 0 (33)

This is already an enormous simpli�cation, but we need not stop here. A
simple transformation of variables turns this di�erential equation (33) into the
one describing the motion of a pendulum !

u = log r; �(r) =
1

2
� +

1

2
G(u);

d2

du2
G(u) + sinG(u) = 0 (34)

This means that we have basically cracked the problem, since the motion of a
pendulum can be described analytically. There are two types of motion, the �rst
one describes the familiar swinging pendulum and the second one describes a
rotating one (the e�ect resulting from giving the pendulum signi�cantly more
than a gentle swing ...). If we calculate the synaptic energies E associated
with the two types of motion (after translation back into the original synaptic
strength variables) we �nd that the lowest energy is obtained upon choosing
the solution corresponding to the pendulum motion which precisely separates
rotation from swinging. Here the pendulum `swings' just once, from one vertical
position at u =�1 to another vertical position at u =1:

G(u) = arcsin[tanh(u+ q)] (q 2 <) (35)

If we now translate all results back into the original synaptic variables, com-
bining equations (32,34,32,28), we end up with a beautifully simple solution:

wx(x1; x2) =
2kx1

k2+x21+x
2
2

wy(x1; x2) =
2kx2

k2+x21+x
2
2

(36)

wz(x1; x2) =
k2�x21�x22
k2+x21+x

2
2
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Figure 14: Graphical representation of the synaptic structure of a map forming
network in the form of a `�shing net'. Left: stationary state resulting from
numerical simulations. Right: the analytical result (36).

in which the remaining constant k is uniquely de�ned as the solution ofZ
dx1dx2

k2 � x21 � x22
k2 + x21 + x22

= 0

(which is the translation of the constraints (31)). The �nal test, of course, is to
draw a picture of this solution in the representation of �gure 13, which results
in �gure 14. The agreement is quite satisfactory.
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5 Learning a Rule From an Expert

Finally let us turn to the class of neural systems most popular among engineers:
layered neural networks. Here the information 
ows in only one direction, so
that calulculating all neuron states at all times can be done iteratively (layer
by layer), and has therefore become trivial. As a result one can concentrate
on developing and studying non-trivial learning rules. The popular types of
learning rules used in layered networks are the so-called `supervised' ones, where
the networks are trained by using examples of input signals (`questions') and
the required output signals (`answers'). The latter are provided by a `teacher'.
The learning rules are based on comparing the network answers to the correct
ones, and subsequently making adjustments to synaptic weights and thresholds
to reduce the di�erences between the two answers to zero.

The most important property of neural networks in this context is their abil-
ity to generalise. In contrast to the situation where we would have just stored
the question-answer pairs in memory, neural networks can, after having been
confronted with a su�cient number of examples, generalise their `knowledge'
and provide reasonable, if not correct, answers even for new questions.

5.1 Perceptrons

The simplest feed-forward `student' network one can think of is just a single
binary neuron, with the standard operation rules,
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question : (x1; : : : ; xN )

teacher0s answer : T (0 or 1)
student0s answer : S (0 or 1)

input > � : S = 1
input < � : S = 0

input = w1x1 + : : :+ wNxN

trying to adjust its synaptic strengths fw`g such that for each question (x1; : : : ; xN )
its answer S coincides with the answer T given by the teacher. We now de�ne
a very simple learning rule (the so-called perceptron learning rule) to achieve
this, where changes are made only if the neuron makes a mistake, i.e. if T 6= S:

1. select a question (x1; : : : ; xN )

2. compare S(x1; : : : ; xN ) and T (x1; : : : ; xN ):

S = T : do nothing
if S = 1, T = 0: change wi ! wi�xi and � ! �+1
if S = 0, T = 1: change wi ! wi+xi and � ! ��1
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Binary neurons, equipped with the above learning rule, are called `Perceptrons'
(re
ecting their original use in the �fties to model perception). If a perceptron
mistakenly produces an answer S = 1 for question (x1; : : : ; xN ) (i.e. input > �,
whereas we would have preferred input < �), the modi�cations made ensure
that the input produced upon presentation of this particular question will be
reduced. If the perceptron mistakenly produces an answer S = 0 (i.e. input <
�, whereas we would have preferred input > �), the changes made increase the
input produced upon presentation of this particular question.

The perceptron learning rule appears to make sense, but it is as yet just
one choice from an in�nite number of possible rules. What makes the above
rule special is that it comes with a convergence proof, in other words, it is
guaranteed to work ! More precisely, provided the input vectors are bounded:

If values for the parameters fw`g and � exists, such that S = T for each

question (x1; : : : ; xN ), then the perceptron learning rule will �nd these,

or equivalent ones, in a �nite number of modi�cation steps

This is a remarkable statement. It could, for instance, easily have happened
that correcting the system's answer for a given question (x1; : : : ; xN ) would
a�ect the performance of the system on those questions it had so far been
answering correctly, thus preventing the system from ever arriving at a state
without errors. Apparently this does not happen. What is even more remark-
able, is that the proof of this powerful statement is quite simple.

The standard version of the convergence proof assumes the set of questions

 to be �nite and discrete (in the continuous case one can construct a similar
proof)11. To simplify notation we use a trick: we introduce a `dummy' input
variable x0 =�1 (a constant). Upon giving the threshold � a new name, � = w0,
our equations can be written in a very compact way. We denote the vector of
weights asw = (w0; : : : ; wN ), the questions as x = (x0; : : : ; xN ), inner products
as w � x = w0x0 + : : : wNxN , and the length of a vector as jxj = p

x � x. For
the operation of the perceptron we get

w � x > 0 : S = 1; w � x < 0 : S = 0

whereas the learning rule becomes

w ! w + [T (x)�S(x)]x (37)

There exists an error-free system (by assumption), with as yet unknown pa-
rameters w? (these include the threshold w0). This system by de�nition obeys

T (x) = 1 : w? � x > 0; T (x) = 0 : w? � x < 0

De�ne X = max
 jxj > 0 and � = min
 jw? � xj > 0. The convergence proof
relies on the following inequalities

for all x 2 
 : jxj � X and jw? � xj � � (38)

11One also assumes for simplicity that the borderline situation input = � never occurs.
This is not a big issue; such cases can be dealt with quite easily, should the need arise.
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At each modi�cation step w ! w0 (37), where S = 1�T (otherwise: no
modi�cation !), we can inspect what happens to the quantities w �w? and jwj2:

w0 �w? = w �w? + [2T (x)�1]x �w?

jw0j2 = jwj2 + 2[2T (x)�1]x �w + [2T (x)�1]2jxj2

Note that 2T (x)�1 =�1 if w? � x < 0, and 2T (x)�1 = 1 if w? � x > 0, and
that therefore [2T (x)�1]x �w < 0 (otherwise one would have had S = T ), so

w0 �w? = w �w? + jx �w?j � w �w? + �
jw0j2 < jwj2 + jxj2 � jwj2 +X2

After n such modi�cation steps we therefore �nd

w(n) �w? � w(0) �w? + n�
jw(n)j2 � jw(0)j2 + nX2

In combination this implies the following inequality:

w(n) �w?

jw?jjw(n)j �
w(0) �w?+n�

jw?jpjw(0)j2 + nX2

giving

lim
n!1

1p
n

w(n) �w?

jw?jjw(n)j �
�

jw?jX > 0 (39)

We see that the number of modi�cations made must be bounded, since oth-
erwise (39) leads to a contradiction with the Schwarz inequality jw � w?j �
jwjjw?j. As soon as no more modi�cations are made, we must be in a situation
where S(x) = T (x) for each question x 2 
. This completes the proof.

Figure 15 gives an impression of the learning process described by the pre-
ceptron learning rule. In these simulation experiments the task T is de�ned by
a teacher perceptron with a (randomly drawn) synaptic weight vector w?:

w? � x > 0 : T (x) = 1 w? � x < 0 : T (x) = 0

The evolution of the student perceptron's synaptic vector w is monitored by
calculating at each iteration step the quantity ! which already played a domi-
nant role in the convergence proof for the perceptron learning rule, and which
measures the resemblance between w and w?:

! =
w �w?

jwjjw?j (40)

At each iteration step each component xi of the questions x posed during the
simulation experiments was drawn randomly from f�1; 1g. Figure 15 suggest
that for large perceptrons, N ! 1, our general strategy of trying to derive
exact analytical and deterministic dynamical laws might again be succesful.
This turns out to be true, as we will show in a subsequent section.
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Figure 15: Evolution in time of the observable ! = w �w?=jwjjw?j, obtained
by numerical simulation of the perceptron learning rule, for a randomly drawn
teacher vector w? and binary questions (x1; : : : ; xN ) 2 f�1; 1gN . Each picture
shows the results following four di�erent random initialisations of the student
vector w.

Since we know that the perceptron learning rule will converge for each real-
isable task, we need only worry about which tasks are learnable by perceptrons
and which are not. Tasks that can be performed by single binary neurons
are called `linearly separable'. Unfortunately, not all rules (x1; : : : ; xN ) !
T (x1; : : : ; xN ) 2 f0; 1g can be performed with simple binary neurons. The sim-
plest counter-example is the so-called XOR operation, XOR: f0; 1g2 ! f0; 1g,
de�ned below. One can prove quite easily that there cannot exist a choice of
parameters fw1; w2; �g such that

XOR(x1; x2) = 1 : w1x1+w2x2 > �
XOR(x1; x2) = 0 : w1x1+w2x2 < �

by just checking explicitly the four possibilities for (x1; x2):

x1 x2 XOR(x1; x2) requirement
0 0 0 � > 0
0 1 1 w2 > �
1 0 1 w1 > �
1 1 0 w1+w2 < �

The four parameter requirements are clearly contradictory.
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5.2 Multi-layer Networks

If we want a neural network to perform an operation T that cannot be per-
formed by a single binary neuron, like the XOR operation in the previous
section, we need a more complicated network architecture. For the case where
the question variables xi are binary we know that the two-layer architecture
shown in �gure 5 is in principle su�ciently complicated (see the proof in section
2.2), but as yet we have no learning rule available that will allow us to train
such systems. For real-valued question variables one can prove that two-layer
architectures can perform any su�ciently regular12 task T with arbitrary ac-
curacy, if the number of neurons in the `hidden' layer is su�ciently large and
provided we turn our binary neurons into so-called `graded-response' ones:

S = f(w1x1+: : :wNxN��) (41)

in which the non-linear function f(z) has the properties

f 0(z) � 0; lim
z!�1

jf(z)j <1
Commonly made choices for f are f(z) = tanh(z) and f(z) = erf(z). De�nition
(41) can be seen as a generalisation of the binary neurons considered so far,
which correspond to choosing a step-function: f(z > 0) = 1, f(z < 0) = 0.
From now on we will assume the task T and the nonlinear function f to be
normalised according to jT (x1; : : : ; xN )j � 1 for all (x1; : : : ; xN ), and jf(z)j � 1
for all z 2 <. Given a `student' S in the form of a (universal) two-layer feed-
forward architecture with neurons of the type (41), we can write the student
answer S(x1; : : : ; xN ) to question (x1; : : : ; xN ) as

S(x1; : : : ; xN ) = f(w1y1+: : :+wKyK��)
y`(x1; : : : ; xN ) = f(w`1x1+: : :+w`NxN��`)

(42)
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question : (x1; : : : ; xN )

teacher0s answer : T 2 [�1; 1]
student0s answer : S 2 [�1; 1]

S = f(w1y1+: : :+wKyK��)

y` = f(w`1x1+: : :+w`NxN��`)

12T (x1; : : : ; xN ) should, for instance, be bounded for all (x1; : : : ; xN )
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As before, we can simplify (42) and eliminate the thresholds � and f�`g by
introducing dummy neurons x0 =�1 and y0 =�1, with corresponding synaptic
strengths w0 and fw`0g.

Our goal is to �nd a learning rule. In this case it would be a recipe for the
modi�cation of the synaptic strengths wi (connecting `hidden' neurons to the
output neuron) and fwijg (connecting the input signals, or questions compo-
nents, xi to the hidden neurons), based on the observed di�erences between the
teacher's answers T (x0; : : : ; xN ) and the student's answers S(x0; : : : ; xN ). If we
denote the set of all possible questions by 
, and the probability that a given
question x = (x0; : : : ; xN ) will be asked by p(x), we can quantify the student's
performance at any stage during training by its average quadratic error E13:

E =
1

2

X
x2


p(x) [T (x)�S(x)]2 (43)

Training is supposed to minimise E, preferably to zero. This suggest a very
simple way to modify the system's parameters, the so-called `gradient descent'
procedure. Here one inspects the change in E following in�nitesimally small
parameter changes, and then chooses those modi�cations for which E would
decrease most (like a blind mountaineer in search of the valley). In terms of
partial derivatives this implies the following `motion' for the parameters:

for all i = 1; : : : ;K : d
dtwi = � @

@wi
E

for all i = 1; : : : ;K; j = 1; : : : ; N : d
dtwij = � @

@wij
E

(44)

Although the equations one �nds upon working out the derivatives in (44) are
rather messy compared to the simple perceptron rule (37), the procedure (44)
is guaranteed to decrease the value of the error E until a stationary state is
reached, since from (44) we can deduce via the chain rule:

dE

dt
=

KX
i=1

�
@E

@wi

� �
dwi
dt

�
+

KX
i=1

NX
j=1

�
@E

@wij

��
dwij
dt

�

= �
KX
i=1

�
dwi
dt

�2
�

KX
i=1

NX
j=1

�
dwij
dt

�2
� 0

A stable stationary state is reached only when every small modi�cation of the
synaptic weights would lead to an increase in E, i.e. when we are at a local

minimum of E. However, this local minimum need not be the desired global

minimum; the blind mountaineer might �nd himself in some small valley high
up in the mountains, rather than the one he is aiming for.

It will be clear that the principle behind the learning rule (44) can be applied
to any feed-forward architecture, with arbitrary numbers of `hidden' layers of

13Note that this is an arbitrary choice; any monotonic function of jT (x)�S(x)j other than
jT (x)�S(x)j2 would do.
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arbitrary size, since it relies only on our being able to write down an explicit
expression for the student's answers S(x) in expression (43) for the error E.
One just writes down equations of the form (44) for every parameter to be
modi�ed in the network. One can even generalise the construction to the case
of multiple output variables (multiple answers):
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In this case there are L student answers S`(x0; : : : ; xN ) and L teacher answers
T`(x0; : : : ; xN ) for each question (x0; : : : ; xN ), so that the error (43) to be min-
imised by gradient descent is to be generalised to

E =
1

2

X
x2


p(x)

LX
`=1

[T`(x)�S`(x)]2 (45)

The strategy of tackling tasks which are not linearly separable (i.e. not exe-
cutable by single perceptrons) using multi-layer networks of graded-response
neurons which are being trained by gradient descent has several advantages,
but also several drawbacks. Just to list a few:

+ the networks are in principle universal
+ we have a learning rule that minimises the student's error
+ the rule works for arbitrary numbers of layers and layer sizes

� we don't know the required network dimensions beforehand
� the rule cannot be implemented exactly (in�nitely small modi�cations !)
� convergence is not guaranteed (we can end up in a local minimum of E)
� at each step we need to evaluate all student and teacher answers

The lack of a priori guidelines in choosing numbers of layers and layer sizes, and
the need for discretisation and approximation of the di�erential equation (44)
unfortunately generate quite a number of parameters to be tuned by hand. This
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Figure 16: Evolution of the student's error E (43) in a two-layer feed-forward
network with N = 15 input neurons and K = 10 `hidden' neurons. The
parameter � gives the elementary time-steps used in the discretisation of the
gradient descent learning rule. The upper graphs refer to task I (not linearly
separably), the lower graphs to task II (which is linearly separable).

problem can be solved only by having exact theories to describe the learning
process; I will give a taste of recent analytical developments in a subsequent
section.

Figures 16 and 17 give an impression of the learning process described by
the following discretisation/approximation of the original equation (44)

wi(t+�) = wi(t)�� @

@wi
E[x(t)] wij(t+�) = wij(t)�� @

@wij
E[x(t)]

E[x] =
1

2
[T (x)�S(x)]2

in a two-layer feed-forward network, with graded response neurons of the type
(41), in which the non-linear function was choosen to be f(z) = tanh(z). Apart
from having a discrete time, as opposed to the continuous one in (44), the second
approximation made consists of replacing the overall error E (43) in (44) by
the error E[x(t)] made in answering the current question x(t). The rationale
is that for times t� ��1 the above learning rule tends towards the original one
(44) in the limit � ! 0. In the simulation examples the following two tasks T
were considered:

x 2 f�1; 1gN :

(
task I : T (x) =

QN
i=1 xi

task II : T (x) = sgn[w? � x]
(46)
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Figure 17: Evolution of the student's error E (43) in a two-layer feed-forward
network withN = 10 input neurons andK = 10 `hidden' neurons, being trained
on task I (which is not linearly separably). The so-called `plateau phase' is the
intermediate (slow) stage in the learning process, where the error appears to
have stabilised.

with, in the case of task II, a randomly drawn teacher vector w?. Task I is
not linearly separable, task II is. At each iteration step each component xi
of the question x in the simulation experiments was drawn randomly from
f�1; 1g. In spite of the fact that task I can be performed with a two-layer
feed-forward network if K � N (which can be demonstrated by construction),
�gure 16 suggests that the learning procedure used does not converge to the
desired con�guration. This, however, is just a demonstration of one of the
characteristic features of learning in multi-layer networks: the occurrence of
so-called `plateau phases'. These are phases in the learning process where the
error appears to have stabilised (suggesting arrival at a local minimum), but
where it is in in fact only going through an extremely slow intermediate stage.
This is illustrated in �gure 17, where much larger observation times are choosen.

5.3 Calculating what is Achievable

There are several reasons why one would like to know beforehand for any given
task T which is the minimal architecture necessary for a student network S to
be able to `learn' this task. Firstly, if we can get away with using a perceptron,
as opposed to a multi-layer network, then we can use the perceptron learning
rule, which is simpler and is guaranteed to converge. Secondly, the larger
the number of layers and layer sizes, the larger the amount of computer time
needed to carry out the training process. Thirdly, if the number of adjusted
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parameters is too large compared to the number actually required, the network
might end up doing brute-force data-�tting which resembles the creation of a
look-up table for the answers, rather than learning the underlying rule, leading
to poor generalisation.

We imagine having a task (teacher), in the form of a rule T assigning an
answer T (x) to each question x = (x0; : : : ; xN ), drawn from a set 
 with prob-
ability p(x). We also have a student network with a given architecture, and a
set of adjustable parameters w = (w0; : : : ; wN ), assigning an answer S(x;w)
to each question (the rule operated by the student depends on the adjustable
paremeters w, which we now emphasise in our notation). The answers could
take discrete or continuous values. The degree to which a student with pa-
rameter values w has succesfully learned the rule operated by the teacher is
measured by an error E[w], usually choosen to be of the form

E[w] =
1

2

X
x2


p(x) [T (x)�S(x;w)]2 (47)

What we would like to calculate is E0 = minw2W E[w], since

E0 = min
w2W

E[w] :

�
E0 > 0 : task not feasable
E0 = 0 : task feasable

(48)

W denotes the set of allowed values for w. The freedom in choosing W allows
us to address a wider range of feasibility questions; for instance, we might
have constraints on the allowed values of w due to restrictions imposed by the
(biological or electrical) hardware used. If E0 = 0 we know that it is at least
in principle possible for the present student architecture to arrive at a stage
with zero error; if E0 > 0, on the other hand, no learning process will ever
lead to error-free performance. In the latter case, the actual magnitude of E0

still contains valuable information, since allowing for a certain fraction of errors
could be a price worth paying if it means a drastic reduction in the complexity
of the architecture (and therefore in the amount of computing time).

Performing the minimisation in (48) explicitly is usually impossible, how-
ever, as long as we do not insist on knowing for which parameter setting(s)
w? the minimum E0 = E[w?] is actually obtained, we can use the following
identity14:

E0 = lim
�!1

R
W dw E[w]e��E[w]R

W
dw e��E[w]

(49)

The expression (49) can also be written in the following way, requiring us just
to calculate a single integral

E0 = � lim
�!1

@

@�
logZ [�] Z [�] =

Z
W

dw e��E[w] (50)

14Strictly speaking this is no longer true if the minimum is obtained only for values of w in
sets of measure zero. In practice this is not a serious restriction; in the latter case the system
would be extremely sensitive to noise (numerical or otherwise) and thus of no practical use.
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The integral in (50) need not (and usually will not) be trivial, but it can
often be done. The results thus obtained can save us from running extensive
(and expensive) computer simulations, only to �nd out the hard way that the
architecture of the network at hand is too poor. Alternatively they can tell
us what the minimal architecture is, given a task, and thus allow us to obtain
networks with optimal generalisation properties.

Often we might wish to reduce our ambition further, in order to obtain exact
statements. For instance, we could be interested in a certain family of tasks T ,
i.e. T 2 B, with P(T ) denoting the probability of task T to be encountered,
and try to �nd out about the feasibility of a generic task from this family,
rather than the feasibility of each individual family member:

E[T ;w] =
1

2

X
x2


p(x) [T (x)�S(x;w)]2 (51)

hE0[T ]iB =

Z
B

dT P(T ) E0[T ]

= � lim
�!1

@

@�

Z
B

dT P(T ) log

�Z
W

dw e��E[T ;w]

�
(52)

In those cases where the original integral in (50) cannot be done analytically,
one often �nds that the quantity (52) can be calculated by doing the integration
over the tasks before the integration over the students. Since (47) ensures
E0 � 0, we know that hE0[T ]iB = 0 implies that if we randomly choose a task
from the family B, then the probability that a randomly drawn task from the
family B is not feasible is zero.

Application of the above ideas to a single binary neuron leads to statements
on which types of operations T (x1; : : : ; xN ) are linearly separable. For example,
let us de�ne a task by choosing at random p binary questions (��1 ; : : : ; �

�
N ), with

��i 2 f�1; 1g for all (i; �) and � = 1; : : : ; p, and assign randomly an output value
T� = T (��1 ; : : : ; �

�
N ) 2 f0; 1g to each. The synaptic strengths w of an error-free

perceptron would then be the solution of the following problem:

for all � :

(
T� = 1 : w1�

�
1 +: : :+wN�

�
N > 0

T� = 0 : w1�
�
1 +: : :+wN�

�
N < 0

(53)

The larger p, the more complicated the task, and the smaller the set of so-
lutions w. For large N , the maximum number p of random questions that
a perceptron can handle turns out to scale with N , i.e. p = �N for some
� > 0. Finding out for a speci�c task T , which is speci�ed by the choice made
for all question/answer pairs �� = (��1 ; : : : ; �

�
N ;T�), whether a solution of (53)

exists, either directly or by calculating (50), is impossible (except for trivial
and pathological cases). Our family B is the set of all such tasks T obtained
by choosing di�erent realisations of the question/answer pairs (��1 ; : : : ; �

�
N ;T�);
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there are 2p+1 possible choices of question/answer pairs, each equally likely.
The error (51) and the family-averaged mimimum error in (52) thus become

E[T ;w] =
1

2p

pX
�=1

[T��S(��;w)]
2

(54)

hE0[T ]iB = � lim
�!1

@

@�

1

2p+1

X
��

log

�Z
W

dw e
��

2

P
�
[T��S(�

�
;w)]

2
�

(55)

If one speci�es the set W of allowed student vectors w by simply requiring
w2
1+: : :+w2

N = 1, one �nds that the average (55) can indeed be calculated15,
which results in the following statement on � = p=N : for large N there exists
a critical value �c such that for � < �c the tasks in the family B are linearly
separable, whereas for � > �c the tasks in B are not. The critical value turns
out to be �c = 2.

We can play many interesting games with this procedure. Note that, since
the associative memory networks of a previous section consist of binary neu-
rons, this result also has immediate applications in terms of network storage
capacities: for large networks the maximum number pc of random patterns
that can be stored in an associative memory network of binary neurons obeys
pc=N ! 2 for N ! 1. We can also investigate the e�ect on the storage
capacity of of the degree of symmetry of the synaptic strengths wij , which is
measured by

�(w) =

P
ij wijwjiP
ij w

2
ij

2 [�1; 1]

For �(w) =�1 the synaptic matrix is anti-symmetric, i.e. wij =�wji for all
neuron pairs (i; j); for �(w) = 1 it is symmetric, i.e. wij = wji for all neuron
pairs. If one now speci�es in expression (55) the set W of allowed synaptic
strengths by requiring both w2

1+: : :+w
2
N = 1 and �(w) = � (for some �xed �),

our calculation will give us the storage capacity as a function of the degree of
symmetry: �c(�). Somewhat unexpectedly, the optimal network turns out not
to be symmetric:

� =�1 : fully anti�symmetric synapses; �c =
1
2

� = 0 : no symmetry preference; �c � 1:94

� = 1
� : optimal synapses; �c = 2

� = 1 : fully symmetric synapses; �c � 1:28

15This involves a few technical subtleties which go beyond the scope of the present paper.

46



5.4 Solving the Dynamics of Learning for Perceptrons

As with our previous network classes, the associative memory networks and
the networks responsible for creating topology conserving maps, we can for the
present class of layered networks obtain analytical results on the dynamics of
supervised learning, provided we restrict ourselves to (in�nitely) large systems.
In particular, we can �nd the system error as a function of time. Here I will
only illustrate the route towards this result for perceptrons, and restrict myself
to speci�c parameter limits. A similar approach can be followed for multi-layer
systems; this is in fact one of the most active present research areas.

Stage 1: de�ne the rules

For simplicity we will not deal with thresholds, i.e. � = 0, and we will draw
at each time-step t each bit xi(t) of the question x(t) asked at random from
f�1; 1g. Furthermore, we will only consider the case where a perceptron S is
being trained on a linearly separable (i.e. feasable) task, which means that the
operation of the teacher T can itself be seen as that of a binary neuron, with
synaptic strengths w? = (w?

1 ; : : : ; w
?
N ). Since the (constant) value of the length

of the teacher vector w? has no e�ect on the process (37), we are free to choose
the simplest normalisation jw?j2 = w?2

1 +: : :+w?2
N = 1.

In the original perceptron learning rule we can introduce a so-called learning
rate � > 0, which de�nes the magnitude of the elementary modi�cations of the
student's synaptic strengths w = (w1; : : : ; wN ), by rescaling the modi�cation
term in equation (37). This does not a�ect the convergence proof. It just gauges
the time-scale of the learning process, so we choose this � to de�ne the duration
of individual iteration steps. For realisable tasks the teacher's answer to a
question x = (x1; : : : ; xN ) depends only on the sign ofw

?�x = w?
1x1+: : :+w

?
NxN .

Upon combining our ingredients we can replace the learning rule (37) by the
following expression

w(t+�) = w(t) +
1

2
� x(t)

�
sgn[w? � x(t)]�sgn[w(t) � x(t)]

�
(56)

with sgn[z > 0] = 1, sgn[z < 0] =�1 and sgn[0] = 0. If we now consider very
small learning rates � ! 0, the following two pleasant simpli�cations occur16:
(i) the discrete-time iterative map (56) will be replaced by a continuous-time
di�erential equation, and (ii) the right-hand side of (56) will be converted into
an expression involving only averages over the distribution of questions, to be
denoted by h: : :ix:

d

dt
w =

1

2
hx
�
sgn[w? � x]�sgn[w � x]

�
ix (57)

16Note that this is the same procedure we followed to analyse the creation of topology
conserving maps, in a previous section.
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Stage 2: �nd the relevant macroscopic features

The next stage, as always, is to decide which are the quantities we set out
to calculate. For the perceptron there is a clear guide in �nding the relevant
macroscopic features, namely the perceptron convergence proof. In this proof
the following two observables played a key role:

J =
q
w2
1+: : : w

2
N ! =

w1w
?
1+: : :wNw

?
Np

w2
1+: : : w

2
N

(58)

Last but not least one would like to know at any time the accuracy with which
the student has learned the task, as measured by the error E:

E =
1

2
h
�
1� sgn[(w? � x)(w � x)]

�
ix (59)

which simply gives the fraction of questions which is wrongly answered by the
student. We can use equation (57) to derive a di�erential equation describing
the evolution in time of the two observables (58), which after some rearranging
can be written in the form

d

dt
J = �

Z 1

0

Z 1

0

dydz z [P (y;�z)+P (�y; z)] (60)

d

dt
! =

1

J

Z 1

0

Z 1

0

dydz [y+!z] [P (y;�z)+P (�y; z)] (61)

in which the details of the student and teacher vectors w and w? enter only
through the probability distribution P (y; z) for the two local �eld sums

y = w?
1x1+: : :+w

?
NxN z =

1

J
(w1x1+: : :+wNxN )

Similarly we can write the student's error E in (59) as

E =

Z 1

0

Z 1

0

dydz [P (y;�z)+P (�y; z)] (62)

Note that the way everything has been de�ned so far guarantees a more or less
smooth limit N ! 1 when we eventually go to large systems, since with our
present choice of question statistics we �nd for any N :Z

dydz P (y; z)y =

Z
dydz P (y; z)z = 0 (63)

Z
dydz P (y; z)y2 = h[w? � x]2ix = w?2 = 1 (64)

Z
dydz P (y; z)z2 = J�2h[w � x]2ix = J�2w2 = 1 (65)

Z
dydz P (y; z)yz = J�1h[w? � x][w � x]ix = J�1w? �w = ! (66)
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Figure 18: Evolution in time of the student's error E in an in�nitely large
perceptron in the limit of an in�nitesimally small learning rate, according to
(70). The four curves correspond to four random initialisations for the student
vector w, with lengths J(0) = 2; 32 ; 1;

1
2 (from top to bottom).

Stage 3: calculate P (y; z) in the limit N !1
For �nite systems the shape of the distribution P (y; z) depends in some compli-
cated way on the details of the student and teacher vectors w and w?, although
the moments (63-66) will for any size N depend on the observable ! only. For
large perceptrons (N ! 1), however, a drastic simpli�cation occurs: due to
the statistical independence of our question components xi 2 f�1; 1g the cen-
tral limit theorem applies, which guarantees that the distribution P (y; z) will
become Gaussian17. This implies that it is characterised only by the moments
(63-66), and therefore depends on the vectors w and w? only through the
observable !:

P (y; z) =
1

2�
p
1� !2

e�
1

2
(y2+z2�2!yz)=(1�!2)

As a result the right-hand sides of both dynamic equations (60,61) as well as the
error (62) can be expressed solely in terms of the two key observables J and !.
We can apparently forget about the details of w and w?; the whole process can
be described at a macroscopic level. Furthermore, due to the Gaussian shape
of P (y; z) one can even perform all remaining integrals analytically ! Our main

17Strictly speaking, for this to be true certain conditions on the vectors w and w? will have
to be ful�lled, in order to guarantee that the random variables y and z are not e�ectively
dominated by just a small number of their components.
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Figure 19: Evolution of the observable ! in a perceptron with learning rate � =
0:01=N for various sizes N and a randomly drawn teacher vector w?. In each
picture the solid lines correspond to numerical simulations of the perceptron
learning rule (for di�erent values of the length J(0) of the initial student vector
w(0)), whereas the dashed lines correspond to the theoretical predictions (69)
for in�nitely large perceptrons (N !1).

target, the student's error (59) turns out to become

E =
1

�
arccos(!) (67)

whereas the dynamic equations (60,61) reduce to

dJ

dt
= �1�!p

2�

d!

dt
=

1�!2

J
p
2�

(68)

Stage 4: solve the remaining di�erential equations

In general one has to resort to numerical analysis of the macroscopic dynamic
equations at this stage. For the present example, however, the dynamic equa-
tions (68) can actually be solved analytically, due to the fact that (68) describes
evolution with a conserved quantity, namely the product J(1+!) (as can be
veri�ed by substitution). This property allows us to eliminate the observable
J altogether, and reduce (68) to just a single di�erential equation for ! only.
This equation, in turn, can be solved. For initial conditions corresponding to a
randomly choosen student vector w(0) with a given length J(0), the solution
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takes its easiest form by writing t as a function of !:

t = J(0)

r
�

2

(
log

�
1+!

1�!
� 1

2

+
!

1+!

)
(69)

In terms of the error E, related to ! through (67), this result becomes

t = J(0)

r
�

8

�
1�tan2(1

2
�E)�2 log tan(1

2
�E)

�
(70)

Examples of curves described by this equation are shown in �gure 18. What
more can one ask for ? For any required student performance, relation (70) tells
us exactly how long the student needs to be trained. Figure 19 illustrates how
the learning process in �nite perceptrons gradually approaches that described
by our N !1 theory, as the perceptron's size N increases.
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6 Puzzling Mathematics

The models and model solutions described so far were reasonably simple. The
mathematical tools involved where mostly quite standard and clear. Let us
now open Pandora's box and see what happens if we move away from the nice
and solvable region of the space of neural network models.

Most traditional models of systems of interacting elements (whether phys-
ical or otherwise) tend to be quite regular and `clean'; the elements usually
interact with one another in a more or less similar way and there is often a
nice lattice-type translation invariance18. In the last few decennia, however,
attention in science is moving away from these nice and clean systems to the
`messy ones', where there is no apparent spatial regularity and where at a mi-
croscopic level all interacting elements appear to operate di�erent rules. The
latter types, also called `complex systems', play an increasingly important role
in physics (glasses, plastics, spin-glasses), computer science (cellular automata)
economics and trading (exchange rate and derivative markets) and biology (neu-
ral networks, ecological systems, genetic systems). One �nds that such systems
have much in common: �rstly, many of the more familiar mathematical tools to
describe interacting particle systems (usually based on microscopic regularity)
no longer apply, and secondly, in analysing these systems one is very often led
to so-called `replica theories'.

6.1 Complexity due to Frustration, Disorder and

Plasticity

I will now brie
y discuss the basic mechanisms causing neural network models
(and other related models of complex systems) to be structurally di�erent from
the more traditional models in the physical sciences. Let us return to the
relatively simple recurrent networks of binary neurons as studied in section 3,
with the neural inputs

inputi = wi1S1 + : : :+ wiNSN

Here excitatory interactions wij > 0 tend to promote con�gurations with
Si = Sj , whereas inhibitory interactions wij < 0 tend to promote con�gu-
rations with Si 6= Sj . A so-called `unfrustrated' system is one where there exist
con�gurations fS1; : : : ; SNg with the property that each pair of neurons can
realise its most favourable con�guration, i.e. where

for all (i; j) :

(
Si = Sj if wij > 0

Si 6= Sj if wij < 0
(71)

In a frustrated system, on the other hand, no con�guration fS1; : : : ; SNg exists
for which (71) is true.

18i.e. the systems looks exactly the same, even microscopically, if we shift our microscope
in any direction over any distance.
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Figure 20: Frustration in symmetric networks. Each neuron is for simplicity
assumed to interact with its four nearest neighbours only. Neuron states are
drawn either as � (denoting Si = 1) or as � (denoting Si = 0). Excitatory
synapses wij > 0 are drawn as solid lines, inhibitory synapses wij < 0 as
dashed lines. An unfrustrated con�guration fS1; : : : ; SNg now corresponds to
a way of colouring the vertices such that solid lines connect identically coloured
vertices (�� or ��) whereas dashed lines connect di�erently coloured vertices
(�� or ��). In the left diagram (all synapses excitatory) and the middle diagram
(all synapses inhibitory) the network is unfrustrated. The right diagram shows
an example of a frustrated network: here there is no way to colour the vertices
such that an unfrustrated con�guration is achieved (in the present state the
four `frustrated' pairs are indicated with �).

Let us consider at �rst only recurrent networks with symmetric interactions,
i.e. wij = wji for all (i; j) and without self-interactions (i.e. wii = 0 for
all i). Depending on the actual choice made for the synaptic strengths such
networks can be either frustrated or unfrustrated, see �gure 20. In a
frustrated network compromises will have to be made; some of the neuron
pairs will have to accept that for them the goal in (71) cannot be achieved.
However, since there are often many di�erent compromises possible, with the
same degree of frustration, frustrated systems usually have a large number of
stable or meta-stable states, which generates non-trivial dynamics. Due to the
symmetry wij = wji of the synaptic strengths it takes at least three neurons to
have frustration. In the examples of �gure 20 the neurons interact only with
their nearest neighbours; in neural systems with a high connectivity and where
there is a degree of randomness (or disorder) in the microscopic arrangement
of all synaptic strengths, frustration will play an even more important role.
The above situation is also encountered in certain complex physical systems
like glasses and spin-glasses, and gives rise to relaxation times19 which are

19The relaxation time is the time needed for a system to relax towards its equilibrium state,
where the values of all relevant macroscopic observables have become stationary.
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Figure 21: Frustration in non-symmetric networks and networks with self-
interactions. Neuron states are drawn as � (denoting Si = 1) or as � (denoting
Si = 0). Solid lines denote excitatory synapses wij > 0, dashed lines denote
inhibitory synapses wij < 0. An unfrustrated con�guration corresponds to a
way of colouring the vertices such that solid lines connect identically coloured
vertices (�� or ��) whereas dashed lines connect di�erently coloured vertices
(�� or ��). The left diagram shows two interacting neurons S1 and S2; as soon
as w12 > 0 and w21 < 0 this simple system is already frustrated. The right dia-
gram shows a single self-interacting neuron. If the self-interaction is excitatory
there is no problem, but if it is inhibitory we always have a frustrated state.

measured in years rather than minutes (for example: ordinary window glass is
in fact a liquid, which takes literally ages to relax towards its crystalline and
non-transparent stationary state.)

In non-symmetric networks, where wij 6= wji is allowed, or in networks with
self-interactions, where wii 6= 0 is allowed, the situation is even worse. In the
case of non-symmetric interactions it takes just two neurons to have frustra-
tion; in the case of self-interactions even single neurons can be frustrated, see
�gure 21. In the terminology associated with the theory of stochastic processes
we would �nd that non-symmetric networks and networks with self-interacting
neurons fail to have the property of `detailed balance'. This implies that they
will never evolve towards a microscopic equilibrium state (although the values
of certain macroscopic observables might become stationary), and that con-
sequently they will often show a remarkably rich phenomenology of dynamic
behaviour. This situation never occurs in physical systems (although it does
happen in cellular automata and ecological, genetic and economical systems),
which, in contrast, always evolve towards an equilibrium state. As a result,
many of the mathematical tools and much of the scienti�c intuition developed
for studying interacting particle systems are based on the `detailed balance'
property, and therefore no longer apply.

Finally, and this is perhaps the most serious complication of all, the pa-
rameters in a real neural system, the synaptic strengths wij and the neural
thresholds �i are not constants, but they evolve in time (albeit slowly) accord-
ing to dynamical laws which, in turn, involve the states of the neurons and
the values of the post-synaptic potentials (or inputs). The problem we face in
trying to model and analyse this situation is equivalent to that of predicting
what a computer will do when running a program that is continually being
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rewritten by the computer itself. A physical analogy would be that of a sys-
tem of interacting molecules, where the formulae giving the strengths of the
inter-molecular forces would change all the time, in a way that depends on
the actual instantaneous positions of the molecules. It will be clear why in
all model examples discussed so far either the neuron states were the relevant
dynamic quantities, or the synaptic strengths and thresholds; but never both
at the same time.

In the models discussed so far we have taken care to steer away from the
speci�c technical problems associated with frustration, disorder and simulta-
neously dynamic neurons and synapses. In the case of the associative memory
models of section 3 this was achieved by restricting ourselves to sutuations
where the number of patterns stored p was vanishingly small compared to the
number of neurons N ; the situation changes drastically if we try to analyse
associative memories operating at p = �N , with � > 0. In the case of the
topology conserving maps we will face the complexity problems as soon as the
set of `training examples' of input signals is no longer in�nitely large, but �nite
(which is more realistic). In the case of the layered networks learning a rule we
�nd that the naive analytical approach described so far breaks down (i) when
we try to analyse multi-layer networks in which the number of neuronsK in the
`hidden' layer is proportional to the number of input neurons N , and (ii) when
we consider the case of having a restricted set of training examples. Although
all these problems at �rst sight appear to have little in common, at a technical
level they are quite similar. It turns out that all our analytical attempts in deal-
ing with frustrated and disordered systems and systems with simultaneously
dynamic neurons and synapses lead us to so-called replica theories.

6.2 The World of Replica Theory

It is beyond the scope of this paper to explain replica theory in detail. In
fact most researchers would agree that it is as yet only partly understood.
Mathematicians are often quite hesitant in using replica theory because of this
lack of understanding (and tend to call it `replica trick'), whereas theoretical
physicists are less scrupulous in applying such methods and are used to doing
calculations with non-integer dimensions, imaginary times etc. (they call it
`replica method' or `replica theory'). However, although it is still controversial,
all agree that replica theory works.

The simplest route into the world of replica theory starts with the following
representation of the logarithm:

log z = lim
n!0

1

n
fzn � 1g

For systems with some sort of disorder (representing randomness in the choice
of patterns in associative memories, or in the choice of input examples in layered
networks, etc.) we usually �nd in calculating the observables of interest that
we end up having to perform an average over a logarithm of an integral (or
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sum), which we can tackle using this representation:Z
dx p(x) log

Z
dy z(x; y) = lim

n!0

1

n

�Z
dx p(x)

�Z
dy z(x; y)

�n
� 1

�

= lim
n!0

1

n

�Z
dy1 � � � dyn

Z
dx p(x)z(x; y1) � � � z(x; yn)� 1

�

The variable x represents the disorder, with
R
dx p(x) = 1. We have managed

to replace an average of a logarithm of a quantity (which is usually nasty) by
the average of integer powers of this quantity. The last step, however, involved
making the crucial replacement [

R
dy z(x; y)]n ! R

dy1z(x; y1) � � �
R
dynz(x; yn).

This is in fact only allowed for integer values of n, whereas we must take the
limit n! 0 ! Another route (which turns out to be equivalent to the previous
one) starts with calculating averages:Z

dx p(x)

�R
dy f(x; y)z(x; y)R

dy z(x; y)

�
=

Z
dx p(x)

�R
dy f(x; y)z(x; y)[

R
dy z(x; y)]n�1

[
R
dy z(x; y)]n

�

by taking the limit n! 0 in both sides we getZ
dx p(x)

�R
dy f(x; y)z(x; y)R

dy z(x; y)

�
=

lim
n!0

Z
dy1 � � � dyn

Z
dx p(x)f(x; y1)z(x; y1) � � � z(x; yn)

Now we appear to have succeeded in replacing the average of the ratio of two
quantities (which is usually nasty) by the average of powers of these quantities,
by performing a manipulation which is allowed only for integer values of n,
followed by taking the thereby forbidden limit n! 020.

If for now we just follow the route further, without as yet worrying too
much about the steps we have taken so far, and apply the above identities
to our calculations, we �nd in the limit of in�nitely large systems and after a
modest amount of algebra a problem of the following form. We have to calculate

f = lim
n!0

extr F [q] (72)

20The name `replica theory' refers to the fact that the resulting expressions, with their
n-fold integrations over the variables y� (with � = 1; : : : ; n), are quite similar to what one
would get if one were to study n identical copies (or replica's) of the original system.
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where q represents an n� n matrix with zero diagonal elements,

q =

0
BBBBB@

0 q1;2 � � � q1;n�1 q1;n
q2;1 0 q2;n
...

. . .
...

qn�1;1 0 qn�1;n
qn;1 qn;2 � � � qn;n�1 0

1
CCCCCA

F [q] is some scalar function of q, and the extremum is de�ned as the value of
F [q] in the saddle point which for n � 1 minimises F [q]21. This implies that
for any given value of n we have to �nd the critical values of n(n�1) quantities
q�� (the non-diagonal elements of the matrix q). There would be no problem
with this procedure if n were to be an integer, but here we have to take the
limit n! 0. This means, �rstly, that the number n(n�1) of variables q�� , i.e.
the dimension of the space in which our extremisation problem is de�ned, will
no longer be integer (which is somewhat strange, but not entirely uncommon).
But secondly, the number of variables becomes negative as soon as n < 1 !
In other words, we will be exploring a space with a negative dimension. In
such spaces life is quite di�erent from what we are used to. For instance, let
us calculate the sum of squares, as in

Pn
�6=�=1 q

2
�� , which for integer n � 1

is always non-negative. For n < 1 this is no longer true. Just consider the
example where q�� = q 6= 0 for all � 6= �, which gives

nX
�6=�=1

q2�� = q2n(n�1) < 0 !

To quote one of the founding fathers of replica theory: `The whole program
seems to be completely crazy'. Crazy or not, if we simply persist and perform
all calculations required, accepting the rather strange objects we �nd along
the way as they are, we end up with results which are, as far as the available
evidence allows us to conclude, essentially correct.

The key to success is not to try to calculate individual matrix elements
q�� , but to concentrate wherever possible in the calculation on quantities that
(at least formally) have a well-de�ned n ! 0 limit, such as P (q), which is
de�ned as the relative frequency with which the value q�� = q occurs among
the non-diagonal entries of the matrix q. Since q 2 < this function becomes a
probability density:

P (q)dq =
number of entries with q � 1

2dq < q�� < q + 1
2dq

total number of entries

with 0 < dq � 1. This quantity remains well-behaved. It will obey the relations
P (q) � 0 and

R
dq P (q) = 1, whatever the value of the dimension n; for n < 1

the minus sign generated by the denominator will be cancelled by a similar
minus sign in the numerator. The problem in (72) of �nding a saddle-point q

21This version of the saddle-point problem is just the simplest one; in most calculations
one �nds several additional n� n matrices and n-vectors to be varied.
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can be translated into one which is formulated in terms of the n ! 0 limit of
the function P (q) only:

f = extr G[fP (q)g] (73)

Although at a technical level non-trivial, compared to (72) the problem (73) is
conceptually quite sane; now one has to explore the (in�nite-dimensional) space
of all probability distributions, as opposed to a space with a negative dimension.
Later it was discovered that the function P (q) for which the extremum in (73)
occurs can be interpreted in terms of the average probability of two identical
copies A and B of the original system to be in a state with a given mutual
overlap d�ned by q. For instance, for the associative memory networks of
section 3, storing p = �N patterns (with � > 0) we would �nd:

P (q)dq = average probability of q� 1

2
dq <

1

N

NX
i=1

SAi S
B
i < q+

1

2
dq (74)

whereas for the perceptron feasability calculations of section 5.3 we would �nd:

P (q)dq = average probability of q� 1

2
dq <

NX
i=1

wA
i w

B
i

jwAjjwB j < q+
1

2
dq (75)

with 0 < dq � 1. This leads to a convenient characterisation of complex
systems. For non-complex systems, with just a few stable/metastable states,
the quantity P (q) would be just the sum of a small number of isolated peaks.
On the other hand, as soon as our calculation generates a solution P (q) with
continuous pieces, it follows from (74,75) that the underlying system must
have a huge number of stable/metastable states, which is the �ngerprint of
complexity.

Finally, even if we analyse certain classes of neural network models in which
both neuron states and synaptic strengths evolve in time, described by coupled
equations, but with synapses changing on a much larger time-scale than the
neuron states, we �nd a replica theory. This in spite of the fact that there is
no disorder, no patterns have been stored, the network is just left to `program'
its synapses autonomously. However, in these calculations the parameter n in
(72) (the replica dimension) does not necessarily go to zero, but turns out to
be given by the ratio of the degrees of randomness (noise levels) in the two
dynamic processes (neuronal dynamics and synaptic dynamics).

It appears that replica theory in a way constitutes the natural description
of complex systems. Furthermore, replica theory clearly works, although we do
not yet know why. This, I believe, is just a matter of time.
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7 Further Reading

Since the present paper is just the result of a modest attempt to give a taste of
the mathematical modelling and analysis of problems in neural network theory,
by means of a biased selection of some characteristic solvable problems, and
without distracting references, much has been left out. In this �nal section I
want to try to remedy this situation, by brie
y discussing research directions
that have not been mentioned so far, and by giving references. Since I imagine
the typical reader to be the novice, rather than the expert, I will only give
references to textbooks and review papers (these will then hopefully serve as
the entrance to more specialised research literature). Note, however, that due
to the interdisciplinary nature of this subject, and the inherent fracturisation
into sub-�elds, each with their own preferred library of textbooks and papers,
it is practically impossible to �nd textbooks with sketch a truely broad and
impartial overview.

There are by now many books to serve as introductions to the �eld of neural
computing, such as [1, 3, 2, 4, 5]. Most give a nice overview of the standard
wisdom around the time of their appearance22, with di�erences in emphasis
depending on the background disciplines of the authors (mostly physics and
engineering). A taste of the history of this �eld can be provided by one of the
volumes with reprints of original articles, such as [6] (with a stronger emphasis
on biology/psychology), and the in
uential book [7]. More specialised and/or
advanced textbooks on associated memories and topology conserving maps are
[8, 9, 10, 11]. Examples of books with review papers on more advanced topics
in the analysis of neural network models are the trio [12, 13, 14], as well as [15].
A book containing review chapters and reprints of original articles, speci�cally
on replica theory, is [16].

One of the subjects that I did not go into very much concerns the more
accurate modelling of neurobiology. Many properties of neuronal and synaptic
operation have been eliminated in order to arrive at simple models, such as
Dale's law (the property that a neuron can have only one type of synapse
attached to the branches of its axon; either exitatory ones or inhibitory ones,
but never both), neuromodulators, transmission delays, genetic pre-structuring
of brain regions, di�usive chemical messengers, etc. A lot of e�ort is presently
being put into trying to take more of these biological ingredients into account
in mathematical models, see e.g. [13]. More general references to such studies
can be found by using the voluminous [17] as a starting point.

A second sub-�eld entirely missing in this paper concerns the application
of theoretical tools from the �elds of computer science, information theory and
applied statistics, in order to quantify the information processing properties of
neural networks. Being able to quantify the information processed by neural
systems allows for the e�cient design of new learning rules, and for making
comparisons with the more traditional information processing procedures. Here

22This could be somewhat critical: for instance, most of the models and solutions described
in this paper go back no further than around 1990, the analysis of the dynamics of on-line
learning in perceptrons is even younger.
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a couple of suitable introductions could be the textbooks [18] and [19], and the
review paper [20], respectively.

Finally, there are an increasing number of applications of neural networks, or
systems inspired by the operation of neural networks, in engineering. The aim
here is to exploit the fact that neural information processing strategies are often
complementary to the more traditional rule-based problem-solving algorithms.
Examples of such applications can be found in books like [21, 22, 23].
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