
A User Modeling Server for Contemporary Adaptive 
Hypermedia: an Evaluation of the Push Approach to 

Evidence Propagation 

Michael Yudelson, Peter Brusilovsky, Vladimir Zadorozhny 

School of Information Science, University of Pittsburgh 
135 N. Bellefield Ave. Pittsburgh, PA 15232, USA 

mvy3@pitt.edu,{peterb, vladimir}@sis.pitt.edu 

Abstract. Despite the growing popularity of user modeling servers, little 
attention has been paid to optimizing and evaluating the performance of these 
servers. We argue that implementation issues and their influence on server 
performance should become the central focus of the user modeling community, 
since there is a sharply increasing real-life load on user modeling servers, This 
paper focuses on a specific implementation-level aspect of user modeling 
servers – the choice of push or pull approaches to evidence propagation. We 
present a new push-based implementation of our user modeling server 
CUMULATE and compare its performance with the performance of the 
original pull-based CUMULATE server. 

1   Introduction 

User modeling servers are becoming more and more popular in the field of user 
modeling and personalization. The predecessors of the present user modeling servers, 
known as generic user modeling systems [9; 10], were developed to distill the user 
modeling functionality of the user models within adaptive systems and to simplify the 
work of future developers of these systems. Modern Web-based user modeling 
servers [1; 4; 8; 11; 12; 14] added another important function: to serve as a central 
point for user modeling and the provision of information about a user in a distributed 
environment, where several adaptive systems may simultaneously communicate with 
the same server to report or request information about the user.  

Typical usage of a user modeling server follows: an adaptive system interacts with 
the user and sends the results of that interaction to the user modeling server. In some 
cases, the user modeling server simply stores the information provided by the 
adaptive system. For example, the adaptive system can report user age, as provided by 
the user herself, which will be stored by the server for future use. In other cases, the 
user modeling server has to make inferences based on the evidence it receives. 
Typically, inferences are formed when the adaptive system reports some meaningful 
interaction event (i.e., the user just read a specific news article or solved a specific 
educational problem), which is then distilled into meaningful user parameters such as 
user knowledge or interest. The information about the user accumulated by the server 



can further be requested by various adaptive systems that are also working with this 
user. While the main function of a modeling server is to answer requests about stored 
or derived user parameters (such as age, knowledge, or interests) some modern 
servers such as Personis [8] and CUMULATE [4] are also able to respond to different 
requests about the history of the user’s interactions. 

With an increasing number of adaptive systems accessing the same server and the 
increasing complexity of user model inferences, the performance of a user modeling 
server is becoming an important factor. However, with the exception of the pioneer 
work of Kobsa and Fink [11], the literature on user model servers focuses solely on 
the conceptual architectures and functionality without paying any attention to 
implementation details and real-life performance. We argue that these issues should 
receive more serious attention from the user modeling community. As our experience 
shows, a range of implementation details may dramatically affect the server 
performance. A specific implementation aspect that is discussed in this paper is the 
balance between the push and pull styles of inference that is chosen within user model 
servers. A server with pull inference deduces user parameters (such as knowledge or 
interests) from collected observations “on demand” – i.e., when requested. A server 
with push inference updates user parameters after each reported observation, thus 
keeping them instantly available. While both approaches may be used to implement 
the same conceptual architecture, the choice of approach may determine the ultimate 
productivity of the server, depending on the individually required balance of reports 
and requests to the server. 

Historically, in several kinds of adaptive systems that build a model of user 
knowledge (such as intelligent tutoring systems), event reports are frequent while user 
model requests are rare. For example, after a good number of reported user events, 
created during the process of solving a problem or the exploration of a virtual lab, the 
system comes to a decision point, where information about a user is required, such as 
to choose the next task to solve. Hence, the issue of response delay to read requests 
hasn’t been considered as a critical issue. Read request response time becomes crucial 
when the following conditions are met: 
• user models become more complex, 
• more users start using the adaptive systems more frequently, hence increasing the 

volume of data sent to the user model, and 
• the user model is queried for updated information about the user more often. 

When these three conditions are met, the propagation of evidence starts to cost a 
lot more when it’s done only upon read request as opposed to being done right after 
the arrival of new evidence. 

Recently, we have witnessed the above situation arise in our research. Our pull-
propagation user modeling server CUMULATE [4] was originally able to 
accommodate a small set of adaptive educational activities, which was used by a 
small group of students (20-30 people). Over the years, with the growth of the number 
of adaptive applications, the number of users, and the frequency of their work with 
the system [3] we started to experience noticeable delays when querying user 
parameters. After several semesters, the delays had become unacceptable (up to 5-7 
seconds per each request). We have attempted to introduce a pseudo-optimization to 
reduce the inference load caused by the user model read requests by introducing the 
concept of query precision. Precision became an additional parameter in a read 



 

 

request to the user model. It specified how ‘fresh’ the user model was required to be. 
If the last state of the user model was calculated less than the specified amount of 
time ago, then the current state of the user model was considered acceptable and was 
reported without additional inference. This pseudo-optimization didn’t help. As it 
turned out, each of our adaptive applications demanded ‘fresh’ data from the user 
model after each reported event. For example, QuizGuide and NavEx [5], two 
adaptive hypermedia services, attempted to update the state of link annotation after 
every user action (such as answering a question or accessing an example line of code). 
Since a fresh read of the user model was required after every click of every user, this 
resulted in a large volume of user model requests, which caused unacceptable delays. 
Our analysis of contemporary work on adaptive hypermedia demonstrated that the 
same need to regenerate adaptive annotations after each click is shared by many 
systems which use adaptive link annotation and this caused us to design a new version 
of CUMULATE that can support a large number of users working with contemporary 
adaptive hypermedia. 

Given the increased volume of read requests, we decided that one of the main 
reasons for the original CUMULATE performance problems was the use of pull 
evidence propagation on the implementation level. To resolve these problems we 
developed a new version of our user modeling server – CUMULATE 2 – which 
introduced push evidence propagation. The CUMULATE 2 server was successfully 
used for two semesters and its performance evaluation returned positive results. This 
paper reports our work on CUMULATE 2 and is organized in the following way. 
Section 2 presents the conceptual architecture implemented by both the original 
CUMULATE and CUMLATE 2 user modeling servers. Section 3 provides details 
about the implementation of the evidence propagation in each of these servers. 
Section 4 reports the comparative evaluation of the two servers. Finally, we conclude 
with section 5. 

2   The Conceptual Architecture of a User Modeling Server 

How does a typical user modeling server (UMS) works? It receives reports of the 
user’s activities from external applications (i.e., links the user has followed, pages 
read, questions answered, etc.). From these reported activities, the UMS infers user 
parameters such as knowledge or interests. The inference is typically based on some 
kind of knowledge about how each user action contributes to the change in user 
knowledge, interests, or other parameters. Inference is done using various approaches, 
ranging from simple ad hoc math to Bayesian Networks [6] and ontology reasoning 
[7]. 

A typical approach to connecting actions with user model parameters in 
educational adaptive hypermedia is called ‘indexing.’ Educational content is indexed 
with metadata created beforehand (ontology, taxonomy or flat list) or extracted from 
content itself using machine learning methods. The indexing is done manually by 
teacher or semi-automatically with the help of an intelligent parser. Chunks of domain 
knowledge are referred to as keywords, concepts or topics, depending on the 
granularity and method of extraction. In simple cases, each piece of content is 



connected to one chunk of domain knowledge. For example, in QuizGuide [3] – a 
system that serves parameterized in the domain of the C- programming language – 
each quiz is assigned to one topic. In other cases, each piece of content is assigned to 
a set of chunks. For instance, in the system NavEx [13], which provides dissected 
code examples, each example is indexed with a set of domain concepts. 

The two UMS discussed in this paper – the original CUMULATE (which we will 
call legacy CUMULATE, to avoid confusion) and the newer CUMULATE 2 – are 
typical representatives of a large class of centralized educational user modeling 
systems. Both of them implement the same conceptual architecture for centralized 
user modeling that we summarize below. 

A user modeling server stores or uses information about the following data objects: 
• users, 
• groups of users, 
• learning objects, and 
• domain concepts. 
The corpus of learning objects is comprised of several sets of learning objects that 

are supplied by external applications. For example, learning objects could be 
parameterized online quizzes or dissected program examples. Domain concepts, 
contained in the metadata corpus, consist of a number of domain ontologies 
(represented as hierarchies, networks, or flat lists) that are called upon to describe 
learning objects in terms of knowledge components (often referred to as concepts or 
sometimes topics). For instance, in the domain of programming language knowledge, 
components might include such concepts as ‘arithmetic operations,’ ‘addition,’ ‘data 
structure,’ ‘array,’ etc. Listed objects are linked by the following relations: 
• Group-user membership links. User groups consist of several users and users can 

be members of several groups. 
• Links between learning objects allow learning objects to aggregate subordinates. 

Leaf objects do not necessary have to be invoke-able but user activity can be 
attributed to them. For instance, a learning object ‘quiz’ could consist of several 
‘questions.’. Both quiz and question can be invoked. A learning object, such as 
‘code example,’ could consist of several ‘lines of code.’. In this case, lines are only 
invoked as a part of the whole code example. These links are optional. 

• Links of diverse types connect knowledge components within domain ontologies. 
For example, ‘arithmetic operations’ and ‘data structure’ would be parents to 
‘addition’ and ‘array.’ These links are optional as well. 

• ‘Indexing’ links between knowledge components and learning objects. These links 
are crucial for the user modeling process, since they allow the user model to 
‘propagate’ the results of user activity with learning objects, in order to create 
knowledge components and make assertions about the user mastery of those 
components. For instance, the line of code ‘for(int i=0; i<10; i++)’ (as 
part of a code example or part of question of a quiz on C - programming language) 
could be associated with the knowledge components ‘loops,’ ‘for-loop,’ 
‘declaration of a variable,’ ‘arithmetic expressions,’ ‘post-increment,’ etc. 

There are two more special types of relationships in our user model. The first one is 
evidence links, which describe the results of user activity. They link learning objects 
to users and groups (because users interact with learning objects as members of some 
group). Evidence links are assigned timestamps and contain results of such 



 

 

interaction. Usually, the result is expressed in the form of a decimal value between 0 
and 1, with 0 denoting an unsuccessful result and 1, the opposite. 

The second special type of link, assertions about user knowledge – represent the 
user model’s probabilistic hypotheses about the user knowledge level of some 
knowledge components. Assertions are modeled with respect to the cognitive levels 
of Bloom’s Taxonomy [2].  

Propagation of evidence about user knowledge is driven by reports of user activity 
from external applications. These reports are generated when a user, for example, 
clicks on one line of a dissected code example or answers one question of an online 
quiz. A set of inference agents [4] are configured to aggregate incoming evidence and 
infer the user’s knowledge of concepts belonging to domains stored in the user model 
based on evidence of user work with various sets of learning objects supplied by 
specific external application(s). Agents propagate evidence from events to knowledge 
components of the user model by using indexing links between the learning objects 
that generated the evidence and knowledge components. The path that evidence 
travels is shown in Fig. 1. It is important to note that the presented framework is 
relatively universal. While in our case it was applied to user knowledge modeling, 
similar approaches have been used for modeling user interests and other features. 
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Fig. 1. The structure of the user model, showing the path of evidence propagation 

The conceptual description above gives a structural framework and doesn’t suggest 
any particular implementation of the user modeling server’s internal inference 
mechanisms. The inference agents can be implemented using Bayesian Networks, 
machine learning, or information retrieval methods. One aspect of inference 
implementation is considering when such inference happens. Possible options include 
the pull approach, where inference is done ‘just-in-time,’ after a request for inferred 
information has been received. In other words, external applications pull assertions 
about the user out of the UMS. An alternative to pull is the push approach, where the 
computation of user knowledge is done upon arrival of new evidence that pushes 
itself through the user model from the learning objects to the knowledge components. 



In this paper, we draw a comparison of two user modeling servers: one 
implementing pure pull strategy of inference, and the other implementing the push 
strategy. The following sections describe implementation details for both of them. 

3   User Modeling in Legacy CUMULATE and CUMULATE 2 

Legacy CUMULATE [4] is a centralized user modeling server that implements pure 
pull approach. Here, inference agents are not activated by the arrival of new evidence 
(such as a write operation to the user model). As new evidence arrives, it is constantly 
recorded in the event history and is not aggregated until an external application 
requests information about the user’s knowledge (a read query to the user model). 

Inference in legacy CUMULATE is performed by a set of SQL queries to the UMS 
database. The process of evidence aggregation is implemented by nesting queries. 
Because of the just-in-time nature of evidence propagation in the legacy 
CUMULATE, as our evidence store size increased we began to experience 
proportionate delays in response to user model read requests. In addition to the 
growth of evidence, storing new adaptive applications demanded more complex 
models. Instead of indexing learning objects with a single domain topic (a rather 
coarse-grained chunk of the domain), we have switched to indexing them with a set of 
finer -grained concepts. The increased knowledge -component -to -learning -object -
ratio, in addition to growth of the event base has slowed the inference process.  
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Fig. 2. Propagation of evidence in CUMULATE 2 

In our second attempt to implement the conceptual architecture described above, 
we decided to switch from pull to push inference of user knowledge, in order to 
improve performance of the user modeling server. Our new UMS CUMULATE 2 
performs the inference of user knowledge immediately after arrival of new evidence. 
The evidence log is used as a backup in case of server failure, when upon restart, 
CUMULATE 2 sequentially propagates all evidence cached in the log in the same 
fashion evidence is propagated in the working mode. The CUMULATE 2 propagation 
architecture can be used with a range of incremental user modeling approaches (i.e., 
where new values for knowledge, interests or other features can be determined by 



 

 

combining old values with new evidence). The current inference agents in 
CUMULATE 2 use a set of threshold, averaging and asymptotic formulas for 
evidence propagation. For example, user knowledge of the concept grows 
asymptotically (on a transposed cubic curve) each time a user successfully answers 
one question of a quiz which is related to this concept. However, the architecture 
allows the use of Bayesian inference approaches such as used in SMODEL [14] and 
other Bayesian user modeling systems. 

CUMULATE 2 is implemented as a network of interactive Java objects. A single 
entry point to the server API is created in the form of an instance singleton class. Java 
servlets further abstract the server’s API via an HTTP interface. External applications 
can send a write request to the servlet that is responsible for UMS updates with 
parameters of a single piece of evidence about its user. When a new piece of evidence 
arrives, it is first checked for consistency of server settings (existence of the user and 
user group with such user, identity of a reporting application, existence of the learning 
object that the user is reported to be interacting with). Second, evidence is stored in 
the database. Third, the piece of evidence is propagated throughout the user model. 

Results of evidence propagation in the form of summaries and assertions are 
cached for faster access (Fig. 2). Each learning object summarizes evidence that 
‘passes’ through it by counting the total number of pieces of evidence, mean result 
value (i.e., number of correctly answered questions over all question attempts). Then 
the learning object passes the evidence to its superiors (e.g.., question to quiz, or 
individual code line to a full dissection) and to the knowledge components it has been 
indexed with. Superior learning objects aggregate the ‘count’ of pieces of evidence by 
summing the counts of their subordinates, and find the mean interaction result by 
taking the average of the mean interaction results of subordinates. 

Each knowledge component aggregates evidence by computing the probability of a 
user mastering it. The formulas for computing these probabilities are configured 
individually for external adaptive applications. For instance, knowledge components 
aggregate evidence coming from users browsing dissected code examples [13] by 
applying an ad hoc step function that sets the threshold of 10 ‘clicks’ on annotated 
lines of code that connect to the knowledge component as the amount of interaction 
which will enable the user to master this knowledge component. If the user has made 
less than 10 clicks, then the probability is taken as the number of clicks made over 10, 
and 1 otherwise. These probabilities are recorded in the slot that corresponds to 
Bloom’s ‘comprehension’ cognitive level. 

Evidence from learning objects that represent questions of online quizzes [3] are 
aggregated using a sigmoid asymptotic function. Probability of the user mastering a 
knowledge component grows with each successful answer to the quiz question. The 
first two to three attempts to successfully apply the knowledge components result in 
the slow growth of the probability of mastery (a warm-up period), further success 
results in the linear growth of probability and as probability approaches 1, the 
increments asymptotically decrease. 

Queries to CUMULATE 2 for the snapshot of an individual user model are 
handled by another servlet – the report manager. At this point, CUMULATE 2 
performs a simple lookup operation and responds with an XML document that 
describes the requested information. 



4   A Preliminary Evaluation 

Over the several years that we have been using the legacy CUMULATE as our 
primary UMS, we have accumulated a large number of records. Records of our most 
heavily used and researched application, QuizPACK, contain about 19,000 pieces of 
evidence obtained in more than 13,000 sessions. In a typical session, users answered 
28 questions. On average, users generated a single piece of evidence within a session 
once every 102 seconds. 

Using these figures as a ‘realistic’ baseline, we compared the performance of the 
legacy CUMULATE to the performance of CUMULATE 2 to see whether the shift 
from pull to push evidence propagation strategy made any difference. Since our main 
reason behind the strategy switch was to overcome large read request delays, we were 
primarily interested in whether the situation improved in CUMULATE 2 (i.e., 
whether the delay became smaller). Our secondary point of interest was whether the 
write request delay grew larger for CUMULATE 2, since CUMULATE 2 performs 
more computations when updating the user model, while legacy CUMULATE doesn’t 
compute anything at that point. 

A small experiment was setup, where we subjected both versions of the user 
modeling server to various types of loads. Both servers were configured identically. 
The size of the learning objects corpus was 1000, while the metadata corpus was 500. 
The ratio of knowledge concepts to each learning object ranged from 5 to 100. 
Servers were running on the same software/hardware. 

 

 

  

Fig. 3. Comparing the read request delays of CUMULATE (bottom) and CUMULATE 2 (top) 

To quantitatively compare the servers’ ability to handle read requests from external 
applications we sent 100 consecutive queries to each of them. Fig. 3 shows that 
CUMULATE 2 wins a convincing victory with 18 milliseconds average response 
time over the legacy CUMULATE, which delays responses to read requests for 7526 
milliseconds. The left side shows histograms of the read request delays for legacy 



 

 

CUMULATE (bottom) and CUMULATE 2 (top) placed on one scale. Call-outs on 
the right show the histograms in greater detail. 

We have also investigated the ability of the servers to handle write requests. We 
varied server loads from 1 second to 80 milliseconds between requests for a duration 
of 3,000 milliseconds. At the peak load of 80 milliseconds between write requests, 
legacy CUMULATE was able to complete 90% of the requests within 32 
milliseconds. Under these conditions, CUMULATE 2 was only able to complete 90% 
of requests within 126 milliseconds. 

As we have mentioned above, when users employ our tools for an introductory 
programming course, they typically answer one quiz question per 102 seconds during 
a learning session. For each update of the user mode, the user expects an update of the 
user model (expressed as changed annotations for quizzes and questions). 

In this situation, CUMULATE 2 is able to support roughly 700 users working 
simultaneously, namely, 126 milliseconds per write request and 18 milliseconds per 
read, giving us 144 milliseconds for the write-read cycle. Knowing that user answers 
come once in 102 seconds we have 102 * 1000 / 144 = 708 ≈ 700. This is more than 
enough, given that the size of the class is rarely over 20 students. Taking into account 
that at any moment no more than 25% of students’ sessions overlap, CUMULATE 2 
could easily support a user population that is 4 times as large. The legacy 
CUMULATE is quite slow because of read requests’ delays, even when only one 
student is working with the adaptive applications that use the server.  

This shows us that moving from pull to push propagation did in fact pay off and 
the improvement is quite significant.  

5   Conclusions 

In this paper we have described our user modeling server CUMULATE 2, which 
implements the push approach to evidence propagation. We have drawn initial 
comparisons between CUMULATE 2 and our legacy user modeling server 
CUMULATE, which implements the pull evidence propagation strategy. 

Results of the comparison show that switching from pull to push propagation has 
dramatically decreased query delays to the user modeling server (from 7526 to 18 
milliseconds). The fact that the propagation strategy was the only tangible difference 
between the two servers allows us to conclude that it is the push propagation that has 
caused the performance leap. However, it is only a preliminary result. Both write and 
read requests to the user modeling servers were quite simple, namely, ‘update with 
one piece of evidence’ and ‘read full user model.’. Detailed investigation is needed to 
understand how environment and internal conditions as well as parameters of the 
requests influence the performance of the servers. We intend to continue analysis of 
the proposed method with the twin goals of understanding underlying factors that 
influence its performance and building a detailed cost model of the evidence 
propagation process. 
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