A Logic of Events*

Mark Bickford Robert L. Constable
ORA Cornell University

February 10, 2003

Abstract

There is a well-established theory and practice for creating correct-by-construction functional
programs by extracting them from constructive proofs of assertions of the\ferm A.3y :
B.R(z,y). There have been several efforts to extend this methodology to concurrent programs,
say by using linear logic, but there is no practice and the results are limited.

In this paper we define a logic of events that justifies the extracticsongct distributed
processefrom constructive proofs that system specifications are achievable, and we describe an
implementation of aextraction procesg the context of constructive type theory. We show that
a class ofmessage automataimilar to 10 automata and to active objects, are realizers for this
logic. We provide a relative consistency result for the logic. We show an example of protocol
derivation in this logic, and show how to embed temporal logics suchilad+ in the event
logic.

1 Introduction

The idea of creating functional programs that ecerect-by-constructioris old and well-studied
[20,19,122,[19,147,[52]. Several implementations by extraction have been built based on the concept
of proofs-as-programge.g. Alf, MetaPRL, Nuprl, Coq, Lego), and many interesting examples are
well-known, including solutions of Higman’s lemm&1J] and a recent program for Buchberger's
Grobner basis algorithnb[f]. The extracted functional programs are caltedlizersfor propo-

sitions. In this paper we deal with logics such as constructive type theory, in which all provable
assertions have realizers.

For many years researchers have tried to extend this methodology to concurrent programs by extend-
ing the proofs-as-programs principle to something worthy of the naumefs-as-processqwinci-

ple. In 1994 Samson Abramsky wrote an artiéle yinder this title in which linear logic was the

basic logic and certain nondeterministic programslig] fvere considered as realizers. Robin Mil-

ner and his students also took up this challenge, and there are now a number of results along these
lines [7,149].

In this paper we look at a different approach to the problem. We aim to extract distributed systems
from proofs of system specifications that arise in practice. The abstract realizers arencsbat)e
automata,and they resemble the 10 automata of Lynch and Tu#B}, [and the active objects of
Chandy|L5].

*This work was supported by the DoD Multidisciplinary University Research Initiative (MURI) program administered
by the Office of Naval Research, under Grant NO0014-01-1-0765, and by DARPA grant F30602-98-2-0198 and NSF grant
CCR-0208536.



The specification language arose from our experience in describing and proving properties of im-
plemented protocols in systems such as Enserii8e1PR, (14, [31, 132, [37, 136, 41, 58], UAV [135],

and MediaNet54)].

Our approach to presenting the logic is to follow Martiéifls discipline for type theory; that is,

present the computation system first and then introduce types and logic as a way of classifying and
making assertions about data. In our case it willalssertions about distributed computaticofs

these automata which operate by sending messages and reacting to the receipt of messages. These
computations give rise to avent systemwhich is the computational model for our logic.

2 The Computation System

2.1 Message Automata

A message automaton is a nondeterministic state machine. Its actionsareltmdreceivemes-
sages, and to execuieternal state transitions.Leaving aside more detailed type constraints, a
message automaton will be characterized by three tyfigsAct, and M sg, which are the states,
actions and messages, respectively.

Message automata are elements of the following dependent record type:

{ St, Act, M sg : Type; init : St;
f:(Act + Msg) — St — St;
send : (Act + M sg) — St — MsgList }

A possible computation is a stream of alternatitates, queuesndeventssay

50,40, @0,51,41,015 -+ - -

If eventa; is an internal action, then

Siv1 = f(a;)(s;) andg; 11 = eng(send(a;)(si)¢;)-
If a; is @ message receive, then; = f(a;)(s;), and

¢iv1 = eng(send(a;)(s;) deq?(ai, giv1)),
wheredeq? takes the received message from the queue.

2.2 Distributed Systems

Given a message automatdn, there may be many possible computations consistent with it. If
there are no messages, thehcan act like an ordinary nondeterministic automaton (finite or in-
finite state). We are interested in computations that arise from interaction with an environment
which creates messages; typically the messages are sent by other automata. We conder only
computationsin which every message that is sent will be received.

We focus on collections of message automatadayMs, . . ., M, that are connected in a network

by the links. We assume thatnks forms a directed graph with/; at the nodes. We speak bf;
aslocatedat a node. Each link has asource(src) and adestination(dst). Associated with each

link is a list of messages that originate at the source and arrive at the destination. We call such a
collection adistributed system.

Our execution model assumes that at each location there is a computation; that is a stream of alter-
nating states and actions, and the links are message queues.



2.3 Possible Computations

Thepossible computatior(®r worlds) of a distributed system is a collection of computations at each
node which are compatible. We define these in terms of an idealized global discrete progression of
time indexed by the natural numbeisl, 2,... . This notion of time will not be reflected in the

logic.

Intuitively a possible computation arises as follows. At tilreach)M; is in a designated initial state
s(i,0). Attime 1, if someM; can take an action, it may advance to stgte1). Not all M; that

can act are required to take a step, but eventually there must be aatmich it will move. If an

action results in a send, saym, [ >, thenm is added to the message queue from(l) to dst(l),

and the state is changed. If there is a messageabtimet, then a possible action is a receive at
dst(l), and the message is removed from the fifo queue.

The collective state of the distributed system is giverspbyt), the state of\/; at timet € N, and

a(i,t), the action taken at time— which can be null. The collective state also keeps track of the
messages sent by/; at timet, msg(i,t). This is a list of the message and the link on which it is
sent. For convenience, we also hawek(l, ¢), the list of messages on lirkbefore timet; all the

receive actions ohbefore timet, rcvs(l, t); and all the sends befotesends(l, t).

The listslink(l,t), rcvs(l, t) andsends(l, t) form queues. We can test for emptiness, find the head,
know the length, etc. We assume that the links are reliable (no message is lost) and fifo. We assume
that the computation ifair, that is, for every queue, infinitely often it is either empty or a receive
action occurs at its destination automaton.

2.4 Refinements of the Automata and Frame Conditions

We refine the definition of message automata by being more detailed about the structure of the state
and by typing the operations. For example, the automaton will declare its state variables, say

By convention the only changes to state variables are given by actions that explicitly mention those
variables. Since we want each clause of the definition of an automaton to be meaningful on its own,
we can't rely on this convention, so we havestate explicitly exactly which actions effect which
variables.We do this with @ramecondition; frame(z) is a list of all the actions that can change
variablez. We do the same for message sengs:ame(l) will list all actions that can send on link

1, and moreover, we will refine the notion of messages to include tagg,rsene will have inputs

< tag,link >.

2.5 Typing and Examples

Message automata are formalized in the type theory on which the logic of events is based. Our
investigations started with such a formalizatidd,[2]]. We leave these details to the examples that
appear later.

3 Event Systems

We want an abstract model that can capture the observable features of a distributed system. The
fundamental types atecationsandeventsvhich we can think of as space and time coordinates, as

in Lamport B8]. Information is stored at a location as the value of a state variable observable

and information is passed from one location to another aliokgin the form ofmessages



A message will consist of a link, a tag, and a value whose type may depend on the link and the tag.

Msg(Lnk,Tag,M) = 1:Lnk x tg:Tag x M(l,tg)
msg(l,tg,v) = (l,t,v)
mink(msg(l,tg,v)) = 1
mtag(msg(l,tg,v)) = tg
mual(msg(l,tg,v)) = v
haslink(l,ms) = (mink(ms) =1)
hastag(tg,ms) = (mtag(ms) = tg)
Msgi(Lnk,Tag, M) = {ms: Msg(Lnk,Tag,M)) | haslink(l,ms)}
onlink(l,mss) = [ms € mss | haslink(l,ms)]
onlinktagged(l,tg,mss) = [ms € mss | haslink(l,ms) A hastag(tg, ms)]

Every event will have a kind, a value, and a location. So an event is a point in spacetime. The receipt
of a messagensg(l, tg, v) will be one kind of event, and there will also be local events whose kinds
are in a type of action namet

Knd(Lnk,Tag,A) = LnkxTag+ A
isrcv(k) = isl(k)
islocal(k) = isr(k)

revi(tg) = inl{l tg)
local(a) = inr(a)

Ink(rev(tg)) = 1

tag(rev(tg)) = tg

act(local(a)) = a

kindcase(f,g,k) = if islocal(k) then f(act(k)) elseg(ink(k),tag(k))

An event systefs a structure consisting types, operations, and axioms. There are siftypes, Lnk, X, A, Tag
for the events, locations, links, observables, local action kinds, and message tags. These must all
be discrete types — equality on each type is decidable. The operations iretuded dst which

assign source and destination location to the links, forming a graph structure on the locations and
links. Operationsoc, kind, andval extract the location, kind, and value from an event. Operations
when, after, andinitially observe the values of the observables at the points in spacetime. Messages
must originate at some point in spacetime, and the operations, sender, andindex define this
structure. Theends(l, e) of an event on link I will be a list of messages on that link that originate

ate. We build the semantics of message delivery into our model in a way that makes every link into

a reliable fifo channel. Thus every message is eventually received, and for a receive’ etrent
operationssender(e’) andindex(e’) will provide the originator of the message received and the
index of that message in the list that originated there. The temporal order structure on our spacetime
is provided by two orderings on events,. and<, as in Lamport88]. The local ordering<;,. is a

total, discrete, well-founded, linear ordering on events with the same location. So, at each location,
if there are any events, there must be;g.-minimal event satisfying the predicaférst, and every
non-minimal event must have an immediate local predecegseri(e).

The causal ordering is also well-founded and is the transitive closure<gf. and the relation that
areceive event is preceded byender(e).



D = {T:U|Vx,y:T. Decidable(x =y € T)}

ES = FE:D x Loc:D x Lnk:D
X:Dx A:D x Tag:D
xT:Loc— X —TU
x V' : Loc — Knd(Lnk,Tag, A) — U
X M :ILnk —Tag — U
x src: Lnk — Loc
x dst : Lnk — Loc
x loc: E — Loc
x kind : E — Knd(Lnk,Tag, A)
x val : e: E — V(loc(e), kind(e))
xwhen:z: X —e: E— T(loc(e), x)
x after:x: X —e: EF — T(loc(e), x)
x initially : z: X —i: Loc — T(i,x)
x sends : | : Lnk — E — List(Msg,(Lnk,Tag, M))
x sender : {e: E | isrcv(kind(e))} — E
x index : {e: E | isrcv(kind(e))} — Njsends(ink(kind(e)),sender(e))|
X first : E — P
x pred: {e: E| —first(e)} — FE
X <joe: B —E — P
X <:FE—-F—>P
x p: ESAzioms(E, Loc, Lnk, ..., pred, <iopc, <)

AntiRe flexive(T, Rel) =

Vo :T. -R(x,x)
Transitive(T, Rel) =

Vo, xg, 23 : T. (Rel(x1,22) N Rel(xa,x3)) = Rel(xy,x3)
WellFounded(T, Rel) =

VP:T —P. (Vo' :T.(Vz: T. Rel(z,2') = P(z)) = P(2')) =

Vo : T. P(x)
(e1,m1) <ioe (€2,m2) = €1 <ioe €2 V (e1 =e2 A n1 < ny)
emsg(e) = msg(link(kind(e)),tag(kind(e)),val(e))

ESAxioms(E, Loc, Lnk, . .., pred, <jpe, <) =

Transitive(<joc) 1)



WellFounded(<ioc) (2)

Ve,e' : E.loc(e) = loc(e') & (3)
(e <toe € Ve=¢ Ve < e€)
Ve : E. Decidable( first(e)) (4)
Ve : E. first(e) < Ver: E.—(e1 <joe €) (5)
Ve : E. - first(e) = (6)
pred(e) <joe € A Ve : E.=(pred(e) <ioe € <ioc €)
Ve : E. first(e) = x whene = z initially loc(e) @)
Ve : E. - first(e) = xwhene = zx after pred(e) (8)
Transitive(<) 9
Well Founded(=<) (10)
Ve : E.isrcv(kind(e)) = (11)
nth(index(e), sends(link(kind(e)), sender(e))) = emsg(e)
Ve, 1 E.e <poe € = € < ¢ 12)
Ve : E.isrcv(kind(e)) = sender(e) < e (13)
Ve,e' : E.e < ¢ = (=first(e') A e < pred(e)) v (14)
(isrcv(kind(e')) A e = sender(e’))
Ve : E.isrcv(kind(e)) = loc(e) = dst(Ink(kind(e))) (15)
Ve : E.Vl: Lnk.loc(e) # src(l) = sends(l, e) = nil (26)
Ve, e : E.VL: Lnk. isrcvi(kind(e1)) A isrcv(kind(es)) = a7

(sender(ey), index(e1)) <ioc (sender(es),index(es)) <

€1 <ioc €2
Ve : BV : Lnk. ¥n : Njsenas(i.o)]- (18)
Je’ : E.isrcu(kind(e')) A sender(e’) =e A index(e’) =n

3.1 Consequences of the axioms

We state as lemmas some properties that follow from the axioms.

AntiReflexive(<joc) (19)
AntiReflexive(<) (20)
Ve,e' i E.e <jor € & —first(e) A e <joe pred(e’) (21)
Ve, i E.e <jpe € A Vey: E.=(e <joe €1 <ioc €) = (22)
e = pred(e)
Ve,e' : E. Decidable(e <jo. €) (23)
Ve,e' : E. Decidable(e < ¢) (24)
Ve : E.Vl: Lnk.Vtg : Lbl.Yv : M(l,tg). (25)

msg(l,tg,v) € sends(l,e) = Je' =rey(tg)(v). e < €



proofs: LemmagI9andZ0follow from the general fact that
WellFounded(Rel) = AntiReflexive(Rel)

Supposes <. €. From axiom[@) and axiom[§) we conclude-first(e’), and from axiom[§)
we conclude
pred(e) <joe € A Ve 1 E.=(pred(e') <ioe €' <ioc €)

So-(pred(e’) <. €)and hence, from axionB), e <;,. pred(e’), which proves lemm@l If

we also havere; : E. —(e <joe €1 <joe €')then—e <. pred(e’), soe = pred(e’), which
proves lemm&2

We may now prove lemm@3 by induction, using axionfd). By lemma21it's enough to decide
—first(e’) A e <jo pred(e’), but this is decidable by axiordl, the induction hypothesis, and

the decidability of equality irz. The proof of lemm&4is similar. Using the other axioms we can
show that axiom[I4) can be proved as an if and only if statement, and hence it is enough to show
that its righthand side is decidable. This follows from the induction hypothesis and the decidability
of equality inE, and decidability offirst andisrcu.

If msg(l,tg,v) € sends(l, e) then for somer < ||sends(l, e)||, msg(l, tg,v) = nth(n, sends(l, e)).

By axiom [L8) there is are’ such that

isrcuy(kind(e')) A sender(e’) =e A index(e’) =n
So, by axiom[{1),
val(e') = mval(msg(l,tg,v)) A tg =mtag(msg(l,tg,v))

That implies that’ = rcv;(tg)(v) and sincee = sender(e’) we havee < ¢’ by axiom [L3). This
proves lemm&3

3.2 Local histories

An event system is a rich enough structure that we can define various “history” operators that list or
count previous events having certain properties. Because we can define operators like these we do
not need to add “history variables” to the states in order to write specifications and and prove them.
The basic history operator lists all the prior events at a location.
Definition
before(e
betweer(e;, es
revs(l, before(e)
revs(l, tg, before(e)
snds(l, before(e)
)
)

) if first(e) then || elsepred(e) :: before(pred(e))

) = |[¢ € before(es) | er <ioe €]

) = [¢ € before(e) | isrcv(kind(e')) A Ink(kind(e')) = 1]
) = [€ €rcus(l,before(e)) | tag(kind(e')) = tg]

) = concatenate([sends(l,e) | ¢’ € before(e)])

) = snds(l,before(e)) append firstn(n — 1, sends(l, e))

) [m € snds(l, before(e)) | tag(m) = tg]

snds(l, before(e, n
snds(l, tg, before(e

Using these operators we can state the following important lemma.



Lemma Fifo

Ve' 1 E.V1: Lnk. isrcv(e) =
snds(l, before(sender(e'), index(e'))) = [emsg(e) | e € revs(l, before(e’))]

proof: The proof is by induction or;,.. Supposésrcu;(e’). If
snds(l, before(sender(e’), index(e’))) = nil

thenrcus(l, before(e’)) must also benil because, it <;,. ¢’ is areceive oithen by axiom[{7),
(sender(e),index(e)) <io. (sender(e’),index(e’)) which makesnds(l, before(sender(e’), index(e’)))
non empty.
Otherwise, let

ms = last(snds(l, before(sender(e'), index(e"))))

then for somée, n) <o (sender(e),index(e’)),
snds(l, before(sender(e’), index(e’))) = snds(l, before(e, n)) append [ms]

By axiom [I8), 3e” : E. isrcv(kind(e”)) A sender(e”) = e A index(e”) = n By axiom [I9),
e’ <ioe €', s0 by induction,

snds(l, before(e,n)) = [emsg(e) | e € rcvs(l, before(e”))]
If there were are”’ with isrcv;(e”’) ande” <jo. €” <o € then by axiom[T7)
(e,n) <ipc (sender(e"),index(e")) <joc (sender(e’),index(e’))

So,nth(index ("), sends(l, sender(e”")) would come afterns in

snds(l, before(sender(e’),index(e’))) contradicting the choice ofis as the last of the list. Thus
revs(l, before(e’)) = revs(l, before(e”)) append[e”] and since, by axionfI{l), ms = emsg(e”),
we have

snds(l, before(sender(e’), index(e’))) = [emsg(e) | e € rcvs(l, before(e’))]

O

Corollary

kind(e') = rev(tg) =
lsnds(l,tg, before(sender(e’), index(e')))|| = ||rcvs(l, tg, before(e’))|]

O

3.3 Event system shorthands
We make some shorthand notations:
VeQi. ¢ =
Ve : E.loce) =i = ¢
Ve@i = pred(e’). ¢ =



Ve,e': E.loc(e) =i N e=pred(e') = ¢

Ve@i = k(v). ¢ =
Ve: E.Yv:V(i,k). loc(e) =i A kind(e) =k A val(e) =v = ¢
Ve =Ek(v). ¢ =
Ve: E.Yi: Loc.Yv : V(i k). loc(e) =i A kind(e) =k A val(e) =v = ¢
Je@i. ¢ =
Jde: E.loc(e) =i A ¢
de@i = k(v). ¢ =
de: E. Ju:V(ik).locle) =1 A kind(e) =k A val(e) =v A ¢
de =k(v). ¢ =
Jde: E.3Ji: Loc. Jv: V(i k). loc(e) =i A kind(e) =k A val(e) =v A ¢
e/ > €. b =
Je'E.e <joc €N
e <ppe €. ¢ =
e’ E.€ <o €N @
Je’ Zipc €. ¢ =
e’ E.e <joc €N @
3e’ <joc . ¢ =

e’ E.¢ <ioe €N @

3.4 Change operator

Definition
xAe = (zaftere## zwhene)
A(z,e) = ||[e1 € before(e) | x A eq]]|
(only defined wherT'(loc(e), ) has decidable equality)
xApe = 0<n A A(r,e)=n—1AzAe

The formulaz A e is true when evert makes a change in state variableThe formulaA(z,e) = n

is true when there have been exaatlghanges ta: strictly before event. The formulaz A,, e is
true when there have been exaatlghanges ta: upto and including evertand one of the changes
is ate.

Properties of A
Suppose thaty € X, i € Loc, andT(i,z) € D, i.e. the type ofr at location:i has decidable
equality. Then,

Ve@Qji. Vn : N. (26)
x Ae, A(x,e) =n, andz A, e are decidable
VeQi. e <jpc € = A(z,e) < Az, e’) (27)



Ve'@i. A(z,€') =n A e=pred(e) = (28)
Alx,e)=n V x A, e

Ve@Qi. A(xz,e) =0 = zwhene = z initially ¢ (29)

Ve'@i. x whene’ # xinitially ¢ = Je <j. €.z Ae

proof: lemma 6. If loc(e) = i, thenz when e andz after e have typel'(i, z) so if equality

in T'(¢,x) is decidable, them: A e is decidable. We can then prove that the other predicates,
A(z,e) = nandx A, e are decidable, by induction of1;,.. Essentially, they are defined by
bounded quantification over the predecessoksfodm the decidable A e.

lemma Z9) follows by induction on<;,..

lemma 28). Under the hypotheses,

n=A(z,e) = A(z,e) +if z A ethen 1 else0

If z A ethenz A,, e and otherwise\(z, e) = n.
lemma[@9) is proved by induction or¢;,.. If e has no predecessors themhene’ = z initially 4
so the assertion is true. ¢f = pred(e) andA(x, e) = 0 then, by lemmalZ8), A(x,e;) = 0, so,
by induction,z whene; = z initially 4. Also, —(z A e;), sox whene; = z after e; = x whene,
and hence: whene = z initially 1.
lemma 80). Under the decidability assumptiofe <,,. ¢’. z A e is decidable. If it is true then the
assertion is true. If it is false, thel(z, ¢’) = 0, so by lemmaZ9), = whene = z initially 4, which
contradicts the hypothesis.

([l

4 \Worlds
4.1 Definition of World

A world is a generalized trace of the execution of a distributed system. It has locations and links
from a graph(Loc, Lnk, src,dst : Lnk — Loc). Time is modeled as the natural numbaisBy
observing the system at every locatioand every time, we have a state(i, t), an actiona(i, t),

and a list of messages(i,t). The states(i,t) is the state of the part of the system at location

at timet¢. We assume that the type of the state at locatiolmes not change with time, and we
use a general model of state as a record. A record is a dependent functidris H type and if

dec : X — Uis a type assignment, then the record tfpeord(X, dec) is

Record(X,dec) = xz:X — dec(x)
ra = r(x),forr € Record(X,dec)andz € X

A world contains a typeX of state variable names and and a type assignffieltoc — X — U.

The state at locationof the world will have typeRecord (X, T(i)).

The actiona(s, t) is the action that was chosen by the system to be executed next at lacatidn
timet. It will always be possible that no action was taket, aso we must have a null action. Other
action will be local actions with names taken from a type of action namemnd also the action

of receiving a message. Every action will have a kind of one of these three forms (null, local, or
receive), and also a value whose type depends on the kind and location of the action.

Action(Lnk,Tag, A, dec) =



Unit + k: Knd(Lnk,Tag, A) x dec(k)

isnull(inl(z)) = true

isnull(inr(x)) = false

kind(inr((k,v))) = k

val(inr({(k,v))) =v

isrevy(a) = —isnull(a) A isrcv(kind(a)) A Ink(kind(a)) =1

isrcuyig(a) = isrcv(a) A tag(kind(a)) = tg

The messagesi(i,t) are the list of messages sent from locatiat timet¢. For messages, we use
the message typ¥/ sg(Lnk, T'ag, dec) defined earlier.

World = Loc:DD x Lnk:D x srec,dst: Lnk — Loc
XxX:Dx A:D x Tag:D
xT:Loc— X —TU
xTA:Loc— A—TU
X M : Lnk — Tag — U
X s:14: Loc— N — Record(X,T(i))
X a:i:Loc— N — Action(A, Lnk, Tag, kindcase(T A(i), M))
x m:i:Loc— N — List(Msg(Lnk,Tag, M))

If w: Worldis aworld, then we writevy, ¢, wrnk, - .., Ws, Wq, andw,, for the components ab.

4.2 Fair-Fifo Worlds

We next define &air-fifo world. We first note that, given world, we can find all the messages sent
on link [ and all and receive actions that have occurred onllin&fore timet:

m(w,l,t) = onlink(l,wy (we(1),1))
snds(w,t,l) = concatenate[m(w,l,t1) | t1 € [0,1)]
revs(w,t,l) = [a € [we(wast(1),t1) | t1 € [0,8)] | isrcv(a)]

The send and receive messages before tidefine an implicit queue, and we can test whether the
gueue for linkl is empty and for whether message is at the head of the queue for its link:

isempty(w, t,l) =
[snds(w,t,1)]
ishd(w, t,ms)) =

let s = snds(w, t, mink(ms)) in

< |lrevs(w, ¢, 1)]|

let r = revs(w, t,mink(ms)) in
sl > {7l A slllrll] = ms



FairFifo(w) =
(1) (Vi : Wroe- VE: NV wipng. were(l) 1 =
onlink(l, w,, (i,t)) = nil )
(2) A (Vi s wree. YV Noisnull(wg(4,t)) =
ws(i,t+ 1) = ws(i,t) A wy(i,t) = nil )
(3) A (Vi Wroe. Yt NV wppk. Vg @ Wrag. isTcv;19(we (3, 1)) =
wast(l) =14 A ishd(w,t,msg(l,tg,val(we(i,t)))))
(4) A Vs wpng. 3%°t - N (isrcev(we(wast (1), ) V isempty(w,t,1)))
The first clause says that locatidégan only send message on links whose sourée The second
clause says that a null action leaves the state unchanged and sends no messages. The third clause
says that a receive action at locatiomust be on a link whose destinationiiand whose message

is at the head of the queue. The fouth clause is the fairness clause. It says that for every queue,
infinitely often either the queue is empty or a receive event occurs at its destination.

4.3 Event System of a World

If w is a fair-fifo world, then we can construct an event system freniThe typesLoc, Lnk, X,

A, Tag are already inv, so we have to define the tygeof events and define all the operations on
events and show that the axioms are satisfied. Our events will be the points spacetime at
which an action occured iw.

wg = {{,t) : wree X N | misnull(wq(i,t))}
wioellist)) = i
Wiime (1, 1)) = 1
Waction ({1,1)) = wa(3,t)
Wstate((1,1)) = ws(i,t)
Wstate ((1,1)) = ws(i,t+1)
Winit(1) = ws(i,0)
Wmsgs((i,1)) = wm(i,1)

For and event € wg we have-isnull(wqction(€)) SO we may define

wkind(e) = kind(waction(e))

wval(e) = Ual(waction(e))
The type of the value of an event can be determined from its location and kind using the type
assignmentsr 4 andwj, as follows:
wy (i, k) = kindcase(wra(i), war, k)
The observation operators are defined in the obvious way:

Wwhen (l‘, 6) =  Wstate (6).’17



Wafter(T,€) = Wstater(€)-T
Winitially (T, 1) = Winit(1).x

wsends(lve) = Onlink(lvwmsgs(e))

The local ordering operations are also straightforward.

wrirst((,1)) = V' Nt <t = isnull(w,(i,t))
Wprea((i, 1)) = (i, greatest t' < t.misnull(wq(i,t")))
we,,,((i,1),(5,t) = i=jAt<t

To define thesender andindex operations that match a receive event to its origin, we first define a
match with the samends andrcvs functions used in defining'air Fi fo.

match(l,t,n,t') = n<|m(w,t)|| A
Ireus(ao, , )]l = lsnds(uw, £ )] +

Then, we defineender andindex as follows

wsender«jv t/>) = letl= lnk(wkmd(<]a t/>)) in
(sre(l), ut < t'. 3n : N. match(l,t,n,t"))
Winden (G, 8)) = letl = ink(kind((j,#))) in

let (i,t) = sender({j,t')) in
un. match(l,t,n,t")

Finally, the causal ordering is defined as a transitive closure

wy = transitive closurew., U +—),
where
e — € = isrcv(Wiina(€)) N €= wsender(€)

Putting all of these defined operations together, we have the event structure defined by the world

Ev(w) = <wanLo¢:7U/LnkaU)X7wA,wTag,'wT,wV,’LUM,
Wsrey Wdsty Wiocy Wkind, Woaly Wwhens Wafter, Winitially

Wsends, Wsenders Windexs W firsts Wpreds W< o0 W<)
Theorem (World-Event-System)
Vw : World. FairFifo(w) = ESAzioms(Ev(w))
proof:

axiom[ 2 and3 These follow from the definitions af;,. andw.,,_, which makew, . on events at a fixed
location isomorphic te< on a subset of the natural numbers.



axiomld wy,,; is defined by a bounded quantification ardul! is decidable, sa;,; is decidable.
axiom§ Follows from the definitions ofv ¢;,s:, w<,,., andwg.
axiom[@ Follows from the definitions ofv,,cq, w<,,., andwg.

axiomld If wy;,s.(e) wheree = (i,t) then all actionsw,(i,t") for ¢’ < ¢ are null. So by clause
(2) of FairFifo by induction we havev;(i,t) = ws(4,0), and the axiom follows from the
definitons ofw.yhen aNdWinitially-

axiom8 Similarly if (i,t) = w,r.q((3,t')) then all actionsu, (i,¢") for t < ¢” < ¢’ are null. Hence by
clause (2) off'air Fi fo, ws(i,t') = ws(i,t + 1), and the axiom follows from the definitions
of Wq fter andsyhen.

axiom[@ By definition,w is a transitive closure.

axiom[IO Sincew is the transitive closure of two relations,., . and+, it's enough to show that
each of these relations agrees with the ordewgf,.. The first relationw.,,, does, by
definition. For the second, suppo&et) = sender({j,t')), then by definitiont = ut <
t'. In : N. match(l,t,n,t') sot < t’. But we haven't yet shown that it exists, i.e. that
Weender 1S Well-defined.

To show that, suppose thiat-cv(wrina((j,t'))). Then, for soméandtg we haveisrcu; +4(waq(j,t')),
so by clause (3) of air F'i fo, we havewg (1) = j A ishd(w, t',msg(l, tg, val(w,(4,t)))).

This means that for = snds(w,t’,1) andr = rcvs(w, t’,1), we have|s|| > ||| A s[||r]]] =
msg(l,tg,val(we(j,t))). But snds(w,t’,1) is the concatenation of(w,l,t) for ¢ < ¢/,

so for some such, ||snds(w,t,1)|| < ||7]| < ||snds(w,t,1)| + ||m(w,,t)|, and this im-

plies that there is an < |m(w,,t)| such thal|rcvs(w,’,1)|| = ||snds(w,t,1)|| + n, SO
match(l,t,n,t"). This argument shows thatc, g aNdw;, 4., are both well-defined.

axiom[I1 This axiom follows from the previous argument, since under the assumptiarihat,, (w,(j,t'))
we found thatwsender ((J, ) = (Wsre(),t) @Ndw;nges ({4, t')) = n for t andn satisfying
nth(n,m(w,1,t)) = msg(l, tg, val(w,(4,t"))). Butm(w,l,t) = onlink(l, wy, (wsrc(1),t)) =
Wsends (L, (wsre(1),t)), SO we have

nth(Windex ({4, 1')); Wsends (I, Wsender ((5,1')))) = msg(l, tg, val(wa(4,1')))
and hence théng andval components are equal as asserted in the axiom.
axiom[I2 By definition,w_ containsw.,,. .
axiom[13 By definition,w~ contains—, and this implies the axiom.

axiom[I4 If e < ¢’ then sincaw is defined to be the transitive closure of two relations, there must be
a chain of these relations connectingnde’.

If the last link of the chain ig” <;,. ¢’ then we have-first(e’) andloclee” pred(e’) and
e =< ¢, and so by transitivity we have the first possibility.

If the last link in the chain i$” +— ¢/, thene’ is a receive an@” = sender(e’) and
e =< sender(e’), so we have the second possibilty.

axiom[IT This follow from clause (3) of air Fi fo.



axiom[I8 Once the definitions are unfolded, this axiom is exactly clause (E)of Fi fo.

axiom[I? If e; = (j1,¢}) andes = (jo, th) satisfy the hypotheses of the axiom then, as in the proofs of
axiomdI0andId, we must have, ni, ts, andnsy such that

Wsender(€1) = (Wsre(l),t1)
Windez(€1) = mn1 < ||m(w,l,t1)]|
|rcvs(w,ty, )| = ||snds(w,t1,1)]| + nq
Wsender(€2) = (Wsre(l), t2)
Windex(€2) = na < |[m(w,l,ta)|

[revs(w, th, 1) [snds(w, 2, 1)[| + n2

If sender(e1) <o sender(es)thent; < t, and thisimplies, by definition ofnds(w, ts, 1),
that||snds(w,t1,1)||+n1 < ||snds(w, t2,1)||, and hence thadrcvs(w, t, )| < ||revs(w, th,1)]||.
This implies that| < t}, and hence; <j,. es. If sender(e;) = sender(es) A ny < na
then we reach the same conclusion. Sender(e1), index(e1)) <ioc (sender(es),index(ez)) =
e1 <loc €2-

To show the reverse implication, suppase <;,. e. By axiom [3) we have either
(sender(e1), index(e1)) <ioe (sender(ez2),index(es)) or (sender(ez2),index(e2)) <ioc
(sender(eq), index(e1)) or

(sender(ey),index(e1)) = (sender(ez2),index(ez)). The first case is what we want to
prove, and the second case implies <;,. e; (by the previous argument) which con-
tradicts our hypothesis. In the third case, = ty andn; = ns, and this implies that
|lrevs(w, ty,1)|| = [|rcvs(w,th,1)]|. But, this is impossible since our assumption implies
thatt] < ¢, and hencd|rcvs(w,t},1)|| < ||rcvs(w,th,1)].

axiom[18 This axiom says that every message that is sent will be received. We prove by induction on
m that

Vm :N. VI wrpg. VE: N
m < |lsnds(w, t, )| = 3t' >t.m < ||revs(w,t’,1)||

Whenm = 0 we can takg’ = 0 and the assertion holds. Assume it holds/#oand prove
it for m + 1. So let! andt be such thatn + 1 < ||snds(w, t,1)||. By induction, we can find
t" > t such thatn < ||rcvs(w,t”,1)||. By the fairness clause (4) dairFifo, we may
choose’ >t such that

isrevy(we (wase(1),1)) V isempty(w,t, 1)
In the first case, we have
m < |lrevs(w, t”,1)|| <1+ ||revs(w, t',1)| = [[revs(w,t’ + 1,1)||
som + 1 < ||revs(w,t’ + 1,1)]. In the second case, by definitionistmpty,
rcvs(w, ', 1)|| > ||snds(w, ', 1)|| > ||snds(w, t,1)|| >m+1

So, in either casejt’ > t¢. ||rcvs(w,t’,1)|| > (m + 1) and that completes the proof of the
claim.



Now, to prove axionfl8 we lete = (i,t) be an event, andlbe a link and suppose <
|lsends(l, e)||. Then||snds(w,t+1,1)|| > ||snds(w,t,)|| + n. By the claim, we can find’
such that|rcvs(w, t”,1)|| > ||snds(w, t,1)|| + n. This implies that, forj = was:(1), there is
at’ such that

isrcvy(kind(wq(45,t))) A |rcvs(w,t',1)|| = ||snds(w, t, )| +n

So, we havenatch(l, t,n,t'). If we lete’ = (j,t'), thene’ is an eventink(kind(e’)) = I,
andsender(e’) = e andindex(e’) = n.

5 Message-Automata

Event systems and worlds are infinite objects, but they arise from the behaviors of distributed sys-
tems where, at each location, only a finite program constrains the behavior. We call our repre-
sentations of these finite programs message-automata. To make our representations finite we need
to replace infinite things like total type assignments with finite approximations, so we need some
notation for finite partial functions.

5.1 Finite partial functions

A finite partial functionf from A to B has the typef : A — ¢ B. Its domain isdom(f), and we
define

f(x)?7z = ifx € dom(f)then f(x) else z
Z=1f@) = HZ) = (xedom(f) = t(f(x))

For finite partial functions, g : A —¢,; B we define:

fCg = Ve:Axedom(f) = xe€dom(g) N f(x)=g(x)
flg = Ve:Axzedom(f) N dom(g) = f(z)=g(x)
f®g = Xxifzedom(g)theng(x) elsef(x)
lemma
Vfg:A—piB.fllg=>fCfogngC fay
lemma

Vf,g:A—fppB. f Cg = Ve:AVp:B—P
(Z =ly(z) = p(2)) = (Z = f(z) = p(Z))

5.2 Definition of Message-Automata

The message-automata share with the worlds and the event systems the same spaces of names for
state variables, local action kinds, and message tags. So we will have parakheterandT'ag as
before, but, where a world has, at each locatidyppe assignmentg(i) : X — U, TA(i) : A — U,



andM : Lnk — Tag — U, a message-automaton will know only its input and ouput lihksand
Out, and its type assignments (declarations) will be finite

ds: X —fof U

da: A —fpf U

din:In xTag —f,r U

dout : Out x Tag —fpr U
The domain ofis is the set of declared state variables, the domaifud$ the set of declared local
actions, the domain afin is the set of declared input message types, and the domdin.ofs the
set of declared output message types.
The state of a message-automaton will be the record defined by its declaratione can define
this type using the dependent function tyRecord(X, dec) used in the worlds by extending the
finite partial functionds to a total function. We do this by assigning the tyfep to any undeclared

state variable.
State(X,ds) = Record(X, Ax. ds(x)?Top)

The type of output messages that the automaton has declared is defined in a similar way
Message(Lnk, Tag,dout) = Msg(Lnk,Tag, \p. dout(p)?Top)

The kinds of actions that the automaton has declared and that can have effects on the state are a
subset of the kind&'nd(Lnk, Tag, A)

Kind(Lnk,Tag, A, da,din) =
{k : Knd(Lnk,Tag, A) | kindcase(Aa. a € dom(da), A\p. p € dom(din), k)}

ktype(da,din, k) = kindcase(da,din, k)
In addition, to its declarations, the message-automaton does the following things

init It constrains the initial values of the state variables. So, it has a finite partial furngtioof
typex : dom(ds) —py (ds(z) — P). Thus, ifz is in the domain ofnit thenz is a declared
state variable anthit(x) is a predicate on the declared tyg ) of state variable:.

pre It declares preconditions on its local actions. So, it has a finite partial funetioof type
a : dom(da) —spy (State(X,ds) — da(a) — P)

Thus, ifa is in the domain opre thena is a declared local action angte(a) is a predicate
on the state and the declared typea) of the action.

ef It declares the effects of actions (local and input) on state variables. So, it has a finite partial
functionef of type

(k,x) : Kind(Lnk,Tag, A, da,din) x dom(ds) —fps
(State(X,ds) — ktype(da,din, k) — ds(x))

Thus, if (k,z) is in the domain off thenk is a declared kind (either a local action or a
receive of an input message) ands a declared state variable, anfl((k, z)) is a function
from the state and the type of the action to the typgr) of x. This function defines how the
new value ofr will be computed from the current state and the value of the action.



send

frame

sframe

It declares the messages sent by actions. So, it has a finite partial fuswtidof type

(k,z) : Kind(Lnk,Tag, A, da, din) x dom(ds) —fpf
(State(X,ds) — ktype(da,din, k) — List(Message(Lnk,Tag, dout)))

Thus, if (k, z) is in the domain ofend thenk is a declared kind (either a local action or a
receive of an input message) ands a declared state variable, angd((k, z)) is a function
from the state and the type of the action to the type of lists of output messages.

It declares implicit effects. By convention, the effects that are explicitly given are the only
actions that affect the given state variables. So the implicit effect of any other action is to
leave the state of variable unchanged. Since we want each clause of a message-automaton
to be meaningful on its own, we can’t depend on such contextual conventions, so we have
to make the implicit effects explicit in so-calléthmeclauses. The message-automaton has

a finite partial functionframe of typedom(ds) — j,s List(Kind(Lnk,Tag, A, da, din)).

So if z is in the domain offrame thenz is a declared state variable afidame(x) is a list

of actions kinds that contains all the kinds that affect

It declares implicit sends. By convention, the sends that are explicitly given are the only
actions that send messages on the given link with the given tag. So the implicit sends of any
other action is to send no messages of the given link and tag. We make the implicit sends
explicit in sframeclauses. The message-automaton has a finite partial functiarme of
typeOut x T'ag — s,y List(Kind(Lnk,Tag, A, da, din)). Soif (l,tg) is in the domain of
sframe thenl is an output link and frame({l, tg)) is a list of actions kinds that contains all

the kinds that send messages withtagn link /.

Putting all of these pieces into a structure we define the type of message-automata:

MsgA =

XX:Dx A:D x Tag:D x Lnk:D

xIn:{T:D|T C Lnk} x Out:{T:D|T C Lnk}

xds: X —fpf U

xda:A—fr U

xdin:InxTag —ypr U

x dout : Out x Tag —fpr U

X init : x : dom(ds) —fps (ds(z) — P)

x pre : a: dom(da) —spr (State(X,ds) — da(a) — P)

xef : (k,x): Kind(Lnk,Tag, A, da,din) x dom(ds) — rps
(State(X,ds) — ktype(da,din, k)) — ds(z))

x send : (k,x) : Kind(Lnk,Tag, A, da, din) x dom(ds) —¢ps
(State(X,ds) — ktype(da,din, k)) — List(Message(Lnk,Tag, dout))

x frame : dom(ds) — jpy List(Kind(Lnk,Tag, A, da, din))

x sframe : Out X Tag — pps List(Kind(Lnk,Tag, A, da, din))

Message-Automatd and B have the same signature if théir, A, T'ag, Lnk, In, andOut com-
ponents are equal. The subtypeldfg A with given signaturé X, A, Tag, Lnk, In, Out) is

MsgA(X, A, Tag, Lnk, In,Out) =



{a: MsgA|ax =X AN ax=A A arqy =Tag A
arnk = Lnk A arp, =1In A aoyr = Out}

Message-Automatd and B are compatible4 | B) or satisfy the relatio™d C B if they have
the same signature and the ten finite partial functidesda, din, dout, init, pre, ef, snd, frame,
andsframe of A and B are compatible or are related by And we defineA & B by applying
the® operation to each of the ten components.
lemma

VA,B: MsgA.A|| B=AC A® BABCA®B

5.3 Distributed Systems

A network is represented by a graphoc, Lnk, src, dst). The incoming and outgoing edges at a
vertex: are defined by

In(dst,i) = {l:Lnk|dst(l)=1i}
Out(sre,i) = {l:Lnk|src(l) =i}

A distributed system is a network graph, name spaXesA, andT'ag, and an assigmnent of a
message-automaton to each location.

Dsys =
Loc:D x Lnk:D x src: Lnk — Loc x dst: Lnk — Loc
XxX:Dx A:D x Tag:D
x m:i:Loc— MsgA(X, A, Tag, Lnk, In(dst, i), Out(sre,1))

If D € Dsys is a distributed system then we abbrevidig, (i) by D(i). Distributed system®
and E have the same signature if thdioc, Lnk, src, dst, X, A, andTag components are equal.
Distributed system® andE are compatiblelD | E) or satisfy the relatiodd C FE if they have
the same signature and, for evérg Dy ,., the message-automat®(i) and E () are compatible
or satisfy the relatioD (i) C E(:). And we defineD @ E by applying thed operation to each
location.

5.4 Semantics of Distributed Systems and Message-Automata

The semantics of a distributed systéhis the set of possible worlds that are consistent with it. To
be consistenty must have the same signaturelasbe a fair-fifo world, and respect the meanings
of the six component&it, pre, ef, send, frame, andsframe of the message-automata at each
location.

Init(X,M,s) =
Ve : X. P =! M.init(z) = P(s.x)

M Step(X, A, Tag, Lnk,M,s,a,s',m) =
Vo : X. E =! M.ef({(kind(a),z)) =
sz = E(s,val(a) € M.ds(z)



A\
Vo : X. F =! M.send({kind(a),z)) =
m = F(s,val(a) € List(Message(Lnk,Tag, M.dout))
A\
Ve: X. L = M.frame(z) =
kind(a) ¢ L = s’ = s € State(X, M.ds))
A
Vi: Lnk.Vtg: Tag. L =! M.sframe((l,tg)) =
kind(a) ¢ L = onlinktagged(l,tg,m) = nil
A\
Va: A. P =! M.pre(a) = P(s,a)

FairPre(D,w) =
Vi Wree Ya : wa. P =!I D(i).pre(a) =
3%t : N. (misnull(we (i, t)) A kind(wq(i,t)) = local(a)) V
—(Jv : D(i).da(a). P(ws(i,t),v))

PossibleWorld(D,w) =
FairFifo(w)
ANwx =Dx N wa=Dg N wrag = Drag
AWLoe = Droc N Wink = Dink N Wspe = Dgre N Wast = Dast
AV wree. Init(wx, D(i),ws(7,0))
AV WLee. VE : N —isnull(we(i,t)) =
MStep(wx, wa, Wrag, Wink, D(1), w, ws(4,t), wa (4, 1), ws(i,t + 1), wm (4, 1))
A FairPre(D,w)

lemma

VD, Dy : Dsys.
Dy C Dy =
YVw : World. PossibleWorld(Ds,w) = PossibleW orld(D;,w)

proof: D1, Dy, andw all have the same signaturé,, A, T'ag, Loc, Lnk, src, anddst. For
everyi € Loc, M1 = D1(i) € My = D5 (7). The definition ofPossibleW orld uses the automata
M € {M;, M} only in the context of conditional application of the finite partial functials;nit,
M.pre, M.ef, M.send, M.frame, andM.s frame, and also in some equality propositions over
typesState(X, M.ds), M.ds(x), and List(Message(Lnk, Tag, M.dout)). The conditional ap-
plications all occur positively, and so the statementXéy implies the statement fak/;, by the
definition of M; C M, and the lemma on conditional application of finite partial functions.



The equalities also occur positively, and, so the equalityM@rimplies the equality forM/; be-
causeState(X, Ms.ds) is a subtype obtate(X, M;.ds), and similarly,Ms.ds(z) is a subtype of
M, .ds(z) and List(Message(Lnk, Tag, Ms.dout)) is a subtype of

List(Message(Lnk,Tag, My .dout)).

5.5 Rules for Message-Automata

The message-automata in a distributed system put constraints on the possible worlds that can be
executions of the system. We can state these constraints as rules on the event systems that come
from the possible worlds. A rule of the forf@; M : ¢ means that'D : Dsys. Yw : World.

PossibleWorld(D,w) AN i € Droe N M C D(i) = Ev(w) =
It says that the event system of any possible world of any distributed system with aflleatt
locations will satisfy 1.

5.5.1 Rule for initial clauses

@i statex : T initially p(z) : p(z initially )
proof: Leti € Dy, and letM = D(i) where
state x:T; initially p(x) € M

and letw be a possible world such th&tossibleWorld(D,w). ThenM.init(z) is defined and
equal top(x), so by thelnit clause ofPossibleW orld,

p(ws(Z,0).2)

and this is, by definition offhitially ,
p(z initially )
|

5.5.2 Rule for frame clauses

Qi only L affectsz :
VeQi. kind(e) ¢ L = —(z Ae) A
(x Ae) = kind(e) € L

proof: Leti € Dy,. and letM = D(i) where
state x:T; only L affect xC M

and letw be a possible world such thRossibleW orld(D, w). Lete = (i,t) be an event itBv(w),

thena = w,(i,t) is not null. Letk = kind(a) and suppose that ¢ L. ThenM.frame(x)

is defined and equal té, so by the definition ofPossibleWorld, s'.x = s.xz, wheres’',s =

ws (4, 1), ws (i, t+1), and hence, by defintion efhenandafter, x whene = z after e, so—=(z A e).

The second clause is the contrapositive of the first, just proved. In general, the contrapositive isn't
constructively equivalent, but in this case, since the proposttiori(e) € L is decidable, it is.

O



5.5.3 Rule for effect clauses

Qi statex : T'1; actionk : T'2;
k(v) effectz := f(s,v) :
Ve@Qi. kind(e) = k = x aftere = f(swhene,val(e))

proof: Leti € Dy,. and letM = D(i) where
state x:T1; action k:T2; effect k(v): x:=f(s,v& M

and letw be a possible world such th@ossibleWorld(D,w). Lete = (i,t) be an event in
Ev(w), thena = w,(i,t) is not null. Suppose thatind(a) = k. ThenM.ef({k,x)) is de-
fined and equal tgf(s,v), so by the definition ofPossibleWorld, s'.x = f(s,val(a)), where
s'ys = ws(i,t),ws(i,t + 1), and hence, by defintion ofhen, after, and val, = after e =
f(swhene,val(e))

([

5.5.4 Rule for send clauses

Q@ actionk : T
k(v) sendsf(s,v) :
Ve@Qi = k(v). Vi : Lnk. sends(l,e) = onlink(l, f(s whene,v))
proof: Leti € Dy,. and letM = D(i) where
action k:T; k(v): sends f(s,vIC M

and letw be a possible world such thRossibleW orld(D,w). Lete = (i,t) be an event itBv(w),
thena = w, (4, t) is not null. Suppose thatind(a) = k. ThenM.send((k, z)) is defined and equal
to f(s,v), so by the definition oPossibleWorld, w.,(i,t) = f(ws(i,t),val(a)), and hence, by
defintion ofwhen, sends, andval, sends(e) = onlink(l, f (s whene,val(e)))

O
5.5.5 Rule for send frame clauses

@; only L sends(l, tg) :
i = Dge(l) = Ve'. kind(e') = rcv(tg) = kind(sender(e’)) € L

proof: Let! € Dy, and letM = Dq,..(I) where
only L sends(l,tg) C M

and letw be a possible world such th&ossibleWorld(D,w). Lete satisfykind(e’) = rcv(tg).
BecausePossibleWorld impliesFairFi fo, we havensg(l, tg, val(e’)) = emsg(e’) € sends(sender(e’)),
wheresender(e’) = (i,t) is an event inBv(w), with ¢ = Dg,..(1). Thensends(sender(e')) =

wm (1, t) andM.s frame((l, tg)) is defined and equal tb, so by the definition oPossibleW orld,
kind(wq(i,t)) € L. Thuskind(sender(e’)) € L.

O



5.5.6 Rule for precondition clauses

@ actionk : T
k(v) precondition p(s,v) :
VeQi. kind(e) = k = p(s whene,val(e))
A (Fe@Qi. (kind(e) = k) V (Fe@i. Vo : T. —p(s after e,v)) V Vo : T. —p(s initially i, v)
AVe@i. (Fe' >oc €. (kind(e")) = k) V (Fe' >j0c €. Vv : T. —p(s after €', v))
proof: Leti € Dy,. and letM = D(i) where
action k:T; precondition k(v): p(s,v& M

and letw be a possible world such th&ossibleW orld(D,w). If e = (i,t) is an event inEv(w)
thena = w,(i,t) is not null. If kind(a) = k thenM.pre(k) is defined and equal t(s, v), so by
the definition ofPossibleW orld, we have

p(ws (i, t), value(a))
and this is the same as

p(s whene,val(e))

So we have proved the first clause of the rule. Instantidiag Pre(D, w) with k, we may choose
t' > t such that

(misnull(wy(i,t')) A kind(we(i,t")) = local(a)) V —(Fv : M.da(k). p(ws(i, t"),v))

In the first case, we letf = (i,t’) and sincekind(w,(i,t")) = k andk is notnull, ¢’ is an event in
Ev(w) ande <jo. € andkind(e’) = k, so,

e’ >oc €. kind(e') = k
In the second case,
=(Fv : M.da(k). p(ws(i,t'),v))

Find the least” < t’ such that for alt”” in the interval(¢”, '] the actioruw, (i,t"") is null. Then

t < ¢, sincew,(i,t) is not null, and hence,(i,t”) is not null, so we may choosé to be (i, ")
ande’ is an event inBv(w) ande <. €. The statav,(i,t” + 1) is the same as the state (i, t’)
because all the actions, (i, ¢"’) for ¢’ in the interval(¢”, ¢'] are null and so, by the definition of
FairFifothe states are equal. Thus(i,t') = s after ¢’ and we have

=(Jv : M.da(k). s after €', v))
Therefore, sincé/.da(k) is defined and equal t6,
e’ >0 €. Vv : T. —p(s after ', v)

Thus we have proved the third clause of the rule. The proof of the second clause is similar to the
proof of the third clause, but since we are not starting with an event we also have to consider the
possibility that no events occur at all at locatiorBy the same fairness clause we still get auch

that

(misnull(wq (i,t')) A kind(wy(i,t')) = local(a)) V —(Fv : M.da(k). p(ws(i, t"),v))



The first disjunct implies, as before, asuch thatind(e) = k. In the second case, we proceed as
before to find the least’ < ¢’ such that for alt’’ in the interval(t”, t'] the actiorw, (¢, ¢"") is null.

If w, (i, ¢"") is not null, we proceed as before to produce’asuch thav'v : T. —p(s after e/, v). The
new case is that, (¢, t") might also be null. In this cagé = 0, so all the actionsy, (i, t) fort < ¢’

are null. Inthis case, (i, t’) is the same as, (i, 0), so we conclude that : T. —p(sinitially i,v),
and that proves the second clause of the rule.

O

6 Derivation Lemmas

For any labek we can constrain it to take a constant value at any locaG@mstant Lemma
Va : Lbl. Vi : Loc. VT : U. Vv : T. VeQi. x whene = v

proof: Use the rules for the frame clause and initial clause

Qi only [] affectsx
Qg statex : T'; initially z = v

to get
Ve@Qi. kind(e) € [] = —(x Ae) A zinitially i =v

This implies
Ve@i. -(z Ae) A xinitially i =v

which implies
Ve@Qi. A(xz,e) =0 A xinitially i =v

By lemma[@9), this implies
VeQi. x whene = v

]

For any labek we can make a local actionthat occurs exactly once at any location.
Once Lemma

Vk : Lbl. Vi : Loc. (3e@i. kind(e) = k) A (VeQi <jo. €. =(kind(e) = k A kind(e') = k))
proof: Use the second clause of the rule for the precondition clause

Qs action k : Unit;
k(v) precondition —done

to get
(Fe@i. (kind(e) = k) V (JeQi. =~—done after ) vV ——done initially 4

Use the rule for the initial clause

@0) statedone : B; initially done = false



to get
—done initially i

so we have
(Fe@i. (kind(e) = k) V (JeQi. done after e)

From this we first establish the first claus®@i. (kind(e) = k. The first case is what we are
trying to prove. In the second case we havecauch thatioc(e) = ¢ anddone after e but also
—done initially . From this we can conclude, by lemn&J, that

3e’Qi. done A €'
Using the rule for the frame clause
@i only [k] affectsdone

we get
Ve@Qi. done A e = kind(e) =k

From this we concludéind(e’) = k which finishes the first claim.
To prove the second clause we use the rule for the effect clause

Qs statedone : B; action k : Unit;
k(v) effectdone := true

to get
Ve@Qi. kind(e) = k = done after e

and the first clause of the rule for the precondition clause already introduced gives
VeQi. kind(e) = k = —done whene
We can then prove by induction that
Ve@i <o €. ~(kind(e) = k A kind(e') = k)

If ¢’ has no predecessors, then the statement is true; ¥ pred(e’) thendone when e’ =
done after e; and ife <, € andkind(e) = k A kind(e’) = k thendone after e and
—done whene’, so we havee <,;,. e; anddone after e # done after e; This implies that there
is anes; such thate <j;,c ea A ea <jo €1 Such thatdone wheney # done after e5 and by
the frame clause already introduced, this impkeésd(es) = k. But then we have <;,. es and
es <o € and bothe ande, have kindk, contradicting the induction hypothesis.

O

For any tagtg, locationi, and functionf, we can cause a message with thett@gontaining the
value f(s) to be received on any linkwith sourcei.



Send once Lemma

Vtg : Lbl. Vi : Loc. ¥V f : State(i) — T. VIl : Lnk. src(l) =i =
(Fe,e’.e < €' A kind(e') = revi(tg) A val(e') = f(s whene))
A Ve Qi = tg. sends(er) = [msg(l,tg, f(s whene))]

proof: Using the Once Lemma, we get
Vi : Loc. (3eQi. kind(e) = tg) N (VeQi <o €'. =(kind(e) = tg A kind(e') = tg))
Using the rule for the sends clause

@f) action tg : Unit;
tg(v) sendsmsg(l, tg, f(s))]

we get
Ve@Qi. kind(e) =tg = sends(e) = [msg(l,tg, f(s whene))]

From these we can conclude that there is an evatlocation; with kindtg andmsg(l, tg, f(s whene)) €
sends(e). By lemmal@5), we then conclude that

Je’ >10c €. kind(e') = rev(tg) A wal(e’) = f(s whene)

O

Recognizer Lemma

Vk : Lbl. Vi : Loc. V¥p : State(i) — V(k,i) — P.
Ve'Qi. z whene' < Je <joc €. kind(e) = k A p(swhene,val(e))

proof: From the clause
Qs statex : B; initially = = false
getz initially i = false. So from lemmalZ0),
Ve'@Qi. x whene' = Je <jpc €.z Ae
From the frame clause
@s only [k] affectsz

we get
VeQi. x Ae = kind(e) =k

From the effect clause

@i statex : B; actionk : T
k(v) effectz := if p(s,v) then true elsex



we get
VeQi. kind(e) = k = x after e = p(swhene,val(e)) V xwhene

This gives us,
Ve'@Qi. x whene' = Je <y, €. kind(e) = k A p(s whene,val(e))
To prove the other direction of the iff, we see that the effect clause gives
Ve@Qi. kind(e) = k A p(swhene,val(e)) = « aftere
So it suffices to show that
Ve'Qi. Ve <jpc €. x after e = x whene’

This follows by induction from the frame clause and the effect clause since only action k can change
x and can only change x from false to true.
O

Trigger Lemma

Vk, k' : Lbl. Vi : Loc. Vp : State(i) — V(k,i) — P.
(Ve'@Qi = k'. Je <joc €. kind(e) = k A p(s whene,val(e)))
A (Ve@i = k. p(s whene,val(e)) = 3e’. kind(e') = k')

proof: Use the Recognizer Lemma to get a recognizer state variable x such that
Ve'@i. x whene' < Je <jo. €. kind(e) = k A p(swhene,val(e))
Then add the precondition clause
@i action k' : Unit;

K'(v) precondition x = true

Ve@ji. kind(e) = k' = xz whene

A (FeQi. (kind(e) = k') Vv (JeQi. —z after e) vV —z initially i

AVe@i. (Fe' >oc €. (kind(e') = k') V (Fe' >100 . —x after e’)
The first claus&e@i. kind(e) = k' = 2 whene and the recognizer easily imply the first clause of
the trigger. To show the second clause of the trigger, suppes&e;) = k andp(s whene, val(e)).

Then for anye <;,. ¢’ we will havex whene’. From the third clause of the precondition rule we
have

(e’ >10c €. (kind(e') = k') Vv (Fe' >0 €. —x after e’)

But the second case contradicts what we have just shown, so we have
(Fe' >10c €. (kind(e') = k)

O



7 Leader Election in a Ring

7.1 Specification of Leader Election

A flowis a subsef’ C Loc and a functiorvut : F' — Lnk such that
Vi : F. src(out(i)) =1 A dst(out(i)) € F
We define the function : F — F by n(i) = dst(out(3)). If n is one-to-one and connected,
Vi,j: F.n(i)=n(j) = i=j
Vi,j: F.3k:N.nF(@)=j

Then the flowF is a ring R, andn is onto R so we may define functionsandin by p(i) = n=1(i)
andin(i) = out(p(i)). We also define a distandéi, j) = puk > 1. n*(i) = j. Then,

i #p() = di,p(j)) = d(i,j) -1

Theleader election probleris to have exactly one member of a group announce that it is the leader.
If we choose to have the announcement be the occurence of the action "leader” at a location, then
the specification of the leader election for a gravs the following

Leader(R) = Jldr: R. (JeQldr =leader. )A (Vi : R.VeQi = leader. i = ldr)

7.2 Simple Leader Election

If Ris aring, and we have a one-to-one functiafy : R — N, then we claim that the following
specification is derivable and refinésader(R).
LE(R,uid,in,out) = Vi € R.

(1) Je = rcvou ) (vote) (uid(i)).

(2) Ve = rcvg, i) (vote) (v). v > uid(i) = e’ = rcvgu) (vote)(v).

(3) Ve = rcvoueiy(vote)(v). v = uid(i) V

Je = revi ) (vote)(v). e < €' A v > wid(i)
(4) Ve = rcvgy, ;) (vote) (uid(i)). 3’ Qi = leader.
(5)  Ve'Qi=leader. 3e = rcvy, ;) (vote)(uid(i)). e < €’

Theoreml If (R,in,out,n,p)isaring anduid : R — Nis 1-1, then
LE(R,uid,in,out) = Leader(R)

proof: Assuming the hypotheses, we tet= max{uid(i) | i € R} and letldr = wid—*(m). Then
the conclusion/eader(R) follows from the following four lemmas.

O



Lemmal Vi: R.de = rcv, ) (vote)(uid(ldr)).
proof: By induction ond(ldr, ). If d = 1 thenin(i) = out(ldr), so by (1)
Je = revin ) (vote) (wid(ldr)).
If d > 1thenp(i) # ldr andd(ldr,i) < d(ldr,p(3)), SO by induction
Je = rcvinp(iy) (vote) (uid(ldr)).
Then by (2), sincevid(ldr) > uid(p(i)),
Je = rcvous(pey) (vote) (wid(ldr)).

andout(p(i)) = in(i). o

Lemma2 Vi, j: R.Ve = rcvy,q(vote)(uid(j)). j = ldr Vv d(ldr, j) < d(ldr,1)
proof: By induction on<. If e = rcv;, ;) (vote)(uid(j)) then by (3)
wid(j) = wid(p(i)) V e = revi, ) (vote) (uid(j)). e < €' A wid(j) > wid(p(i))

In the first case, we have= p(i) and this impliesj = ldr Vv d(ldr,j) < d(ldr,%). In the second
caseuid(j) > uid(p(i)) sop(i) # ldr and, by induction, we have

j=ldr Vv d(ldr,j) < d(ldr, p(i))
Butd(ldr,p(i)) < d(ldr, i), sincep(i) # ldr

Lemma3 V:: R.Ve Qi = leader. i = ldr
proof: If ¢’ = leader; then by (5)
3e = revi, ;) (vote) (uid(i)). e < €’
Then, by Lemma2; = idr Vv d(ldr,i) < d(ldr,i). The second case is impossibleise ldr

O

Lemma4 3e’'Qldr = leader.



proof: By (4), it is enough to showde = rcv;y,ar)(vote)(uid(ldr)). But this follows from
Lemmal.
(]

Theorem2 LE(R,uid,in,out)

proof: We have to "implement” each of the five clauses, by deriving them from the rules for
message-automata and event systems. Instantiate the Constant Lemma to get a state variable “me”
such that

Ve@i. me whene = uid(i)

Instantiate the Send Once Lemma using= vote, f(s) = s.me, | = out(i). This gives
Je,e’. kind(e') = rcvgu ) (vote) A wval(e) = me whene

and also
Ve, @i = vote. sends(e1) = [msg(out (i), vote, me wheney))

which implies
3e’. kind(e") = rcvgu iy (vote) A wval(e) = uid(i)

which is clause (1) oL E(R, uid, in, out), and also
Ve1@Qi = vote. sends(e1) = [msg(out (i), vote, uid(i))]
Instantiate the Trigger lemma with= 7cv;,,(;) (vote), k' = leader, p(s,v) = (me = v) to get

Vi : Loc.
(Ve'@Qi = leader. Je <io. €. kind(e) = rcvi, ;) (vote) A wid(i) = val(e))
A (VeQ = rcvgy, ;) (vote). uid(i) = val(e) = €. kind(e") = leader)

This gives us clauses (4) and (5)BE (R, uid, in, out).
The rule for the sends clause

Qg action rcvgy, ;) (vote) : N;
rcvin () (vote)(v) sends ifv > me then [msg(out (i), vote, v)] else]]

gives, (sincgme whene;) = uid(i))
Ve@ = rcvi ) (vote)(v). sends(e) = if v > uid(i) then [msg(out (i), vote,v)] else]]

So
Ve@ = rcvi ;) (vote)(v). v > wid(i) = msg(out(i),vote,v) € sends(e)

By lemma [25), this implies clause (2)
Ve = rcvg, ) (vote) (v). v > uid(i) = e’ = rcvgu) (vote)(v).

Finally, to derive clause (3) we need a send frame clause to constrain the actions that can send
vote messages. In what we have derived so far, the only actions that send vote messages are the



rcvin iy (vote) action and also the actiarvte from the Send once Lemma. So we use the rule for
the send frame clause

@i only [rcv;, i (vote); vote] sends(out (i), vote) :
Ve'. kind(e') = revgu iy (vote) = kind(sender(€')) = revi, gy (vote) V kind(sender(e')) = vote

From this we can prove clause (3) Since'if= rcv,,(;) (vote) (v) thenemsg(e’) = msg(out(i), vote, v) €
sends(out(i), sender(e’)). Then eithekind(sender(e’)) = vote, in which caseends(sender(e’)) =
[msg(out(i),vote, uid(i))] SOv = wid(i), or, for somev, sender(e’) = rcvy,)(vote)(v), in
which case

sends(sender(e')) = if v > wid(i) then [msg(out (i), vote, v)] else[]

so we must have > wid(i).
(|

At this point we have proved the leader election specification, so we can extract from our proof a
distributed system as an assignment of message-automata to locations. From this proof we get the
following clauses for eache R:

@j stateme : N; initially me = uid(i)
Qg statedone : B; initially done = false
Qg statex : B; initially = = false
Qs action vote : Unit;
vote(v) precondition —done
Qs statedone : B; action vote : Unit;
vote(v) effectdone := true
@s action vote : Unit;
vote(v) sends[msg(out (i), vote, me)]
Qs action rcv;y ;) (vote) : N;
rcvin () (vote)(v) sends ifv > me then [msg(out (i), vote, v)] else]]
Q@ statex : B; action rcv;,;(vote) : T}
TCVin iy (vote)(v) effectz := if me = v then true elsex
@3 action leader : Unit;
leader(v) precondition z = true
@3 only [rcvi,; (vote); vote] sends(out (i), vote)
@ only [] affectsme
@i only [vote] affectsdone
@s only [rcv;, ;) (vote)] affectsa

7.3 Peterson Leader Election

Init(e,i) = sends(e) = if sent whene then [] else[msg(out(i), vote, uid(i))]



Forward(e,i,v) = sends(e) = if sent whene then [msg(out(i), vote,v)] else
[msg(out(i), vote, uid(i)); msg(out(i), vote, v)]
P(e,i,v) = lastwhene > wuid(i) A last whene > v
L(e,i,v) active whene A start whene A v = wid(7)

PLE(R,uid,in,out) = Vi € R.

(1) sent initially i = false
(2) Ve@i. sent A e = kind(e) = init V kind(e) = rcv;, ;) (vote)
(3) (Fe@i = init. ) A (VeQi = init. Init(e,i) A sent after e)
(4) start initially i = true
(5) Ve@i. start A e < kind(e) = rcv, ;) (vote)
(6) active initially i = true
(7) Ve@i. active A e = kind(e) = rcv,)(vote)
(8) Ve@i. last A e = kind(e) = rcvi, ;) (vote)
(9) Ve = rcvin (i) (vote)(v). last after e = v
(10) Ve = rcvn ) (vote)(v). sent after e = true
(11) Ve = rcvin (i) (vote) (v). (—(active whene) Vv start whene) =
—(active A e) A Forward(e,i,v)
(12) Ve = rcvin () (vote) (v). (active whene A —(start whene)) =

P(e,i,v) = —(active Ae) A sends(e) = [msg(out(i), vote, uid(i))]

A

—P(e,i,v) = active after e = false N sends(e) =[]
(13) Ve' = revgu iy (vote)(v). Ve. e — e = kind(e) = rcvi, g (vote) V kind(e) = init
(14) Ve = rcvi, ) (vote) (v). Lie,i,v) = Je'Qi = leader.
(15)  Ve'Qi = leader. 3e = rcvy iy (vote)(v). e <ioe € A L(e,i,v)

Definition
L(ei,es) = activewhene; A ep o oes A kind(e2) = rcvin(ioc(es)) (vOte) A
Ve.ep e Ae s ey = —(active whene)
LA(ej,es) = activewheney A L(ej,es)
R(e) = |revs(in(loc(e)), vote, before(e))|
S(e,m) = |snds(out(loc(e)), vote, before(e, m))||
S(e) = | snds(out(loc(e)),vote, before(e))||

Lemma A AssumingPLE (R, uid, in, out),

Ve@i. S(e) = R(e) + if active whene A sent whene then 1 else0



proof: This is an example of the proof of an invariant. We prove invariants by induction;gn

If first(e) then both sides of the equation @eOnly init andrcv,,; (vote) events can affect the
invariant. Each of them preserve it, since every receive causes one send, except for the case of a
Forward wheresent was false, which sends two, but also changesg from false to true, and the

case of a receive that sends nothing (second case in clause (12)), which also cleangesom

true to false. Thénit event also preserves the invariant because it either sends nothing and leaves
active andsent unchanged, or else it sends one message and changesom false to true.

O
Lemma B AssumingPLE (R, uid, in, out),

(a) Ve@Qi. start whene < R(e) is even

(b) Ye@Qi <. €. sent after e = sent whene’

(c) Ye@i <. €. active whene' = active after e
(d) Ve@ji. =(sent whene) = active whene

proof: (a) follows from (4) and (5). (b) follows from (2), (3), and (10), since the only events that
can changeent set it totrue. (c) follows from (7), (11), and (12), since the only events that can
changeactive set it to false or leave it unchanged. (d) follows by induction since the only event
that can makective false is arcv(vote) wherestart = false, but this must be preceded by a
rev(vote) wherestart = true, and this, by (10), setent to true, and by (b) it will stay true.

O
Lemma C AssumingPLE (R, uid, in, out),
Veo@ = rev(vote). Jey. L(eq, ez)

proof: By induction on<. For somee we havee — es. Leti = loc(e). By (12) kind(e) is
eitherinit or rcv;, ;) (vote). If itis init then by (d) of Lemma Bactive whene, so L(e, ez). If
kind(e) = rcvin ) (vote), then if active when e, we haveL(e, e;). Otherwise, by induction, we
havee; such thatl(eq, e) ande — ey and—(active whene), soL(eq, e3).

([l
Lemma D AssumingPLE(R, uid, in, out),

kind(e2) = rcVin(ioc(es)) (VOte) A € +— ea A —(active whene) =
(val(ez) = val(e) N R(e) = R(eg))

proof: For somem, e,m +— ey. Then,ink(kind(ez)) = in(loc(es)) = out(loc(e)) and, by the
corallary of the Fifo Lemma,
S(e,m) = R(e2)

Since—(active when e) we must haveent whene, som = 1 and, by Lemma A

S(e) = R(e) + if active whene A sent whene then 1 else0



Also, val(ez) = val(e), sincee will Forward andsent whene is true.
([
Lemma E AssumingPLE (R, uid, in, out),
L(e1,e2) A R(ea) =n =
R(e1)=n—1V (n=0 A val(ez) = uid(loc(eq)))
proof: By induction on the length of the chain o e, Let
Cle,)=R(e)=n—1V (n=0 A wval(e') = uid(loc(e)))

For somee, m we havee,m +— ey. Then,lnk(kind(ez)) = in(loc(e2)) = out(loc(e)) and, by
the corallary of the Fifo Lemma,
S(e,m) = R(e2)

If sent whene, thenm = 1 and, by Lemma A
S(e) = R(e) + if active whene A sent whene then 1 else0
So, if ~(active when e) thenval(ez) = val(e) (sincee will Forward andsent is true) and
R(e) =n

and L(ey, e) so by inductionC(e;, e) and hence('(e1,e2). And, if active whene thene; = e
and

Rle)=n-1
SoC(ey,e2). This leaves the casey(sent whene). In this case, by (d) of Lemma B, we have

active whene, soe; = e. kind(e) is eitherinit or rcv, ioc(e)) (vote). If itis init, thenm = 1
(sincee sends only one message), and so

|lsnds(out(loc(e)), vote, before(e))|| = n

But, this implies that: = 0 since when-(sent when e) then there have been no sends before
Also, for theinit casepal(es) = uid(loc(e)) since that is what sends. Hencé€'(e, eq). If e is
a receive, them sends two messages, first its own uid, and then the forwarded value.-Sa or
m = 2. If m = 1 then as beforep = 0 andval(ez) = wid(loc(e1)) SOC(e1,e2). If m = 2, then
n=1andR(e;) =0=n—1, and saC(ey, e3) in this case as well.

O
Lemma F AssumingPLE (R, uid, in, out),

Vey. active whene; A Juv : N. msg(out(loc(er)), vote,v) € sends(ey) =
362. LA(el, 62)

proof: (Sketch) For any, if e sendsmsg(out(loc(e)), vote, v) then the message is received, so
there is a receive event = rcvj, joc(ey) (vote) (v). If active whene’ then we are done. Otherwise
e’ will forward v. If this keeps happening, then the message will eventually come around the ring



back toloc(e;) at some everds. We need to show thaictive when eo. We would havel(eq, es)
so by Lemma E,

R(e1) = R(e2) — 1 V (R(e2) =0 A wal(ez) = uid(loc(eq)))

In the first caseg; is the receive just prior te;. Sincee; sent something, it did not changetive.
Only receive events can changé&ive, Soactive is still true whenes. In the second case; is the
first receive, sactive must still be true wheas.

O
Lemma G AssumingPLE(R, uid, in, out),
L(e1,e2) A R(ez) iseven= wal(es) = uid(loc(eq))

proof: The inactivee in the chain frome; to e, are all receives and all forward the value they
receive. By Lemma ER(e;) is odd orR(e3) = 0 A wal(es) = wid(loc(eq)) . In the second case
we are done, and in the first, by (a) of Lemma-Bstart when e;) so by clause (12§, sends
uid(loc(eq)).

O

Lemma H AssumingPLE(R, uid, in, out),
L(ey,e2) N R(ez)isodd = wval(ez) = val(ey)

proof: The inactivee in the chain frome; to e; are all receives and all forward the value they
receive. By Lemma ER(e;) is even so, by (a) of Lemma Bstart whene;) so by clause (11)
e forwards. Ifsent whene; thenval(ez) = wval(ey). If =(sent whene;) thenR(e;) = 0 and
R(e2) =1, so we must have;,2 — e, and soval(es) = val(ey).

([
Definition
A(n,i) = 3eQi = rcvp,q)(vote). active whene A R(e) = 2n
Lemma | AssumingPLE(R, uid, in, out),
Vie R.Vn:N. A(n+1,i) = A(n,i)

proof: Follows easily from the definitions and (c) of the earlier lemma
(I
Lemma J AssumingPLE (R, uid, in, out),
Vi : R. A(0,1)

proof: It's enough to show that everyreceives at least one vote, since on the receipt of the first
vote,active will be true (active can only be changed to false on even numbered receives). To show
that everyi receives at least on vote, we note thatt must occur and it sends one unlesst is



true, butsent is true only ifinit did send one, or a receive occured. Every receive sends at least
one vote, except when the second case of clause (12) happens, but this can only happen on even
numbered receives, so at least one send must have occurred.

O
Lemma K AssumingPLE(R, uid, in, out),
Vn:N.3i € R. A(n,1)

proof: By induction onn. The base case is Lemma J. Suppése R. A(n,i). We show thali €

R. A(n+1,14). Letm be the location with the maximum uid of alsuch thatd(n, 7). Then there is
ane with loc(e) = m andactive whene andR(e) = 2n. By clause (11)mnsg(out(m), vote, val(e)) €
sends(e), so by Lemma G3ez. LA(e,e2). By lemma E,R(e2) = 2n + 1, so there was a prior
receive ak; for which R(e;) = 2n (ande; active sinces;, is active). So by lemma C there is an
such thatL(eg, e1). By lemma Gual(e1) = uid(loc(ep)). We claim thatoc(eyg) = m. (why?) If
so, then, at; we havelast when es = uid(m), hence, from clause (12); sends something. By
Lemma F, there is ae such thatL A(es, e3), SO we must havel(n + 1, loc(es).

(]
Locationi, j € R are consecutive locations satisfying predicati
Conseq(P,i,j) = i#j A P(i) A P(j) A Vk:N.0<k<d(i,j) = —P(n*@))
Lemma L AssumingPLE(R, uid, in, out),
Vi,j € R.¥n : N. Conseq(A(n),i,7) = A(n+1,7) = —A(n+ 1,4)

proof: SupposeConseq(A(n),4,j) andA(n + 1,7). Then there is are] <o €) <ioc €5
at locationj such thatactive when e and R(e}) = 2nq, R(e}) = 2n + 1, and R(e}) = 2n.
Then there are; <, e2 such thatL(e;,e}) and L(es, e). Thenval(e}) = wuid(loc(er)) and
val(ey) = val(e2), and hence, by (12) and becausss still active,uid(loc(e1)) > val(ez). But
we claim that botte; ande; have location (why?). Also,R(es) = 2n so if ez is the next receive
ats, then by (12)~(active whenesz) so—A(n + 1,3).

(]
Lemma M AssumingPLE (R, uid, in, out),
Vi € R. 3eQi = leader. < In:N. A(n,i) A VjER. j#i = —A(n,j)

proof: (<) If A(n,i), then there is am with loc(e) = i andactive whene andR(e) = 2n. By
clause (11)msg(out(m),vote,val(e)) € sends(e), S0 by Lemma Gie,. LA(e, e2). By lemma
E, R(e2) = 2n + 1, so there was a prior receiveatfor which R(e;) = 2n (ande; active sincey
is active). So by lemma C there is ansuch thatl.(eg, e1). By lemma Gual(e;) = uid(loc(egp)).
We claim thatloc(ep) = i. (why?) But, because ef, we also haved(n,loc(eq)) soloc(er) = .
Thus ate; location: received its own uid, an&(e;) = 2n. So by clause (148eQi = leader.

(=) By (15) there exist whereactive when e and R(e) is even, anct is a receive of its own



uid. Then, by Lemma C, for somg, L(e1, e) and, by Lemma Gyal(e) = uid(loc(eq)), but this
implies thatuid(loc(e1)) = uid(loc(e)), soloc(er) = loc(e). All the intermediate:’ on the chain
from e; to e are inactive and havR(e’) = 2n, so all have-A(n,loc(e’)), and they must include
all locations other thdic(e).

]

Lemma N AssumingPLE (R, uid, in, out),
Leader(R)
proof: Let N(n) = |{i € R| A(n,i)}||. Then claim
VYm:N.N(m) =1V lessN(m+ 1)N(m)
The claim follows from Lemmas |, K, and L. Then claim
Vn:N.3m :N.N(m)=n = Im:N.N(m) =1

This claim is proved by induction om, using Lemma L and the previous claim.
Now, if N(m) = 1then3idr € R. A(m,ldr) AN Vj € R.j # ldr = -A(m,j), so by
Lemma M, 3eQldr = leader. And, for anyi € R, if kind(e;) = leader then, by Lemma M,
dn:N. A(n,i) A Vj € R.j#1i = —A(n,j). By considering the cases< m andm < n and
using (1), we see that= Idr.

O

8 View Synchrony

A vieww is a pair(v.id, v.set) of aview identifierand a set of locations. There must be a transtitive,
anti-reflexive ordering< on the view identifiers. A view represents a named, ordered, guess about
the current members of a group. Suppdsés a set of locations anélview is a function of type

p: P — {v:view | p € v.set} that assigns an initial view to each locatiprin P. Suppose

that we have links from the locations i to and from a service; that is, we have have functions
to:p: P — {l:Lnk|dst(l) =p}andfrom:p: P — {l: Lnk | src(l) = p}. Then the service
providesview synchronyf

Gpsnd(e,m,p) = €=T1CVfrom(p)(gpsnd)(m)
Grevie,m,q) = €= rcvp(ioc(e)) (gprev)((m, q))
Sofele,mq) = = rcvogoey(safe)((mya)

Newview(e,v) = €= TC(0c(e)) (nEwview)(v)

View(e) = if first(e) then Iview(loc(e)) else

if Newview(pred(e),v) thenv else
View(pred(e))

VS(M,SM) =
(1) M(e1,e2) = e1 < ez A View(er) = View(ez) A



dm : Msg. Gpsnd(er,m) N Gprcv(er, m,loc(er))

(2) Ve',m,q. Gprev(e',m,q) = Je. M(e,€)
(3) Mey,es) = M(e),e2) = e; =€)
(4) SM(ei,e3) = e1 < ez A View(ey) = View(ez) A

Im : Msg. Gpsnd(er,m) A Safe(er,m,loc(eq))

(5) Ve',m,q. Safe(e’,m,q) = Je. SM(e,e’)

(6) SM(e1,es) = SM(ej,ea) = e1 =¢}

(7) loc(e) € View(e)

(8) e1 <ioe €2 = View(ey).id < View(es).id

9) View(ey).id = View(ez).id = View(e1) = View(ez)

(10) SM(ej,es) = Vp: View(er).set. Je@p. e < es N M(e,ez)
(11) M(a,a1) N M(a,a2) A M(b,by) A M(b,bs)

Aloc(ay) = loc(by) A loc(az) = loc(by) =
a1 <ioc bl < a2 <joc b2
Vs = 3IM,SM:E—E—-P.VS(M,SM)

Quorum(v,P) = 2x|v.set N P| > | P
Complete(P,L) = V¥p:P.pe€[snd(x)|z € L]
GpRevd(e) = [|val(e') | €' € rcvs(to(loc(e)), gprev, before(e)) A View(e') = View(e)]
Safe(e) [val(e') | € € revs(to(loc(e)), safe, before(e)) A View(e') = View(e)]

9 Consensus using View Synchrony

Here is an algorithm for consensus using VS:

Ve = rcvi ) (propose)(c). vote whene =L = (30)
vote after e = (¢, weak, 1)

Ve = rcvgo(q) (gprev)((v, q)). vote whene = | = (31)
vote after e = v

Ve@i. 3e’ >0 €. MayVote(e') = DoVote(e') (32)

Ve@Qi. CE(e) = SetWinner(e) (33)

Ve@i. DE(e) = elected after e = true (34)

Ve@Qi = rcvyo;y (newview). voted after e = false (35)

where
MayVote(e) = wvotewhene #L Awvotedwhene = false A

Quorum(View(e), P)
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sends(e) = [msg(from(i), gpsnd, vote whene)] A
voted after e = true

CE(e) = Complete(P,GpRcvd(e))
DE(e) = Complete(P,Safe(e))
MazxG(L) = maz([g]{{c,s,9),q) € L N s= strong])
StrongVotes(L) = [c|{{¢,s,9),q) €L N s=strong N g = MaxG(L)]
AllVotes(L) = [c| {{c,s,9),q) € L]
Winner(L) = if StrongVotes(L) # nil then head(StrongVotes(L)) else
head(AllVotes(L))
SetWinner(e) = wvotewhene = (Winner(RcvdVotes(e)), strong, View(e).id)

Here is a summary of the instructions to each location participating in the algorithm:
1. Avote is a triple(c, s, g) of a candidate, strength, and view identifier.
2. The current view i®rimary if it contains a quorum.
3. If you receive a proposal farand have no vote, then set votesweak, 1).
4. If you receive a vote fofc, s, g) and have no vote, then set votess, g).
5

. If you have a votdc, s, g) and have not yet voted, thengifimary, doGpsnd({c, s, g)) and
setvoted to true.

6. If you have received votes from all members of the group, then select the winmer

(a) If any of the votes had strengtirong then choose the candidate from the earliest of
those with the highest id.
(b) Otherwise choose the candidate from the earliest vote.

(c) Setvotezw, strong, current.id).

7. If you have received confirmations (safe messages) of the votes from all members of the group

then set electedzue

8. If you receive a new view, then set voted &l se and run the election again, but do not change
your vote.

Definition (agrees)

Agree(e,€’) = 3Fg:viewid. g > View(e).id A
vote whene' = (candidate(vote whene), strong, g)

Lemma 1l

Ye. DE(e) = Vp: View(e).set.
Je'@p. e’ <e A View(e') = View(e) A CE(e') N Agree(e,e’)

proof: SupposeDE(e), and letp = loc(e) andv = View(e). By definition of DE(e), safe
messages must have been receivedfat votes from every member of the groupset. By view



synchrony, all members of the group must have received all the votes, and received them in the same
order. Thus, they all have had eventsatisfyingC' E(e’), and, by clausdg), they had all set their
vote,vote when e’ to the saméc, strong, v.id). This includes locatiop, and since: has the same

view ase’, no new view has been received betwetande sop has not changed its vote, and hence
candidate(vote whene) = ¢, and hencedgree(e, ¢’).

([
Lemma 2
Ve. DE(e) = Ve'. CE(¢') A View(e').id > View(e).id = Agree(e,e’)
proof: GivenDE(e), letv = View(e). We prove, by induction ox,
Ve'. CE(e') A View(e').id > v.id = Agree(e,e’)

Suppose”'E(e’) andw = View(e') andw.id > v.id. Letq = loc(e’). If w.id = v.id then we use
Lemma 1. By Lemma 1, there is an eveptwith loc(e,) = ¢, andView(e,) = v, such that

CE(eq) N Agree(e,eq)

But there can only be one everitper location and view for whic’E(e’), soe, = ¢’ and we have
Agree(e,e’).
So assume.id > v.id. Viewsv andw are both quorums, since otherwise no votes are sentin them.
Thus there exists a locatigne v.set N w.set. Letc = candidate(vote whene). By Lemma 1,
there is an event, such thatote whene, = (c, strong, v.id). Lete,, be the event when new
view w is received at locatiop. Locationp will only change its vote by clausf)y, because of a
completed election, so by inductiongte whene,,, = (c, strong, g) for someg > v.id. Thus, in
the election in vieww that is completed (for locatiog) ate’, p has voted foKc, strong, g). Only a
vote of the form(d, strong, ¢’) with ¢’ > ¢ could beap’s vote. Such a vote would have to come
from some location inv.set that had set its vote t@i, strong, ¢') at some evert,; < ¢’ (because
eqd <ioc VOtiNg inw < vote received at <;,. €’). The only way to set a vote @, strong, ¢’) is by
a completed election in a view with identifiet. Sinceg’ > g > v.id, by the induction hypothesis,
this impliesd = ¢. Thus the winner of the election completedeéts (c, strong, ¢’) for some
g > v.id and we havedgree(e, e’).

O

Lemma (Consensus)

Vel,eg. DE(el) A DE(@Q) =
candidate(vote wheney) = candidate(vote when es)

proof: Letv = View(e;) andw = View(es). Letc; = candidate(vote wheney) andcy =
candidate(vote whenes) . Assume, without loss of generality,id < w.id. Letp = loc(es). By
Lemma 1, for some, < es,

CE(ep) N View(ep) =w A vote whene, = (cz, strong, w.id)

By Lemma 2,
Jg : viewid. g > v.id N vote whene, = {(c1, strong, g)

ThUS,Cl = C2.

O



10 Conclusion

10.1 Related Work

Winskel considered event systems in his 1980 Ph.D. thé€isand in other publications6l],

inspired in part by Lampori3g]. He considered relationships to Petri nets and to domain theory
and established the generality of event system, but he did not consider process extraction from
proofs.

Hoare B3] and Milner 48] created extremely influential process calculi and their work is the basis
for exploring process realizability of logical formulag B9, 50|, but they do not take up the issue

of extraction from proofs either.

One of the most direct approaches to using proofs as processes is the work of Abrdnilky [
directed toward linear logic. These results are of considerable theoretical interest, but they have not
been connected to practical verification.

Verification based on 10 Automat@d2] has been directly modeled in Nupd1] and PVS [B] and

it is subsumed here as the special case where we reason directly about message automata. See also
Vardi[59], Clarke and Emersoii[], Manna and Wolpet4§], and Leonard and Heitmeye4(] for
different notions of sythesis that reference the meaning we intend.

Many logics used for practical reasoning and formal verification are based on programming logics
[62, 55] or on temporal logic[44, 45|, especially Unity [L6] and TLA+ [39]. We look at the
relationship betweef' LA+ and our work in the next section. Temporal logic has a limited role in
synthesis/23]. Results orknowledge in multi-agent systerfi$s], (25, 26, 27, 128, 130] uses models

with some of the properties of our worlds.

Abraham [l 2, 3] uses classical multi-sorted first order logic to model processes whose state tran-
sitions are events. He also linearly orders events at a process and assumes a causal order on events
generated by the local orders, capturing insights from LamB&i38]. Our approach is related to

his in that we use a higher-order constructive logic to define the models. His logic and ours deal ex-
plicitly with collections of events and with functions on these collections — another feature missing
from temporal logic.

10.2 Relationship toTLA+

Lamport'sT LA+ is a classical temporal logic of actions. He does not treat the issue of finding a
constructive sublanguage from whose proofs it might be possible to extract distributed systems. Our
work shows how this can be done. For a start, using the methods of Bdjy#ie underlying logic

of T L A+ can be embedded in a constructive logic such as Nuprl. Secondly, the temporal logic can
be reduced to our event logic, as we now sketch.

Essentially th&l’ L A+ process model arises by collapsing all locations to a single point and uniting

all states into one “global state.” Communication links are considered as state variables as well. The
logic is based on describing the next state relation in a computation viewed as a single sequence of
global states. This embedding would let us prove a result of the form:

TLA+ is a sublanguage of the classical Event
Logic obtained by adding the axiom

VP : Prop;. PV —-P

to the Event Logic defined in this paper.



10.3 Spaces of Events

The Event Logic formalism allows us to discuss classes and structured spaces of events. For exam-
ple, Strand spacd&6] consist of sequences of send and receive messages at a process and sequences
of send and receive messages of a penetrator process trying to break security. Thus strands are lo-
cations in event structures, and the ordering on elements is the same as our ordering on nonlocal
events. These spaces model limitations on penetrators, and are used in specifying correctness cri-
teria of encryption protocolssh, [29). The methods of argument appear natural in our Logic of
Events, and we can use inductive methods similar to those employed by Paulson in |&&helle [
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