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Abstract

The agent expressions of the m-calculus can be translated into a theory of linear logic in
such a way that the reflective and transitive closure of m-calculus (unlabeled) reduction is
identified with “entailed-by”. Under this translation, parallel composition is mapped to the
multiplicative disjunct (“par”) and restriction is mapped to universal quantification. Prefixing,
non-deterministic choice (+), replication (!), and the match guard are all represented using
non-logical constants, which are specified using a simple form of axiom, called here a process
clause. These process clauses resemble Horn clauses except that they may have multiple conclu-
sions; that is, their heads may be the par of atomic formulas. Such multiple conclusion clauses
are used to axiomatize communications among agents. Given this translation, it is nature to
ask to what extent proof theory can be used to understand the meta-theory of the mw-calculus.
We present some preliminary results along this line for 7o, the “propositional” fragment of the
m-calculus, which lacks restriction and value passing (7o is a subset of CCS). Using ideas from
proof-theory, we introduce co-agents and show that they can specify some testing equivalences
for mo. If negation-as-failure-to-prove is permitted as a co-agent combinator, then testing equiv-
alence based on co-agents yields observational equivalence for mo. This latter result follows from
observing that co-agents directly represent formulas in the Hennessy-Milner modal logic.

1 Introduction

In this paper we address the question “Can we view a given process calculus as a logic?” This
is different (although certainly related) to the question “Can logic be used to characterize a given
process calculus?” Such a question would view logic as an auxiliary language to that of the process
calculus: for example, the Hennessy-Milner logic has such a relationship to CCS. Our approach here
will be to use logic more immediately by trying to match combinators of the given process calculus
directly to logical connectives and, if a combinator fails to match, trying to axiomatized it directly
and uniformly in logic.

For our purposes here, we shall consider a formal system to be a logic if it has a sequent calculus
presentation that admits a cut-elimination theorem. Of course, this definition of logic is not formal
unless formal definitions of sequent calculi and cut-elimination are provided. We shall not attempt
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formal definitions of these two terms here: we simply make use of a couple examples of sequent
calculus systems. A constant of the formal system will be considered logical if it has left and right
introduction rules. A non-logical constant is any other constant whose meaning is specified by axioms
or theories: such constants do not, in general, participate in a cut-elimination theorem.

There seems to be two broad ways in which connections between concurrency and proof theory
can be and are being developed: one uses proof reduction and the other proof search.

The functional programming approach. Functional programs can be viewed as natural de-
duction proofs and computation on them as the process of proof normalization. Using familiar
correspondences between natural deduction proofs and normalization with sequent calculus and cut-
elimination in intuitionistic logic [Pot77, Fel91], functional programs can be seen as sequent proofs
and computation as cut-elimination. Traditionally, the sequents used are of the form A — G,
where A is a set of propositions (generally typing judgments) and G is a single proposition. Such
sequents are called single-conclusion sequents.

Following ideas of Girard presented in [Gir87], Abramsky [Abr90, Abr91] has extended this
interpretation of computation to multiple-conclusion sequents, that is, sequents of the form A — T,
where A and T' are both sets (actually, multisets) of propositions. In this setting, cut-elimination
specifies concurrent programming. In particular, Abramsky presents a method for “realizing” the
computational content of multiple-conclusion proofs in linear logic that yields concurrent programs
in CCS, CSP, and the m-calculus. In these realized programs, cut-elimination in proofs is modeled
by communication.

The logic programming approach. In the logic programming setting, programs are theories
(collections of formulas) describing the meaning of non-logical constants and computation is identi-
fied with the search for cut-free sequent proofs. Here, the sequent ¥; A — G is used to represent
the state of an idealized logic programming interpreter in which the current set of non-logical con-
stants is X, the current logic program (theory) about those constants is the set of formulas A and
the formula to be established, called the query or goal, is G.

A logic and proof system will be consider a logic programming language if a simple kind of
goal-directed search is complete. This kind of definition of logic programming was first given in
[MNPS91] for single-conclusion sequents, where the technical notion of uniform proof provides an
analysis of goal-directed search. A uniform proof is a cut-free, single-conclusion sequent proof where
every sequent whose right-hand side is non-atomic is the conclusion of a right-introduction rule. In
an interpreter attempting to find a uniform proof, the structure of the right-hand side (the goal) can
be reflected directly into the proof being constructed. The given logic and proof system is called an
abstract logic programming language if a sequent has a proof if and only if it has a uniform proof.
First-order and higher-order variants of Horn clauses and the more expressive hereditary Harrop
formulas can be used as the basis of abstract logic programming languages [MNPS91].

In abstract logic programming languages, the search semantics of a logical connective in the goal
is independent from its context (the program): contexts are only considered to help in proving atomic
formulas. For example, if our logical system is intuitionistic logic, an attempt to prove the sequent
;A — G1 V Go could be replaced by a proof of either ¥; A — G; or ;A — (G2, no matter
what formulas are contained in A. This is not a complete strategy for full intuitionistic logic: while
there is a proof of the sequent ¥;pVq — ¢V p, its last inference rule is not V-R, that is, there are no
proofs of 3;pV g — q or of X;pV ¢ — p. When the syntax of programs are restricted adequately,
completeness of uniform proofs can be established. The resulting restriction then determines a
logic programming language. Within this setting, cut-elimination plays the meta-theoretic role of
guarantor of canonical models for logic programs (see, for example, [Mil92, HM92]).

Unfortunately, the definition of uniform proofs given here is restricted to only single-conclusion
sequent proofs systems. Extending this notion of goal-directed search to multiple conclusion se-
quents runs into the following simple problem: if the right-hand side of a sequent contains two or



more non-atomic formulas, how should the logical connectives at the head of those formulas be
introduced? There seems to be two choices. One approach simply requires that one of the possible
introductions be done. This has the disadvantage that there might be an interdependency between
right-introduction rules in that one may need to appear lower is a proof than another. In this case,
logical connectives in the goal would not reflect directly and simply into the structure of the proof.
A second approach requires that all right-hand rules should be done simultaneously. Although it is
difficult to deal with simultaneous rule application in the sequent calculus, we can employ permu-
tations of inference rules within the sequent calculus [Kle52]. That is, we can require that if two
or more right-introduction rules can be use to derive a given sequent, then all possible orders of
applying those right-introduction rules can be obtained from any other order simply by permuting
right-introduction inferences. Using this second approach, we shall say that a cut-free sequent proof
= is uniform if for every subproof ¥ of = and for every non-atomic formula occurrence B in the
right-hand side of the endsequent of W, there is a proof ¥’ that is equal to ¥ up to permutation of
inference rules and is such that the last inference rule in ¥’ introduces the top-level logical connective
occurring in B. It is easy to see that this definition of uniform proof generalizes the one given above
for single-conclusion sequents.

As we shall see , the m-calculus can be viewed as a multiple-conclusion logic programming lan-
guage in the sense that certain sequents are provable if and only if they have multiple-conclusion
uniform proofs.

Our analytic tools are taken from the sequent calculus, especially the refinement of that subject
found in linear logic [Gir87], and from logic programming, particularly the topics of goal-directed
provability and negation-as-failure. We shall investigate to what extent the framework of introduc-
tion rules, A-abstraction in terms and in proofs (also know as eigen-variables), and the central notion
of cut-elimination helps in analyzing a process calculus. This work is preliminary: we shall only look
at the m-calculus [MPW89a, MPW8&9b, Mil91, MPW91] as a particular example of a process calculus.
This calculus is, of course, rich and presents several interesting challenges.

2 Translating m-calculus expressions into logic

Besides assuming some familiarity with sequent calculus, we shall also assume that the reader is
familiar with the m-calculus as given in either [Mil90] or [MPW89a]. The principle mechanism
of the m-calculus is the synchronization of two agents and the sending of a name from one agent
to another. Synchronization is familiar from CCS; value passing is new to the m-calculus. The
expression Tz.P describes an agent that is willing to transmit the value z on the wire z (z and z
are names). The expression z(y).Q) denotes an agent that is willing to receive a value on wire = and
formally bind that value to y. The bound variable y in this expression is scoped over ). The central
computational step of the m-calculus is the reduction of the parallel composition Zz.P | z(y).Q to
the expression P |Q[z/y]. The agents P and Q[z/y] are now able to continue their interactions with
their environment independently.

The m-calculus differs from CCS also in that it has a notion of scope restriction: in the agent
expression ()P, x is bound and invisible to the outside. The scoped value x, however, can be
communicated outside its scope, providing a phenomenon known as “scope extrusion.” For example,
(2)(Zz.P | Q) | z(y).R is structurally equivalent to (z)(Zz.P | Q | (y).R), provided that z is not
free in z(y).R. This scope restriction is always easy to accommodate since we shall assume that a-
conversion is available for changing the name of bound variables. This expression can now be reduced
to (2)(P|Q| R|z/y]), where the scope of the restriction (z) is larger since it contains the agent R[z/y]
in which z may be free. This mechanism of generating new names (using a-conversion) and sending
them outside their scope is an important part of the computational power of the m-calculus.

The silent transition 7 is not discussed at all in this paper: although the techniques described
below should be able to address 7, the appropriate methods for this have not yet been investigated.



Below we describe three translations of m-calculus agent expressions into logical expressions. The
first two are simple duals of each other; the third is a simplification of the first.

The disjuncti‘&e translation. The first translation requires the logical constants & (additive
disjunction), (par, multiplicative disjunction), ? (the exponential “why not”), V, and L (the
identity for . Given its dependence on the additive and multiplicative disjunctions of linear
logic, this translation is called the disjunctive translation. The following three simply typed, non-
logical constants are also required (assuming that the type of logical expressions is o and that of
names is 7):

send:i—i—0—o0, get:i— (i—o0)—o0, match:i—1—0— o.

As should be clear from these types, we shall freely make use of higher-order types and A-calculus
to smooth the treatment of bound variables and variable scoping. All those details will be pressed
into a simple meta-level that contains the simply typed A-calculus and quantification at higher-order
types.

The disjunctive translation is given by the following induction on the structure of agent expres-

(PrQ)=(PYe(@)  (PlQ)=(P) T
(@)P) =¥e(P)  (P)=2(P)  (uil) = L
(zy.P) =sendzy (P)  ((y).P) = get = \y{(P)
{[z = y|P) = match = y (P)

To describe the meaning of the three non-logical constants, we have the following axioms.

Va9V SV o R [Ry &é —ogetx R (gslend xy S
V;a¥i—oP [P —omatch z x P]

Notice that these axioms are higher-order in the sense that they allow quantification over predicate
symbols. Such quantification is intended here to be purely syntactic: the type i — o denotes the set
of closed, simply typed A-terms of type i — o and not some abstract domain of functions. A similar
treatment of higher-order type quantification for Horn clauses can be found in [NM90].

The conjunctive translation. It is trivial to dualize the disjunctive translation completely. That
is, it is possible to map the “logical” combinators into the dual logical connectives.

(P+@Q)=(P)&(@) (P|Q)={(P)®(Q)
((@)P) =3(P)  (1P)=P) (i) =1

In this case, the non-logical axioms would be axiomatized with the formulas

ViaViy¥oSVioR [get t R®send z y S —o Ry ® S|
V;xV, P [match  x P —o P)]

This translation is called conjunctive because it uses the multiplicative and additive conjunctions.

The formal analysis below is completely dualizable, so there appears to be no formal reason to pick
one translation over the other. This seems to be the case because process calculus is fundamentally
about reduction, while logic has made a commitment to both reduction (implies/implied-by) and to
truth values. Truth values do not naturally map into processes. The disjunctive translation maps
reduction to implied-by; the conjunctive translation to implies.

The following two extra-logical motivations can be offered for choosing the disjunctive translation
over the conjunctive translation.



Goal reduction in logic programming and agent reduction in the w-calculus. In logic
programming based on single-conclusion sequents, a uniform proof that results from the successful
search for a proof of a sequent 3; A — G records the goal reductions applied to G in the right-hand
side of the proof’s sequent when read from the bottom of the proof. If the disjunctive translation
is used, a similar observation can be applied to the m-calculus: agent reduction is recorded in the
right-hand sides of the sequents when read from the bottom. Andreoli and Pareschi [AP91] have
made a similar choice in the representation of agent reduction using a kind of multiple-conclusion
Horn clause. The conjunctive translation estranges this parallel since reductions would take place
on the left-hand side.

Scope extrusion as a multiple-conclusion phenomenon. A natural notion of scoping occurs
in logic programming based on single-conclusion sequents. For example, the search for a uniform
proof of the sequent ;A — D D G reduces to the search for a uniform proof of the sequent
3 A, D — G. If Ais considered to be the current program held by a logic programming interpreter,
then D can be seen as a program unit that is added to the current program during a computation.
A notion of modular programming for logic programming was developed in [Mil89] based on this
simple observation. To enforce that this notion of modular programming obeys the correct notion
of scoping, single conclusion sequent calculus is required. Consider, for example, searching for a
uniform proof of the sequent ;A — G; V (D D G3) using the usual intuitionistic introduction
rules for V-R and D-R [Gen69]. This search would lead to the search for proofs of either the sequent
A — Gy or ;A D — G,. In particular, the formula D is only available to help prove
the formula Gs: its scope does not include G;. This formula is, however, classically equivalent to
(D D G1)V Gy and D D (Gy V Gz). Thus the scope of D can move in ways not supported in
intuitionistic logic. In particular, p V (p D ¢) is not provable intuitionistically but it is classically.
Gentzen’s characterization of the differences between intuitionistic and classical logics as arising
from differences in using single and multiple conclusion sequents provides an elegant analysis of
scope extrusion. Consider the following sequent proof.
p—Dq
— PP Oyg
—pV (D9

The occurrence of p in the left of the initial sequent has as its scope all the formulas on the right:
in the intuitionistic case, there can only be one such formula on the right and, hence, scope cannot
be liberalized in this way.

If the disjunctive translation is used, scope extrusion in the 7-calculus can be accounted for in an
analogous fashion. In this case, however, scope extrusion arises between the interaction of the V-R
rule and multiple conclusions. For a simple example, consider the sequent 3;p — (Va;.q) V (Jy;.p),
where we assume that ¥ has no constant whose type contains 7. This sequent is provable only if we
admit multiple conclusion sequents in its proof. Below is a proof of this sequent.

YT 4p — q,p

Y,z iip — q,ysp
¥ p — Vai.q,3y;.p
Y p — (V.9) V (Jyip)

Here, it is an eigen-variable that has its scope liberated. As we shall see, scope extrusion in the
m-calculus will be explained by this use of eigen-variables. In the conjunctive translation, similar
proofs are possible but the correspondence to scope extrusion in logic programming would disappear
and the distinctions between single-conclusion and multiple-conclusion sequents would not then be
relevant.



P 0 S:PFQ S:QFP S PAQ
P|P P no no no
P+ P P yes yes yes
()P P[y/a;]§ yes no no
(z) Pt P yes? yes yes?
P|'P 'p yes no no
'P PP yes yes yes
'P nal no yes no
Py (P | Ps) (Py| Py) | P yes yes yes
P+ (P2 + P3) (P +P) + P yes yes yes
P |nil P yes yes yes
PlQ QP yes yes yes
P+Q Q+P yes yes yes
(2)(y)P (y)(x)P yes  yes  yes
(@)(P| Q) P (z)Q yes yes yes
(z)(P+Q)f P+ (2)Q no yes no
(Pr|P2)+ (P Ps)  Pi|(P2+ Ps) yes no no
(PL+P) | (PL+ P;) P+ (P2 Ps) no no no
IP|Q (P+ Q) yes yes yes

(f) « is not free in P. (1) ¥ is not empty. (§) yeX.

Figure 1: Some logical implications and equivalences assuming the disjunctive translation and as-
suming that + and ! are mapped to logical constants.

Structural equivalence. Before describing our final translation (a variant of the disjunctive
translation), we present a simple method for determining structural equivalence between two agents.
By X; P F @ we mean that the formula @ is provable from the formula P given the signature
of constants ¥: a formal definition for this three-place predicate is given shortly. The notation
3; P 4+ @ simply means that ¥; P - @ and %;Q - P. We shall extend the domain of F and -+
by allowing P and @ to be agent expressions: in this case, one of the above two translations is
used to coerce an agent into a formula. Notice that the extension of ¥; P -+ @ is independent
of which translation is used and if ¥ is held fixed, the resulting binary relation is an equivalence.
Also, since no axioms about communication or matching are used, only the logical identities are
used to determine this equivalence. As a result, this equivalence to a good candidate for structural
equivalence. Figure 1 provides some examples of ¥; P 4+ @ and X; P F @ (for which we assume the
use of the disjunctive translation described above).

A final translation. A much more serious aspect of the translation given above is the choice
of which combinators should be genuine logical constants and which are axiomatized, non-logical
constants. It seems an advantage to make as few of the combinators into logical connectives as
possible as long as the remaining combinators can be described uniformly in terms of the logical ones.
One reason for this advantage is that reduction steps map rather naturally into right introduction
rules of the sequent calculus (this will be clear from the proof of Proposition 6), while the left
introduction rules do not generally yield plausible reduction steps. For example, if + is mapped to
the logical constant & and if we wish reduction to be identified with entailed-by, then we are forced
to admit the reduction rule: if P reduces to @1 and to 2, then P reduces to ()1 + @2: a dubious
“reduction” rule. Fortunately, it is possible to axiomatize the reduction nature of + and ! by using
the clauses



;A —T

il 0 YA —T
Sy p— initia 72;7”,1 — nil S A — nil.T nil-R
%P A — Ty %,Q,Ay — Ty L A — PQ,T R
5P| Q,A1, Ay — T, Ty A — P|Q,T
¥ Plt/z],A —T Y u{y};A — Ply/z],T (-)R

() P,A—T (=)L A — ()P, T

Figure 2: Basic inference rules

;A1 — PTy X;P,Ay — Ty taX-term YU{z};A—T
YA Ay — T, T 5 [t/z]A — [t/2]T

Figure 3: Two forms of the cut-rule

VoPYQ [P o P+Q] , YPY.Q[Q - P+ Q)
V,P[L—o!P] VY,P[IP &?Pﬂ:vp Y,P [P —o ! P]

These clauses encode right introduction rules without forcing us to accept the corresponding left
introduction rules.

Instead of translating m-calculus expressions into the syntax of linear logic, we shall simply use
the syntax of the m-calculus. We shall not make any distinction now between agents and formulas
over the logical constants | : 0 — 0 — 0, (=) : (i — 0) — 0, nil : o and the non-logical constants
!0 — o0, +:0— 0 — o, plus the constructors for prefixing and matching, written z(y).P, Zy.P,
and [x = y]P of types i — (i — 0) = 0,7 — i — 0 — o, and i — i — 0 — 0, respectively. We shall
also assume that there is a denumerably infinite set of constants of type 1.

Let A and T be finite, multisets of formulas. Let ¥ be a signature, that is, a (possibly empty)
set of typed constants. A term t is a X-term if ¢ is closed and all constants in ¢ are members of X. A
sequent is a triple ¥; A — T’ where A U T contains formulas all of whose non-logical constants are
from the set . The notation 3; A F I" means that the sequent 3; A — T has a proof in linear logic
(inference rules for the fragment of linear logic needed here are in Figures 2 and 3). The rule (—)R
has the proviso that y ¢ X, and the rule (—)L has the proviso that ¢ is a X-term. Notice that the only
inference rule with more than one premise is the left introduction rules for multiplicative disjunction.
The structural rules of contraction and weakening are not present. The notation X; A 4+ I means
;A FT and ;T F A. Again, the relation 4 will be used as structural equivalence. Since we
have reduced the number of logical connectives, this equivalence is now weaker than is described in
Figure 1. For example, P + @ is no longer - related to @ + P.

The cut-elimination theorem for linear logic [Gir87] shows that the inference rules in Figure 3 are
admissible with respect to the basic set of rules. Given the cut-elimination theorem, provability in
this proof system is obviously decidable. Note that we have not given any status to the non-logical
constants and their axioms in this proof system. We do this in the next section.

3 Process clauses and process theories

We now step back from the particular example of the 7-calculus to consider some general consider-
ations of the logical framework we have picked.
A process clause is a closed formula of the form

VZ[P—oQ1] | Qm]



where m > 1, P is an agent expression, Q1, ..., Q.,, are atomic (formulas with non-logical constants
as their head symbols), and all free variables in P (called the body of the clause) are free in Q1 |- - | Qm
(called the head of the clause). The quantified variables Z may be of type ¢ and o, as well as higher-
order types, for example, i — o. If m = 1, such a clauses is also called a single-conclusion clause;
otherwise, it is called a multiple-conclusion clause. An instance of a process clause using Y-terms
(for a given X)) is called a X-instance of that clause.

The propositional structure of process clauses is similar to the clauses studied by Andreoli and
Pareschi [AP91] where & and T (erasure) are also permitted in the body of clauses: their formalism,
however, permits neither universal quantification in the body of clauses nor quantification of higher-
type variables.

A process theory is a finite, possibly empty, set H of process clauses. An H-proofis a proof built
using the rules in Figure 2 and one inference of the form

;A —T,P
Z;A—>F7Q17"'5Qm

for every clause VZ [P —© Q1 | -+ | @m] in H. When an H-clause is written as an inference rule in
this way, that inference rule is called an H-inference rule. Let ¥ be a signature that contains all
the non-logical constants contained in clauses of H. We write 3; A kg I' to mean that the sequent
3; A — I" has an H-proof. The structure of H-proofs are particularly simple, as we shall now see.

The site of an instance of an inference rule is a multiset of occurrence of formulas in the concluding
sequent defined using the following cases: if the inference rule is the initial rule proving the sequent
Y; P — P, then the site is the multiset containing both occurrences of P; the site for an introduction
rule is the singleton multiset containing the formula occurrence containing the introduced logical
constant; and the site for an H-inference rule based on the clause VZ [P—-Q1 |- - -| Q] is the multiset
containing the occurrences of the instances of the formulas @1, ..., Q,,. Two inference rules permute
if whenever instances of these two rules have a common sequent as a conclusion and the sites of these
two inference rule instances are disjoint, then those inference rules can be composed in either order
to yield identical premises to their composition. When doing a bottom-up search for proofs, the
order in which permuting inference rules are applied is not important. For example, the following
two proof fragments demonstrate that (—)R and |R permute over each other.

EvyZ»A—>P,Q7[Z//$}R>F Evyszépan[y/x]R7r

We assume here that y ¢ 3.

Proposition 1 All pairs of right rules (nil-R, |R, and (—)R) and H-inference rules permute over
each other.

Proof. This proposition follows from simply checking all cases. The case where a (—)R inference
rule is below an H-inference rule requires the assumption about process clauses that all free variables
in the body of clauses are also free in their head. O

Consider the process theory that contains the single process clause

VPYQVz[P | Q —x.P | Z.Q).
Here, prefixing is represented by two non-logical constants, both of type i — 0 — 0. The order of
the two H-rules in the proof fragment
Y P|Q|R— b.P,Q,b.R
Y P|Q|R— ab.P,a.Q,b.R




cannot be switched: the site of the lower rule contains a subformula that is in the site of the upper
rule. Notice also that a sequent with right-hand side a.P, a.Q), a.R can be the result of an H-inference
rule in two ways: the choice of one of these precludes the other choice.

Proposition 2 If ;A — T' has an H-proof, it has an H-proof = such that Z has an occurrence
of a sequent X'; A — I where all inference rules above this sequent occurrence are left introduction
rules and instances of the initial inference rule and all inference rules below this sequent occurrence
are right introduction rules or H-inference rules.

The sequent X'; A — I" is called the crossover sequent for the proof Z.

Proof. Let ¥ be an H-proof of ¥; A — I'. If there is no pair of inference rules such that the
lower one is a left introduction rule and the upper one is a right introduction rule or an H-inference
rule, then ¥ has the structure described for the = in the proof. Otherwise, assume that such a pair
of inference rules exists. It is then possible to permute the order of these two rules and still have
a proof of the same endsequent. The fact that a |-L below a (—)-R rule can be permuted requires
observing the general fact that if ¥; A — I" has an H-proof then ¥’; A — T has an H-proof
whenever Y/ is a signature that contains . A simple inductive argument then shows that by doing
enough permutations, all such pairs of inference rules can be removed. O

Corollary 3 If ;A — T" has an H-proof then A must be a singleton multiset.

Proof. Assume not and let 3¥; A — T" be a sequent in which A contains more than one member
and which has an H-proof = of minimal height. Clearly, 3; A — T" is not an initial sequent. But it
is simple to check that no matter what its last inference rule is, = must contain a proper subproof
of a sequent containing more than one formula on its left. This contradicts the choice of =. O

Proposition 4 The two cut rules of Figure 3 are admissible in H-proofs.

Proof.

Let =1 be an H-proof for ;@ — P,T'; and let Z5 be an H-proof for ¥; P — I's. We must
show that there is an H-proof for ;) — I'{,I's. First, we can assume that the last inference rule
in Zy is a left introduction rule or the initial sequent rule since cut permutes up through all the
right introduction rules and H-inference rules for proofs of this premise. Similarly, we can assume
that the last inference rule in =; is either a right introduction rule or an H-inference rule in which
the occurrence of P is in the site. Now, if P has a top-level logical constant, then =; ends in a
right introduction of that constant and =3 ends in a left introduction of that constant. The usual
movement of cut upwards in a proof will work in this case. Finally, if P is atomic, then I's is the
multiset that consists of just P, so we can simply use Z; as the proof of ¥;Q — I'1, T's.

The proof that the other cut rule involving substitution is admissible is simpler and more direct. O

The following proposition demonstrates that process theories can be viewed as multiple conclusion
logic programming languages.

Proposition 5 The sequent has an H-proof if and only if it has a uniform H-proof.

Proof. Assume that = is a cut-free, atomically closed sequent proof. An atomically closed proof
is a proof in which all initial sequents contain only atomic formulas: it is easy to show that a sequent
has a proof if and only if it has an atomically closed proof. Using the definition of uniform proofs
for multiple conclusion sequents given in the introduction, we now show that = is, in fact, a uniform
proof. Let ¥ be a subproof of = that proves the sequent ;A — I' and let B be a non-atomic
formula occurrence in I'. Since the sites of H-rules contain only atoms and since initial sequent rules
involve only atoms, the top-level logical connective of B must be introduced somewhere is ¥. Given
that all left rules can be permuted upward through a proof and that all right-rules and H-inference
rules also permute over each other, a series of permutations can carry the proof ¥ into a proof ¥ in



— H
;=R

Figure 4: Theory reduction rules: provided that R —o S is a ¥-instance of a clause in H.

YU{zh P= P INS tisaX-term %;Q = P[t/x]

3 (z)P = P! Q= (z)P GEN

Y:P = P
S PlQ=P'[Q

PAR

Figure 5: Descent reduction rules: In INS, z is not free in P’.

¥, PH-Q REF wP=Q X;Q=—R

ot e TRAN
S P—Q P — R RANS

Figure 6: Structural reduction rules.

which the last inference rule introduces the top-level logical connective of B. Thus, = is a uniform
proof. O

Process calculi are generally described using a notion of reduction. We will focus on unlabeled
reduction, such as is found in [Mil90]; an example of labeled reductions is used in Section 5. Figures 4,
5, and 6 present a proof system for a formulation of reduction determined by a process theory H.
The following proposition shows the close relation between g and such reduction.

Proposition 6 Let H be a process theory and let reduction be defined with respect to it. Then
3;QQ = P has a proof if and only if ¥; P Fy Q.

Proof. First, assume that ;@ = P has a reduction proof. Proceed by induction on the
structure of that proof. If the proof is of height 1, then it is an instance of either a theory reduction
rule or the REF rule. In each case, it follows immediately that X; P g Q.

To handle the remaining structural rule, assume that the proof ends in an instance of the TRANS
rule. By induction, ¥; Rty @ and X; Q F P, and thus ¥; R -y P by cut.

Assume that the last inference rule was a descent reduction rule. If that rule is INS, then
induction guarantees that ¥ U {x}; P’ — P has a proof. Adding the (—)R rules yields a proof for
Y; P/ — (z)P. Similarly, if that rule is GEN then induction provides a proof of ¥; P[t/z] — @
where t is a X-term. Adding the (=)L rule yields a proof of ¥; (z)P — Q. If that rule is PAR,
then induction provides a proof of ¥; P/ — P. Using the initial sequent ¥;Q — @ and the |L
and |R rules yields a proof of 3; P' |Q — P | Q.

Now consider the converse of this proposition. That is, assume that ¥; P — Q1,...,Q, has an
H-proof. We prove by induction on the structure of a (cut-free) H-proof that 3; Q1| -+ | Q, = P
has a reduction proof. (If n =0 then Q| ---| Q,, is simply nil.)

Case initial: If the proof is an instance of the initial rule, then n = 1 and @7 is P. The reduction
proof is simply an instance of the REF rule.

Case nil-R: The final sequent is ¥; P — nil,Q1,...,Q, and induction provides a proof of
Q1] - | @n = P. Noticing that 3;nil | R 4+ R for any R, use the REF and TRANS rules to
provide a reduction proof for ;nil | Q1 |-+ | @, = P.

Case |R: The final sequent is ;P — P | Q,Q1,...,Q, and induction provides a proof of
S5 (PlQ)|Q1]--|Qn = P. If this is not the desired reduction sequent already, simply use REF
and TRANS to associate the |’s differently.

Case (—)R: The final sequent is ¥; P — (2)Q, @1, ...,Q, and induction provides a proof of
YU{y}Qy/z] | Q1]+ | Qn = P. Adding the INS proof rule yields a proof of ¥; (v)(Qly/x] | Q1 |
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| Qn) = P. Since X; (y)(Qy/x] | Q1| - | Qn) IF (2)Q | Q1] -+ | @n, a use of REF and TRANS
yields a proof of X; (2)Q | Q1 |-+ | @ = P.
Case H-inference rule: The final sequent is ;P — @Q1,...,Qi,...,Qn and R—o Q1| -] Q; is
a Y-instance of a rule in H. Thus, induction provides a proof of ¥; R | Qiy1 |-+ | @n = P. But
by the H-rule (Figure 4), we have %;Q1 | --- | Q; = R. By n — i applications of PAR, we have
Q1| Qn = R|Qit1| | Qn. A use of TRANS and we are finished.
Case nil-L: The final sequent is 3; nil —. But X;nil = nil follows from REF.
Case |L: The final sequent is ¥; Py | P, — @1, ..., @, and induction provides proofs of ; Q1 |
Qi = Prand ;Qi41 |- | Qn = Pa,s0i=1,...,n. (Of course, it is permitted to permute
the @’s prior to splitting them.) Using n — ¢ applications of PAR provides a reduction proof of
YQ1|1Qn = P1|Qiy1| | Qn. One application of PAR yields ¥; Py |Qiq1|---|Qn = P1 | Pa.
Thus, one use of TRANS provides a reduction proof of 3; Q1 |-+ | Q, = Py | Pa.
Case (—)L: The final sequent is ¥;(z)P — Q1,...,Q, and induction provides a proof of
Y Q1] -+ |Qn = P[t/x] for t a X-term. The GEN rule immediately yields ¥; Q1 |- - -|Q,, = (z)P. O

4 Reduction in the wm-calculus

We should like to identify reduction in the m-calculus with the reduction relation defined in the
previous section using the signature

Y.={send:i—i—o0—o0, get:i— (i > 0) — o,
match:i—i—o0—o0,!:0—0, +:0—0— 0}

and the following theory, which we shall call the m-theory.

ViaVyVo SV o R [Ry (%' —ogetx R &éend xy S
V;aVi—oP [P —omatch z x P]
VoPY%Q [P o P+Q]  YoPY.Q[Q—o P+ Q]
WPl -olP] VPP YP—olP| V,P[P-olP]

A m-proof is an H-proof, where H is the set of axioms displayed above. We write X; A k. I if the
sequent >, UX; A — I has a m-proof. Notice that since >, contains no constructors for type ¢,
the signature 3 can be restricted to being composed only of tokens of type i. Thus, ¢ is a X-term if
and only if ¢ € 3: the only values used during computations (search for proofs) are names and not
general terms.

Notice that it is very easy to accommodate definition of agents using process clauses: the defi-
nition C(Z) = P, where the free variables of P are contained in the list Z, can be translated to the
process clauses VZ[P —o C(Z)]. Such clauses can be added to the base m-theory.

Since the notion of reduction is central to the definition of a process calculus, we must be very
careful in making any claim to having captured the 7-calculus as it is described in, say, [MPW89a,
MPWR89b]. There seems to be at least the following significant differences with the description given
in those reports.

1. Signatures are made explicit and reductions depend on them.

2. The + and ! combinators are treated only via computation rules: there are no rules for explicitly
descending through them. Thus several reduction steps defined here may be needed to account
for a single reduction step of the m-calculus.

3. The GEN and INS rules do not correspond to any rules of [MPW89a, MPW89b]. As a reduction
rule, GEN does seem odd since it does not seem to be making anything simpler. Its main
purpose seems to be that it allows the result of a reduction to discharge its dependence on any
part of the surrounding signature. Notice that a version of the reduction rule for restriction
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in the m-calculus can be proved here: if ¥ U {z}; P = @ can be proved then by one instance
each of GEN and INS, we have a proof of ¥; ()P = (z)Q.

Given our plan to use proof theory to organize the syntax of process calculi, these differences
seem forced. Probably only additional results will tell us if what is defined here is significantly
different from the m-calculus of [MPW89a]. Of course, the process calculi defined here may be of
their own interest.

5 An analysis of the propositional fragment

Because the m-calculus communicates values of type 7 only, we shall think of the m-calculus as a
first-order theory. In this section we analysis the “propositional” fragment of the m-calculus. In
particular, we shall only be interested in synchronization and not with value passing, binding, or
restriction, or with match. Thus, agent expressions in the propositional calculus are defined via the
grammar

P ::=nil ‘ Py | P ‘ P+ P | 'P | a.P | a.pP,

where, a ranges over some fixed, finite set of names 3. We refer to this propositional theory as the
mo-calculus. It is determined by the signature

Y ={send:i—0—o0,get:i—0—0,!:0—0, +:0—0— 0}
and the following set of process clauses.

V;2V,SY,R [R &éﬁ)geth Xscend:cS]
VPVQ[P—OP+Q Vo PY,Q [Q — P + Q]
VoP [L —! P] VoP ! P &{P—O'P VoP [P —o ! P]

We shall, of course, identify get a P and send a P with a.P and a.P, respectively, and identify a
with a. A mp-proof is an H-proof, where H is the set of axioms displayed above. We write A -, T’
if the sequent X, U Xo; A — I has a mg-proof. Since agents of the mg-calculus do not contain
universal quantification, all occurrences of signatures in any mp-proof are equal and, therefore, we
shall choose not to display signatures. The my-calculus is essentially a subset of CCS.

Given this proof-theoretic setting, a natural way to attribute meaning [P] to an agent P is via
the definition

[P] ={W | bx, P|W, where W is an agent}.

The goal would then be to say that two agents, P and @), are equivalent, in some sense, if [P] = [Q].
Unfortunately, using this definition, all agents are equivalent since [P] is always empty: there is no
notion of a “true” agent. The only notion we have so far is that of one agent reducing to (implied-by)
another.

Since we are inside a logic containing many more logical constants than we are using so far, it
is possible to extend the notion of agents to co-agents, one of which will be “truth.” Given some
notion of co-agents, we shall define the meaning of agents using

[P]={W | by, P|W, where W is a co-agent}.

Thus, co-agents will be used to probe the behavior of agents. It is important to make the following
observation: no matter what we choose for co-agents, if [P] C [Q] then [P + Q] = [Q]. Thus, if
[P] C [Q] is ever strictly true, we have not captured deadlock within our theory of equivalence.

In analyzing the mp-calculus, we shall first introduce two co-agents, identified as the two (linear)
logical connectives T (erasure) and & (additive conjunction) for which their right introduction rules
are given in Figure 7. Assume for now that we define a co-agent to be any expression that contains at
least one occurrence of either T or &. We can make the following observations regarding occurrences
of T in [P].

12



A — T, W, A — T, Wy
T -
A —T,T R YA — T, W &Ws LR

Figure 7: Proof rules for the two co-agent connectives T and &.

e It is always the case that T € [P].
e The agent P has an a-transition if and only if a.T € [P].
e The agent P has an a-transition followed by a b-transition if and only if @.b. T € [P].

Thus, P has a trace ay,...,ay if and only if @y.---.a,. T € [P]. If T were the only co-agent, then
the equivalence described by [P] = [Q] would be that of trace equivalence.

By allowing & as a co-agent expression, we can make more distinctions between the behaviors
of agents. For example, let P be a.b.nil + a.(c.nil + d.nil) and let @ be a.(b.nil + c.nil) + a.d.nil.
While these have the same traces, the co-agent a.(¢.T & d.T) is a member of [P] but not of [Q].
Notice, however, that since [a.b.nil] C [a.(b.nil+c.nil)], it follows that [a.(b.nil +c.nil)] = [a.b.nil+
a.(b.nil + c.nil)].

Clearly, co-agents are acting as testers. The logical constant T behaves very much as the w tester
in [Hen88]. The logical constant & specifies two tests that a process must satisfy simultaneous: in a
sense, the process must be copied and the two copies must be able to satisfy two separate tests. Thus
co-agents treat agents extensionally, that is, as black boxes whose internal structure is not examined
directly. Consider what would happen if ® (the multiplicative conjunction) were permitted to also
be a co-agent connective. The co-agent W; ® Wy would require that the agent being tested be
divided into two pieces, one of which must pass W; and the other W5. While such a tensor tester
may have its uses, we do not consider it any further here.

It will be important for a subsequent result (regarding bisimilarity) that we allow possibly infinite
conjunctions. Let I be a denumerable set (possibly empty). The right introduction rule for &;¢; is
given by the inference figure

— T, W, - — T, W, -
— [, &ie Wi ’

where I = {i1,...,4;,...}. If the index set is empty, then &;c; is the same as T and if the index set
has two element, then &;¢c; is the same as &. The term co-agent now refers to any agent expression
containing at least one occurrence of &;cy, where I is not a singleton.

The following proposition shows that if co-agents are only used to define testing equivalence,
they only need to be built up out of prefixing and the co-agent combinator &;¢;.

Proposition 7 Define [I']1 to be the set of all multisets of agents and co-agents A such that b,
T, A. Define [I']2 to be the set of co-agents W built exclusively from occurrences of the indexed
& and prefizing so that Fr, T, W. For multisets of agents I and U, [I']y = [¥]1 if and only if
[[]2 = [¥]2.
Proof.  The proof that [I']; = [¥]: implies [I']s = [¥]. is immediate. Thus, assume that
[T]2 = [¥]2 and that A is a multiset of agents and co-agents such that ., I'; A. Consider the
proof system given Figure 8. A mp-proof of — T'; A can then be extended to a proof in Figure 8 of
— T A, for some R built exclusively from occurrences of the indexed & and prefixing. Thus,
R €[]z and R € [¥];. Now given a mp-proof of — ¥, R and the proof of — T’ A, it is an
easy to construct a proof of — W A. Thus, F., ¥,A and A € [¥];. The converse inclusion is
similar. O

The following proposition describes the fact that in the bottom-up search for proofs involving co-

agents, the top-level logical structure of co-agents can be addressed first. We shall strive to preserve
this property when we add one more connective to the structure of co-agents.
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—TI'[R]A — P,Q,T[R]A —>F,QAT
—nil,'[R]A — P|QT[R]A  —T,P[R|A

—T[R]|A — T'[R]P,Q,A —>FQ,AT

— T'[R]nil, A — T [R|P|Q,A —T|R|P,A
— P,Q,T|R|A — PT|R|Q,A —T|R|P,Q,A
— a.P,a.Q,I[R]|A — a.P,T'|a.R|a.Q,A — I'[R]a.P,a.Q,A
forallie I —T[Ri|W;A
_>r &ic1 Wi, A

Figure 8: A proof system used for “interpolating” between agents and co-agents. The { proviso:
() —o P is a instance of a single conclusion mg-axiom.

Proposition 8 If — I'|W has a proof, where I' is a multiset of agents and W is a co-agent built
exclusively from occurrences of the indexed & and prefizing, then this sequent has a proof = such
that for every occurrence of a sequent in Z, if the co-agent expression in that sequent is a top-level
&icr then that sequent occurrence is the conclusion of a &;cr-R introduction rule.

Proof. This can be proved by a observing that if there is an inference rule in a proof of — I', W
immediately below an instance of a &;<;-R introduction rule, then the &;c-R introduction rule can
be permuted lower. O

So far co-agents are extracting only positive information. The equivalence of processes, [P] =
[Q], does not come close to the notion of bisimulation since it is not possible to test for what a process
cannot do. For this, it appears necessary to leave the usual logical connectives and their introduction
rules and develop a notion of negation as “failing to pass a test” or of “negation-as-failure,” as it is
often called in the logic programming literature.

A notion of negation-as-failure cannot be achieved by simply adding introduction rules. Instead
we shall use a hierarchy of proof systems {S,, | n = 0,1,2,...} such that S,, can handle a nesting
of at most n occurrences of negation and where non-provable sequents in the S, proof system yield
initial sequents (axioms) for negation in the S, 41 proof system (Sp is identified with the my proof
system). Even given this hierarchy of proof systems, negation can still cause us one serious problem.
Notice that the sequent — a.nil,b.T has no mo-proof. Thus, in the S; proof system, we shall accept
the sequent — a.nil, =b.T as initial. If we do not add any further restrictions, there will also be an
S; proof of — a.nil + b.nil,=b.T. This conclusion is not acceptable since there is a Sp-proof (and,
hence, S; proof) of — a.nil + b.nil,b.T. Thus, it would be possible for an agent (a.nil + b.nil) to
pass a test (b.T) and its complement. A suitable solution to this problem is to insist that proofs in
S, introduce — as early as possible; that is, require that any 5,41 proof of a sequent — I', =W
be, in fact, an initial sequent of S,,+1. Notice that this condition is essentially equivalent to the one
which can be verified for &;c; (Proposition 8). With negation, however, this condition cannot be
inferred so we must enforce it.

Given this motivation, we can now make the following definitions. Let C, for n > 0 be sets of
expressions defined by the following recursion on the structure of formulas.

e If I is a denumerable (possibly empty) set and for all i € I, W; € C,, then &;c;W; € C,,.
e If Pe (), then a.P € C,, and a.P € C,.
o If P e C, then =P € Cp41.
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We now introduce, for each n > 0, a proof system S,,. Sequents in S,,-proofs will be of the form
— I, W where I" is a multiset of agents and W € C),. For each n > 0, S, contains the right
introduction rules for nil, |, and &;c; as well as the inference rules for all the mp-theory axioms.
In particular, the only initial sequents in Sy are given by the &;c;-R rule when I is empty. The
systems 5,11 have as additional initial sequents — I', =W, where the sequent — T',W does
not have an S,,-proof. Such initial sequents are called negative initial sequents. An S,-proof is a
tree structure arrangement of such initial sequents and inferences with the following proviso: if the
sequent — I', =W has an occurrence in the tree, then that occurrence is an initial sequent. For
n > 0, we write ™ I',; W to mean that there is an S,-proof of — I',W. Notice that ,, I',; W if
and only if O T, W. Let C,, = J,;>¢ Chn-

Notice that it is easy to extend Proposition 8 to S,, for n > 0. That is, S,,-proofs can be assumed
to be such that whenever a sequent occurrence has an occurrence of a &;c; co-agent, that sequent
occurrence is the conclusion of the &;¢; introduction rule.

Proposition 9 Let W € C,, let m > n, and let T' be a multiset of agent expressions. Then " T', W
if and only if F™ T T, W.

Proof. By induction on m. If m = 0 then n = 0. Since W has no occurrences of negations, the
result is immediate. Assume that m > 0. Let = be an S,,-proof of — I", W. If = has no negative
initial sequents, then = is both an Sy and S;,1-proof. Thus, assume that = contains the initial
sequent — A, =W’. Since =W’ is a subformula of W, W’ € C,,_;. Also, there is no S,,_1-proof of
— A, W'. By the inductive hypothesis, there is no S,,-proof of — A, W’ so S,,11 contains the
initial sequent — A, =W’. Since every initial sequent of Z is initial in S,,11, = is an Sy,11 proof
of — I, W. Conversely, let = be an S,,11-proof of — I'; W. Again, let — A, =W’ be a negative
initial sequent in Z. Thus, W’ € C,,_1 and there is no S,,-proof of — A, W’. By the inductive
hypothesis, there is no S,,_; proof of — A, W’ so — A, W' is an initial sequent in S,,. Thus, =
is also an S,,, proof. O

Let T' be a multiset of agent expressions and let W € C,,. We write F T, W if there is some
n > 0 such that ™ ', R. Notice that if W € C,, for some n > 0, Proposition 9 implies that - I", W
if and only if F* ', .

Proposition 10 Let I' be a multiset of agent expressions and let W € C,,.
(1) Either F* T, W or T, -W.

(#4) It is not the case that =< T, W and F* T',-W.

(#i1) B T, W if and only if F¥ T, ~W.

(iv) FY I, W if and only if F« ', -=W.

Proof. To prove (i), let n be such that W € C,,. Then — I', W is either provable or not provable
in S,,. In the first case, - I', W. In the second case, F"*! ', =W and therefore ¥ T, =WV

To prove (ii), let n be such that W € C,, and assume that - T, W and ¥ T',-W. By
Proposition 9, F* ', W and F"*! T, -W. Given the restriction on proofs involving negations in
proofs, — ', =W is an initial sequent of S, 11 and thus there is no S,,-proof of — I', W which is
a contradiction.

To prove (iii), let n be such that W € C,,. Thus by Proposition 9 b T, W if and only if t/* T', W.
But this is equivalent to F"*! T, =I¥. By Proposition 9 again, this is equivalent to F T', =WV

To prove (iv), notice that by (iii), H¥ T', W is equivalent to I/ T, =W, which (by (iii) again) is
equivalent to F* ') -—=W. O

For I" a multiset of agent expressions, define [I'] = {W € C,, | +* ', W}.

Proposition 11 Let P and Q be two agent expressions. Then [P] C [Q] if and only if [P] = [Q].
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Proof. Assume that [P] C [Q] and that [P] # [Q]. Thus, there is a W € C,, such that - Q, W
but K P,W. By Proposition 10 (iii), F P,~W. But this implies that =W € [P] and =W € [Q]
which contradicts Proposition 10 (7). O

Before connecting the equivalence given by [P] = [Q] to known equivalences, we need to define
the notion of labeled transition. Let a be an action (that is, a constant of type i). The three place
relation P == P’ is defined to hold if P' | 1, P |a.l. Here, the constant 1 is some anonymous
symbol for which no inference rule or axiom is provided. (It is possible to identify 1 with the constant
of the same name used in linear logic [Gir87] since the inference rules given for 1 there cannot be
used in any cut-free mo-proof of the sequent P’ |1 — P |a.1.) Given this definition, it follows that
if P =% P’ and @ is an agent expression then P|a.Q = P’ |Q (simply replace 1 with Q).

If T is a multiset of formulas then |I" denotes the parallel composition (using |) of all the formulas
I" in some fixed but arbitrary order.

Proposition 12 Let T" be a multiset of agents, let a be an action, and let W € C,,. Then ' T';a.W
if and only if there is a multiset of agents U such that |T == |¥ and - U, W.

Proof. First assume that - I';a.WW. A proof of — I'; a.W must contain a subproof where the
last inference rule is

— T, RW
— I, a.R,a.W’
for some multiset of agents IV and some agent R. Set ¥ equal to the multiset IV U {R}. Now the
sequent (|¥) |1 — I, R, 1 clearly has a mp-proof (involving only |L rules and initial sequents). If
we now add to this sequent all the right rules that were applied to build the proof of — I';a.W
from — I, R, W, we can construct a proof of (|¥)|1 — I';a.1 and of (]¥)|1 — (|I") |a.1. Thus,
T =% | V.

For the converse, assume that ¥ is such that |T' == |@ and F* ¥, . The crossover sequent of the
proof of (|¥)|1 — T',@.1 must be (]¥)|1 — I, 1 for some multiset of agents I (see Proposition 2).
Since (|¥) and (JT) are equal agent expressions up to associativity and commutativity of |, -« TV, W.
Now applying to the sequent — I, W all those right rules that were used to prove (J¥) |1 —
(IT) | @.1 from (|¥) |1 — I’,1 yields a proof of — T',a.W. O

We can now show that co-agents act the same as formulas of the Hennessy-Milner modal logic.
Assertion formulas are formulas containing the indexed conjunction A;e; (for a denumerable index
set I), the possibility modal {a) (for a an action), and the negation —. The logical constant true
is defined to be A;crA; for the empty index set I. The satisfaction of an assertion A by a process
expression P, written as P |= A, is defined by the following induction on the structure of assertions.

o P NierA; if P A, for every i € I.

e P |= (a)A if there is an agent P’ such that P == P’ and P’ = A.

e P |=—Aif it is not the case that P = A.

Define the following bijection of C,, into assertion formulas: (&;e;W;)° = NietW?, (a.W)° =
(@yWe, and (-W)° = -We°.
Prlzposition 13 Let W € C, and let P be an agent expression. Then ¥ P,W if and only if
PEwe.

Proof.  This proof is by induction on the structure of co-agents in C,,. The cases for &;c; and
- are immediate. Let W be a.W'. If P = (a)(W’)° then there is a P’ such that P == P’ and
P’ = (W")°. By the inductive hypothesis, - P’ W’ and by Proposition 12, - P, W. Conversely,
if M P a.W’ then, by Proposition 12, there is a P’ such that P == P’ and F* P’,W. By the
inductive hypothesis, P’ = W° and by the definition of =, P = (a)(W')°. O

The following proposition is now immediate.
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Proposition 14 Let P and Q be agents. Then [P] = [Q] if and only if for every assertion A,
P = A if and only if Q = A.

Since the Hennessy-Milner logic characterizes observational equivalence, P and ) are observa-
tional equivalence if and only if [P] = [Q]. It is possible to show this result directly without making
use of the Hennessy-Milner logic but the proof would be essentially identical to the proof using this
modal logic.

This derivation of the Hennessy-Milner logic via co-agents is rather satisfactory for at least two
reasons. First, it is possible to understand agents and assertion formulas as part of the same logical
system, here a theory in a fragment of linear logic. Second, the intensional prefixing operator gives
rise to the intensional modal operator: the latter does not need to be added separately. Representing
prefixing as two non-logical constants of higher-order type might be considered one of the more
controversial aspects of this representation. The fact that this choice also explains the modal operator
provides us with more confidence in this choice.

In fact, the parsimony of our presentation of co-agents can be improved even further: negation —
is the only co-agent combinator that is necessary. For example, the expression —nil can be used for
T (=P for any agent P will also do) and the expression —(=W; + =W5) can be used for Wi & Ws.
Thus, if we admit indexed sums ), ; into mo, the only co-agent combinator we need to introduce
is the negation-as-failure-to-prove operator.

Of course, there is a great deal of work left to be done in getting a full picture of the relationship
between multiple-conclusion sequent calculus and process calculi. For example, Abramsky’s work on
bisimulation as testing equivalence [Abr87] should be related to the material just presented. A very
good test of our approach would be to see if the modal logics recently described for the m-calculus
in [MPW91] can be motivated using the notion of co-agents.

6 Conclusions

In this paper we have attempted to show one way that proof theory can be used to represent and
organize the details of the w-calculus. This approach seems successful on more than one level:
not only can the reflective and transitive closure of reduction be identified with entailed-by but also
proof-theoretic notions of semantics provide a natural link to well studied semantics for concurrency.
The derivation of the Hennessy-Milner modal logic via the notion of co-agents speaks strongly for
the directness of this approach.
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