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”There is no tabula rasa.
We are like skippers
who have to rebuild their ship on the open sea
without ever being able to dismantle it in a dock
and reconstruct it of best parts.”
(Otto Neurath)

Abstract

The paper starts with an examination of the notion scalability. Afterwards it
discusses scalability issues in state—of-the—art kernel architectures, i.e., micro-
kernels. It motivates the program family concept and object—orientation as the
key to success in the design of an open microkernel architecture. To meet the
special needs for massively parallel distributed memory machines, a kernel fam-
ily is proposed by presenting the PEACE approach as case study.

1 Introduction

In the light of short-lived cycles of development it is of no surprise that nearly
every hard— or software—system is decorated with the attribute of being scal-
able. Regarding kernel architectures, we hear about scalability just like multi—
threading or virtual memory support. However, in difference to the latter con-
cepts there is only a vague understanding of what scalability really means within
a kernel architecture.

A lot of work has been done on scalable computing system architectures.
In this context, scalability refers to an unlimited extensibility of computing
systems, e.g., scaling up a 64-node system to a 512-node system without run-
ning into architectural bottlenecks. Usually, scalable computing systems are
not based on shared memory, but on distributed memory, and often rely on
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simple processors with a limited general computation capability. In the area of
parallel algorithms the notion of scalability is known as well. Despite different
metrics, scalability of a parallel algorithm on a parallel machine is a measure
of its capability to utilize a larger number of available processors.

But how are we supposed to understand the notion of scalability concerning
kernel architectures 7 Mainly, it is the task of a kernel to support the mapping of
(parallel) algorithms on (parallel) computing systems. As mentioned, scalability
issues are considered in the applications as well as in the underlying hardware
architecture, but they are neglected by state—of-the—art kernel architectures. Up
to now, kernel architectures rely on an autonomous design. Dependent on hard-
ware properties a closed set of functionalities is provided, e.g., multi-tasking
or virtual memory support. The kernel takes the same shape for all kinds of
applications, thus, ignoring the concrete demands on an application. !

The autonomous design of a kernel enforces that the scalability is limited
to a scale with exactly one mark. Accordingly, a scalable kernel must provide
the whole set of functionality at all time. This spoils the scalability of a parallel
algorithm, since the presence of unnecessary code—parts results in a reduced
effectiveness. Such a drawback is unacceptable for a high—performance kernel
architecture and suggests that autonomy and scalability are incompatible topics
within a kernel architecture.

The paper starts with an examination of state-of-the—art operating systems,
i.e., microkernel architectures. Afterwards it discusses the design of the parallel
operating system PEACE [4]. It illustrates basic PEACE concepts and explains by
what means support for massively parallel, distributed systems is given. Object—
oriented mechanisms as well as strategies for dynamic system reconfiguration
in PEACE are presented.

2 Microkernel Architectures

State—of-the—art operating systems are based on microkernel architectures. One
of the most favorite systems representing this category is Mach [28]. A micro-
kernel architecture is the attempt to decompose an operating system structure
with the overall design rule to keep hold on those functions, whose processing
on top of the kernel would be critical. The bulk of operating system services is
accordingly executed in non—privileged user mode. Only a small set of services
is subject to privileged supervisor mode execution. This organization supports
a fault tolerant and application—oriented system structure. It hence seems to
be the appropriate basis for all fields of application. This is true for distributed
systems, but does not hold entirely for massively parallel distributed memory
systems. Even the microkernel is too complex and, thus, too overhead—prone if
the very hard performance requirements of massively parallel systems are taken
into account. These requirements are to support a system—wide message startup
time in the order of magnitude of 10 microseconds (using a 40 MIPS processor)
[16].

!Some very first and timid attempts has been done to break up the inflexibility. These
efforts are related to the notion of extensibility.



Mach is a good example to clarify what the climax of microkernel complex-
ity can be. The Mach 3.0 kernel is a software system of about 100.000 lines of
C code (with comments excluded). Alone this large amount of source code is
in contradiction to the common understanding of the notion microkernel. As
comparison, the ancestor of the most successful operating system known to date
was based on a kernel implementation of about 10.000 lines of C code (with
comments included) [14]. Microkernel-based operating systems have been de-
veloped as counterpart to monolithic operating systems such as UNIx. However,
this does not imply that the microkernel is no monolith too. The monolithic
Mach microkernel is an order of magnitude more complex than the original
monolithic UNIX kernel.

From the functional point of view, standard microkernels as used in Mach
and Chorus [22] typically encompass interprocess communication, scheduling,
security, process management, (virtual) memory management and exception
handling. These are functions to support a multi-tasking mode of operation.
They are necessary to process microkernel-based operating systems where ser-
vices are provided by tasks being executed in user mode. Thus, even if an appli-
cation does not require this operation mode, it must pay for it. This introduces
significant overhead for those types of parallel applications which expect that
tasks are mapped in one-to—one correspondence with the nodes of a massively
parallel distributed memory system [25]. Multi-tasking is not free of charge and
it is only needed if the one—to—one mapping can’t be done for all the tasks.

It is true that, in terms of software engineering arguments, a microkernel
must not be of minimal size [9]. However, are all the functions really manda-
tory fundamental building blocks? It obviously depends on the application field.
Only if applications always demand these functions, either explicitly or implic-
itly, then a microkernel of this complexity is the right choice. A further software
engineering argument is to have available for user applications only those func-
tions which are really demanded. This is the only way to keep kernel complexity
as small as possible, to have the chance to understand potential performance
bottlenecks and to be really application—oriented [21]. In addition, for security
reasons complexity must be sacrificed as far as possible.

3 Approaching the Concept of Program Families

Forthcoming massively parallel systems are distributed memory architectures
and will consist of several hundreds to thousands of autonomous processing
nodes interconnected by a very high—speed network. A major challenge in op-
erating system design for these parallel architectures is to elaborate a structure
that reduces system bootstrap time, avoids bottlenecks in serving system calls,
promotes fault tolerance, is dynamic alterable, and application—oriented. At the
same time utmost highest communication performance must be provided. The
solution to these problems is an approach in which an operating system is un-
derstood as a family of program modules [21] and not as a monolithic ”saurian”
of more or less related components.

A parallel operating system has to provide only a minimal subset of system



functions. Driven by the application, additional system/kernel services are to
be considered as minimal system extensions [21]. In order to optimally support
applications, minimal system extensions then are loaded on demand, at the
time initially requested.

This approach especially would mean that a microkernel is built by minimal
extensions to a "nanokernel” and the minimal extensions are subject for incre-
mental loading. Operating system scalability is generally improved. While the
microkernel approach promotes a scalable system organization for distributed
systems, the "nanokernel” does so for massively parallel systems too — it pro-
motes a scalable kernel architecture. Hence, a ”"nanokernel” bridges the gap
between massively parallel systems and distributed systems. It makes it feasi-
ble that design principles of distributed systems can be applied to massively
parallel systems.

3.1 Minimal Basis

In the program family concept a minimal subset of system functions provides a
common platform of fundamental abstractions. This minimal basis encapsulates
solely mechanisms from which more enhanced system functions can be derived.
It will be built by a consequent postponement of design decisions. Fundamental
abstractions to make massively parallel systems work then are processes and
communication, i.e., message passing.

Processes introduce scaling transparency and, thus, make the modeling of
parallel applications independent from the actual number of processing nodes.
Scaling transparency, however, is not only an issue in the programming of mas-
sively parallel systems [10], but improves also availability in the case of perma-
nent nodes failures. Even if the application is tailored to the actual number of
processing nodes, the crash of a single node could mean the premature end of
application processing if the system does not support the migration of program
activities onto still functioning nodes. For this purpose the system needs an
instrument for the modeling of program activities, which is the process. Thus,
a process serves as the common abstraction for both the application and the
operating system.

Communication based on message passing is a must when processing nodes
have direct physical access only to local memory. Access to non—local mem-
ory, i.e., to the local memories of other nodes, involves the execution of a net-
work communication protocol. Because processes form the basic abstraction to
model (user/system) activities, interprocess communication rather than intern-
ode communication is required.

Whether synchronous or asynchronous communication should be supported
strongly depends on the process model and on its implementation [3]. Syn-
chronous interprocess communication is the best choice in order to achieve the
maximal utilization of network bandwidth. In contrast to asynchronous com-
munication, intermediate buffering and, hence, additional overhead of message
copying is not implied by the communication model; at most, it will be implied
by the network hardware interface.

The decision for synchronous interprocess communication implies a poten-



tial loss of parallelism. This must be compensated by a process model which
allows concurrent programming even on a single node, i.e., which supports a
multi—threaded address space. Obviously, the implementation of this process
model must lead to a process switch time which is significantly smaller than
the copying and buffering overhead involved in asynchronous communication.
Such a model is mechanized by lightweight processes[13] and being implemented
as featherweight processes [10] to meet the performance requirements for paral-
lel operating systems. The minimal basis then strongly promotes a processing
model in which concurrency is not a side effect of communication, but is ex-
pressed explicitly by means of threads building a team. It implements a process
execution and communication environment (PEACE) for parallel/distributed
applications.

3.2 Minimal Extensions

A minimal basis which supports threading and communication already suffices
to execute parallel programs. Moreover, it could be considered as the only op-
erating system support residing on a processing node and being required by the
application. In these dedicated applications the minimal basis is already the op-
timum. Additional functions are not used on the nodes and, hence, would only
withhold system resources (such as memory space and processor time) from the
given application.

It is the second important feature of the program family concept, that,
dependent on the individual application, a stepwise functional enrichment of
the minimal basis is performed by means of minimal system extensions only.
These extensions encapsulate mechanisms and /or strategies. However, it might
be the case that no system extensions are necessary at all. The application itself
is always the best extension one can think of — it is the final extension anyway.

By adding minimal extensions, an operating system family is constructed
bottom—up, whereby construction is controlled top—down: lower—level compo-
nents are introduced only when required by higher—level components. This way,
system functions for scheduling, security, process management, (virtual) mem-
ory management, exception handling, file handling, checkpointing and recovery
are introduced. An open, application—oriented and evolutionary system organi-
zation is the consequence.

Understanding functional enrichment as an add—to in terms of components
is only one aspect. It also includes component replacement. During the design
phase a commitment on the minimal subset of system functions must be made.
This includes the risk of stating wrong design decisions. One of the most im-
portant decisions is concerned with the identification of the proper operation
mode, i.e., whether single-tasking or multi—tasking is to be supported.

The processing of parallel applications by a massively parallel machine al-
ways implies communication, hence the need for communication functions. The
application might also call for a single or multi-threaded address space (i.e.,
task) on a node. Another application demands multi-tasking, which then is a
functional enrichment of multi-threading. Should the minimal basis therefore
support multi—tasking? If the design decision advocates multi-tasked nodes and



tasks are mapped in one-to—one correspondence with the nodes, then a signif-
icant degradation of the message startup time will be the result [25]. Multi—
tasking is not free of charge, even if not utilized by the application. A design
decision to support solely multi-tasked nodes will handicap single-tasking ap-
plications and, thus, will not be conform with the idea of program families.

To overcome this problem, all applications must see the same external (ab-
stract) interface of the minimal basis. What differs is the internal behavior, i.e.,
the concrete implementation. The external interface is mainly concerned with
communication, while the internal behavior mainly dictates the process model
and the operation mode of the node. With the minimal basis being an abstract
data type [15] a number of implementations of the same interface can coexist.
This makes the minimal basis exchangeable at least from the design point of
view. Flexibility is maintained although the minimal subset of system functions
must have been fixed early in the software design process.

4 The Role of Object Orientation

Applying the family concept in the software design process leads to a highly
modular structure. New system features are added to a given subset of sys-
tem functions. One instrument to implement a program family is to apply the
abstract data type mechanism. An instance of an abstract data type is imple-
mented by a module. System functions then are represented by the operations
which are defined by the module interface specification. The entire system ends
up with a multi-level hierarchy of a multitude of program modules, with a well—
defined uses relation [21] between the modules to associate them to levels in
the hierarchical system.

A problem with the module—oriented approach is the potential for a large
number of redundant code and data portions in those cases where different
implementations of the same module interface coexist [6]. That the redundant
portions are not encapsulated by an abstract data type on its own, i.e., extracted
and implemented by a separate ”service module” and then being properly used
by the instances is due to at least two facts: genericity and efficiency. One often
examines that the new service module must be capable to deal with objects of
different type, whereby the type is defined by those instances which will use the
new module: the new module is generic. Having strongly followed the pattern of
abstract data types, the additional module boundary often implies an increase
in runtime overhead due to additional procedure calls for operation invocation:
the new module introduces a potential performance bottleneck.

The feasibility of this kind of abstract data typing depends on the power
of the programming language to implement generic module interfaces and on
the function inlining capabilities of the compiler. If a parallel operating system
is required to guarantee a message startup time in the order of magnitude
of 10 microseconds (assuming a 40 MIPs processor), any increase of runtime
overhead caused by either of programming paradigm, programming language
or compiler is not acceptable. 2 The much more promising approach in the

2The first PEACE kernel prototype for a distributed memory parallel computer was im-



design and development of operating system families, therefore, is to apply
object orientation [27]. In other words, object orientation is the natural choice
to build program families [7]. The buzzword is inheritance [12] to avoid large
portions of different module versions to be identical. Functional enrichment
defines new family members, which always inherit properties of existing family
members. The new family member is built by at least one new specialized class
by derivation from one or more base classes (single/multiple inheritance). This
implies the re—usage of existing implementations on a sharing basis, meaning
that code/data redundancy will never appear in a clean object—oriented design.

In class—based object orientation [5], the class definition includes the imple-
mentation of the methods defined on objects of that class. This makes function
inlining straightforward and, hence, reduces the procedure call overhead to an
absolute minimum. An example is C++ [26], which also supports abstract data
type based object orientation. Note, the major problem with identical portions
of different module versions primarily is not wasted memory space, which func-
tion inlining implies too. Above all, it is a software maintenance problem, which
(class—based) object orientation with or without function inlining helps to avoid.

There is another feature of object orientation which is of importance for the
implementation of a family of operating systems. This feature is known as poly-
morphism. A base class specifies the operations which are defined on objects
of that class. In the course of inheritance, a derived class may specify either
the same operations again or a subset only. These redefined operations usu-
ally show for a different, more specialized implementation. The external class
interface is still described by the same base class, while different implementa-
tions of the same interface can coexist by means of inheritance and dynamical
binding. Polymorphism strongly supports the design and implementation of re-
placeable components. Featuring the proper derived class is dynamic and works
transparently to the instance applying the base class only.

5 A Parallel Operating System

The PracE family concept distinguishes between a macroscopical view to iden-
tify the overall system architecture and a microscopical view to define the min-
imal subset of system functions that must be present on each node. The former
aspect deals with distribution and the latter aspect deals with performance.

5.1 Macroscopical View

A member of the PEACE parallel operating system family is constituted by
three major building blocks: nucleus, kernel, and Posg (Figure 1). The nucleus
implements system—wide interprocess communication and provides a runtime
executive for the processing of threads. The PEACE nucleus is part of the kernel

plemented in Modula—2. Performance was not acceptable. A transformation into C and non—
optimized compilation let to a negligible performance improvement. Applying the keyword
? register” at meaningful places and with optimized compilation, a 40 percentage performance
increase was obtained [24]. Register optimization let to fewer memory traffic, which is signifi-
cant if the processor executes 3 (4) wait states on each read (write) memory access.



Figure 1: Building Blocks

The dividing line between user and supervisor mode is a logical boundary
only. It depends on the concrete representation of the interactions specified
by the functional hierarchy (and of the processor architecture) whether this
boundary is physically present. The functional hierarchy of these components
(Figure 2) defines the way decentralization works with PEACE. All components
are encapsulated by (active/passive) objects. An object invocation scheme must
therefore be used to ask for service execution.

Nucleus services are made available to the application via nearby object in-
vocation (No1). The logical design assumes a separation of the nucleus from the
application (and PosEk), which calls for the potential of address space isolation
and of traps to invoke the nucleus. This is the place where cross domain calls
may happen. The kernel shares with the nucleus the same address space and,
hence, performs local object invocation (Lo1) to request nucleus services. Kernel
services are made available via remote object invocation (Ro1) [19], an object—
bound mechanism similar to the remote procedure call paradigm [18]. Services
of Posk are requested via L.o1 and Rol1. Here, Lot is used to interact with the
Posk runtime system library and Rol is used to interact with the POSE active
objects.

From the design point of view neither the kernel nor POSE need to be present



Figure 2: Functional Hierarchy

on each node, but the nucleus. In a concrete configuration, the majority of the
nodes of a massively parallel machine is equipped with the nucleus only. Some
nodes are supported by the kernel and a few nodes are allocated for Posg. All
nodes can be used for application processing, but they are not all obliged to be
shared between user tasks and system tasks.

It is important to understand that the functional hierarchy of the three
building blocks expresses the logical design of PEACE only, and not necessarily
the physical representation. The building blocks are designed with respect to
the various schemes of object invocation as shown in Figure 2. However, it
depends on the actual operating system family member whether these schemes
become effective as specified by the design or can be replaced by a more simple
alternative. For example, although the functional hierarchy assumes NoI for the
interaction between application (Posg) and nucleus, the Lol scheme is used for
those members of the nucleus family which place their focus on performance
and support single-tasking mode of operation only.

5.2 Microscopical View

A process execution and communication environment forms the minimal subset
of system functions required by massively parallel systems. This minimal basis
of PEACE is a compromise between transparency and efficiency. For different
applications there are different implementations of the same interface of the
minimal basis, hiding all the internals. This transparency is to the convenience
of the application programmer.

The minimal basis is defined as a family of functional dedicated units with a
single external interface — all family members inherit the same base class that



Figure 3: Nucleus Family Tree

The entire family tree shows different nucleus versions, with the root (top)
being the most simple and the leaf (bottom) being the most complex instance.
As complexity increases, performance drops.

The nucleus family defines a pool of functional units of more or less com-
plexity, likewise offering lower or higher performance. Dependent on application
requirements and on the actual utilization of the parallel machine, the proper
nucleus version comes into play. Whether a nucleus instance is being integrated
statically or dynamically is not of primary importance from the design point of
view. First the complete family structure must be known and then the decision
can be made to implement the family as a dynamically alterable system.

°In reality there are several base classes which represent the external view of the minimal
basis. These classes are ticket (delivery of system—wide unique communication endpoint identi-
fiers), notice (intra—team thread synchronization with empty messages), parcel (packet—based
synchronous, system-wide inter—process communication), and region (segment—based asyn-
chronous, system—wide inter—team communication). They stand for horizontal independent
functional units of the nucleus.

10



5.2.1 Single—User/Single-Tasking

There are three different nucleus instances supporting single—user/single—
tasking mode of operation. The two most eflicient instances provide network
communication and thread scheduling on a library basis. Thus, these nucleus
instances are part of the address space of the user/system process. This implies
that no overhead—prone address space boundaries must be crossed to invoke the
nucleus.

PEACE only implements synchronous interprocess communication. Concur-
rency then is to be modeled explicitly by the application using multiple threads
of control. The threading instance (i.e., thread scheduling) is the correspond-
ing mechanization. Because of the non—existent address space boundary, this
nucleus is extremely lightweight and, thus, supports the notion of feather-
weight processes. Featherweight processes are a specialized implementation of
lightweight processes. They are the purest form in PEACE to represent units of
execution, without consideration of any protection and security measure.

The threading instance combined with the need for kernel code separation
makes nucleus calls more heavyweight. Now, traps are used to invoke the nu-
cleus. This implies very small stub routines to marshal and unmarshal nucleus
service requests similar to the remote procedure call paradigm. However, instead
of passing a message over a narrow channel, a local trap is to be performed.
A featherweight remote procedure call (i.e., NOI) is executed to activate the
nucleus. Solely the gap implied by the trap interface is bridged. Kernel code
separation is supported, but not memory protection. As a consequence, the
passing of complex data structures between the nucleus and higher—level enti-
ties is straightforward and involves no programming of address space protection
hardware.

The functional enrichment introduced by nucleus separation enables dy-
namic component replacement by a third party. Higher—level entities are physi-
cally uncoupled from nucleus code. Because each nucleus instance is an abstract
data type, these entities are also logically uncoupled from nucleus data. The
basic mechanism to switch between different nucleus instances on the fly is to
exchange trap vector entries.

5.2.2 Multi-User/Single-Tasking

In a distributed memory parallel machine, multi—user mode of operation is fea-
sible even if only a single task is mapped onto each node. The entire multi-node
machine can be allocated to different users at the same time. Obviously, this
does not require local ("on—board”) security measures to protect the tasks from
each other, but it requires to protect the network interface from unauthorized
access. By direct network access the user task could be able to intrude the
network and, thus, tasks of different user applications.

In order to provide a multi—user function, the nucleus must be completely
isolated. Memory protection is to be introduced, leading to a new instance:
kernel isolation. Because the nucleus is part of the kernel domain, applying
memory protection to the nucleus also implies the isolation of parts of the ker-
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nel address space. Concerning nucleus separation, no additional overhead is
introduced. However, the isolated nucleus address space makes the passing of
complex data structures heavyweight. It mainly depends on the address space
protection hardware how crucial the additional overhead really is. Anyway, the
increase of nucleus functionality is encompassed by the potential of communi-
cation performance loss.

On each node, network integrity must be guaranteed, but not necessarily
the integrity of user task address spaces. This leads to the introduction of com-
munication firewalls between different user applications. Each user application
builds a unique communication domain. The same holds for the set of system
processes constituting the operating system. Within the same domain commu-
nication is unlimited. In order to invoke system services, application processes
must communicate with system processes. Consequently, different communica-
tion domains must overlap to let communication succeed. Thus, communication
security does not mean complete isolation, solely, but also controlled access.

A capability—based approach is used in PEACE for this purpose. This ap-
proach grants object access only if a thread (i.e., subject) is in the possession
of that object or one of its proxies. An object must be created before it can
be used. It is then the autonomous decision of the object creator to make the
object globally accessible. The access domain of an object may be extended by
the object creator by exporting a proxy object [19]. Via the proxy global (i.e.,
network-wide) object access then is feasible.

5.2.3 Single-User/Multi-Tasking

The first step towards multi—tasking support is to introduce task schedul-
ing. In PEACE, a task maybe multi-threaded, which implies only lightweight
scheduling. In order to schedule tasks, a second scheduling level is implemented.
This level knows the bundle as scheduling unit, which consists of one or more
threads. A single threads bundle always is executed by one processor, with non—
preemptive scheduling of the threads of the same bundle. Preemptive scheduling
is between bundles only, and so is shared—memory multiprocessor scheduling
with the different bundles being executed by different processors. A task then
may consist of several bundles to take advantage of preemption and of the
shared—memory processor architecture. The result is a slightly more expensive
scheduler.

At this stage, multi—tasking can be supported even if task isolation by means
of private address spaces is not provided. A private address space serves for two
basic purposes. On the one hand it implements memory protection, isolating
programs from each other. On the other hand it defines a logical address space
for program execution, enabling code/data relocation at runtime. Being relo-
catable is also a property of position independent code, which then needs to
be generated by a compiler. In addition, the use of secure programming lan-
guages supports program isolation without the necessity of address space pro-
tection hardware. Therefore, the minimal basis to support multi—tasking is task
scheduling. Task isolation is the minimal extension of task scheduling. It is used
to generally improve system availability and in those cases where neither the

12



programming language nor the compiler supports the nucleus.

5.2.4 Multi-User/Multi-Tasking

The fourth operation mode being supported by the nucleus family is the natural
consequence of the two modes discussed before. There is little more of function-
ality to add. Global multi—user mode of operation is made feasible by enforcing
network integrity, whilst local multi—user function is directly supported by task
isolation. The nucleus then provides general security measures, with completely
isolating different (user/system) domains from each other.

6 Adaptive Operating System Architecture

The operating system building block of PEACE is mainly represented by PosE,
which implements a family of parallel operating systems. POSE services are
application—oriented extensions of the PEACE minimal basis, i.e., of the nucleus
and the kernel. These services are provided by teams of lightweight processes
and, usually, are executed in non—privileged user mode. Since the representation
of the functional hierarchy of PEACE enables an almost arbitrarily decentraliza-
tion of the building blocks, this does not enforce a microkernel approach and,
thus, the need for multi—tasking on a single node.

6.1 Active Objects

Distributed memory architectures at least call for an object—based system de-
sign. In POSE, system services are represented by active objects, i.e., teams of
lightweight processes implement system functions such as process management
or file handling. Consequently, requesting the execution of a system service
requires to send a message to some process. A typical client—server relation is
established. POsE then consists of a multitude of cooperating teams distributed
over the nodes. These teams are called manager.

The consequent usage of teams for system service encapsulation has several
benefits. It provides a natural basis for building application—oriented operating
systems. System services need only be present if they are required, meaning
that the corresponding teams are created and loaded on—demand. Especially in
the case of massively parallel systems, it is not required that user teams share
the same node with system teams. This significantly reduces global system
initialization time and makes the parallel system to appear as a processor bank
whose purpose is to exclusively execute user applications.

Following the team structuring approach, the notion of a system call (ser-
vice invocation) is slightly different from the traditional viewpoint of a trap.
A system call must be requested by means of message passing, distinguishing
between local and remote operation. In order to hide all these properties from
both the service user (client) and the service provider (server), a PEACE system
call in general takes the form of remote object invocation [19].

13



Figure 4: System Access

The porter takes the form of a library; it is part of the team address space
of the service-requesting process. Dependent on the type of service, the porter
may also encapsule private threads. For example, using porter threads enables
service-related exception handling on a message—passing basis.

6.3 Third Party Configuration

Above all, a parallel operating system must be designed such that the amount
of system software which is to be executed by each node can be reduced to an
absolute minimum; otherwise, system bootstrapping becomes a nightmare. For
this reason, Posk distinguishes between site-dependent and site-independent
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managers.

A site-dependent manager typically provides low-level and hardware—
related services. For example, the disk manager encapsules device dependent
functions and, thus, must reside in a node that has a disk attached. It is site—
dependent, whereas the file manager, which uses the disk manager, may reside
elsewhere and is considered as site-independent. Another example of a site—
dependent manager is the kernel team. If dynamic process management is re-
quired on a node, a kernel must be present on that node to construct/destruct
process objects. A process manager, however, is site-independent. It may reside
on any other node and may also be responsible for the management of several
nodes.

The property of being configurable is absolutely necessary to meet the needs
for massively parallel systems. Except in the case of site-dependent managers,
a third party is able to establish PEACE (i.e., POSE) configurations based on the
individual needs of parallel /distributed applications. The configuration decision
then will be made with respect to either performance, protection, or hardware
availability.

6.4 Incremental Loading

The basic idea in PEACE is to perform on—demand loading of system services
[23]. That is, system services are only loaded at the time when they are really
needed. On—demand loading of services at runtime can be accomplished either
explicitly, by using dedicated system calls, or implicitly, during service invo-
cation if the corresponding manager does not yet exist. The latter approach
requires close cooperation with the Ro1 layer.

If service addressing fails, a server fault is raised, similar to a page fault
in virtual memory systems. Handling a server fault results in the loading of
the requested service, i.e., the proper manager team is created and given a
program for execution. * Entity (or server) faults are propagated to a system
team called plumber. Basically, this means that, once having determined that the
entity is not yet available, a stub routine requests entity loading by instructing
the plumber accordingly (Figure 5). The stub passes the load request to the
plumber which then takes charge of all activities related to the loading of the
specified entity. Note, the porter takes the form of a system library and belongs
to the team of the thread that caused the entity fault. As long as fault handling
is in progress, on behalf of the porter the thread is blocked on the plumber,
waiting for loading to be completed.

The plumber maps entity names onto file names, i.e., associates with entities
a file that describes the team image to be loaded. With each entity name several
attributes are stored. For example, the file may describe either a plain team
image or a complete boot image. In case of site-dependent managers, the node

*Any kind of service that can be loaded on demand is in no way distinguished from an
application process. Thus, on—-demand loading works for both user and system applications.
The general term entity is used for teams that belong to either of these application classes. In
this sense, the server fault actually means an entity fault.

15



Figure 5: Entity Fault Handling

addresses are stored with the entity name. A distinction between the single—
tasking or multi—tasking mode of operation for the entity is also made.

In PEACE, the minimal basis for dynamic restructuring requires no complex
memory management functions. A maxim was that even with a single—tasking
nucleus instance, which is not based on address space protection and, therefore,
encompasses no memory management functions, dynamic restructuring of the
node of that nucleus must be feasible yet. This node, e.g., must be given multi—
tasking capability by exchanging the kernel and then allocating tasks. If the
PEACE kernel comes up, and so the nucleus, it always assumes non—protected
address spaces. The capability to protect address spaces is the kernel taught
by the memory manager, a side-independent system team which is loaded on
demand.

7 Related Works

The PEACE approach goes beyond that what is presently intended by state—of—
the—art microkernel designs, it defines a microkernel family. In systems such as
Mach [28] and Chorus [22], the microkernel is a fairly complex component, used
to support the implementation of operating system services and the processing
of distributed applications. As in PEACE, a Chorus operating system is consid-
ered as a member of a family of functional units, with a unit being represented
by a (multi-threaded) system server process, i.e., an active object. PEACE also
applies the family concept to structure the kernel and not only an operating
system. This results in a (multi-threaded) kernel implementation with a dis-
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tinguished component, the nucleus, providing a common process execution and
communication environment. The Chorus microkernel (also termed nucleus) is
the only choice applications have. In PEACE, the nucleus family presents an
assortment of up to eight different members.

Ra [2] is a minimal kernel for the Clouds distributed operating system [8].
The Ra kernel is designed to support the implementation of large scalable
object—based systems. Ra is a fairly complex minimal kernel too, implement-
ing segment—based virtual memory management and short term scheduling. At
best, Ra can be compared to the PEACE nucleus instance that provides task
isolation, which is one of the most complexest nucleus family members at all.

Clouds distinguishes between objects and threads, i.e., it is structured by
passive objects. The rationale for this approach is to avoid performance penal-
ties caused by the virtually more complex code of multi—threaded server im-
plementations. That multi-threaded server are more complex is only true for
completely hand—coded implementations, but not for implementations that are
supported by a class—based stub generator as in PEACE [19]. Any way, reducing
server code complexity by downward migration of functions into the minimal
kernel as followed with Ra is not the ultima ratio. It makes the minimal basis
more complex and, thus, more overhead—prone.

The system which comes very close to PEACE is Choices [6]. Many ideas
found in Choices are present in PEACE, and vice versa. This is because both
systems share the same fundamental, classic idea of a family of operating sys-
tems [11]. They extend this idea into object—oriented, distributed/parallel en-
vironments. As Choices, PEACE is a class—hierarchical system. By means of
the nucleus family, PEACE further distinguishes between a number of opera-
tion modes a node of a massively parallel system is exposed to. It is exactly
this feature which becomes more and more important for forthcoming parallel
operating systems.

Dynamic restructuring in PEACE is related to active and passive objects.
Introducing active objects is straightforward and based on services to create and
destroy teams of lightweight processes. Exchanging passive objects is limited to
the nucleus. This is in contrast to Clouds, e.g., where arbitrary passive objects
may be dynamically introduced. For this purpose Clouds relies on the segment—
based virtual memory management service of the Ra kernel. These constraints
are not given with PEACE in general. There are some PEACE family members
implementing segment—based virtual memory management; there are others
not being dependent on the presence of address space protection hardware and
supporting dynamic restructuring yet.

8 Conclusion

The paper described rationale and concepts for the design of scalable operating
systems for massively parallel systems. The program family concept combines
a number of solutions to different application requirements. This concept pro-
motes not only customized operating systems from the application point of
view (top—down customization), but also from the hardware architecture point
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of view (bottom-up customization).

A distinction between operating system family and a nucleus family must be
made to meet the performance requirements of forthcoming massively parallel
systems. In the former case, the family is built by a number of site-independent
functional units representing typical operating system services. In the latter
case, a platform for both kernel construction and application processing is pro-
vided. A member of the nucleus family must be an abstract data type to allow
a number of different implementations to coexist. The nucleus family takes the
form of an assembly camp, but not the single nucleus implementation. From
this assembly camp the proper solution is selected to optimally support a given
application. This way, the PEACE approach provides a scalable, i.e., WYNIWYG-
architecture ( What You Need Is What You Get) for both the kernel and the
operating system. A single solution always is a bad compromise if utmost high-
est communication performance must be guaranteed and a large spectrum of
applications must be supported.

Approaching the family concept as exemplified with PEACE makes micro-
kernels appear as extensions to a minimal basis. That is, PEACE provides a
framework not only to build upward scalable but also downward scalable kernel
architectures, an important property of parallel operating systems. The micro-
kernel as being understood to date is merely a member of the PEACE family.
To keep things right in mind: the functionality of state—of-the—art microker-
nel architectures facilitate scalability but at the same time forms an essential
scalability handicap in case of unnecessary functionality is provided. Thus, the
PrAcCE family design bridges the gap between distributed systems and massively
parallel systems which are based on distributed memory architectures.

The family is designed, constructed and implemented following the
paradigm of object orientation [7]. Classes implement system features and in-
heritance (i.e., subclassing) is used to derive new features or specializations of
existing ones. First experiences with objective PEACE show that object orien-
tation is superior to non—object oriented approaches. This is true for aspects
such as maintainability, extensibility and performance of the resulting operating
system. It is indeed a myth that object orientation makes the implementation
of very high—performance operating systems impossible. Rather, it is true that
object orientation is the only chance to build high—performance systems while
maintaining a clean and evolutionary system structure.

The object—oriented paradigm in design and implementation of a dis-
tributed /parallel operating systems is widely accepted but, with the exception
of a few operating systems, e.g., Choices and PEACE, not applied in correspon-
dence to Wegners definition [27]. A general problem for commercial systems
like Mach or Chorus is how to organize a complete redesign of their operat-
ing system. There are plans going into this direction and which shows that
the system’s investigators are encouraged of the object—oriented paradigm. Un-
fortunately, as pointed out by Neurath, they can’t enjoy all the opportunities
object—orientation offers because of their market constraints.
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