
Code generation for MercuryThomas Conway, Fergus Henderson, and Zoltan Somogyifconway,fjh,zsg@cs.mu.OZ.AUDepartment of Computer Science, University of MelbourneParkville, 3052 Victoria, AustraliaAbstractMercury is a new purely declarative logic programming language that re-quires programmers to write declarations for every predicate in the pro-gram. Although the main motivation for this requirement is that it allowsthe compiler to catch most programmer errors, it also allows the Mercurycode generator to rely on the presence of type, mode and determinism infor-mation about every predicate in the program. The code generator exploits anew execution algorithm based on the availability of this information as wellas some novel techniques (lazy code generation, follow-code migration, theuse of a compile-time failure continuation stack) to produce very high qualitycode. This code is in C and is therefore quite portable. Benchmarks showthat the Mercury implementation produces much faster code than wamcc,Quintus Prolog, SICStus Prolog and Aquarius Prolog.1 IntroductionMercury is a new logic programming language with two unusual properties.First, it is purely declarative; even I/O is done within a declarative frame-work. Second, it requires the programmer to declare several aspects of thespeci�cations of the predicates they write. These aspects are the types ofthe arguments; the mode of the predicate, i.e. which (parts of) which ar-guments are input to the predicate and which are output from it; and thedeterminism of the predicate, i.e. whether it may succeed more than onceand whether it may fail without producing a solution. The �rst characteris-tic ensures that programs have a declarative semantics; the second helps thecompiler detect predicate de�nitions whose declarative semantics does notmatch the programmer's intended meaning.We designed Mercury with two main objectives in mind. The �rstobjective was to improve programmer productivity on large programmingprojects. The experience we gathered while writing 80,000 lines of Mercurycode has shown us that we have achieved this objective. The declarationsenable the compiler to catch most of our errors at compile time, and makeit much easier to understand code written by other programmers.Our second objective for Mercury is high performance High performanceProlog implementations generally get their speed from global analysis of theprogram. By contrast, the presence of declarations allows the Mercury com-piler to derive all the information it wants about the program via simplelocal analysis, and there are no non-logical constructs to obstruct this anal-ysis. The Mercury compiler we have developed, which is written in Mercuryitself, demonstrates the e�ectiveness of this approach. The code it generateshas signi�cantly higher performance than all the other logic programming

implementations we have tested it against, which include wamcc [2], QuintusProlog, SICStus Prolog [1] and Aquarius Prolog [7]. In this paper we showthe code generation techniques (including some novel techniques such as lazycode generation, follow-code migration, and the use of a compile-time fail-ure continuation stack) that enable us to achieve this level of performance.These techniques are based on a new abstract machine and the completeinformation provided by declarations.The Mercury compiler achieves portability by generating C code (as doJanus, KL1, wamcc [2] and Turbo Erlang [3]). Depending on compile-timeags, our C code can be portable ANSI C or it can exploit GNU C extensionson platforms on which they are available. The �rst public release of Mercuryon 18 July, 1995 supported Suns, SGIs, DECstations and PCs running Linux;we have since added support for 64-bit Alpha-based machines.The structure of this paper is as follows. Section 2 gives a brief introduc-tion to the Mercury language, while section 3 is an overview of the Mercuryimplementation. The largest part of the paper is section 4, which presentsthe algorithms used by the Mercury compiler's code generator. Section 5evaluates the performance of the generated code.Due to space limitations, this paper necessarily omits many details. A fulllength version of this paper and other papers and documentation on Mercuryare obtainable from http://www.cs.mu.oz.au/~zs/mercury.html. Thatpage also contains directions for obtaining the system's source code; thisshould be useful for readers interested in the exact algorithms we use.2 The Mercury languageSyntactically, Mercury is similar to Prolog with additional declarations. Se-mantically, however, it is very di�erent. Mercury is a pure logic programminglanguage with a well-de�ned declarative semantics. Like G�odel [4], Mercuryprovides declarative replacements for Prolog's non-logical features. UnlikeG�odel, Mercury provides replacements for all such features, including I/O.Mercury's type system is based on a polymorphic many-sorted logic. Itis essentially equivalent to the Mycroft-O'Keefe type system [5], and to thetype system of G�odel [4]. The de�nition of a type lists the function symbols(functors) to which variables of that type may be bound, and gives the typesof the arguments of those functors. Types may be polymorphic, as in:- type tree(T) ---> empty ; node(T, tree(T), tree(T)).Programmers must declare the types of the arguments of all predicates::- pred append(list(T), list(T), list(T)).Mercury also requires programmers to declare the modes of their predicates.In their simplest form, mode declarations specify which arguments to a pred-icate are input (ground on entry to the predicate), and which arguments areoutput (free on entry to the predicate and ground on success). Predicatesmay have more than one mode::- mode append(in, in, out) is det.:- mode append(out, out, in) is multi.

All declarations may be given on one line if the predicate has one mode::- pred flatten(list(list(T))::in, list(T)::out) is det.Mercury also allows arguments to be partially input and partially output, aslong as the programmer speci�es which part is input and which is output.In such modes, the descriptions of the initial and �nal instantiation statesare based on the structure of the type concerned.For each mode of a predicate, the programmer should categorise thatmode according to the maximum number of solutions it can produce (zero,one, or more than one) and whether or not it can fail before producing its �rstsolution. If in the given mode, a predicate has exactly one solution, then it isdeterministic (det). If it has at most one solution, then it is semideterminis-tic (semidet). If it has at least solution, then it is multisolution (multi). Ifit may have multiple solutions or none, then it is nondeterministic (nondet).If it always fails, it should be declared failure. If it neither fails nor suc-ceeds (i.e. it either loops or aborts), it should be declared erroneous. Thelast two are rarely used.The compiler checks all type, mode and determinism declarations. In theprocess, it infers the types of all local variables, the modes of all calls, andthe determinism of all goals and subgoals, including any missing determinismdeclarations. It also reorders conjunctions as necessary to ensure that goalsthat consume a variable come after the goal that produces that variable;since logically the order does not matter, the compiler is free to pick anyvalid ordering. The compiler must reject the program if any declaration isnot satis�ed, or if the ow of data in any predicate is circular. Programs thatpass the compiler cannot ounder, and they do not need the occur check.(The parallel version of Mercury, now under development, will allow circulardataows, and reintroduces the need for the occur check.)Predicates that perform I/O must be deterministic, and they have anextra pair of arguments (usually hidden by DCG notation) representing theold and new states of the world. The in,out modes of these arguments musthave \uniqueness" annotations that allow the compiler to verify that the oldstate of the world will not be referred to again.By allowing only pure, type-correct, mode-correct, determinism-correctprograms, Mercury is in some respects a less expressive language than Prolog.However, we do not �nd Mercury's requirements to be restrictive; on the con-trary, we �nd them liberating. While certain Prolog idioms are not possiblein Mercury, alternative idioms are available, and these idioms are usuallyeasier to understand, usually more e�cient, and invariably declarative. Thisreects the di�erent characteristics of the two languages. Prolog is wellsuited for exploratory programming, while Mercury is intended for the de-velopment of large systems by teams of programmers. The extra declarationsrequired by Mercury make maintenance easier, especially in team projects,and enable the compiler to catch the vast majority of program errors, mak-ing programmers more productive and their programs more reliable. Theyalso allow the compiler to generate very e�cient code. We therefore considerMercury's limitations to be more than worthwhile considering the bene�tsthey bring.

3 System overviewThe Mercury compiler processes Mercury programs one module at a time.It uses two main internal representations of the module being compiled.The �rst is an annotated form of the source code, which we call the HighLevel Data Structure, or HLDS; it also contains the declared interfaces ofimported modules. The second is a representation whose primitive elementscorrespond fairly directly to the C statements the compiler emits; we callthis representation the Low Level Data Structure, or LLDS.When creating the HLDS, the compiler transforms predicates into whatwe call superhomogeneous form. This involves replacing multiple clauseswith an explicit disjunction, so that the predicate body is a single goal,and introducing new variables and new uni�cations as necessary until everyatom (including the head) is of one of the forms p(X1, ..., Xn), Y = X, orY = f(X1, ..., Xn), where all the Xi are distinct variables. This simpli�esmuch of the work of the following phases.Predicates in Mercury may have several declared modes; we refer to eachdeclared mode of a predicate as a procedure. Type analysis works on onepredicate at a time, but after that the various procedures of a predicate arehandled completely separately. Mode analysis will in general reorder eachversion of the predicate di�erently and compute di�erent modes for the callsin the body. (All calls must match exactly one of the declared modes ofthe called predicate. If the call has a non-variable in what should be anoutput position, mode analysis will introduce extra uni�cations to keep thisinvariant.) Later passes will in general also put di�erent annotations on eachprocedure. The code generator generates separate code for each procedure.The various procedures of a predicate do not share any code, but this is nota problem because very few predicates (1 to 5%) have more than one mode.Several aspects of a procedure's treatment by the code generator dependon its code model. Det and erroneous procedures share the det code model,semidet and failure procedures share the semidet code model, and nondetand multi procedures share the nondet code model. In the rest of the paperwe will talk about code models more than determinisms.The Mercury runtime system uses three main memory areas, which wecall the heap, the det stack, and the nondet stack. Their relative placementand direction of growth do not matter. The heap is very similar to the heapof the WAM; it is the area in which all structured terms are created. Itsmemory is reclaimed on backtracking and by garbage collection. The detstack holds the stack frames of procedures that cannot succeed more thanonce; these frames are popped when their procedure succeeds. Predicatesthat can succeed more than once may be backtracked into, so we store theirstack frames on the nondet stack, whose frames are popped on the failure ofthe procedure concerned.These areas are managed by several abstract machine registers. The heappointer hp points to the next free word on the heap. The stack pointer sppoints to the next free word on the det stack. The maxfr register points tothe top of the top frame on the nondet stack, while the curfr register pointsto the top of the current frame on the nondet stack. There are no explicit

links between frames on the det stack; the code manipulating a det stackframe always knows how big the stack frame is, and generated code neverrefers to any det stack frame except the top one. Frames on the nondet stackare linked together in two ways, using �xed slots in every nondet stack frame.The prevfr slot of a nondet frame always points to the frame immediatelybelow it. The succfr slot contains the value of curfr when the frame wascreated.Calls place input arguments in abstract machine registers named r1, r2etc, and pick up output arguments from the same registers. Calls also placethe address of the code to return to in an abstract machine register calledsuccip (success instruction pointer). The called procedure must save thevalue of this register across its own calls. Det stack frames may use anyslot for saving succip, while nondet stack frames have a dedicated slot forthis purpose. Nondet stack frames also have a slot dedicated to holding theaddress at which execution should resume if their procedure is backtrackedinto; we call this the redoip slot, for redo instruction pointer.When a procedure using the nondet stack succeeds, it leaves its frameon the nondet stack, sets curfr from its succfr slot to point to the frameof its nearest nondet ancestor, and branches to its caller through its succipslot. Such a predicate is backtracked into when its frame is on the top ofthe nondet stack. When this happens, the backtracking mechanism (theredo macro) sets curfr and maxfr to point to this frame and branches to theprocedure's next alternative, whose address is in the redoip slot. The lasttime this happens, the redoip slot will point to code that invokes the failmacro, which discards the top nondet stack frame, sets curfr and maxfr topoint to the newly exposed frame, and branches through its redoip slot.Stack frames on both stacks may contain the values of variables beingsaved e.g. across calls or disjunctions. We never generate any pointersto stack slots containing variables. Values that don't �t in stack slots arealways stored on the heap; values that �t in stack slots also �t in registersand are therefore always passed by value. The reason why we can pass inputarguments by value is that mode analysis always puts all consumers of avariable after its producer. This is also the reason why free variables willnever be referred to and hence do not need initialization, why we never haveto build reference chains, and why we don't need a trail.We specialize the representation of terms for each type. Basic types likeint are represented as a single untagged machine word. For discriminatedunion types we use tagged pointers. For types with up to four functionsymbols, the primary tag in the two low-order bits of the word speci�es thefunction symbol; if the function symbol's arity is not zero, the rest of theword is a pointer to an aligned cell on the heap containing one word for eachargument. For types with more function symbols, some primary tags valuesmust be shared, either by several constants (which are distinguished by a(usually) 30-bit secondary tag in the rest of the word) or by several functionsymbols of non-zero arity (which are distinguished by a secondary tag wordat the start of the pointed-to memory cell).For further information on the Mercury execution model, see [6].

4 Code generationThe conversion of a Mercury procedure into compact and e�cient code issurprisingly straightforward for the most part. The code generator performsa single left to right depth-�rst traversal of the annotated HLDS componentrepresenting the body of the procedure, producing a tree of LLDS codefragments along the way. This tree is then attened and output as a list ofC statements.The code generator has a state threaded through most of its code usingDCG notation. The most important part of the state is the exprn infostructure, which maps each bound variable to its current status. This statusmay be cached, which means that the code to evaluate the variable has notbeen emitted yet, but that the value may be obtained by evaluating anexpression involving other variables. The other possible status is availabledirectly in one or more rvalues; the code generator will always choose thecheapest of these when it wants the value of the variable. This techniqueallows the code generator to avoid redundant moves by computing variablesdirectly into the lvalues where their values are needed. It also means that thecode generator is often able to move code after tests that may fail, reducingthe probability that it will be executed at runtime, and sometimes it canavoid emitting the code at all. We call this technique lazy code generation;the next few sections describe it in more detail.4.1 Uni�cationsMode analysis classi�es uni�cations into �ve categories: assignments,constructions, deconstructions, simple tests and complicated uni�cations.The code generator handles each of these di�erently.A uni�cation is an assignment if it has the form X = Y and either ofthe modes (in, out) or (out, in); assume the former. The code generatoremits no code directly for such uni�cations. Instead, it creates an entryin exprn info for Y, giving its status as cached, with the cached expressionbeing the variable X. When the code generator needs the value of Y, it will�nd this status in exprn info and proceed to ush the cached expression. Inthis case this means �nding rvalues that yield the value of X and copying thisset to become the set of rvalues yielding Y. If X was not already evaluated,then its cached expression must also be ushed, and so on; the ushingprocess is recursive. If it �nds that the value of the variable being ushedmust be computed, the ushing process will generate the value directly intothe lvalue where the code generator requires it to be.A uni�cation is a construction if it has the form X = f(Y1, ..., Yn),where X is output and the Yi are distinct variables that are either input orvoid. The compiler does not directly emit code for such uni�cations either.If n = 0, the code generator records the status of X as evaluated, with itssingle rvalue being the constant f; the rest of the code generator can usethis rvalue directly. If n > 0, the code generator records the status of X ascached with the expression being the term on the right hand side. When thetime comes to ush such an expression, the code generator checks whetherthe value of the expression is known at compile time. If it isn't, it emits

code to allocate a new cell on the heap, to tag the pointer to the cell withthe right primary tag value, to �ll the remote tag slot if any, and to �ll theslots corresponding to those Yi that are input to the construction. The slotscorresponding to Yi that are void are left uninitialized; this is how partiallyinstantiated data structures are created.A uni�cation is a deconstruction if it has the form X = f(Y1, ..., Yn),and X is input and the Yi are output or void. The compiler may knowthat X must be bound to f at this point; the type of X may have only onealternative, or X's value may already have been tested. If this is not thecase, the code generator emits code to test the top-level functor of X andto fail if it isn't f. If n > 0, the test extracts and compares the primarytag, and the secondary tag if there is one; if n = 0, the test compares theentire word. The three forms of test are illustrated by the following threeif statements, the bodies of which are dictated by the top element of thecompile-time failure continuation stack (see section 4.5):if (!((tag(r2) == mktag(3)) && (field(mktag(3),r2,0) == 0))) ...if ((tag(r2) != mktag(1))) ...if ((r2 != mkword(mktag(0), mkbody(0)))) ...After emitting the test, the code generator updates exprn info with an entryfor each non-void Yi giving its cached expression as the i'th �eld of X.A uni�cation is a simple test if it has the form X = Y and the mode(in, in), where X and Y are of atomic types (i.e. builtins or enumerations).For these the compiler generates a test very similar to the test for X = a.The only other kinds of uni�cations left by the transformation to super-homogeneous form are uni�cations of the form X = Y that do not qualifyas simple tests or assignments. The code generator implements such compli-cated uni�cations by calling a compiler-generated uni�cation predicate thatis speci�c to the type shared by X and Y. The compiler derives the struc-ture of the uni�cation predicate from the structure of the type. Here is anexample:intlist_unify([], []).intlist_unify([H1 | T1], [H2 | T2]) :-H1 = H2,intlist_unify(T1, T2).This code is speci�c to lists of atomic types. For our solution to the problemof uni�cations involving polymorphic types, see the full version of this paper.4.2 Predicate callsThe Mercury parameter passing convention is that all arguments are passedand returned by value in abstract machine registers. For most calls, then'th argument will be passed or returned in abstract register rn; for calls toprocedures with a semidet code model, it will be passed or returned in ab-stract register rn+1, with r1 being reserved for a success/failure indication.An argument is an input argument if its top function symbol is bound atthe time of the call; it is an output argument if its top function symbol is

bound by the call. Procedure calls must put input arguments in their reg-isters before the call; the called procedure will put the output arguments intheir registers. The calling procedure need not put anything in the registersoccupied by non-input arguments, and the called procedure may destroy thecontents of the registers occupied by non-output arguments.When the code generator encounters a call, its �rst job is to emit code tosave variables that are live after the call onto the stack. (The code model ofthe procedure decides which stack this is.) An HLDS annotation on the calltells the code generator which variables need saving, and another annotationin the caller's HLDS tells it in which stack slot each variable should be saved.(The pass that generates these annotations builds an interference graph, inwhich a link connects two variables if they have to be stored on the stack atthe same time; it then uses a graph colouring algorithm to compute whichgroups of variables can share a stack slot.) The code generator consults theexprn info structure for each variable that needs saving. If the variable isalready in its stack slot, it need not emit any code. If the variable is notthere but it is evaluated, the code generator emits code to copy it from itscheapest current location to its stack slot. If it is cached, the code generatorushes its cache entry by emitting code to evaluate the variable directly intothe stack slot.The next job of the code generator is to place the input arguments intheir registers. Since the program is in superhomogeneous form, all thearguments are distinct variables, and therefore the code generator can usethe same algorithm as it used for saving variables on the stack. During bothof these operations, the code generator is careful not to overwrite the lastcopy of the value of a live variable. When it would otherwise overwrite sucha value, it emits code to copy the value to a spare register.To make the call, the code generator allocates a new label, emits aninvocation of the call() macro, and emits the new label. One of the argumentsof the call macro is the address of the called procedure; the code generatorderives the name of its label from the predicate's name and arity and thenumber of the mode in which the predicate is called. The other argumentof the call macro is the success continuation or return label, for which thecompiler passes the new label. The call macro assigns the address of thereturn label to the succip register and then branches to the called procedure.When control reaches the return label, the only registers holding useful valuesare those containing the output arguments of the called procedure, and thecode generator updates the exprn info structure to reect this fact. (Itupdates the exprn info structure on the y as it saves variables on the stackand places input arguments in their registers.)For most procedures, the code generator need do nothing else. Deter-ministic procedures cannot fail; nondeterministic procedures do not returnto the success continuation when they fail. Semideterministic procedures,however, always return to this continuation. For them, the code generatormust emit code to examine r1 to see whether the call succeeded or failed. Ifit failed, the code must branch away; the destination is dictated by the topelement of the compile-time failure continuation stack (see section 4.5).

4.3 ConjunctionsMost conjunctions involve only uni�cations and procedure calls; we describehow we handle these in the previous two sections. Some conjunctions containmore complicated goals such as disjunctions and/or if-then-elses; we discusshow these �t into conjunctions when we discuss these types of goals. The onlyremaining interesting aspect of generating code for conjunctions is wherevalues get stored when control reaches the end.If the conjunction is the entire procedure body, we would like the codegenerator to put the output variables into their assigned registers. If theconjunction is part of a branched goal, e.g. one arm of a disjunction or anif-then-else, then we would like similarly precise information about wherevalues should go. If the branched goal is followed by a call, then the codegenerator can use information about the arguments of the call to guide itsplacement of values. If the branched goal is followed by some uni�cationsand/or builtins, then an earlier part of the compiler actually pushes theseuni�cations and/or builtins into the end of each arm of the branched goal;we call this follow-code migration. In most cases this will leave the branchedstructure followed by a call. If it isn't, the code generator gets its guidancefrom the �rst call that will be executed after the end of conjunction (or theend of the procedure, if there are no calls there), although the usefulness ofthis information is degraded by distance. In no case does the code generatorleave a conjunction (or an arm of a branched structure even if isn't a con-junction) with the exprn info structure still containing cached variables.4.4 SwitchesIndexing in Mercury is based on the notion of switches, which aredisjunctions in which each disjunct tests the same variable against a dif-ferent functor. (Some Prolog systems, e.g. Aquarius [7], also look beyondclause heads.) The front end of the Mercury compiler contains a pass thatlooks at disjunctions to see if they �t this pattern, and transforms them intoswitches in the HLDS.The compiler has several ways to generate code for switches. The sim-plest technique is to generate a chain of if-then-elses, one functor-test foreach case of the switch, although in switches whose cases cover all the func-tors in the type of the variable being switched on, the compiler omits the testbefore the last case, since it is bound to succeed. Normally the compiler putsthe cases with the cheapest tests �rst. However, for switches on types withonly two alternatives (e.g. lists, trees) the compiler reverses the sense of thetest and puts the likely recursive case �rst, since this reduces the number oftaken branches and hence the number of pipeline breaks in modern CPUs.if ((r1 == mkword(mktag(0), mkbody(0))))GOTO_LABEL(append_3_0_i2);<code for cons>GOTO_LABEL(append_3_0_i1);append_3_0_i2: ;<code for nil>append_3_0_i1: ;

For switches containing a small number of alternatives, a chain of tests is thefastest possible implementation. For switches containing many alternatives,the Mercury compiler uses dense jump tables or hash tables.4.5 DisjunctionsDisjunctions that are not switches are nondeterministic constructs, sinceeach disjunct may generate solutions. To improve the e�ciency of the codegenerated for disjunctions that produce no bindings visible from outside, andwhose solutions are therefore all equivalent, we transform such disjunctionsinto semidet if-then-elses (if disjunct1 then true else if disjunct2 then true... else disjunctn).To generate code for a disjunct, the code generator must know what codeto emit for failures occurring within that disjunct. We employ a compilerdata structure that we call the failure continuation stack for this purpose.Each element of this stack describes a logical place in the HLDS at whichforward execution should resume on failure. For each such logical contin-uation, there may be several labels in the generated LLDS that di�er inwhere they expect the live variables to be stored. At the moment we storetwo such labels for each continuation. The �rst expects the live variables tobe wherever they happened to be at the time the failure continuation wascreated (usually some will be in registers), while the second expects all livevariables to be in their stack slots. Each logical continuation also contains aag that indicates what the code generator should do on failure. If the agis not set, the code generator scans the list of labels in the continuation forthe �rst one whose requirements for the locations of variables are met by thecurrent exprn info structure, and generates code to branch to it. If the agis set, it generates an invocation of the redo() macro to invoke the generalbacktracking mechanism. The latter is necessary (and the ag is set) if thecode generator encounters any goal that may push its own frame on thenondet stack, since the alternatives o�ered by inner goals (typically, thosecreated by a call in one disjunct) must be explored before the alternativeso�ered by outer goals (e.g. the next disjunct).Before starting to generate code for the �rst disjunct, the code gener-ator pushes a new continuation containing two new labels onto the failurecontinuation stack. The �rst will be used by failures that occur while theregisters have their initial contents; such failures do not need any stack ac-cesses. The second label will be used by failures that occur after the �rstcall or nonatomic construct in the disjunct. Before it generates a branch tothe second label, and in any case before control leaves the disjunct, the codegenerator emits code to save all variables in their stack slots. To ensure thatan invocation of the general backtrack mechanism �nds the proper label forresumption of forward execution, on entry to the disjunct the code generatoremits code to set the redoip slot of the top nondet stack frame to point to thesecond label; at all points where such failures can happen, the live variableswill be in their stack slots.At the start of later disjuncts, the code generator emits the second label,code to move the live variables from their stack slots into the locations they

had on entry to the disjunction, and then the �rst label. The code for thelater disjunct will begin there, and the exprn info structure is set up toreect this. The code generator pops the top failure continuation o� thestack, and unless this disjunct is the last one, it pushes on a new failurecontinuation reecting resumption of execution at the next disjunct. Thecode generator then modi�es the redoip slot according to the new top elementof the failure continuation stack. The initial contents of the stack dependson the code model of the procedure concerned. For nondet procedures, itcontains one element with the ag set. For semidet procedures, it has oneelement with the ag clear and two labels with the same requirements (nolive variables) pointing to the failure epilogue code, which sets the successindication register (r1) to FALSE and returns. For deterministic procedures,the stack is e�ectively empty.These techniques together allow us to handle procedure bodies that con-tain nested disjunctions. Each nested disjunction adds an element to thefailure continuation stack. When the inner disjunction reaches its last dis-junct, its popping of the failure continuation stack exposes the element leftthere by the outer disjunction.When the code generator has �nished generating code for a disjunction,and is about to proceed to the rest of the procedure body, it sets the ag inthe top element of the failure continuation stack. If any goals following thedisjunction fail, the code generator must emit code to perform a redo. This isrequired because when processing the code following a disjunction, the codegenerator can't know where execution should resume on the next failure;it could be the start of any one of the disjuncts, or it could be somewhereinside a procedure called in one of the disjuncts.If the ag in the top failure continuation is set when the code generatorstarts processing a disjunction, the code generator knows that there maybe other nondet stack frames on top of the current one. Since backtrackingwithin the current disjunction will always refer to the redoip slot of the topnondet stack frame, the code generator would have to in e�ect hijack theredoip slot of a frame that may belong to another call. Since the contentsof this slot are unknown to the code generator yet may be needed later,the code generator would have to emit code to save this value at the startof the disjunction and restore it at entry to the last disjunct. However, thesecond and later disjuncts would be entered by backtracking, and the macrosthat implement backtracking (redo and fail) both set curfr to point to frameof the nondet stack from which they take the redoip, not to the frame ofthe current procedure. Creating an auxiliary procedure for the disjunctionwould avoid the problem, because the disjunction would then use the redoipslot of the auxiliary procedure. The way we handle such situations, pushinga new nondet stack frame and using only its �xed slots, is equivalent in mostways to creating an auxiliary procedure but avoids storing variables in twoplaces.

4.6 If-then-else and negationThe Mercury compiler handles if-then-elses di�erently depending on whetherthe condition can succeed more than once or not. If the condition can succeedat most once, the code generator can follow a relatively simple algorithm. Itcreates a new element on top of the failure continuation stack in the sameway as it does for disjunctions. It then generates code for the condition,pops the failure continuation stack, generates code for the then case, emitsa goto to the code following the if-then-else, emits the entry points for theelse case and generates code for the else case. It need not modify any redoipslots because the semidet code of the condition will not refer to such slots.If the condition can succeed more than once, then backtracking may causethe computation to reenter the condition. We want execution to continue atthe start of the else case if the condition fails before producing a solution.On the other hand, once the condition has succeeded once, we want theentire if-then-else to fail if the condition fails. We arrange for this to happenby emitting code that on entry to the condition saves and then overwritesthe contents of the redoip slot with the address of the label starting the elsecase, and resets the slot to its previous value at the start of the then case.We must make sure that this reset is a soft cut, i.e. it prevents backtrackingto the else case but not to the condition. If the condition contains callsto nondet procedures, this is easy, since they will have their stack framesabove the one being modi�ed. If the condition contains a disjunction, wemust arrange for it to create its own stack frame as well, which we do bysetting the ag on the top failure continuation. As with disjunctions, thecode generator emits code to create a new frame for a nondet if-then-else ifthe ag in the top failure continuation is set when arriving at the if-then-else.Mode analysis ensures that variables bound in the condition of an if-then-else are visible only in the then part; this lets us guarantee soundnesswithout runtime checks. Since negations can be considered a form of if-then-else (\not G" is equivalent to \if G then fail else true"), this goes fornegation as well.4.7 Implicit pruningIf a nondet goal produces no bindings visible from outside the goal, then allthe solutions produced by the goal are equivalent, and all solutions after the�rst should be pruned away. Therefore the determinism analysis treats thegoal as semidet, even though its evaluation actually requires nondetermin-ism. This requires careful handling, because the Mercury execution modelcannot tolerate a procedure succeeding more than once unless the compilerhas anticipated this possibility and generated code accordingly.A nondet goal may push frames onto the nondet stack before succeedingfor the �rst time. Pruning away any further solutions requires throwingaway these frames, and so the code generator emits code to save the maxfrregister before the goal and to restore it when the goal succeeds. If the goalfails without producing a solution, backtracking will resume at the pointindicated by the redoip of the nondet stack frame that was on top at thetime the goal was entered. If the goal is inside a semidet context such as

System cqu cry der nrv pol pri qst qun qry tak meanSWI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00NU 1.6 1.4 1.5 3.4 1.8 1.7 1.6 33.8 1.9 2.2 1.95wamcc 4.3 4.3 2.2 3.7 3.0 3.5 2.8 4.1 2.0 3.7 3.14Quintus 3.8 3.5 2.8 10.4 3.7 3.5 3.5 4.3 3.4 3.4 3.75SICStus 6.1 6.0 6.8 12.1 7.9 5.7 6.9 30.8 4.4 11.6 7.41Aquarius 25.9 7.6 15.8 36.9 18.9 12.9 32.8 26.1 18.2 94.2 19.01Mercury 47.5 29.1 25.4 40.2 39.3 23.3 39.8 31.4 39.0 116.8 35.83Table 1: Benchmark speed ratios on SPARCserver 1000, SWI-Prolog = 1the condition of a deterministic if-then-else, this is a problem, since semidetcode does not set the redoip. We can arrange for this branch to happen byhijacking the redoip of the frame that is on top when the goal being pruned isentered. Saving and restoring the old redoip is easy if the current procedurehas its frame on the det stack. It is more di�cult for a procedure that hasits frame on the nondet stack, because the failure of the goal being prunedwill in general set curfr to point to a frame not controlled by the currentprocedure. To enable the procedure to continue execution after this failure,we must save curfr on the det stack before entering the goal and restore iton failure. We could then restore the hijacked redoip from either stack; forsimplicity we always store the saved values of the hijacked redoip, curfr andmaxfr together on the det stack. This works because it is an invariant of ourexecution model that any call that returns, whether with success or failure,always restores the det stack pointer to its original value.5 Performance resultsWe have tested the speed of the Mercury implementation on a set of standardProlog benchmarks which we have translated to Mercury. These benchmarkscover several types of code, containing semideterministic and nondetermin-istic as well as deterministic predicates. We ran the benchmarks on Mercuryand on six other logic programming systems: SWI-Prolog 1.9.0, NU-Prolog1.6.4, wamcc 2.21 [2], Quintus Prolog 3.2, SICStus Prolog 2.1 [1], and Aquar-ius Prolog 1.0 [7] (these versions are the latest we have access to). For eachsystem we report the best results we can achieve with that system. Forwamcc, this means using the -fast math option. For Aquarius, it means ask-ing the compiler to perform global analysis on the program, and providingdeclarations specifying details such as that an argument of a predicate isground at the time of the call, that it is already dereferenced at the call, andthat it is a list or an integer. For NU-Prolog and SICStus Prolog, it meansproviding declarations to enable coroutining whenever doing so improvesperformance.Unlike the code generator for Mercury, the native code generators ofSICStus Prolog and Aquarius Prolog each target a small number of plat-forms. We ran the benchmarks on the fastest machine we have access tothat can run binaries generated by these systems. This machine is a Sun

System compile time �le size run timeNU-Prolog 8.4 minutes 1.9 Mb 116 sSICStus compactcode 7.2 minutes 4.4 Mb 101 sSICStus fastcode 13.6 minutes 7.4 Mb 71.1sMercury 68 minutes 2.2 Mb 18.5sTable 2: The Mercury compiler as a large benchmarkSPARCserver 1000 with four 50 MHz SuperSPARC processors each rated at60.3 SPECint92, although none of our tests used more than one processor.Table 1 contains a summary of our results, with all speeds in the ta-ble normalized to the speed of SWI-Prolog. Mercury is clearly the fastestsystem, being beaten by only one system on one benchmark. Aquarius isthe next fastest system. Its speed comes closest to Mercury on the twosmallest benchmarks, nrev and tak, while its relative performance is worston the two largest benchmarks, crypt and poly. NU-Prolog and SICStusProlog both perform very well on the nine-queens program. The complexityof this benchmark is factorial when executed left-to-right, but coroutiningreduces the complexity to polynomial. Nevertheless, the Mercury execu-tion algorithm is so much faster than the execution algorithms of NU-Prologand SICStus Prolog that for nine queens Mercury can hold its own, beat-ing SICStus and being only slightly slower than NU-Prolog. The cqueensbenchmark shows how Mercury does on the polynomial algorithm; it is asource-to-source transformed version of nine-queens with the coroutiningcompiled away.Using the harmonic mean, which is the appropriate way to average rates,Mercury is 88% faster than Aquarius, and outperforms SICStus Prolog fast-code by a factor of 4.8, Quintus Prolog by a factor of 9.6, and all the othersystems we measured by factors ranging from 10 to 36.The Mercury compiler consists of 94 modules; it has 60,000 lines of codetotaling slightly over 2 megabytes. It uses the 35 modules that constitutethe Mercury standard library, which have another 14,000 lines totaling about400 kilobytes. The compiler is mostly written in the intersection of threelanguages, Mercury, NU-Prolog and SICStus Prolog (some primitives havethree separate implementations), so we can use the compiler as a very largetest case to compare the performance of these three implementations. Theresults of these comparisons are summarized in Table 2. The �rst columngives the time to compile the Mercury compiler and link it with the Mercurylibrary. The second column gives the size of the resulting save �le or strippedexecutable. The third column gives the running time of the executable for atypical compilation task: compiling a medium-sized (400 line) module fromthe compiler. The results show that unlike SICStus fastcode, Mercury doesnot have a problem with code size, and that Mercury retains its e�ciencyeven for large programs. (The smaller speed ratio compared to the one fromTable 1, 3.8 vs 4.8, is due to our use of Boehm's C garbage collector, whichis not native to Mercury.) The larger compilation time is understandablegiven that the Mercury compiler does much more work than the compilers

for the Prolog dialects, but we are working on reducing it. Since we limitthe number of procedures compiled into one C function, only one third ofthe 68 minutes is taken by gcc -O2, so there is room for improvement.6 ConclusionGenerating e�cient code for Mercury is much easier than for Prolog, becausethe compiler can obtain the accurate and complete information it needs fromthe declarations. Since this information is guaranteed to be available, thebasic execution model can rely on it.Type information allows the compiler to specialize term representations,reducing the size of terms on the heap and therefore the cost of manipulatingthem. Mode information allows the code generator to specialize the code itemits for parameter passing and for uni�cations, and avoids the need fordereferencing and trailing operations and for explicit initialization of freevariables before they are bound; it also allows the compiler to generatefaster and more compact indexing code. Determinism information allowsthe compiler to generate specialized code for procedures that succeed atmost once. This specialized code uses a smaller stack frame that takes lesstime to set up, and always removes the stack frame as soon as possible (onsuccess) without having to check at runtime whether the frame is at the topof its stack.While the basic execution model for Mercury is already more e�cientthan the best Prolog implementations, our more novel techniques such aslazy code generation and the use of the failure continuation stack contributefurther to the speed of our implementation.We would like to thank Peter Schachte for running the Quintus Prologbenchmarks for us, Tyson Dowd for his comments on a draft of this paper,and the Australian Research Council, the Key Centre for Knowledge BasedSystems and the Centre for Intelligent Decision Systems for their support.References[1] M. Carlsson and J. Widen. SICStus-Prolog user's manual. Technical Report88007B, Swedish Institute of Computer Science, Kista, Sweden, 1988.[2] P. Codognet and D. Diaz. wamcc: Compiling Prolog to C. In Proceedings ofthe Twelfth International Conference on Logic Programming, pages 317{331,Kanagawa, Japan, June 1995.[3] B. Hausman. Turbo Erlang: approaching the speed of C. In E. Tick, editor,Implementations of logic programming systems. Kluwer, 1994.[4] P. M. Hill and J. W. Lloyd. The G�odel programming language. MIT Press, 1994.[5] A. Mycroft and R. A. O'Keefe. A polymorphic type system for Prolog. Arti�cialIntelligence, 23:295{307, 1984.[6] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,an e�cient purely declarative logic programming language. Journal of LogicProgramming. To appear.[7] P. Van Roy and A. Despain. High-performance logic programming with theAquarius Prolog compiler. IEEE Computer, 25(1):54{68, January 1992.

