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Abstract

There is a well-established theory and practice for creating correct-by-construction functional
programs by extracting them from constructive proofs of assertions of the form∀x : A.∃y :
B.R(x, y). There have been several efforts to extend this methodology to concurrent programs,
say by using linear logic, but there is no practice and the results are limited.

In this paper we define a logic of events that justifies the extraction ofcorrect distributed
processesfrom constructive proofs that system specifications are achievable, and we describe an
implementation of anextraction processin the context of constructive type theory. We show that
a class ofmessage automata,similar to IO automata and to active objects, are realizers for this
logic. We provide a relative consistency result for the logic. We show an example of protocol
derivation in this logic, and show how to embed temporal logics such asTLA+ in the event
logic.

1 Introduction

The idea of creating functional programs that arecorrect-by-constructionis old and well-studied
[20, 9, 22, 19, 47, 52]. Several implementations by extraction have been built based on the concept
of proofs-as-programs(e.g. Alf, MetaPRL, Nuprl, Coq, Lego), and many interesting examples are
well-known, including solutions of Higman’s lemma [51] and a recent program for Buchberger’s
Gröbner basis algorithm [57]. The extracted functional programs are calledrealizersfor propo-
sitions. In this paper we deal with logics such as constructive type theory, in which all provable
assertions have realizers.
For many years researchers have tried to extend this methodology to concurrent programs by extend-
ing the proofs-as-programs principle to something worthy of the nameproofs-as-processesprinci-
ple. In 1994 Samson Abramsky wrote an article [4] under this title in which linear logic was the
basic logic and certain nondeterministic programs in [10] were considered as realizers. Robin Mil-
ner and his students also took up this challenge, and there are now a number of results along these
lines [7, 49].
In this paper we look at a different approach to the problem. We aim to extract distributed systems
from proofs of system specifications that arise in practice. The abstract realizers are calledmessage
automata,and they resemble the IO automata of Lynch and Tuttle [43], and the active objects of
Chandy [15].

∗This work was supported by the DoD Multidisciplinary University Research Initiative (MURI) program administered
by the Office of Naval Research, under Grant N00014-01-1-0765, and by DARPA grant F30602-98-2-0198 and NSF grant
CCR-0208536.
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The specification language arose from our experience in describing and proving properties of im-
plemented protocols in systems such as Ensemble [13, 12, 14, 31, 32, 37, 36, 41, 58], UAV [ 35],
and MediaNet [54].
Our approach to presenting the logic is to follow Martin-Löf’s discipline for type theory; that is,
present the computation system first and then introduce types and logic as a way of classifying and
making assertions about data. In our case it will beassertions about distributed computationsof
these automata which operate by sending messages and reacting to the receipt of messages. These
computations give rise to anevent systemwhich is the computational model for our logic.

2 The Computation System

2.1 Message Automata

A message automaton is a nondeterministic state machine. Its actions are tosendandreceivemes-
sages, and to executeinternal state transitions.Leaving aside more detailed type constraints, a
message automaton will be characterized by three types:St, Act, andMsg, which are the states,
actions and messages, respectively.
Message automata are elements of the following dependent record type:

{ St,Act, Msg : Type; init : St;
f : (Act + Msg) → St → St;
send : (Act + Msg) → St → MsgList }

A possible computation is a stream of alternatingstates, queuesandevents,say

s0, q0, a0, s1, q1, a1, . . . .

If eventai is an internal action, then

si+1 = f(ai)(si) andqi+1 = enq(send(ai)(si)qi).

If ai is a message receive, thensi+1 = f(ai)(si), and

qi+1 = enq(send(ai)(si) deq?(ai, qi+1)),

wheredeq? takes the received message from the queue.

2.2 Distributed Systems

Given a message automatonM , there may be many possible computations consistent with it. If
there are no messages, thenM can act like an ordinary nondeterministic automaton (finite or in-
finite state). We are interested in computations that arise from interaction with an environment
which creates messages; typically the messages are sent by other automata. We consider onlyfair
computations,in which every message that is sent will be received.
We focus on collections of message automata, sayM1,M2, . . . , Mk, that are connected in a network
by the links. We assume thatLinks forms a directed graph withMi at the nodes. We speak ofMi

as locatedat a node. Each linkl has asource(src) and adestination(dst). Associated with each
link is a list of messages that originate at the source and arrive at the destination. We call such a
collection adistributed system.
Our execution model assumes that at each location there is a computation; that is a stream of alter-
nating states and actions, and the links are message queues.



2.3 Possible Computations

Thepossible computations(or worlds) of a distributed system is a collection of computations at each
node which are compatible. We define these in terms of an idealized global discrete progression of
time indexed by the natural numbers0, 1, 2, . . . . This notion of time will not be reflected in the
logic.
Intuitively a possible computation arises as follows. At time0 eachMi is in a designated initial state
s(i, 0). At time 1, if someMi can take an action, it may advance to states(i, 1). Not all Mi that
can act are required to take a step, but eventually there must be a timet at which it will move. If an
action results in a send, say< m, l >, thenm is added to the message queue fromsrc(l) to dst(l),
and the state is changed. If there is a message onl at timet, then a possible action is a receive at
dst(l), and the message is removed from the fifo queue.
The collective state of the distributed system is given bys(i, t), the state ofMi at timet ∈ N, and
a(i, t), the action taken at timet — which can be null. The collective state also keeps track of the
messages sent byMi at timet, msg(i, t). This is a list of the message and the link on which it is
sent. For convenience, we also havelink(l, t), the list of messages on linkl before timet; all the
receive actions onl before timet, rcvs(l, t); and all the sends beforet, sends(l, t).
The listslink(l, t), rcvs(l, t) andsends(l, t) form queues. We can test for emptiness, find the head,
know the length, etc. We assume that the links are reliable (no message is lost) and fifo. We assume
that the computation isfair, that is, for every queue, infinitely often it is either empty or a receive
action occurs at its destination automaton.

2.4 Refinements of the Automata and Frame Conditions

We refine the definition of message automata by being more detailed about the structure of the state
and by typing the operations. For example, the automaton will declare its state variables, sayxj .
By convention the only changes to state variables are given by actions that explicitly mention those
variables. Since we want each clause of the definition of an automaton to be meaningful on its own,
we can’t rely on this convention, so we have tostate explicitly exactly which actions effect which
variables.We do this with aframecondition;frame(x) is a list of all the actions that can change
variablex. We do the same for message sends;sframe(l) will list all actions that can send on link
l, and moreover, we will refine the notion of messages to include tags, sosframe will have inputs
< tag, link >.

2.5 Typing and Examples

Message automata are formalized in the type theory on which the logic of events is based. Our
investigations started with such a formalization [11, 21]. We leave these details to the examples that
appear later.

3 Event Systems

We want an abstract model that can capture the observable features of a distributed system. The
fundamental types arelocationsandeventswhich we can think of as space and time coordinates, as
in Lamport [38]. Information is stored at a location as the value of a state variable or anobservable
and information is passed from one location to another alonglinks in the form ofmessages.



A message will consist of a link, a tag, and a value whose type may depend on the link and the tag.

Msg(Lnk, Tag, M) ≡ l : Lnk × tg : Tag × M(l, tg)
msg(l, tg, v) ≡ 〈l, t, v〉

mlnk(msg(l, tg, v)) ≡ l

mtag(msg(l, tg, v)) ≡ tg

mval(msg(l, tg, v)) ≡ v

haslink(l,ms) ≡ (mlnk(ms) = l)
hastag(tg, ms) ≡ (mtag(ms) = tg)

Msgl(Lnk, Tag, M) ≡ {ms : Msg(Lnk, Tag,M)) | haslink(l, ms)}
onlink(l,mss) ≡ [ms ∈ mss | haslink(l,ms)]

onlinktagged(l, tg, mss) ≡ [ms ∈ mss | haslink(l,ms) ∧ hastag(tg, ms)]

Every event will have a kind, a value, and a location. So an event is a point in spacetime. The receipt
of a messagemsg(l, tg, v) will be one kind of event, and there will also be local events whose kinds
are in a type of action namesA.

Knd(Lnk, Tag,A) ≡ Lnk × Tag + A

isrcv(k) ≡ isl(k)
islocal(k) ≡ isr(k)

rcvl(tg) ≡ inl〈l, tg〉
local(a) ≡ inr(a)

lnk(rcvl(tg)) ≡ l

tag(rcvl(tg)) ≡ tg

act(local(a)) ≡ a

kindcase(f, g, k) ≡ if islocal(k) then f(act(k)) elseg(lnk(k), tag(k))

An event systemis a structure consisting types, operations, and axioms. There are six typesE, Loc, Lnk, X, A, Tag
for the events, locations, links, observables, local action kinds, and message tags. These must all
be discrete types – equality on each type is decidable. The operations includesrc anddst which
assign source and destination location to the links, forming a graph structure on the locations and
links. Operationsloc, kind, andval extract the location, kind, and value from an event. Operations
when, after, andinitially observe the values of the observables at the points in spacetime. Messages
must originate at some point in spacetime, and the operationssends, sender, andindex define this
structure. Thesends(l, e) of an evente on link l will be a list of messages on that link that originate
ate. We build the semantics of message delivery into our model in a way that makes every link into
a reliable fifo channel. Thus every message is eventually received, and for a receive evente′, the
operationssender(e′) andindex(e′) will provide the originator of the message received and the
index of that message in the list that originated there. The temporal order structure on our spacetime
is provided by two orderings on events<loc and≺, as in Lamport [38]. The local ordering<loc is a
total, discrete, well-founded, linear ordering on events with the same location. So, at each location,
if there are any events, there must be a<loc-minimal event satisfying the predicatefirst, and every
non-minimal evente must have an immediate local predecessorpred(e).
The causal ordering≺ is also well-founded and is the transitive closure of<loc and the relation that
a receive evente is preceded bysender(e).



D ≡ {T : U | ∀x, y : T. Decidable(x = y ∈ T )}
ES ≡ E : D × Loc : D × Lnk : D

X : D × A : D × Tag : D
× T : Loc → X → U
× V : Loc → Knd(Lnk, Tag,A) → U
×M : Lnk → Tag → U
× src : Lnk → Loc

× dst : Lnk → Loc

× loc : E → Loc

× kind : E → Knd(Lnk, Tag,A)
× val : e : E → V (loc(e), kind(e))
× when : x : X → e : E → T (loc(e), x)
× after : x : X → e : E → T (loc(e), x)
× initially : x : X → i : Loc → T (i, x)
× sends : l : Lnk → E → List(Msgl(Lnk, Tag,M))
× sender : {e : E | isrcv(kind(e))} → E

× index : {e : E | isrcv(kind(e))} → N‖sends(lnk(kind(e)),sender(e))‖
× first : E → P
× pred : {e : E | ¬first(e)} → E

× <loc: E → E → P
× ≺: E → E → P
× p : ESAxioms(E, Loc, Lnk, . . . , pred, <loc,≺)

AntiReflexive(T,Rel) ≡
∀x : T. ¬R(x, x)

Transitive(T, Rel) ≡
∀x1, x2, x3 : T. (Rel(x1, x2) ∧ Rel(x2, x3)) ⇒ Rel(x1, x3)

WellFounded(T, Rel) ≡
∀P : T → P. (∀x′ : T. (∀x : T. Rel(x, x′) ⇒ P (x)) ⇒ P (x′)) ⇒

∀x : T. P (x)

〈e1, n1〉 <loc 〈e2, n2〉 ≡ e1 <loc e2 ∨ (e1 = e2 ∧ n1 < n2)
emsg(e) ≡ msg(link(kind(e)), tag(kind(e)), val(e))

ESAxioms(E,Loc, Lnk, . . . , pred,<loc,≺) ≡

Transitive(<loc) (1)



WellFounded(<loc) (2)

∀e, e′ : E. loc(e) = loc(e′) ⇔ (3)

(e <loc e′ ∨ e = e′ ∨ e′ <loc e)
∀e : E. Decidable(first(e)) (4)

∀e : E. first(e) ⇔ ∀e1 : E. ¬(e1 <loc e) (5)

∀e : E. ¬first(e) ⇒ (6)

pred(e) <loc e ∧ ∀e′ : E. ¬(pred(e) <loc e′ <loc e)
∀e : E. first(e) ⇒ x whene = x initially loc(e) (7)

∀e : E. ¬first(e) ⇒ x whene = x after pred(e) (8)

Transitive(≺) (9)

WellFounded(≺) (10)

∀e : E. isrcv(kind(e)) ⇒ (11)

nth(index(e), sends(link(kind(e)), sender(e))) = emsg(e)
∀e, e′ : E. e <loc e′ ⇒ e ≺ e′ (12)

∀e : E. isrcv(kind(e)) ⇒ sender(e) ≺ e (13)

∀e, e′ : E. e ≺ e′ ⇒ (¬first(e′) ∧ e ¹ pred(e′)) ∨ (14)

(isrcv(kind(e′)) ∧ e ¹ sender(e′))
∀e : E. isrcv(kind(e)) ⇒ loc(e) = dst(lnk(kind(e))) (15)

∀e : E. ∀l : Lnk. loc(e) 6= src(l) ⇒ sends(l, e) = nil (16)

∀e1, e2 : E. ∀l : Lnk. isrcvl(kind(e1)) ∧ isrcvl(kind(e2)) ⇒ (17)

〈sender(e1), index(e1)〉 <loc 〈sender(e2), index(e2)〉 ⇔
e1 <loc e2

∀e : E. ∀l : Lnk. ∀n : N‖sends(l,e)‖. (18)

∃e′ : E. isrcvl(kind(e′)) ∧ sender(e′) = e ∧ index(e′) = n

3.1 Consequences of the axioms

We state as lemmas some properties that follow from the axioms.

AntiReflexive(<loc) (19)

AntiReflexive(≺) (20)

∀e, e′ : E. e <loc e′ ⇔ ¬first(e′) ∧ e ≤loc pred(e′) (21)

∀e, e′ : E. e <loc e′ ∧ ∀e1 : E. ¬(e <loc e1 <loc e′) ⇒ (22)

e = pred(e′)
∀e, e′ : E. Decidable(e <loc e′) (23)

∀e, e′ : E. Decidable(e ≺ e′) (24)

∀e : E. ∀l : Lnk. ∀tg : Lbl. ∀v : M(l, tg). (25)

msg(l, tg, v) ∈ sends(l, e) ⇒ ∃e′ = rcvl(tg)(v). e ≺ e′



proofs: Lemmas19and20 follow from the general fact that

WellFounded(Rel) ⇒ AntiReflexive(Rel)

Supposee <loc e′. From axiom (4) and axiom (5) we conclude¬first(e′), and from axiom (6)
we conclude

pred(e′) <loc e′ ∧ ∀e′′ : E. ¬(pred(e′) <loc e′′ <loc e′)

So¬(pred(e′) <loc e) and hence, from axiom (3), e ≤loc pred(e′), which proves lemma21. If
we also have∀e1 : E. ¬(e <loc e1 <loc e′) then¬e <loc pred(e′), soe = pred(e′), which
proves lemma22.
We may now prove lemma23 by induction, using axiom (2). By lemma21 it’s enough to decide
¬first(e′) ∧ e ≤loc pred(e′), but this is decidable by axiom (4), the induction hypothesis, and
the decidability of equality inE. The proof of lemma24 is similar. Using the other axioms we can
show that axiom (14) can be proved as an if and only if statement, and hence it is enough to show
that its righthand side is decidable. This follows from the induction hypothesis and the decidability
of equality inE, and decidability offirst andisrcv.
If msg(l, tg, v) ∈ sends(l, e) then for somen < ‖sends(l, e)‖, msg(l, tg, v) = nth(n, sends(l, e)).
By axiom (18) there is ane′ such that

isrcvl(kind(e′)) ∧ sender(e′) = e ∧ index(e′) = n

So, by axiom (11),

val(e′) = mval(msg(l, tg, v)) ∧ tg = mtag(msg(l, tg, v))

That implies thate′ = rcvl(tg)(v) and sincee = sender(e′) we havee ≺ e′ by axiom (13). This
proves lemma25.

3.2 Local histories

An event system is a rich enough structure that we can define various “history” operators that list or
count previous events having certain properties. Because we can define operators like these we do
not need to add “history variables” to the states in order to write specifications and and prove them.
The basic history operator lists all the prior events at a location.
Definition

before(e) = if first(e) then [] elsepred(e) :: before(pred(e))
between(e1, e2) = [e′ ∈ before(e2) | e1 <loc e′]

rcvs(l, before(e)) = [e′ ∈ before(e) | isrcv(kind(e′)) ∧ lnk(kind(e′)) = l]
rcvs(l, tg, before(e)) = [e′ ∈ rcvs(l, before(e)) | tag(kind(e′)) = tg]

snds(l, before(e)) = concatenate([sends(l, e′) | e′ ∈ before(e)])
snds(l, before(e, n)) = snds(l, before(e)) appendfirstn(n− 1, sends(l, e))
snds(l, tg, before(e)) = [m ∈ snds(l, before(e)) | tag(m) = tg]

Using these operators we can state the following important lemma.



Lemma Fifo

∀e′ : E. ∀l : Lnk. isrcvl(e′) ⇒
snds(l, before(sender(e′), index(e′))) = [emsg(e) | e ∈ rcvs(l, before(e′))]

proof: The proof is by induction on<loc. Supposeisrcvl(e′). If

snds(l, before(sender(e′), index(e′))) = nil

thenrcvs(l, before(e′)) must also benil because, ife <loc e′ is a receive onl then by axiom (17),
〈sender(e), index(e)〉 <loc 〈sender(e′), index(e′)〉which makessnds(l, before(sender(e′), index(e′)))
non empty.
Otherwise, let

ms = last(snds(l, before(sender(e′), index(e′))))

then for some〈e, n〉 <loc 〈sender(e′), index(e′)〉,
snds(l, before(sender(e′), index(e′))) = snds(l, before(e, n)) append[ms]

By axiom (18), ∃e′′ : E. isrcvl(kind(e′′)) ∧ sender(e′′) = e ∧ index(e′′) = n By axiom (17),
e′′ <loc e′, so by induction,

snds(l, before(e, n)) = [emsg(e) | e ∈ rcvs(l, before(e′′))]

If there were ane′′′ with isrcvl(e′′′) ande′′ <loc e′′′ <loc e′ then by axiom (17)

〈e, n〉 <loc 〈sender(e′′′), index(e′′′)〉 <loc 〈sender(e′), index(e′)〉
So,nth(index(e′′′), sends(l, sender(e′′′)) would come afterms in
snds(l, before(sender(e′), index(e′))) contradicting the choice ofms as the last of the list. Thus
rcvs(l, before(e′)) = rcvs(l, before(e′′)) append[e′′] and since, by axiom (11), ms = emsg(e′′),
we have

snds(l, before(sender(e′), index(e′))) = [emsg(e) | e ∈ rcvs(l, before(e′))]

¤
Corollary

kind(e′) = rcvl(tg) ⇒
‖snds(l, tg, before(sender(e′), index(e′)))‖ = ‖rcvs(l, tg, before(e′))‖

¤

3.3 Event system shorthands

We make some shorthand notations:

∀e@i. φ ≡
∀e : E. loc(e) = i ⇒ φ

∀e@i = pred(e′). φ ≡



∀e, e′ : E. loc(e) = i ∧ e = pred(e′) ⇒ φ

∀e@i = k(v). φ ≡
∀e : E. ∀v : V (i, k). loc(e) = i ∧ kind(e) = k ∧ val(e) = v ⇒ φ

∀e = k(v). φ ≡
∀e : E. ∀i : Loc. ∀v : V (i, k). loc(e) = i ∧ kind(e) = k ∧ val(e) = v ⇒ φ

∃e@i. φ ≡
∃e : E. loc(e) = i ∧ φ

∃e@i = k(v). φ ≡
∃e : E. ∃v : V (i, k). loc(e) = i ∧ kind(e) = k ∧ val(e) = v ∧ φ

∃e = k(v). φ ≡
∃e : E. ∃i : Loc. ∃v : V (i, k). loc(e) = i ∧ kind(e) = k ∧ val(e) = v ∧ φ

∃e′ >loc e. φ ≡
∃e′ : E. e <loc e′ ∧ φ

∃e′ <loc e. φ ≡
∃e′ : E. e′ <loc e ∧ φ

∃e′ ≥loc e. φ ≡
∃e′ : E. e ≤loc e′ ∧ φ

∃e′ ≤loc e. φ ≡
∃e′ : E. e′ ≤loc e ∧ φ

3.4 Change operator

Definition

x ∆ e = (x after e 6= x whene)
∆(x, e) = ‖[e1 ∈ before(e) | x ∆ e1]‖

(only defined whenT (loc(e), x) has decidable equality)

x ∆n e = 0 < n ∧ ∆(x, e) = n− 1 ∧ x ∆ e

The formulax ∆ e is true when evente makes a change in state variablex. The formula∆(x, e) = n
is true when there have been exactlyn changes tox strictly before evente. The formulax ∆n e is
true when there have been exactlyn changes tox upto and including evente and one of the changes
is ate.

Properties of∆
Suppose that,x ∈ X, i ∈ Loc, andT (i, x) ∈ D, i.e. the type ofx at locationi has decidable
equality. Then,

∀e@i. ∀n : N. (26)

x ∆ e, ∆(x, e) = n, andx ∆n e are decidable

∀e@i. e <loc e′ ⇒ ∆(x, e) ≤ ∆(x, e′) (27)



∀e′@i. ∆(x, e′) = n ∧ e = pred(e′) ⇒ (28)

∆(x, e) = n ∨ x ∆n e

∀e@i. ∆(x, e) = 0 ⇒ x whene = x initially i (29)

∀e′@i. x whene′ 6= x initially i ⇒ ∃e <loc e′. x ∆ e

proof: lemma (26). If loc(e) = i, thenx when e andx after e have typeT (i, x) so if equality
in T (i, x) is decidable, thenx ∆ e is decidable. We can then prove that the other predicates,
∆(x, e) = n andx ∆n e are decidable, by induction on<loc. Essentially, they are defined by
bounded quantification over the predecessors ofe from the decidablex ∆ e.
lemma (27) follows by induction on<loc.
lemma (28). Under the hypotheses,

n = ∆(x, e′) = ∆(x, e) + if x ∆ e then 1 else0

If x ∆ e thenx ∆n e and otherwise∆(x, e) = n.
lemma (29) is proved by induction on<loc. If e has no predecessors thenx whene′ = x initially i
so the assertion is true. Ife1 = pred(e) and∆(x, e) = 0 then, by lemma (28), ∆(x, e1) = 0, so,
by induction,x whene1 = x initially i. Also,¬(x ∆ e1), sox whene1 = x after e1 = x whene,
and hencex whene = x initially i.
lemma (30). Under the decidability assumption,∃e <loc e′. x ∆ e is decidable. If it is true then the
assertion is true. If it is false, then∆(x, e′) = 0, so by lemma (29), x whene = x initially i, which
contradicts the hypothesis.

¤

4 Worlds

4.1 Definition of World

A world is a generalized trace of the execution of a distributed system. It has locations and links
from a graph〈Loc, Lnk, src, dst : Lnk → Loc〉. Time is modeled as the natural numbersN. By
observing the system at every locationi and every timet, we have a states(i, t), an actiona(i, t),
and a list of messagesm(i, t). The states(i, t) is the state of the part of the system at locationi
at time t. We assume that the type of the state at locationi does not change with time, and we
use a general model of state as a record. A record is a dependent function. IfX is a type and if
dec : X → U is a type assignment, then the record typeRecord(X, dec) is

Record(X, dec) ≡ x : X → dec(x)
r.x ≡ r(x) , for r ∈ Record(X, dec) andx ∈ X

A world contains a typeX of state variable names and and a type assignmentT : Loc → X → U.
The state at locationi of the world will have typeRecord(X, T (i)).
The actiona(i, t) is the action that was chosen by the system to be executed next at locationi and
timet. It will always be possible that no action was taken ati, t so we must have a null action. Other
action will be local actions with names taken from a type of action namesA, and also the action
of receiving a message. Every action will have a kind of one of these three forms (null, local, or
receive), and also a value whose type depends on the kind and location of the action.

Action(Lnk, Tag, A, dec) ≡



Unit + k : Knd(Lnk, Tag, A) × dec(k)
isnull(inl(x)) = true

isnull(inr(x)) = false

kind(inr(〈k, v〉)) = k

val(inr(〈k, v〉)) = v

isrcvl(a) = ¬isnull(a) ∧ isrcv(kind(a)) ∧ lnk(kind(a)) = l

isrcvl,tg(a) = isrcvl(a) ∧ tag(kind(a)) = tg

The messagesm(i, t) are the list of messages sent from locationi at timet. For messages, we use
the message typeMsg(Lnk, Tag, dec) defined earlier.

World ≡ Loc : D × Lnk : D × src, dst : Lnk → Loc

× X : D × A : D × Tag : D
× T : Loc → X → U
× TA : Loc → A → U
×M : Lnk → Tag → U
× s : i : Loc → N→ Record(X, T (i))
× a : i : Loc → N→ Action(A,Lnk, Tag, kindcase(TA(i), M))
×m : i : Loc → N→ List(Msg(Lnk, Tag, M))

If w : World is a world, then we writewLoc, wLnk, . . . ,ws, wa, andwm for the components ofw.

4.2 Fair-Fifo Worlds

We next define afair-fifo world. We first note that, given worldw, we can find all the messages sent
on link l and all and receive actions that have occurred on linkl before timet:

m(w, l, t) = onlink(l, wm(wsrc(l), t))
snds(w, t, l) = concatenate[m(w, l, t1) | t1 ∈ [0, t)]
rcvs(w, t, l) = [a ∈ [wa(wdst(l), t1) | t1 ∈ [0, t)] | isrcvl(a)]

The send and receive messages before timet define an implicit queue, and we can test whether the
queue for linkl is empty and for whether messagems is at the head of the queue for its link:

isempty(w, t, l) ≡
‖snds(w, t, l)‖ ≤ ‖rcvs(w, t, l)‖

ishd(w, t,ms)) =
let s = snds(w, t, mlnk(ms)) in

let r = rcvs(w, t, mlnk(ms)) in

‖s‖ > ‖r‖ ∧ s[‖r‖] = ms



FairF ifo(w) ≡
(1) (∀i : wLoc. ∀t : N. ∀l : wLnk. wsrc(l) 6= i ⇒

onlink(l, wm(i, t)) = nil )
(2) ∧ (∀i : wLoc. ∀t : N. isnull(wa(i, t)) ⇒

ws(i, t + 1) = ws(i, t) ∧ wm(i, t) = nil )
(3) ∧ (∀i : wLoc. ∀t : N. ∀l : wLnk. ∀tg : wTag. isrcvl,tg(wa(i, t)) ⇒

wdst(l) = i ∧ ishd(w, t, msg(l, tg, val(wa(i, t)))))
(4) ∧ (∀l : wLnk. ∃∞t : N. (isrcvl(wa(wdst(l), t)) ∨ isempty(w, t, l)))

The first clause says that locationi can only send message on links whose source isi. The second
clause says that a null action leaves the state unchanged and sends no messages. The third clause
says that a receive action at locationi must be on a link whose destination isi and whose message
is at the head of the queue. The fouth clause is the fairness clause. It says that for every queue,
infinitely often either the queue is empty or a receive event occurs at its destination.

4.3 Event System of a World

If w is a fair-fifo world, then we can construct an event system fromw. The typesLoc, Lnk, X,
A, Tag are already inw, so we have to define the typeE of events and define all the operations on
events and show that the axioms are satisfied. Our events will be the points〈i, t〉 in spacetime at
which an action occured inw.

wE = {〈i, t〉 : wLoc × N | ¬isnull(wa(i, t))}
wloc(〈i, t〉) = i

wtime(〈i, t〉) = t

waction(〈i, t〉) = wa(i, t)
wstate(〈i, t〉) = ws(i, t)
wstate′(〈i, t〉) = ws(i, t + 1)

winit(i) = ws(i, 0)
wmsgs(〈i, t〉) = wm(i, t)

For and evente ∈ wE we have¬isnull(waction(e)) so we may define

wkind(e) = kind(waction(e))
wval(e) = val(waction(e))

The type of the value of an event can be determined from its location and kind using the type
assignmentswTA andwM as follows:

wV (i, k) = kindcase(wTA(i), wM , k)

The observation operators are defined in the obvious way:

wwhen(x, e) = wstate(e).x



wafter(x, e) = wstate′(e).x
winitially(x, i) = winit(i).x

wsends(l, e) = onlink(l, wmsgs(e))

The local ordering operations are also straightforward.

wfirst(〈i, t〉) = ∀t′ : N. t′ < t ⇒ isnull(wa(i, t′))
wpred(〈i, t〉) = 〈i, greatest t′ < t.¬isnull(wa(i, t′))〉

w<loc
(〈i, t〉, 〈j, t′〉) = i = j ∧ t < t′

To define thesender andindex operations that match a receive event to its origin, we first define a
match with the samesnds andrcvs functions used in definingFairF ifo.

match(l, t, n, t′) = n < ‖m(w, l, t)‖ ∧
‖rcvs(w, t′, l)‖ = ‖snds(w, t, l)‖+ n

Then, we definesender andindex as follows

wsender(〈j, t′〉) = let l = lnk(wkind(〈j, t′〉)) in

〈src(l), µt < t′. ∃n : N. match(l, t, n, t′)〉
windex(〈j, t′〉) = let l = lnk(kind(〈j, t′〉)) in

let 〈i, t〉 = sender(〈j, t′〉) in

µn. match(l, t, n, t′)

Finally, the causal ordering≺ is defined as a transitive closure

w≺ = transitive closure(w<loc
∪ 7→),

where

e 7→ e′ = isrcv(wkind(e′)) ∧ e = wsender(e′)

Putting all of these defined operations together, we have the event structure defined by the world

Ev(w) = 〈wE , wLoc, wLnk, wX , wA, wTag, wT , wV , wM ,

wsrc, wdst, wloc, wkind, wval, wwhen, wafter, winitially,

wsends, wsender, windex, wfirst, wpred, w<loc
, w≺〉

Theorem (World-Event-System)

∀w : World. FairF ifo(w) ⇒ ESAxioms(Ev(w))

proof:

axiom1, 2, and3 These follow from the definitions ofwloc andw<loc
, which makew<loc

on events at a fixed
location isomorphic to< on a subset of the natural numbers.



axiom4 wfirst is defined by a bounded quantification andisnull is decidable, sowfirst is decidable.

axiom5 Follows from the definitions ofwfirst, w<loc
, andwE .

axiom6 Follows from the definitions ofwpred, w<loc
, andwE .

axiom7 If wfirst(e) wheree = 〈i, t〉 then all actionswa(i, t′) for t′ < t are null. So by clause
(2) of FairF ifo by induction we havews(i, t) = ws(i, 0), and the axiom follows from the
definitons ofwwhen andwinitially.

axiom8 Similarly if 〈i, t〉 = wpred(〈i, t′〉) then all actionswa(i, t′′) for t < t′′ < t′ are null. Hence by
clause (2) ofFairF ifo, ws(i, t′) = ws(i, t + 1), and the axiom follows from the definitions
of wafter andswhen.

axiom9 By definition,w≺ is a transitive closure.

axiom10 Sincew≺ is the transitive closure of two relations,w<loc
and 7→, it’s enough to show that

each of these relations agrees with the order ofwtime. The first relation,w<loc
does, by

definition. For the second, suppose〈i, t〉 = sender(〈j, t′〉), then by definition,t = µt <
t′. ∃n : N. match(l, t, n, t′) so t < t′. But we haven’t yet shown that it exists, i.e. that
wsender is well-defined.

To show that, suppose thatisrcv(wkind(〈j, t′〉)). Then, for somel andtg we haveisrcvl,tg(wa(j, t′)),
so by clause (3) ofFairF ifo, we havewdst(l) = j ∧ ishd(w, t′,msg(l, tg, val(wa(j, t′)))).
This means that fors = snds(w, t′, l) andr = rcvs(w, t′, l), we have‖s‖ > ‖r‖ ∧ s[‖r‖] =
msg(l, tg, val(wa(j, t′))). But snds(w, t′, l) is the concatenation ofm(w, l, t) for t < t′,
so for some sucht, ‖snds(w, t, l)‖ < ‖r‖ < ‖snds(w, t, l)‖ + ‖m(w, l, t)‖, and this im-
plies that there is ann < ‖m(w, l, t)‖ such that‖rcvs(w, t′, l)‖ = ‖snds(w, t, l)‖ + n, so
match(l, t, n, t′). This argument shows thatwsender andwindex are both well-defined.

axiom11 This axiom follows from the previous argument, since under the assumption thatisrcvl,tg(wa(j, t′))
we found thatwsender(〈j, t′〉) = 〈wsrc(l), t〉 andwindex(〈j, t′〉) = n for t andn satisfying
nth(n,m(w, l, t)) = msg(l, tg, val(wa(j, t′))). Butm(w, l, t) = onlink(l, wm(wsrc(l), t)) =
wsends(l, 〈wsrc(l), t〉), so we have

nth(windex(〈j, t′〉), wsends(l, wsender(〈j, t′〉))) = msg(l, tg, val(wa(j, t′)))

and hence thetag andval components are equal as asserted in the axiom.

axiom12 By definition,w≺ containsw<loc
.

axiom13 By definition,w≺ contains7→, and this implies the axiom.

axiom14 If e ≺ e′ then sincew≺ is defined to be the transitive closure of two relations, there must be
a chain of these relations connectinge ande′.

If the last link of the chain ise′′ <loc e′ then we have¬first(e′) andloclee′′pred(e′) and
e ¹ e′′, and so by transitivity we have the first possibility.

If the last link in the chain ise′′ 7→ e′, thene′ is a receive ande′′ = sender(e′) and
e ¹ sender(e′), so we have the second possibilty.

axiom15 This follow from clause (3) ofFairF ifo.



axiom16 Once the definitions are unfolded, this axiom is exactly clause (1) ofFairF ifo.

axiom17 If e1 = 〈j1, t′1〉 ande2 = 〈j2, t′2〉 satisfy the hypotheses of the axiom then, as in the proofs of
axioms10and11, we must havet1, n1, t2, andn2 such that

wsender(e1) = 〈wsrc(l), t1〉
windex(e1) = n1 < ‖m(w, l, t1)‖

‖rcvs(w, t′1, l)‖ = ‖snds(w, t1, l)‖+ n1

wsender(e2) = 〈wsrc(l), t2〉
windex(e2) = n2 < ‖m(w, l, t2)‖

‖rcvs(w, t′2, l)‖ = ‖snds(w, t2, l)‖+ n2

If sender(e1) <loc sender(e2) thent1 < t2 and this implies, by definition ofsnds(w, t2, l),
that‖snds(w, t1, l)‖+n1 < ‖snds(w, t2, l)‖, and hence that‖rcvs(w, t′1, l)‖ < ‖rcvs(w, t′2, l)‖.
This implies thatt′1 < t′2 and hencee1 <loc e2. If sender(e1) = sender(e2) ∧ n1 < n2

then we reach the same conclusion. So,〈sender(e1), index(e1)〉 <loc 〈sender(e2), index(e2)〉 ⇒
e1 <loc e2.

To show the reverse implication, supposee1 <loc e2. By axiom (3) we have either
〈sender(e1), index(e1)〉 <loc 〈sender(e2), index(e2)〉 or 〈sender(e2), index(e2)〉 <loc

〈sender(e1), index(e1)〉 or
〈sender(e1), index(e1)〉 = 〈sender(e2), index(e2)〉. The first case is what we want to
prove, and the second case impliese2 <loc e1 (by the previous argument) which con-
tradicts our hypothesis. In the third case,t1 = t2 and n1 = n2, and this implies that
‖rcvs(w, t′1, l)‖ = ‖rcvs(w, t′2, l)‖. But, this is impossible since our assumption implies
thatt′1 < t′2 and hence‖rcvs(w, t′1, l)‖ < ‖rcvs(w, t′2, l)‖.

axiom18 This axiom says that every message that is sent will be received. We prove by induction on
m that

∀m : N. ∀l : wLnk. ∀t : N.

m ≤ ‖snds(w, t, l)‖ ⇒ ∃t′ ≥ t. m ≤ ‖rcvs(w, t′, l)‖
Whenm = 0 we can taket′ = 0 and the assertion holds. Assume it holds form and prove
it for m + 1. So letl andt be such thatm + 1 ≤ ‖snds(w, t, l)‖. By induction, we can find
t′′ ≥ t such thatm ≤ ‖rcvs(w, t′′, l)‖. By the fairness clause (4) ofFairF ifo, we may
chooset′ ≥ t′′ such that

isrcvl(wa(wdst(l), t)) ∨ isempty(w, t, l)

In the first case, we have

m ≤ ‖rcvs(w, t′′, l)‖ < 1 + ‖rcvs(w, t′, l)‖ = ‖rcvs(w, t′ + 1, l)‖
som + 1 ≤ ‖rcvs(w, t′ + 1, l)‖. In the second case, by definition ofisempty,

‖rcvs(w, t′, l)‖ ≥ ‖snds(w, t′, l)‖ ≥ ‖snds(w, t, l)‖ ≥ m + 1

So, in either case,∃t′ ≥ t. ‖rcvs(w, t′, l)‖ ≥ (m + 1) and that completes the proof of the
claim.



Now, to prove axiom18, we let e = 〈i, t〉 be an event, andl be a link and supposen <
‖sends(l, e)‖. Then‖snds(w, t+1, l)‖ > ‖snds(w, t, l)‖+n. By the claim, we can findt′′

such that‖rcvs(w, t′′, l)‖ > ‖snds(w, t, l)‖+ n. This implies that, forj = wdst(l), there is
a t′ such that

isrcvl(kind(wa(j, t′))) ∧ ‖rcvs(w, t′, l)‖ = ‖snds(w, t, l)‖+ n

So, we havematch(l, t, n, t′). If we let e′ = 〈j, t′〉, thene′ is an event,lnk(kind(e′)) = l,
andsender(e′) = e andindex(e′) = n.

¤

5 Message-Automata

Event systems and worlds are infinite objects, but they arise from the behaviors of distributed sys-
tems where, at each location, only a finite program constrains the behavior. We call our repre-
sentations of these finite programs message-automata. To make our representations finite we need
to replace infinite things like total type assignments with finite approximations, so we need some
notation for finite partial functions.

5.1 Finite partial functions

A finite partial functionf from A to B has the typef : A →fpf B. Its domain isdom(f), and we
define

f(x)?z ≡ if x ∈ dom(f) then f(x) else z

Z =! f(x) ⇒ t(Z) ≡ (x ∈ dom(f)) ⇒ t(f(x))

For finite partial functionsf, g : A →fpf B we define:

f ⊆ g ≡ ∀x : A. x ∈ dom(f) ⇒ x ∈ dom(g) ∧ f(x) = g(x)
f ‖ g ≡ ∀x : A. x ∈ dom(f) ∩ dom(g) ⇒ f(x) = g(x)
f ⊕ g ≡ λx. if x ∈ dom(g) then g(x) elsef(x)

lemma
∀f, g : A →fpf B. f ‖ g ⇒ f ⊆ f ⊕ g ∧ g ⊆ f ⊕ g

lemma

∀f, g : A →fpf B. f ⊆ g ⇒ ∀x : A. ∀p : B → P.
(Z =! g(x) ⇒ p(Z)) ⇒ (Z =! f(x) ⇒ p(Z))

5.2 Definition of Message-Automata

The message-automata share with the worlds and the event systems the same spaces of names for
state variables, local action kinds, and message tags. So we will have parametersX, A, andTag as
before, but, where a world has, at each locationi, type assignmentsT (i) : X → U, TA(i) : A → U,



andM : Lnk → Tag → U, a message-automaton will know only its input and ouput linksIn, and
Out, and its type assignments (declarations) will be finite

ds : X →fpf U
da : A →fpf U
din : In× Tag →fpf U
dout : Out× Tag →fpf U

The domain ofds is the set of declared state variables, the domain ofda is the set of declared local
actions, the domain ofdin is the set of declared input message types, and the domain ofdout is the
set of declared output message types.
The state of a message-automaton will be the record defined by its declarationsds. We can define
this type using the dependent function typeRecord(X, dec) used in the worlds by extending the
finite partial functionds to a total function. We do this by assigning the typeTop to any undeclared
state variable.

State(X, ds) ≡ Record(X, λx. ds(x)?Top)

The type of output messages that the automaton has declared is defined in a similar way

Message(Lnk, Tag, dout) ≡ Msg(Lnk, Tag, λp. dout(p)?Top)

The kinds of actions that the automaton has declared and that can have effects on the state are a
subset of the kindsKnd(Lnk, Tag, A)

Kind(Lnk, Tag, A, da, din) ≡
{k : Knd(Lnk, Tag, A) | kindcase(λa. a ∈ dom(da), λp. p ∈ dom(din), k)}

ktype(da, din, k) ≡ kindcase(da, din, k)

In addition, to its declarations, the message-automaton does the following things

init It constrains the initial values of the state variables. So, it has a finite partial functioninit of
typex : dom(ds) →fpf (ds(x) → P). Thus, ifx is in the domain ofinit thenx is a declared
state variable andinit(x) is a predicate on the declared typeds(x) of state variablex.

pre It declares preconditions on its local actions. So, it has a finite partial functionpre of type

a : dom(da) →fpf (State(X, ds) → da(a) → P)

Thus, ifa is in the domain ofpre thena is a declared local action andpre(a) is a predicate
on the state and the declared typeda(a) of the action.

ef It declares the effects of actions (local and input) on state variables. So, it has a finite partial
functionef of type

〈k, x〉 : Kind(Lnk, Tag, A, da, din)× dom(ds) →fpf

(State(X, ds) → ktype(da, din, k) → ds(x))

Thus, if 〈k, x〉 is in the domain ofef thenk is a declared kind (either a local action or a
receive of an input message) andx is a declared state variable, andef(〈k, x〉) is a function
from the state and the type of the action to the typeds(x) of x. This function defines how the
new value ofx will be computed from the current state and the value of the action.



send It declares the messages sent by actions. So, it has a finite partial functionsend of type

〈k, x〉 : Kind(Lnk, Tag, A, da, din)× dom(ds) →fpf

(State(X, ds) → ktype(da, din, k) → List(Message(Lnk, Tag, dout)))

Thus, if 〈k, x〉 is in the domain ofsend thenk is a declared kind (either a local action or a
receive of an input message) andx is a declared state variable, andsnd(〈k, x〉) is a function
from the state and the type of the action to the type of lists of output messages.

frame It declares implicit effects. By convention, the effects that are explicitly given are the only
actions that affect the given state variables. So the implicit effect of any other action is to
leave the state of variable unchanged. Since we want each clause of a message-automaton
to be meaningful on its own, we can’t depend on such contextual conventions, so we have
to make the implicit effects explicit in so-calledframeclauses. The message-automaton has
a finite partial functionframe of typedom(ds) →fpf List(Kind(Lnk, Tag, A, da, din)).
So if x is in the domain offrame thenx is a declared state variable andframe(x) is a list
of actions kinds that contains all the kinds that affectx.

sframe It declares implicit sends. By convention, the sends that are explicitly given are the only
actions that send messages on the given link with the given tag. So the implicit sends of any
other action is to send no messages of the given link and tag. We make the implicit sends
explicit in sframeclauses. The message-automaton has a finite partial functionsframe of
typeOut× Tag →fpf List(Kind(Lnk, Tag, A, da, din)). So if 〈l, tg〉 is in the domain of
sframe thenl is an output link andsframe(〈l, tg〉) is a list of actions kinds that contains all
the kinds that send messages with tagtg on link l.

Putting all of these pieces into a structure we define the type of message-automata:

MsgA ≡
× X : D × A : D × Tag : D × Lnk : D
× In : {T : D | T ⊆ Lnk} × Out : {T : D | T ⊆ Lnk}
× ds : X →fpf U
× da : A →fpf U
× din : In× Tag →fpf U
× dout : Out× Tag →fpf U
× init : x : dom(ds) →fpf (ds(x) → P)
× pre : a : dom(da) →fpf (State(X, ds) → da(a) → P)
× ef : 〈k, x〉 : Kind(Lnk, Tag,A, da, din)× dom(ds) →fpf

(State(X, ds) → ktype(da, din, k)) → ds(x))
× send : 〈k, x〉 : Kind(Lnk, Tag,A, da, din)× dom(ds) →fpf

(State(X, ds) → ktype(da, din, k)) → List(Message(Lnk, Tag, dout))
× frame : dom(ds) →fpf List(Kind(Lnk, Tag, A, da, din))
× sframe : Out× Tag →fpf List(Kind(Lnk, Tag,A, da, din))

Message-AutomataA andB have the same signature if theirX, A, Tag, Lnk, In, andOut com-
ponents are equal. The subtype ofMsgA with given signature〈X, A, Tag, Lnk, In, Out〉 is

MsgA(X,A, Tag, Lnk, In, Out) ≡



{a : MsgA | aX = X ∧ aA = A ∧ aTag = Tag ∧
aLnk = Lnk ∧ aIn = In ∧ aOut = Out}

Message-AutomataA andB are compatible (A ‖ B) or satisfy the relationA ⊆ B if they have
the same signature and the ten finite partial functions,ds, da, din, dout, init, pre, ef , snd, frame,
andsframe of A andB are compatible or are related by⊆. And we defineA ⊕ B by applying
the⊕ operation to each of the ten components.
lemma

∀A, B : MsgA. A ‖ B ⇒ A ⊆ A ⊕ B ∧ B ⊆ A ⊕ B

5.3 Distributed Systems

A network is represented by a graph〈Loc, Lnk, src, dst〉. The incoming and outgoing edges at a
vertexi are defined by

In(dst, i) = {l : Lnk | dst(l) = i}
Out(src, i) = {l : Lnk | src(l) = i}

A distributed system is a network graph, name spacesX, A, andTag, and an assigmnent of a
message-automaton to each location.

Dsys ≡
Loc : D × Lnk : D × src : Lnk → Loc × dst : Lnk → Loc

× X : D × A : D × Tag : D
×m : i : Loc → MsgA(X, A, Tag, Lnk, In(dst, i), Out(src, i))

If D ∈ Dsys is a distributed system then we abbreviateDm(i) by D(i). Distributed systemsD
andE have the same signature if theirLoc, Lnk, src, dst, X, A, andTag components are equal.
Distributed systemsD andE are compatible (D ‖ E) or satisfy the relationD ⊆ E if they have
the same signature and, for everyi ∈ DLoc, the message-automata ,D(i) andE(i) are compatible
or satisfy the relationD(i) ⊆ E(i). And we defineD ⊕ E by applying the⊕ operation to each
location.

5.4 Semantics of Distributed Systems and Message-Automata

The semantics of a distributed systemD is the set of possible worldsw that are consistent with it. To
be consistent,w must have the same signature asD, be a fair-fifo world, and respect the meanings
of the six componentsinit, pre, ef , send, frame, andsframe of the message-automata at each
location.

Init(X, M, s) ≡
∀x : X. P =! M.init(x) ⇒ P (s.x)

MStep(X,A, Tag, Lnk, M, s, a, s′,m) ≡
∀x : X. E =! M.ef(〈kind(a), x〉) ⇒

s′.x = E(s, val(a) ∈ M.ds(x)



∧
∀x : X. F =! M.send(〈kind(a), x〉) ⇒

m = F (s, val(a) ∈ List(Message(Lnk, Tag,M.dout))
∧
∀x : X. L =! M.frame(x) ⇒

kind(a) 6∈ L ⇒ s′ = s ∈ State(X, M.ds))
∧
∀l : Lnk. ∀tg : Tag. L =! M.sframe(〈l, tg〉) ⇒

kind(a) 6∈ L ⇒ onlinktagged(l, tg, m) = nil
∧
∀a : A. P =! M.pre(a) ⇒ P (s, a)

FairPre(D, w) ≡
∀i : wLoc. ∀a : wA. P =! D(i).pre(a) ⇒
∃∞t : N. (¬isnull(wa(i, t)) ∧ kind(wa(i, t)) = local(a)) ∨

¬(∃v : D(i).da(a). P (ws(i, t), v))

PossibleWorld(D,w) ≡
FairF ifo(w)
∧ wX = DX ∧ wA = DA ∧ wTag = DTag

∧ wLoc = DLoc ∧ wLnk = DLnk ∧ wsrc = Dsrc ∧ wdst = Ddst

∧ ∀i : wLoc. Init(wX , D(i), ws(i, 0))
∧ ∀i : wLoc. ∀t : N. ¬isnull(wa(i, t)) ⇒

MStep(wX , wA, wTag, wLnk, D(i), w, ws(i, t), wa(i, t), ws(i, t + 1), wm(i, t))
∧ FairPre(D, w)

lemma

∀D1, D2 : Dsys.

D1 ⊆ D2 ⇒
∀w : World. PossibleWorld(D2, w) ⇒ PossibleWorld(D1, w)

proof: D1, D2, andw all have the same signature,X, A, Tag, Loc, Lnk, src, anddst. For
everyi ∈ Loc, M1 = D1(i) ⊆ M2 = D2(i). The definition ofPossibleWorld uses the automata
M ∈ {M1,M2} only in the context of conditional application of the finite partial functions,M.init,
M.pre, M.ef , M.send, M.frame, andM.sframe, and also in some equality propositions over
typesState(X,M.ds), M.ds(x), andList(Message(Lnk, Tag, M.dout)). The conditional ap-
plications all occur positively, and so the statement forM2 implies the statement forM1, by the
definition of M1 ⊆ M2 and the lemma on conditional application of finite partial functions.



The equalities also occur positively, and, so the equality forM2 implies the equality forM1 be-
causeState(X, M2.ds) is a subtype ofState(X, M1.ds), and similarly,M2.ds(x) is a subtype of
M1.ds(x) andList(Message(Lnk, Tag, M2.dout)) is a subtype of
List(Message(Lnk, Tag, M1.dout)).

5.5 Rules for Message-Automata

The message-automata in a distributed system put constraints on the possible worlds that can be
executions of the system. We can state these constraints as rules on the event systems that come
from the possible worlds. A rule of the form@i M : ψ means that∀D : Dsys. ∀w : World.

PossibleWorld(D,w) ∧ i ∈ DLoc ∧ M ⊆ D(i) ⇒ Ev(w) |= ψ

It says that the event system of any possible world of any distributed system with at leastM at
locationi will satisfy ψ.

5.5.1 Rule for initial clauses

@i statex : T ; initially p(x) : p(x initially i)

proof: Let i ∈ DLoc and letM = D(i) where

state x:T; initially p(x) ⊆ M

and letw be a possible world such thatPossibleWorld(D,w). ThenM.init(x) is defined and
equal top(x), so by theInit clause ofPossibleWorld,

p(ws(i, 0).x)

and this is, by definition ofinitially ,
p(x initially i)

¤

5.5.2 Rule for frame clauses

@i only L affectsx :
∀e@i. kind(e) 6∈ L ⇒ ¬(x ∆ e) ∧

(x ∆ e) ⇒ kind(e) ∈ L

proof: Let i ∈ DLoc and letM = D(i) where

state x:T; only L affect x⊆ M

and letw be a possible world such thatPossibleWorld(D,w). Lete = 〈i, t〉 be an event inEv(w),
thena = wa(i, t) is not null. Letk = kind(a) and suppose thatk 6∈ L. ThenM.frame(x)
is defined and equal toL, so by the definition ofPossibleWorld, s′.x = s.x, wheres′, s =
ws(i, t), ws(i, t+1), and hence, by defintion ofwhenandafter, x whene = x after e, so¬(x ∆ e).
The second clause is the contrapositive of the first, just proved. In general, the contrapositive isn’t
constructively equivalent, but in this case, since the propositionkind(e) ∈ L is decidable, it is.

¤



5.5.3 Rule for effect clauses

@i statex : T1; action k : T2;
k(v) effectx := f(s, v) :
∀e@i. kind(e) = k ⇒ x after e = f(s whene, val(e))

proof: Let i ∈ DLoc and letM = D(i) where

state x:T1; action k:T2; effect k(v): x:= f(s,v)⊆ M

and letw be a possible world such thatPossibleWorld(D, w). Let e = 〈i, t〉 be an event in
Ev(w), thena = wa(i, t) is not null. Suppose thatkind(a) = k. ThenM.ef(〈k, x〉) is de-
fined and equal tof(s, v), so by the definition ofPossibleWorld, s′.x = f(s, val(a)), where
s′, s = ws(i, t), ws(i, t + 1), and hence, by defintion ofwhen, after, and val, x after e =
f(s whene, val(e))

¤

5.5.4 Rule for send clauses

@i action k : T ;
k(v) sendsf(s, v) :
∀e@i = k(v). ∀l : Lnk. sends(l, e) = onlink(l, f(s whene, v))

proof: Let i ∈ DLoc and letM = D(i) where

action k:T; k(v): sends f(s,v)⊆ M

and letw be a possible world such thatPossibleWorld(D,w). Lete = 〈i, t〉 be an event inEv(w),
thena = wa(i, t) is not null. Suppose thatkind(a) = k. ThenM.send(〈k, x〉) is defined and equal
to f(s, v), so by the definition ofPossibleWorld, wm(i, t) = f(ws(i, t), val(a)), and hence, by
defintion ofwhen, sends, andval, sends(e) = onlink(l, f(s whene, val(e)))

¤

5.5.5 Rule for send frame clauses

@i only L sends〈l, tg〉 :
i = Dsrc(l) ⇒ ∀e′. kind(e′) = rcvl(tg) ⇒ kind(sender(e′)) ∈ L

proof: Let l ∈ DLnk and letM = Dsrc(l) where

only L sends〈l,tg〉 ⊆ M

and letw be a possible world such thatPossibleWorld(D, w). Let e′ satisfykind(e′) = rcvl(tg).
BecausePossibleWorld impliesFairF ifo, we havemsg(l, tg, val(e′)) = emsg(e′) ∈ sends(sender(e′)),
wheresender(e′) = 〈i, t〉 is an event inEv(w), with i = Dsrc(l). Thensends(sender(e′)) =
wm(i, t) andM.sframe(〈l, tg〉) is defined and equal toL, so by the definition ofPossibleWorld,
kind(wa(i, t)) ∈ L. Thuskind(sender(e′)) ∈ L.

¤



5.5.6 Rule for precondition clauses

@i action k : T ;
k(v) precondition p(s, v) :
∀e@i. kind(e) = k ⇒ p(s whene, val(e))
∧ (∃e@i. (kind(e) = k) ∨ (∃e@i. ∀v : T. ¬p(s after e, v)) ∨ ∀v : T. ¬p(s initially i, v)
∧ ∀e@i. (∃e′ ≥loc e. (kind(e′)) = k) ∨ (∃e′ ≥loc e. ∀v : T. ¬p(s after e′, v))

proof: Let i ∈ DLoc and letM = D(i) where

action k:T; precondition k(v): p(s,v)⊆ M

and letw be a possible world such thatPossibleWorld(D,w). If e = 〈i, t〉 is an event inEv(w)
thena = wa(i, t) is not null. If kind(a) = k thenM.pre(k) is defined and equal top(s, v), so by
the definition ofPossibleWorld, we have

p(ws(i, t), value(a))

and this is the same as
p(s whene, val(e))

So we have proved the first clause of the rule. InstantiatingFairPre(D, w) with k, we may choose
t′ > t such that

(¬isnull(wa(i, t′)) ∧ kind(wa(i, t′)) = local(a)) ∨ ¬(∃v : M.da(k). p(ws(i, t′), v))

In the first case, we lete′ = 〈i, t′〉 and sincekind(wa(i, t′)) = k andk is notnull, e′ is an event in
Ev(w) ande <loc e′ andkind(e′) = k, so,

∃e′ ≥loc e. kind(e′) = k

In the second case,
¬(∃v : M.da(k). p(ws(i, t′), v))

Find the leastt′′ ≤ t′ such that for allt′′′ in the interval(t′′, t′] the actionwa(i, t′′′) is null. Then
t ≤ t′′, sincewa(i, t) is not null, and hencewa(i, t′′) is not null, so we may choosee′ to be〈i, t′′〉
ande′ is an event inEv(w) ande ≤loc e′. The statews(i, t′′ + 1) is the same as the statews(i, t′)
because all the actionswa(i, t′′′) for t′′′ in the interval(t′′, t′] are null and so, by the definition of
FairF ifo the states are equal. Thusws(i, t′) = s after e′ and we have

¬(∃v : M.da(k). s after e′, v))

Therefore, sinceM.da(k) is defined and equal toT ,

∃e′ ≥loc e. ∀v : T. ¬p(s after e′, v)

Thus we have proved the third clause of the rule. The proof of the second clause is similar to the
proof of the third clause, but since we are not starting with an event we also have to consider the
possibility that no events occur at all at locationi. By the same fairness clause we still get at′ such
that

(¬isnull(wa(i, t′)) ∧ kind(wa(i, t′)) = local(a)) ∨ ¬(∃v : M.da(k). p(ws(i, t′), v))



The first disjunct implies, as before, ane such thatkind(e) = k. In the second case, we proceed as
before to find the leastt′′ ≤ t′ such that for allt′′′ in the interval(t′′, t′] the actionwa(i, t′′′) is null.
If wa(i, t′′) is not null, we proceed as before to produce ane′ such that∀v : T. ¬p(s after e′, v). The
new case is thatwa(i, t′′) might also be null. In this caset′′ = 0, so all the actionswa(i, t) for t ≤ t′

are null. In this casews(i, t′) is the same asws(i, 0), so we conclude that∀v : T. ¬p(s initially i, v),
and that proves the second clause of the rule.

¤

6 Derivation Lemmas

For any labelx we can constrain it to take a constant value at any location.Constant Lemma

∀x : Lbl. ∀i : Loc. ∀T : U. ∀v : T. ∀e@i. x whene = v

proof: Use the rules for the frame clause and initial clause

@i only [] affectsx

@i statex : T ; initially x = v

to get
∀e@i. kind(e) 6∈ [] ⇒ ¬(x ∆ e) ∧ x initially i = v

This implies
∀e@i. ¬(x ∆ e) ∧ x initially i = v

which implies
∀e@i. ∆(x, e) = 0 ∧ x initially i = v

By lemma (29), this implies
∀e@i. x whene = v

¤
For any labelk we can make a local actionk that occurs exactly once at any location.
Once Lemma

∀k : Lbl. ∀i : Loc. (∃e@i. kind(e) = k) ∧ (∀e@i <loc e′. ¬(kind(e) = k ∧ kind(e′) = k))

proof: Use the second clause of the rule for the precondition clause

@i action k : Unit;
k(v) precondition ¬done

to get
(∃e@i. (kind(e) = k) ∨ (∃e@i. ¬¬done after e) ∨ ¬¬done initially i

Use the rule for the initial clause

@i statedone : B; initially done = false



to get
¬done initially i

so we have
(∃e@i. (kind(e) = k) ∨ (∃e@i. done after e)

From this we first establish the first clause,∃e@i. (kind(e) = k. The first case is what we are
trying to prove. In the second case we have ane such thatloc(e) = i anddone after e but also
¬done initially i. From this we can conclude, by lemma (30), that

∃e′@i. done ∆ e′

Using the rule for the frame clause

@i only [k] affectsdone

we get
∀e@i. done ∆ e ⇒ kind(e) = k

From this we concludekind(e′) = k which finishes the first claim.
To prove the second clause we use the rule for the effect clause

@i statedone : B; action k : Unit;
k(v) effectdone := true

to get
∀e@i. kind(e) = k ⇒ done after e

and the first clause of the rule for the precondition clause already introduced gives

∀e@i. kind(e) = k ⇒ ¬done whene

We can then prove by induction that

∀e@i <loc e′. ¬(kind(e) = k ∧ kind(e′) = k)

If e′ has no predecessors, then the statement is true. Ife1 = pred(e′) then done when e′ =
done after e1 and if e <loc e′ and kind(e) = k ∧ kind(e′) = k then done after e and
¬done when e′, so we havee ≤loc e1 anddone after e 6= done after e1 This implies that there
is ane2 such thate <loc e2 ∧ e2 ≤loc e1 such thatdone when e2 6= done after e2 and by
the frame clause already introduced, this implieskind(e2) = k. But then we havee <loc e2 and
e2 <loc e′ and bothe ande2 have kindk, contradicting the induction hypothesis.

¤

For any tagtg, locationi, and functionf , we can cause a message with the tagtg containing the
valuef(s) to be received on any linkl with sourcei.



Send once Lemma

∀tg : Lbl. ∀i : Loc. ∀f : State(i) → T. ∀l : Lnk. src(l) = i ⇒
(∃e, e′. e ≺ e′ ∧ kind(e′) = rcvl(tg) ∧ val(e′) = f(s whene))
∧ ∀e1@i = tg. sends(e1) = [msg(l, tg, f(s whene))]

proof: Using the Once Lemma, we get

∀i : Loc. (∃e@i. kind(e) = tg) ∧ (∀e@i <loc e′. ¬(kind(e) = tg ∧ kind(e′) = tg))

Using the rule for the sends clause

@i action tg : Unit;
tg(v) sends[msg(l, tg, f(s))]

we get
∀e@i. kind(e) = tg ⇒ sends(e) = [msg(l, tg, f(s whene))]

From these we can conclude that there is an evente at locationi with kind tg andmsg(l, tg, f(s whene)) ∈
sends(e). By lemma (25), we then conclude that

∃e′ >loc e. kind(e′) = rcvl(tg) ∧ val(e′) = f(s whene)

¤

Recognizer Lemma

∀k : Lbl. ∀i : Loc. ∀p : State(i) → V (k, i) → P.
∀e′@i. x whene′ ⇔ ∃e <loc e′. kind(e) = k ∧ p(s whene, val(e))

proof: From the clause

@i statex : B; initially x = false

getx initially i = false. So from lemma (30),

∀e′@i. x whene′ ⇒ ∃e <loc e′. x ∆ e

From the frame clause

@i only [k] affectsx

we get
∀e@i. x ∆ e ⇒ kind(e) = k

From the effect clause

@i statex : B; action k : T ;
k(v) effectx := if p(s, v) then true elsex



we get
∀e@i. kind(e) = k ⇒ x after e = p(s whene, val(e)) ∨ x whene

This gives us,

∀e′@i. x whene′ ⇒ ∃e <loc e′. kind(e) = k ∧ p(s whene, val(e))

To prove the other direction of the iff, we see that the effect clause gives

∀e@i. kind(e) = k ∧ p(s whene, val(e)) ⇒ x after e

So it suffices to show that

∀e′@i. ∀e <loc e′. x after e ⇒ x whene′

This follows by induction from the frame clause and the effect clause since only action k can change
x and can only change x from false to true.

¤
Trigger Lemma

∀k, k′ : Lbl. ∀i : Loc. ∀p : State(i) → V (k, i) → P.

(∀e′@i = k′. ∃e <loc e′. kind(e) = k ∧ p(s whene, val(e)))
∧ (∀e@i = k. p(s whene, val(e)) ⇒ ∃e′. kind(e′) = k′)

proof: Use the Recognizer Lemma to get a recognizer state variable x such that

∀e′@i. x whene′ ⇔ ∃e <loc e′. kind(e) = k ∧ p(s whene, val(e))

Then add the precondition clause

@i action k′ : Unit;
k′(v) precondition x = true

∀e@i. kind(e) = k′ ⇒ x whene

∧ (∃e@i. (kind(e) = k′) ∨ (∃e@i. ¬x after e) ∨ ¬x initially i

∧ ∀e@i. (∃e′ ≥loc e. (kind(e′) = k′) ∨ (∃e′ ≥loc e. ¬x after e′)

The first clause∀e@i. kind(e) = k′ ⇒ x whene and the recognizer easily imply the first clause of
the trigger. To show the second clause of the trigger, supposekind(ei) = k andp(s whene, val(e)).
Then for anye <loc e′ we will havex when e′. From the third clause of the precondition rule we
have

(∃e′ ≥loc e. (kind(e′) = k′) ∨ (∃e′ ≥loc e. ¬x after e′)

But the second case contradicts what we have just shown, so we have

(∃e′ ≥loc e. (kind(e′) = k′)

¤



7 Leader Election in a Ring

7.1 Specification of Leader Election

A flow is a subsetF ⊆ Loc and a functionout : F → Lnk such that

∀i : F. src(out(i)) = i ∧ dst(out(i)) ∈ F

We define the functionn : F → F by n(i) = dst(out(i)). If n is one-to-one and connected,

∀i, j : F. n(i) = n(j) ⇒ i = j

∀i, j : F. ∃k : N. nk(i) = j

Then the flowF is a ringR, andn is ontoR so we may define functionsp andin by p(i) = n−1(i)
andin(i) = out(p(i)). We also define a distanced(i, j) = µk ≥ 1. nk(i) = j. Then,

i 6= p(j) ⇒ d(i, p(j)) = d(i, j)− 1

Theleader election problemis to have exactly one member of a group announce that it is the leader.
If we choose to have the announcement be the occurence of the action ”leader” at a location, then
the specification of the leader election for a groupR is the following

Leader(R) ≡ ∃ldr : R. (∃e@ldr = leader. )∧ (∀i : R. ∀e@i = leader. i = ldr)

7.2 Simple Leader Election

If R is a ring, and we have a one-to-one function,uid : R → N, then we claim that the following
specification is derivable and refinesLeader(R).

LE(R, uid, in, out) ≡ ∀i ∈ R.

(1) ∃e = rcvout(i)(vote)(uid(i)).

(2) ∀e = rcvin(i)(vote)(v). v > uid(i) ⇒ ∃e′ = rcvout(i)(vote)(v).

(3) ∀e′ = rcvout(i)(vote)(v). v = uid(i) ∨
∃e = rcvin(i)(vote)(v). e ≺ e′ ∧ v > uid(i)

(4) ∀e = rcvin(i)(vote)(uid(i)). ∃e′@i = leader.

(5) ∀e′@i = leader. ∃e = rcvin(i)(vote)(uid(i)). e ≺ e′

Theorem1 If (R, in, out, n, p) is a ring anduid : R → N is 1-1, then

LE(R, uid, in, out) ⇒ Leader(R)

proof: Assuming the hypotheses, we letm = max{uid(i) | i ∈ R} and letldr = uid−1(m). Then
the conclusion,Leader(R) follows from the following four lemmas.

¤



Lemma1 ∀i : R. ∃e = rcvin(i)(vote)(uid(ldr)).

proof: By induction ond(ldr, i). If d = 1 thenin(i) = out(ldr), so by (1)

∃e = rcvin(i)(vote)(uid(ldr)).

If d > 1 thenp(i) 6= ldr andd(ldr, i) < d(ldr, p(i)), so by induction

∃e = rcvin(p(i))(vote)(uid(ldr)).

Then by (2), sinceuid(ldr) > uid(p(i)),

∃e = rcvout(p(i))(vote)(uid(ldr)).

andout(p(i)) = in(i).
¤

Lemma2 ∀i, j : R. ∀e = rcvin(i)(vote)(uid(j)). j = ldr ∨ d(ldr, j) < d(ldr, i)

proof: By induction on≺. If e = rcvin(i)(vote)(uid(j)) then by (3)

uid(j) = uid(p(i)) ∨ ∃e = rcvin(p(i))(vote)(uid(j)). e ≺ e′ ∧ uid(j) > uid(p(i))

In the first case, we havej = p(i) and this impliesj = ldr ∨ d(ldr, j) < d(ldr, i). In the second
case,uid(j) > uid(p(i)) sop(i) 6= ldr and, by induction, we have

j = ldr ∨ d(ldr, j) < d(ldr, p(i))

But d(ldr, p(i)) < d(ldr, i), sincep(i) 6= ldr

¤

Lemma3 ∀i : R. ∀e′@i = leader. i = ldr

proof: If e′ = leaderi then by (5)

∃e = rcvin(i)(vote)(uid(i)). e ≺ e′

Then, by Lemma2,i = ldr ∨ d(ldr, i) < d(ldr, i). The second case is impossible, soi = ldr

¤

Lemma4 ∃e′@ldr = leader.



proof: By (4), it is enough to show∃e = rcvin(ldr)(vote)(uid(ldr)). But this follows from
Lemma1.

¤

Theorem2 LE(R, uid, in, out)

proof: We have to ”implement” each of the five clauses, by deriving them from the rules for
message-automata and event systems. Instantiate the Constant Lemma to get a state variable “me”
such that

∀e@i. me whene = uid(i)

Instantiate the Send Once Lemma usingtg = vote, f(s) = s.me, l = out(i). This gives

∃e, e′. kind(e′) = rcvout(i)(vote) ∧ val(e) = me whene

and also
∀e1@i = vote. sends(e1) = [msg(out(i), vote, me whene1)]

which implies
∃e′. kind(e′) = rcvout(i)(vote) ∧ val(e) = uid(i)

which is clause (1) ofLE(R, uid, in, out), and also

∀e1@i = vote. sends(e1) = [msg(out(i), vote, uid(i))]

Instantiate the Trigger lemma withk = rcvin(i)(vote), k′ = leader, p(s, v) = (me = v) to get

∀i : Loc.

(∀e′@i = leader. ∃e <loc e′. kind(e) = rcvin(i)(vote) ∧ uid(i) = val(e))

∧ (∀e@ = rcvin(i)(vote). uid(i) = val(e) ⇒ ∃e′. kind(e′) = leader)

This gives us clauses (4) and (5) ofLE(R, uid, in, out).
The rule for the sends clause

@i action rcvin(i)(vote) : N;
rcvin(i)(vote)(v) sends ifv > me then [msg(out(i), vote, v)] else[]

gives, (since(me whenei) = uid(i))

∀e@ = rcvin(i)(vote)(v). sends(e) = if v > uid(i) then [msg(out(i), vote, v)] else[]

So
∀e@ = rcvin(i)(vote)(v). v > uid(i) ⇒ msg(out(i), vote, v) ∈ sends(e)

By lemma (25), this implies clause (2)

∀e = rcvin(i)(vote)(v). v > uid(i) ⇒ ∃e′ = rcvout(i)(vote)(v).

Finally, to derive clause (3) we need a send frame clause to constrain the actions that can send
vote messages. In what we have derived so far, the only actions that send vote messages are the



rcvin(i)(vote) action and also the actionvote from the Send once Lemma. So we use the rule for
the send frame clause

@i only [rcvin(i)(vote); vote] sends〈out(i), vote〉 :

∀e′. kind(e′) = rcvout(i)(vote) ⇒ kind(sender(e′)) = rcvin(i)(vote) ∨ kind(sender(e′)) = vote

From this we can prove clause (3) since ife′ = rcvout(i)(vote)(v) thenemsg(e′) = msg(out(i), vote, v) ∈
sends(out(i), sender(e′)). Then eitherkind(sender(e′)) = vote, in which casesends(sender(e′)) =
[msg(out(i), vote, uid(i))] so v = uid(i), or, for somev, sender(e′) = rcvin(i)(vote)(v), in
which case

sends(sender(e′)) = if v > uid(i) then [msg(out(i), vote, v)] else[]

so we must havev > uid(i).
¤

At this point we have proved the leader election specification, so we can extract from our proof a
distributed system as an assignment of message-automata to locations. From this proof we get the
following clauses for eachi ∈ R:

@i stateme : N; initially me = uid(i)
@i statedone : B; initially done = false

@i statex : B; initially x = false

@i action vote : Unit;
vote(v) precondition ¬done

@i statedone : B; action vote : Unit;
vote(v) effectdone := true

@i action vote : Unit;
vote(v) sends[msg(out(i), vote, me)]

@i action rcvin(i)(vote) : N;
rcvin(i)(vote)(v) sends ifv > me then [msg(out(i), vote, v)] else[]

@i statex : B; action rcvin(i)(vote) : T ;
rcvin(i)(vote)(v) effectx := if me = v then true elsex

@i action leader : Unit;
leader(v) precondition x = true

@i only [rcvin(i)(vote); vote] sends〈out(i), vote〉
@i only [] affectsme

@i only [vote] affectsdone

@i only [rcvin(i)(vote)] affectsx

7.3 Peterson Leader Election

Init(e, i) ≡ sends(e) = if sent whene then [] else[msg(out(i), vote, uid(i))]



Forward(e, i, v) ≡ sends(e) = if sent whene then [msg(out(i), vote, v)] else
[msg(out(i), vote, uid(i));msg(out(i), vote, v)]

P (e, i, v) ≡ last whene > uid(i) ∧ last whene > v

L(e, i, v) ≡ active whene ∧ start whene ∧ v = uid(i)

PLE(R, uid, in, out) ≡ ∀i ∈ R.

(1) sent initially i = false

(2) ∀e@i. sent ∆ e ⇒ kind(e) = init ∨ kind(e) = rcvin(i)(vote)
(3) (∃e@i = init. ) ∧ (∀e@i = init. Init(e, i) ∧ sent after e)
(4) start initially i = true

(5) ∀e@i. start ∆ e ⇔ kind(e) = rcvin(i)(vote)
(6) active initially i = true

(7) ∀e@i. active ∆ e ⇒ kind(e) = rcvin(i)(vote)
(8) ∀e@i. last ∆ e ⇒ kind(e) = rcvin(i)(vote)
(9) ∀e = rcvin(i)(vote)(v). last after e = v

(10) ∀e = rcvin(i)(vote)(v). sent after e = true

(11) ∀e = rcvin(i)(vote)(v). (¬(active whene) ∨ start whene) ⇒
¬(active ∆ e) ∧ Forward(e, i, v)

(12) ∀e = rcvin(i)(vote)(v). (active whene ∧ ¬(start whene)) ⇒
P (e, i, v) ⇒ ¬(active ∆ e) ∧ sends(e) = [msg(out(i), vote, uid(i))]
∧
¬P (e, i, v) ⇒ active after e = false ∧ sends(e) = []

(13) ∀e′ = rcvout(i)(vote)(v). ∀e. e 7→ e′ ⇒ kind(e) = rcvin(i)(vote) ∨ kind(e) = init

(14) ∀e = rcvin(i)(vote)(v). L(e, i, v) ⇒ ∃e′@i = leader.

(15) ∀e′@i = leader. ∃e = rcvin(i)(vote)(v). e <loc e′ ∧ L(e, i, v)

Definition

L(e1, e2) ≡ active whene1 ∧ e1
+7→ e2 ∧ kind(e2) = rcvin(loc(e2))(vote) ∧

∀e. e1
+7→ e ∧ e

+7→ e2 ⇒ ¬(active whene)
LA(e1, e2) ≡ active whene2 ∧ L(e1, e2)

R(e) ≡ ‖rcvs(in(loc(e)), vote, before(e))‖
S(e,m) ≡ ‖snds(out(loc(e)), vote, before(e,m))‖

S(e) ≡ ‖snds(out(loc(e)), vote, before(e))‖

Lemma A AssumingPLE(R, uid, in, out),

∀e@i. S(e) = R(e) + if active whene ∧ sent whene then 1 else0



proof: This is an example of the proof of an invariant. We prove invariants by induction on<loc.
If first(e) then both sides of the equation are0. Only init andrcvin(i)(vote) events can affect the
invariant. Each of them preserve it, since every receive causes one send, except for the case of a
Forward wheresent was false, which sends two, but also changessent from false to true, and the
case of a receive that sends nothing (second case in clause (12)), which also changesactive from
true to false. Theinit event also preserves the invariant because it either sends nothing and leaves
active andsent unchanged, or else it sends one message and changessent from false to true.

¤

Lemma B AssumingPLE(R, uid, in, out),

(a) ∀e@i. start whene ⇔ R(e) is even

(b) ∀e@i <loc e′. sent after e ⇒ sent whene′

(c) ∀e@i <loc e′. active whene′ ⇒ active after e

(d) ∀e@i. ¬(sent whene) ⇒ active whene

proof: (a) follows from (4) and (5). (b) follows from (2), (3), and (10), since the only events that
can changesent set it totrue. (c) follows from (7), (11), and (12), since the only events that can
changeactive set it tofalse or leave it unchanged. (d) follows by induction since the only event
that can makeactive false is arcv(vote) wherestart = false, but this must be preceded by a
rcv(vote) wherestart = true, and this, by (10), setsent to true, and by (b) it will stay true.

¤

Lemma C AssumingPLE(R, uid, in, out),

∀e2@ = rcv(vote). ∃e1. L(e1, e2)

proof: By induction on≺. For somee we havee 7→ e2. Let i = loc(e). By (12) kind(e) is
eitherinit or rcvin(i)(vote). If it is init then by (d) of Lemma B,active when e, soL(e, e2). If
kind(e) = rcvin(i)(vote), then if active when e, we haveL(e, e2). Otherwise, by induction, we
havee1 such thatL(e1, e) ande 7→ e2 and¬(active whene), soL(e1, e2).

¤

Lemma D AssumingPLE(R, uid, in, out),

kind(e2) = rcvin(loc(e2))(vote) ∧ e 7→ e2 ∧ ¬(active whene) ⇒
(val(e2) = val(e) ∧ R(e) = R(e2))

proof: For somem, e,m 7→ e2. Then,lnk(kind(e2)) = in(loc(e2)) = out(loc(e)) and, by the
corallary of the Fifo Lemma,

S(e,m) = R(e2)

Since¬(active whene) we must havesent whene, som = 1 and, by Lemma A

S(e) = R(e) + if active whene ∧ sent whene then 1 else0



Also, val(e2) = val(e), sincee will Forward andsent whene is true.

¤

Lemma E AssumingPLE(R, uid, in, out),

L(e1, e2) ∧ R(e2) = n ⇒
R(e1) = n− 1 ∨ (n = 0 ∧ val(e2) = uid(loc(e1)))

proof: By induction on the length of the chaine1
+7→ e2. Let

C(e, e′) = R(e) = n− 1 ∨ (n = 0 ∧ val(e′) = uid(loc(e)))

For somee,m we havee,m 7→ e2. Then,lnk(kind(e2)) = in(loc(e2)) = out(loc(e)) and, by
the corallary of the Fifo Lemma,

S(e,m) = R(e2)

If sent whene, thenm = 1 and, by Lemma A

S(e) = R(e) + if active whene ∧ sent whene then 1 else0

So, if¬(active whene) thenval(e2) = val(e) (sincee will Forward andsent is true) and

R(e) = n

andL(e1, e) so by induction,C(e1, e) and hence,C(e1, e2). And, if active when e thene1 = e
and

R(e) = n− 1

So C(e1, e2). This leaves the case,¬(sent when e). In this case, by (d) of Lemma B, we have
active when e, soe1 = e. kind(e) is eitherinit or rcvin(loc(e))(vote). If it is init, thenm = 1
(sincee sends only one message), and so

‖snds(out(loc(e)), vote, before(e))‖ = n

But, this implies thatn = 0 since when¬(sent when e) then there have been no sends beforee.
Also, for theinit case,val(e2) = uid(loc(e)) since that is whate sends. HenceC(e1, e2). If e is
a receive, thene sends two messages, first its own uid, and then the forwarded value. Som = 1 or
m = 2. If m = 1 then as before,n = 0 andval(e2) = uid(loc(e1)) soC(e1, e2). If m = 2, then
n = 1 andR(e1) = 0 = n− 1, and soC(e1, e2) in this case as well.

¤

Lemma F AssumingPLE(R, uid, in, out),

∀e1. active whene1 ∧ ∃v : N. msg(out(loc(e1)), vote, v) ∈ sends(e1) ⇒
∃e2. LA(e1, e2)

proof: (Sketch) For anye, if e sendsmsg(out(loc(e)), vote, v) then the message is received, so
there is a receive evente′ = rcvin(loc(e′))(vote)(v). If active whene′ then we are done. Otherwise
e′ will forward v. If this keeps happening, then the message will eventually come around the ring



back toloc(e1) at some evente2. We need to show thatactive when e2. We would haveL(e1, e2)
so by Lemma E,

R(e1) = R(e2)− 1 ∨ (R(e2) = 0 ∧ val(e2) = uid(loc(e1)))

In the first case,e1 is the receive just prior toe2. Sincee1 sent something, it did not changeactive.
Only receive events can changeactive, soactive is still true whene2. In the second case,e2 is the
first receive, soactive must still be true whene2.

¤

Lemma G AssumingPLE(R, uid, in, out),

L(e1, e2) ∧ R(e2) is even⇒ val(e2) = uid(loc(e1))

proof: The inactivee in the chain frome1 to e2 are all receives and all forward the value they
receive. By Lemma E,R(e1) is odd orR(e2) = 0 ∧ val(e2) = uid(loc(e1)) . In the second case
we are done, and in the first, by (a) of Lemma B,¬(start when e1) so by clause (12)e1 sends
uid(loc(e1)).

¤
Lemma H AssumingPLE(R, uid, in, out),

L(e1, e2) ∧ R(e2) is odd ⇒ val(e2) = val(e1)

proof: The inactivee in the chain frome1 to e2 are all receives and all forward the value they
receive. By Lemma E,R(e1) is even so, by (a) of Lemma B,(start when e1) so by clause (11)
e1 forwards. Ifsent when e1 thenval(e2) = val(e1). If ¬(sent when e1) thenR(e1) = 0 and
R(e2) = 1, so we must havee1, 2 7→ e2 and soval(e2) = val(e1).

¤

Definition

A(n, i) ≡ ∃e@i = rcvin(i)(vote). active whene ∧ R(e) = 2n

Lemma I AssumingPLE(R, uid, in, out),

∀i ∈ R. ∀n : N. A(n + 1, i) ⇒ A(n, i)

proof: Follows easily from the definitions and (c) of the earlier lemma

¤

Lemma J AssumingPLE(R, uid, in, out),

∀i : R. A(0, i)

proof: It’s enough to show that everyi receives at least one vote, since on the receipt of the first
vote,active will be true (active can only be changed to false on even numbered receives). To show
that everyi receives at least on vote, we note thatinit must occur and it sends one unlesssent is



true, butsent is true only if init did send one, or a receive occured. Every receive sends at least
one vote, except when the second case of clause (12) happens, but this can only happen on even
numbered receives, so at least one send must have occurred.

¤

Lemma K AssumingPLE(R, uid, in, out),

∀n : N. ∃i ∈ R. A(n, i)

proof: By induction onn. The base case is Lemma J. Suppose∃i ∈ R. A(n, i). We show that∃i ∈
R. A(n+1, i). Letm be the location with the maximum uid of alli such thatA(n, i). Then there is
ane with loc(e) = m andactive whene andR(e) = 2n. By clause (11),msg(out(m), vote, val(e)) ∈
sends(e), so by Lemma G,∃e2. LA(e, e2). By lemma E,R(e2) = 2n + 1, so there was a prior
receive ate1 for whichR(e1) = 2n (ande1 active sincee2 is active). So by lemma C there is ane0

such thatL(e0, e1). By lemma G,val(e1) = uid(loc(e0)). We claim thatloc(e0) = m. (why?) If
so, then, ate2 we havelast when e2 = uid(m), hence, from clause (12),e2 sends something. By
Lemma F, there is ane3 such thatLA(e2, e3), so we must haveA(n + 1, loc(e3).

¤

Locationi, j ∈ R are consecutive locations satisfying predicateP if

Conseq(P, i, j) ≡ i 6= j ∧ P (i) ∧ P (j) ∧ ∀k : N. 0 < k < d(i, j) ⇒ ¬P (nk(i))

Lemma L AssumingPLE(R, uid, in, out),

∀i, j ∈ R. ∀n : N. Conseq(A(n), i, j) ⇒ A(n + 1, j) ⇒ ¬A(n + 1, i)

proof: SupposeConseq(A(n), i, j) andA(n + 1, j). Then there is aree′1 <loc e′2 <loc e′3
at locationj such thatactive when e′3 andR(e′3) = 2n2, R(e′2) = 2n + 1, andR(e′1) = 2n.
Then there aree1 <loc e2 such thatL(e1, e

′
1) andL(e2, e

′
2). Thenval(e′1) = uid(loc(e1)) and

val(e′2) = val(e2), and hence, by (12) and becausee′3 is still active,uid(loc(e1)) > val(e2). But
we claim that bothe1 ande2 have locationi (why?). Also,R(e2) = 2n so if e3 is the next receive
at i, then by (12),¬(active whene3) so¬A(n + 1, i).

¤

Lemma M AssumingPLE(R, uid, in, out),

∀i ∈ R. ∃e@i = leader. ⇔ ∃n : N. A(n, i) ∧ ∀j ∈ R. j 6= i ⇒ ¬A(n, j)

proof: (⇐) If A(n, i), then there is ane with loc(e) = i andactive when e andR(e) = 2n. By
clause (11),msg(out(m), vote, val(e)) ∈ sends(e), so by Lemma G,∃e2. LA(e, e2). By lemma
E, R(e2) = 2n + 1, so there was a prior receive ate1 for whichR(e1) = 2n (ande1 active sincee2

is active). So by lemma C there is ane0 such thatL(e0, e1). By lemma G,val(e1) = uid(loc(e0)).
We claim thatloc(e0) = i. (why?) But, because ofe1 we also haveA(n, loc(e1)) so loc(e1) = i.
Thus ate1 locationi received its own uid, andR(e1) = 2n. So by clause (14)∃e@i = leader.
(⇒) By (15) there existe whereactive when e andR(e) is even, ande is a receive of its own



uid. Then, by Lemma C, for somee1, L(e1, e) and, by Lemma G,val(e) = uid(loc(e1)), but this
implies thatuid(loc(e1)) = uid(loc(e)), soloc(e1) = loc(e). All the intermediatee′ on the chain
from e1 to e are inactive and haveR(e′) = 2n, so all have¬A(n, loc(e′)), and they must include
all locations other thatloc(e).

¤
Lemma N AssumingPLE(R, uid, in, out),

Leader(R)

proof: Let N(n) = ‖{i ∈ R | A(n, i)}‖. Then claim

∀m : N. N(m) = 1 ∨ lessN(m + 1)N(m)

The claim follows from Lemmas I, K, and L. Then claim

∀n : N. ∃m : N. N(m) = n ⇒ ∃m : N. N(m) = 1

This claim is proved by induction onn, using Lemma L and the previous claim.
Now, if N(m) = 1 then∃ldr ∈ R. A(m, ldr) ∧ ∀j ∈ R. j 6= ldr ⇒ ¬A(m, j), so by
Lemma M,∃e@ldr = leader. And, for anyi ∈ R, if kind(ei) = leader then, by Lemma M,
∃n : N. A(n, i) ∧ ∀j ∈ R. j 6= i ⇒ ¬A(n, j). By considering the casesn ≤ m andm ≤ n and
using (1), we see thati = ldr.

¤

8 View Synchrony

A viewv is a pair〈v.id, v.set〉 of aview identifierand a set of locations. There must be a transtitive,
anti-reflexive ordering< on the view identifiers. A view represents a named, ordered, guess about
the current members of a group. SupposeP is a set of locations andIview is a function of type
p : P → {v : view | p ∈ v.set} that assigns an initial view to each locationp in P . Suppose
that we have links from the locations inP to and from a service; that is, we have have functions
to : p : P → {l : Lnk | dst(l) = p} andfrom : p : P → {l : Lnk | src(l) = p}. Then the service
providesview synchronyif

Gpsnd(e,m, p) ≡ e = rcvfrom(p)(gpsnd)(m)
Grcv(e, m, q) ≡ e = rcvto(loc(e))(gprcv)(〈m, q〉)
Safe(e, m, q) ≡ e = rcvto(loc(e))(safe)(〈m, q〉)

Newview(e, v) ≡ e = rcvto(loc(e))(newview)(v)
V iew(e) ≡ if first(e) then Iview(loc(e)) else

if Newview(pred(e), v) then v else
V iew(pred(e))

V S(M, SM) ≡
(1) M(e1, e2) ⇒ e1 ≺ e2 ∧ V iew(e1) = V iew(e2) ∧



∃m : Msg. Gpsnd(e1,m) ∧ Gprcv(e1,m, loc(e1))
(2) ∀e′,m, q. Gprcv(e′,m, q) ⇒ ∃e. M(e, e′)
(3) M(e1, e2) ⇒ M(e′1, e2) ⇒ e1 = e′1
(4) SM(e1, e2) ⇒ e1 ≺ e2 ∧ V iew(e1) = V iew(e2) ∧

∃m : Msg. Gpsnd(e1,m) ∧ Safe(e1, m, loc(e1))
(5) ∀e′,m, q. Safe(e′,m, q) ⇒ ∃e. SM(e, e′)
(6) SM(e1, e2) ⇒ SM(e′1, e2) ⇒ e1 = e′1
(7) loc(e) ∈ V iew(e)
(8) e1 <loc e2 ⇒ V iew(e1).id ≤ V iew(e2).id
(9) V iew(e1).id = V iew(e2).id ⇒ V iew(e1) = V iew(e2)

(10) SM(e1, e2) ⇒ ∀p : V iew(e1).set. ∃e@p. e ≺ e2 ∧ M(e, e2)
(11) M(a, a1) ∧ M(a, a2) ∧ M(b, b1) ∧ M(b, b2)

∧ loc(a1) = loc(b1) ∧ loc(a2) = loc(b2) ⇒
a1 <loc b1 ⇔ a2 <loc b2

V S ≡ ∃M, SM : E → E → P. V S(M, SM)

Quorum(v, P ) ≡ 2 ∗ ‖v.set ∩ P‖ > ‖P‖
Complete(P, L) ≡ ∀p : P. p ∈ [snd(x) | x ∈ L]

GpRcvd(e) ≡ [val(e′) | e′ ∈ rcvs(to(loc(e)), gprcv, before(e)) ∧ V iew(e′) = V iew(e)]
Safe(e) ≡ [val(e′) | e′ ∈ rcvs(to(loc(e)), safe, before(e)) ∧ V iew(e′) = V iew(e)]

9 Consensus using View Synchrony

Here is an algorithm for consensus using VS:

∀e = rcvin(i)(propose)(c). vote whene =⊥⇒ (30)

vote after e = 〈c, weak,⊥〉
∀e = rcvto(i)(gprcv)(〈v, q〉). vote whene =⊥⇒ (31)

vote after e = v

∀e@i. ∃e′ >loc e. MayV ote(e′) ⇒ DoV ote(e′) (32)

∀e@i. CE(e) ⇒ SetWinner(e) (33)

∀e@i. DE(e) ⇒ elected after e = true (34)

∀e@i = rcvto(i)(newview). voted after e = false (35)

where

MayV ote(e) ≡ vote whene 6=⊥ ∧ voted whene = false ∧
Quorum(V iew(e), P )



DoV ote(e) ≡ sends(e) = [msg(from(i), gpsnd, vote whene)] ∧
voted after e = true

CE(e) ≡ Complete(P,GpRcvd(e))
DE(e) ≡ Complete(P, Safe(e))

MaxG(L) ≡ max([g | 〈〈c, s, g〉, q〉 ∈ L ∧ s = strong])
StrongV otes(L) ≡ [c | 〈〈c, s, g〉, q〉 ∈ L ∧ s = strong ∧ g = MaxG(L)]

AllV otes(L) ≡ [c | 〈〈c, s, g〉, q〉 ∈ L]
Winner(L) ≡ if StrongV otes(L) 6= nil then head(StrongV otes(L)) else

head(AllV otes(L))
SetWinner(e) ≡ vote whene = 〈Winner(RcvdV otes(e)), strong, V iew(e).id〉

Here is a summary of the instructions to each location participating in the algorithm:

1. A vote is a triple〈c, s, g〉 of a candidate, strength, and view identifier.

2. The current view isprimary if it contains a quorum.

3. If you receive a proposal forc and have no vote, then set vote=〈c, weak,⊥〉.
4. If you receive a vote for〈c, s, g〉 and have no vote, then set vote=〈c, s, g〉.
5. If you have a vote〈c, s, g〉 and have not yet voted, then, ifprimary, doGpsnd(〈c, s, g〉) and

setvoted to true.

6. If you have received votes from all members of the group, then select the winnerw by

(a) If any of the votes had strengthstrong then choose the candidate from the earliest of
those with the highest id.

(b) Otherwise choose the candidate from the earliest vote.

(c) Set vote=〈w, strong, current.id〉.
7. If you have received confirmations (safe messages) of the votes from all members of the group

then set elected=true

8. If you receive a new view, then set voted =false and run the election again, but do not change
your vote.

Definition (agrees)

Agree(e, e′) ≡ ∃g : viewid. g ≥ V iew(e).id ∧
vote whene′ = 〈candidate(vote whene), strong, g〉

Lemma 1

∀e. DE(e) ⇒ ∀p : V iew(e).set.
∃e′@p. e′ ≺ e ∧ V iew(e′) = V iew(e) ∧ CE(e′) ∧ Agree(e, e′)

proof: SupposeDE(e), and letp = loc(e) andv = V iew(e). By definition of DE(e), safe
messages must have been received atp for votes from every member of the group,v.set. By view



synchrony, all members of the group must have received all the votes, and received them in the same
order. Thus, they all have had eventse′ satisfyingCE(e′), and, by clause (6), they had all set their
vote,vote whene′ to the same〈c, strong, v.id〉. This includes locationp, and sincee has the same
view ase′, no new view has been received betweene′ ande sop has not changed its vote, and hence
candidate(vote whene) = c, and hence,Agree(e, e′).

¤

Lemma 2

∀e. DE(e) ⇒ ∀e′. CE(e′) ∧ V iew(e′).id ≥ V iew(e).id ⇒ Agree(e, e′)

proof: GivenDE(e), let v = V iew(e). We prove, by induction on≺,

∀e′. CE(e′) ∧ V iew(e′).id ≥ v.id ⇒ Agree(e, e′)

SupposeCE(e′) andw = V iew(e′) andw.id ≥ v.id. Let q = loc(e′). If w.id = v.id then we use
Lemma 1. By Lemma 1, there is an eventeq with loc(eq) = q, andV iew(eq) = v, such that

CE(eq) ∧ Agree(e, eq)

But there can only be one evente′ per location and view for whichCE(e′), soeq = e′ and we have
Agree(e, e′).
So assumew.id > v.id. Viewsv andw are both quorums, since otherwise no votes are sent in them.
Thus there exists a locationp ∈ v.set ∩ w.set. Let c = candidate(vote when e). By Lemma 1,
there is an eventep such thatvote when ep = 〈c, strong, v.id〉. Let ewp be the event when new
view w is received at locationp. Locationp will only change its vote by clause (6), because of a
completed election, so by induction,vote when ewp = 〈c, strong, g〉 for someg ≥ v.id. Thus, in
the election in vieww that is completed (for locationq) ate′, p has voted for〈c, strong, g〉. Only a
vote of the form〈d, strong, g′〉 with g′ ≥ g could beatp’s vote. Such a vote would have to come
from some location inw.set that had set its vote to〈d, strong, g′〉 at some evented ≺ e′ (because
ed <loc voting inw ≺ vote received atq <loc e′). The only way to set a vote to〈d, strong, g′〉 is by
a completed election in a view with identifierg′. Sinceg′ ≥ g ≥ v.id, by the induction hypothesis,
this impliesd = c. Thus the winner of the election completed ate′ is 〈c, strong, g′〉 for some
g′ ≥ v.id and we haveAgree(e, e′).

¤
Lemma (Consensus)

∀e1, e2. DE(e1) ∧ DE(e2) ⇒
candidate(vote whene1) = candidate(vote whene2)

proof: Let v = V iew(e1) andw = V iew(e2). Let c1 = candidate(vote when e1) andc2 =
candidate(vote when e2) . Assume, without loss of generality,v.id ≤ w.id. Let p = loc(e2). By
Lemma 1 , for someep ≺ e2,

CE(ep) ∧ V iew(ep) = w ∧ vote whenep = 〈c2, strong, w.id〉
By Lemma 2,

∃g : viewid. g ≥ v.id ∧ vote whenep = 〈c1, strong, g〉
Thus,c1 = c2.

¤



10 Conclusion

10.1 Related Work

Winskel considered event systems in his 1980 Ph.D. thesis [60] and in other publications [61],
inspired in part by Lamport [38]. He considered relationships to Petri nets and to domain theory
and established the generality of event system, but he did not consider process extraction from
proofs.
Hoare [33] and Milner [48] created extremely influential process calculi and their work is the basis
for exploring process realizability of logical formulas [7, 49, 50], but they do not take up the issue
of extraction from proofs either.
One of the most direct approaches to using proofs as processes is the work of Abramsky [4, 5]
directed toward linear logic. These results are of considerable theoretical interest, but they have not
been connected to practical verification.
Verification based on IO Automata [42] has been directly modeled in Nuprl [11] and PVS [6] and
it is subsumed here as the special case where we reason directly about message automata. See also
Vardi[59], Clarke and Emerson [17], Manna and Wolper [46], and Leonard and Heitmeyer [40] for
different notions of sythesis that reference the meaning we intend.
Many logics used for practical reasoning and formal verification are based on programming logics
[62, 55] or on temporal logic[44, 45], especially Unity [16] and TLA+ [39]. We look at the
relationship betweenTLA+ and our work in the next section. Temporal logic has a limited role in
synthesis [23]. Results onknowledge in multi-agent systems[24, 25, 26, 27, 28, 30] uses models
with some of the properties of our worlds.
Abraham [1, 2, 3] uses classical multi-sorted first order logic to model processes whose state tran-
sitions are events. He also linearly orders events at a process and assumes a causal order on events
generated by the local orders, capturing insights from Lamport [38, 38]. Our approach is related to
his in that we use a higher-order constructive logic to define the models. His logic and ours deal ex-
plicitly with collections of events and with functions on these collections — another feature missing
from temporal logic.

10.2 Relationship toTLA+

Lamport’sTLA+ is a classical temporal logic of actions. He does not treat the issue of finding a
constructive sublanguage from whose proofs it might be possible to extract distributed systems. Our
work shows how this can be done. For a start, using the methods of Howe [34], the underlying logic
of TLA+ can be embedded in a constructive logic such as Nuprl. Secondly, the temporal logic can
be reduced to our event logic, as we now sketch.
Essentially theTLA+ process model arises by collapsing all locations to a single point and uniting
all states into one “global state.” Communication links are considered as state variables as well. The
logic is based on describing the next state relation in a computation viewed as a single sequence of
global states. This embedding would let us prove a result of the form:

TLA+ is a sublanguage of the classical Event
Logic obtained by adding the axiom

∀P : Propi. P ∨ ¬P

to the Event Logic defined in this paper.



10.3 Spaces of Events

The Event Logic formalism allows us to discuss classes and structured spaces of events. For exam-
ple,Strand spaces[56] consist of sequences of send and receive messages at a process and sequences
of send and receive messages of a penetrator process trying to break security. Thus strands are lo-
cations in event structures, and the ordering on elements is the same as our ordering on nonlocal
events. These spaces model limitations on penetrators, and are used in specifying correctness cri-
teria of encryption protocols [56, 29]. The methods of argument appear natural in our Logic of
Events, and we can use inductive methods similar to those employed by Paulson in Isabelle [53].
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