
Towards a Scalable Kernel Architecture �J�org CordsenWolfgang Schr�oder{PreikschatGerman National Research Center for Computer ScienceGmd First BerlinRudower Chausee 5 (13.7), O{1199 Berlin{Adlershof, Germanyfjc,woschg@�rst.gmd.deJuly 27, 1992"There is no tabula rasa.We are like skipperswho have to rebuild their ship on the open seawithout ever being able to dismantle it in a dockand reconstruct it of best parts."(Otto Neurath)AbstractThe paper starts with an examination of the notion scalability. Afterwards itdiscusses scalability issues in state{of{the{art kernel architectures, i.e., micro-kernels. It motivates the program family concept and object{orientation as thekey to success in the design of an open microkernel architecture. To meet thespecial needs for massively parallel distributed memory machines, a kernel fam-ily is proposed by presenting the Peace approach as case study.1 IntroductionIn the light of short{lived cycles of development it is of no surprise that nearlyevery hard{ or software{system is decorated with the attribute of being scal-able. Regarding kernel architectures, we hear about scalability just like multi{threading or virtual memory support. However, in di�erence to the latter con-cepts there is only a vague understanding of what scalability really means withina kernel architecture.A lot of work has been done on scalable computing system architectures.In this context, scalability refers to an unlimited extensibility of computingsystems, e.g., scaling up a 64{node system to a 512{node system without run-ning into architectural bottlenecks. Usually, scalable computing systems arenot based on shared memory, but on distributed memory, and often rely on�This work was supported by the Ministry of Research and Technology (BMFT) of theFederal Government, grant no. ITR 9002 2. 1



simple processors with a limited general computation capability. In the area ofparallel algorithms the notion of scalability is known as well. Despite di�erentmetrics, scalability of a parallel algorithm on a parallel machine is a measureof its capability to utilize a larger number of available processors.But how are we supposed to understand the notion of scalability concerningkernel architectures ? Mainly, it is the task of a kernel to support the mapping of(parallel) algorithms on (parallel) computing systems. As mentioned, scalabilityissues are considered in the applications as well as in the underlying hardwarearchitecture, but they are neglected by state{of{the{art kernel architectures. Upto now, kernel architectures rely on an autonomous design. Dependent on hard-ware properties a closed set of functionalities is provided, e.g., multi{taskingor virtual memory support. The kernel takes the same shape for all kinds ofapplications, thus, ignoring the concrete demands on an application. 1The autonomous design of a kernel enforces that the scalability is limitedto a scale with exactly one mark. Accordingly, a scalable kernel must providethe whole set of functionality at all time. This spoils the scalability of a parallelalgorithm, since the presence of unnecessary code{parts results in a reducede�ectiveness. Such a drawback is unacceptable for a high{performance kernelarchitecture and suggests that autonomy and scalability are incompatible topicswithin a kernel architecture.The paper starts with an examination of state{of{the{art operating systems,i.e., microkernel architectures. Afterwards it discusses the design of the paralleloperating system Peace [4]. It illustrates basic Peace concepts and explains bywhat means support for massively parallel, distributed systems is given. Object{oriented mechanisms as well as strategies for dynamic system recon�gurationin Peace are presented.2 Microkernel ArchitecturesState{of{the{art operating systems are based on microkernel architectures. Oneof the most favorite systems representing this category is Mach [28]. A micro-kernel architecture is the attempt to decompose an operating system structurewith the overall design rule to keep hold on those functions, whose processingon top of the kernel would be critical. The bulk of operating system services isaccordingly executed in non{privileged user mode. Only a small set of servicesis subject to privileged supervisor mode execution. This organization supportsa fault tolerant and application{oriented system structure. It hence seems tobe the appropriate basis for all �elds of application. This is true for distributedsystems, but does not hold entirely for massively parallel distributed memorysystems. Even the microkernel is too complex and, thus, too overhead{prone ifthe very hard performance requirements of massively parallel systems are takeninto account. These requirements are to support a system{wide message startuptime in the order of magnitude of 10 microseconds (using a 40 Mips processor)[16].1Some very �rst and timid attempts has been done to break up the in
exibility. Thesee�orts are related to the notion of extensibility.2



Mach is a good example to clarify what the climax of microkernel complex-ity can be. The Mach 3.0 kernel is a software system of about 100.000 lines ofC code (with comments excluded). Alone this large amount of source code isin contradiction to the common understanding of the notion microkernel. Ascomparison, the ancestor of the most successful operating system known to datewas based on a kernel implementation of about 10.000 lines of C code (withcomments included) [14]. Microkernel{based operating systems have been de-veloped as counterpart to monolithic operating systems such asUnix. However,this does not imply that the microkernel is no monolith too. The monolithicMach microkernel is an order of magnitude more complex than the originalmonolithic UNIX kernel.From the functional point of view, standard microkernels as used in Machand Chorus [22] typically encompass interprocess communication, scheduling,security, process management, (virtual) memory management and exceptionhandling. These are functions to support a multi{tasking mode of operation.They are necessary to process microkernel{based operating systems where ser-vices are provided by tasks being executed in user mode. Thus, even if an appli-cation does not require this operation mode, it must pay for it. This introducessigni�cant overhead for those types of parallel applications which expect thattasks are mapped in one{to{one correspondence with the nodes of a massivelyparallel distributed memory system [25]. Multi{tasking is not free of charge andit is only needed if the one{to{one mapping can't be done for all the tasks.It is true that, in terms of software engineering arguments, a microkernelmust not be of minimal size [9]. However, are all the functions really manda-tory fundamental building blocks? It obviously depends on the application �eld.Only if applications always demand these functions, either explicitly or implic-itly, then a microkernel of this complexity is the right choice. A further softwareengineering argument is to have available for user applications only those func-tions which are really demanded. This is the only way to keep kernel complexityas small as possible, to have the chance to understand potential performancebottlenecks and to be really application{oriented [21]. In addition, for securityreasons complexity must be sacri�ced as far as possible.3 Approaching the Concept of Program FamiliesForthcoming massively parallel systems are distributed memory architecturesand will consist of several hundreds to thousands of autonomous processingnodes interconnected by a very high{speed network. A major challenge in op-erating system design for these parallel architectures is to elaborate a structurethat reduces system bootstrap time, avoids bottlenecks in serving system calls,promotes fault tolerance, is dynamic alterable, and application{oriented. At thesame time utmost highest communication performance must be provided. Thesolution to these problems is an approach in which an operating system is un-derstood as a family of program modules [21] and not as a monolithic "saurian"of more or less related components.A parallel operating system has to provide only a minimal subset of system3



functions. Driven by the application, additional system/kernel services are tobe considered as minimal system extensions [21]. In order to optimally supportapplications, minimal system extensions then are loaded on demand, at thetime initially requested.This approach especially would mean that a microkernel is built by minimalextensions to a "nanokernel" and the minimal extensions are subject for incre-mental loading. Operating system scalability is generally improved. While themicrokernel approach promotes a scalable system organization for distributedsystems, the "nanokernel" does so for massively parallel systems too { it pro-motes a scalable kernel architecture. Hence, a "nanokernel" bridges the gapbetween massively parallel systems and distributed systems. It makes it feasi-ble that design principles of distributed systems can be applied to massivelyparallel systems.3.1 Minimal BasisIn the program family concept a minimal subset of system functions provides acommon platform of fundamental abstractions. This minimal basis encapsulatessolely mechanisms from which more enhanced system functions can be derived.It will be built by a consequent postponement of design decisions. Fundamentalabstractions to make massively parallel systems work then are processes andcommunication, i.e., message passing.Processes introduce scaling transparency and, thus, make the modeling ofparallel applications independent from the actual number of processing nodes.Scaling transparency, however, is not only an issue in the programming of mas-sively parallel systems [10], but improves also availability in the case of perma-nent nodes failures. Even if the application is tailored to the actual number ofprocessing nodes, the crash of a single node could mean the premature end ofapplication processing if the system does not support the migration of programactivities onto still functioning nodes. For this purpose the system needs aninstrument for the modeling of program activities, which is the process. Thus,a process serves as the common abstraction for both the application and theoperating system.Communication based on message passing is a must when processing nodeshave direct physical access only to local memory. Access to non{local mem-ory, i.e., to the local memories of other nodes, involves the execution of a net-work communication protocol. Because processes form the basic abstraction tomodel (user/system) activities, interprocess communication rather than intern-ode communication is required.Whether synchronous or asynchronous communication should be supportedstrongly depends on the process model and on its implementation [3]. Syn-chronous interprocess communication is the best choice in order to achieve themaximal utilization of network bandwidth. In contrast to asynchronous com-munication, intermediate bu�ering and, hence, additional overhead of messagecopying is not implied by the communication model; at most, it will be impliedby the network hardware interface.The decision for synchronous interprocess communication implies a poten-4



tial loss of parallelism. This must be compensated by a process model whichallows concurrent programming even on a single node, i.e., which supports amulti{threaded address space. Obviously, the implementation of this processmodel must lead to a process switch time which is signi�cantly smaller thanthe copying and bu�ering overhead involved in asynchronous communication.Such a model is mechanized by lightweight processes [13] and being implementedas featherweight processes [10] to meet the performance requirements for paral-lel operating systems. The minimal basis then strongly promotes a processingmodel in which concurrency is not a side e�ect of communication, but is ex-pressed explicitly by means of threads building a team. It implements a processexecution and communication environment (Peace) for parallel/distributedapplications.3.2 Minimal ExtensionsA minimal basis which supports threading and communication already su�cesto execute parallel programs. Moreover, it could be considered as the only op-erating system support residing on a processing node and being required by theapplication. In these dedicated applications the minimal basis is already the op-timum. Additional functions are not used on the nodes and, hence, would onlywithhold system resources (such as memory space and processor time) from thegiven application.It is the second important feature of the program family concept, that,dependent on the individual application, a stepwise functional enrichment ofthe minimal basis is performed by means of minimal system extensions only.These extensions encapsulate mechanisms and/or strategies. However, it mightbe the case that no system extensions are necessary at all. The application itselfis always the best extension one can think of { it is the �nal extension anyway.By adding minimal extensions, an operating system family is constructedbottom{up, whereby construction is controlled top{down: lower{level compo-nents are introduced only when required by higher{level components. This way,system functions for scheduling, security, process management, (virtual) mem-ory management, exception handling, �le handling, checkpointing and recoveryare introduced. An open, application{oriented and evolutionary system organi-zation is the consequence.Understanding functional enrichment as an add{to in terms of componentsis only one aspect. It also includes component replacement. During the designphase a commitment on the minimal subset of system functions must be made.This includes the risk of stating wrong design decisions. One of the most im-portant decisions is concerned with the identi�cation of the proper operationmode, i.e., whether single{tasking or multi{tasking is to be supported.The processing of parallel applications by a massively parallel machine al-ways implies communication, hence the need for communication functions. Theapplication might also call for a single or multi{threaded address space (i.e.,task) on a node. Another application demands multi{tasking, which then is afunctional enrichment of multi{threading. Should the minimal basis thereforesupport multi{tasking? If the design decision advocates multi{tasked nodes and5



tasks are mapped in one{to{one correspondence with the nodes, then a signif-icant degradation of the message startup time will be the result [25]. Multi{tasking is not free of charge, even if not utilized by the application. A designdecision to support solely multi{tasked nodes will handicap single{tasking ap-plications and, thus, will not be conform with the idea of program families.To overcome this problem, all applications must see the same external (ab-stract) interface of the minimal basis. What di�ers is the internal behavior, i.e.,the concrete implementation. The external interface is mainly concerned withcommunication, while the internal behavior mainly dictates the process modeland the operation mode of the node. With the minimal basis being an abstractdata type [15] a number of implementations of the same interface can coexist.This makes the minimal basis exchangeable at least from the design point ofview. Flexibility is maintained although the minimal subset of system functionsmust have been �xed early in the software design process.4 The Role of Object OrientationApplying the family concept in the software design process leads to a highlymodular structure. New system features are added to a given subset of sys-tem functions. One instrument to implement a program family is to apply theabstract data type mechanism. An instance of an abstract data type is imple-mented by a module. System functions then are represented by the operationswhich are de�ned by the module interface speci�cation. The entire system endsup with a multi{level hierarchy of a multitude of program modules, with a well{de�ned uses relation [21] between the modules to associate them to levels inthe hierarchical system.A problem with the module{oriented approach is the potential for a largenumber of redundant code and data portions in those cases where di�erentimplementations of the same module interface coexist [6]. That the redundantportions are not encapsulated by an abstract data type on its own, i.e., extractedand implemented by a separate "service module" and then being properly usedby the instances is due to at least two facts: genericity and e�ciency. One oftenexamines that the new service module must be capable to deal with objects ofdi�erent type, whereby the type is de�ned by those instances which will use thenew module: the new module is generic. Having strongly followed the pattern ofabstract data types, the additional module boundary often implies an increasein runtime overhead due to additional procedure calls for operation invocation:the new module introduces a potential performance bottleneck.The feasibility of this kind of abstract data typing depends on the powerof the programming language to implement generic module interfaces and onthe function inlining capabilities of the compiler. If a parallel operating systemis required to guarantee a message startup time in the order of magnitudeof 10 microseconds (assuming a 40 Mips processor), any increase of runtimeoverhead caused by either of programming paradigm, programming languageor compiler is not acceptable. 2 The much more promising approach in the2The �rst Peace kernel prototype for a distributed memory parallel computer was im-6



design and development of operating system families, therefore, is to applyobject orientation [27]. In other words, object orientation is the natural choiceto build program families [7]. The buzzword is inheritance [12] to avoid largeportions of di�erent module versions to be identical. Functional enrichmentde�nes new family members, which always inherit properties of existing familymembers. The new family member is built by at least one new specialized classby derivation from one or more base classes (single/multiple inheritance). Thisimplies the re{usage of existing implementations on a sharing basis, meaningthat code/data redundancy will never appear in a clean object{oriented design.In class{based object orientation [5], the class de�nition includes the imple-mentation of the methods de�ned on objects of that class. This makes functioninlining straightforward and, hence, reduces the procedure call overhead to anabsolute minimum. An example is C++ [26], which also supports abstract datatype based object orientation. Note, the major problem with identical portionsof di�erent module versions primarily is not wasted memory space, which func-tion inlining implies too. Above all, it is a software maintenance problem, which(class{based) object orientationwith or without function inlining helps to avoid.There is another feature of object orientation which is of importance for theimplementation of a family of operating systems. This feature is known as poly-morphism. A base class speci�es the operations which are de�ned on objectsof that class. In the course of inheritance, a derived class may specify eitherthe same operations again or a subset only. These rede�ned operations usu-ally show for a di�erent, more specialized implementation. The external classinterface is still described by the same base class, while di�erent implementa-tions of the same interface can coexist by means of inheritance and dynamicalbinding. Polymorphism strongly supports the design and implementation of re-placeable components. Featuring the proper derived class is dynamic and workstransparently to the instance applying the base class only.5 A Parallel Operating SystemThe Peace family concept distinguishes between a macroscopical view to iden-tify the overall system architecture and a microscopical view to de�ne the min-imal subset of system functions that must be present on each node. The formeraspect deals with distribution and the latter aspect deals with performance.5.1 Macroscopical ViewA member of the Peace parallel operating system family is constituted bythree major building blocks: nucleus, kernel, and Pose (Figure 1). The nucleusimplements system{wide interprocess communication and provides a runtimeexecutive for the processing of threads. The Peace nucleus is part of the kernelplemented in Modula{2. Performance was not acceptable. A transformation into C and non{optimized compilation let to a negligible performance improvement. Applying the keyword"register" at meaningful places and with optimized compilation, a 40 percentage performanceincrease was obtained [24]. Register optimization let to fewer memory tra�c, which is signi�-cant if the processor executes 3 (4) wait states on each read (write) memory access.7



domain, with the kernel being a multi{threaded team that encapsulates minimalnucleus extensions. These extensions implement device abstraction, dynamiccreation and destruction of process objects and the association of process objectswith address spaces. Application{oriented services such as process and memorymanagement, �le handling, i/o, are performed by Pose, the parallel operatingsystem extension of Peace. It is built by a multitude of active objects (i.e.,servers) distributed over the nodes of the parallel machine.
Figure 1: Building BlocksThe dividing line between user and supervisor mode is a logical boundaryonly. It depends on the concrete representation of the interactions speci�edby the functional hierarchy (and of the processor architecture) whether thisboundary is physically present. The functional hierarchy of these components(Figure 2) de�nes the way decentralization works with Peace. All componentsare encapsulated by (active/passive) objects. An object invocation scheme musttherefore be used to ask for service execution.Nucleus services are made available to the application via nearby object in-vocation (Noi). The logical design assumes a separation of the nucleus from theapplication (and Pose), which calls for the potential of address space isolationand of traps to invoke the nucleus. This is the place where cross domain callsmay happen. The kernel shares with the nucleus the same address space and,hence, performs local object invocation (Loi) to request nucleus services. Kernelservices are made available via remote object invocation (Roi) [19], an object{bound mechanism similar to the remote procedure call paradigm [18]. Servicesof Pose are requested via Loi and Roi. Here, Loi is used to interact with thePose runtime system library and Roi is used to interact with the Pose activeobjects.From the design point of view neither the kernel nor Pose need to be present8



Figure 2: Functional Hierarchyon each node, but the nucleus. In a concrete con�guration, the majority of thenodes of a massively parallel machine is equipped with the nucleus only. Somenodes are supported by the kernel and a few nodes are allocated for Pose. Allnodes can be used for application processing, but they are not all obliged to beshared between user tasks and system tasks.It is important to understand that the functional hierarchy of the threebuilding blocks expresses the logical design of Peace only, and not necessarilythe physical representation. The building blocks are designed with respect tothe various schemes of object invocation as shown in Figure 2. However, itdepends on the actual operating system family member whether these schemesbecome e�ective as speci�ed by the design or can be replaced by a more simplealternative. For example, although the functional hierarchy assumesNoi for theinteraction between application (Pose) and nucleus, the Loi scheme is used forthose members of the nucleus family which place their focus on performanceand support single{tasking mode of operation only.5.2 Microscopical ViewA process execution and communication environment forms the minimal subsetof system functions required by massively parallel systems. This minimal basisof Peace is a compromise between transparency and e�ciency. For di�erentapplications there are di�erent implementations of the same interface of theminimal basis, hiding all the internals. This transparency is to the convenienceof the application programmer.The minimal basis is de�ned as a family of functional dedicated units with asingle external interface { all family members inherit the same base class that9



speci�es the unit interface. 3 This minimal basis is represented by the Peacenucleus, i.e., a nucleus family. The nucleus family implements four di�erentoperation modes (Figure 3). Each operation mode is represented by a subfamily,with several implementations of the same nucleus abstract data type. Presently,eight nucleus family members are distinguished.
Figure 3: Nucleus Family TreeThe entire family tree shows di�erent nucleus versions, with the root (top)being the most simple and the leaf (bottom) being the most complex instance.As complexity increases, performance drops.The nucleus family de�nes a pool of functional units of more or less com-plexity, likewise o�ering lower or higher performance. Dependent on applicationrequirements and on the actual utilization of the parallel machine, the propernucleus version comes into play. Whether a nucleus instance is being integratedstatically or dynamically is not of primary importance from the design point ofview. First the complete family structure must be known and then the decisioncan be made to implement the family as a dynamically alterable system.3In reality there are several base classes which represent the external view of the minimalbasis. These classes are ticket (delivery of system{wide unique communication endpoint identi-�ers), notice (intra{team thread synchronization with empty messages), parcel (packet{basedsynchronous, system{wide inter{process communication), and region (segment{based asyn-chronous, system{wide inter{team communication). They stand for horizontal independentfunctional units of the nucleus. 10



5.2.1 Single{User/Single{TaskingThere are three di�erent nucleus instances supporting single{user/single{tasking mode of operation. The two most e�cient instances provide networkcommunication and thread scheduling on a library basis. Thus, these nucleusinstances are part of the address space of the user/system process. This impliesthat no overhead{prone address space boundaries must be crossed to invoke thenucleus.Peace only implements synchronous interprocess communication. Concur-rency then is to be modeled explicitly by the application using multiple threadsof control. The threading instance (i.e., thread scheduling) is the correspond-ing mechanization. Because of the non{existent address space boundary, thisnucleus is extremely lightweight and, thus, supports the notion of feather-weight processes. Featherweight processes are a specialized implementation oflightweight processes. They are the purest form in Peace to represent units ofexecution, without consideration of any protection and security measure.The threading instance combined with the need for kernel code separationmakes nucleus calls more heavyweight. Now, traps are used to invoke the nu-cleus. This implies very small stub routines to marshal and unmarshal nucleusservice requests similar to the remote procedure call paradigm. However, insteadof passing a message over a narrow channel, a local trap is to be performed.A featherweight remote procedure call (i.e., Noi) is executed to activate thenucleus. Solely the gap implied by the trap interface is bridged. Kernel codeseparation is supported, but not memory protection. As a consequence, thepassing of complex data structures between the nucleus and higher{level enti-ties is straightforward and involves no programming of address space protectionhardware.The functional enrichment introduced by nucleus separation enables dy-namic component replacement by a third party. Higher{level entities are physi-cally uncoupled from nucleus code. Because each nucleus instance is an abstractdata type, these entities are also logically uncoupled from nucleus data. Thebasic mechanism to switch between di�erent nucleus instances on the 
y is toexchange trap vector entries.5.2.2 Multi{User/Single{TaskingIn a distributed memory parallel machine, multi{user mode of operation is fea-sible even if only a single task is mapped onto each node. The entire multi{nodemachine can be allocated to di�erent users at the same time. Obviously, thisdoes not require local ("on{board") security measures to protect the tasks fromeach other, but it requires to protect the network interface from unauthorizedaccess. By direct network access the user task could be able to intrude thenetwork and, thus, tasks of di�erent user applications.In order to provide a multi{user function, the nucleus must be completelyisolated. Memory protection is to be introduced, leading to a new instance:kernel isolation. Because the nucleus is part of the kernel domain, applyingmemory protection to the nucleus also implies the isolation of parts of the ker-11



nel address space. Concerning nucleus separation, no additional overhead isintroduced. However, the isolated nucleus address space makes the passing ofcomplex data structures heavyweight. It mainly depends on the address spaceprotection hardware how crucial the additional overhead really is. Anyway, theincrease of nucleus functionality is encompassed by the potential of communi-cation performance loss.On each node, network integrity must be guaranteed, but not necessarilythe integrity of user task address spaces. This leads to the introduction of com-munication �rewalls between di�erent user applications. Each user applicationbuilds a unique communication domain. The same holds for the set of systemprocesses constituting the operating system. Within the same domain commu-nication is unlimited. In order to invoke system services, application processesmust communicate with system processes. Consequently, di�erent communica-tion domains must overlap to let communication succeed. Thus, communicationsecurity does not mean complete isolation, solely, but also controlled access.A capability{based approach is used in Peace for this purpose. This ap-proach grants object access only if a thread (i.e., subject) is in the possessionof that object or one of its proxies. An object must be created before it canbe used. It is then the autonomous decision of the object creator to make theobject globally accessible. The access domain of an object may be extended bythe object creator by exporting a proxy object [19]. Via the proxy global (i.e.,network{wide) object access then is feasible.5.2.3 Single{User/Multi{TaskingThe �rst step towards multi{tasking support is to introduce task schedul-ing. In Peace, a task maybe multi{threaded, which implies only lightweightscheduling. In order to schedule tasks, a second scheduling level is implemented.This level knows the bundle as scheduling unit, which consists of one or morethreads. A single threads bundle always is executed by one processor, with non{preemptive scheduling of the threads of the same bundle. Preemptive schedulingis between bundles only, and so is shared{memory multiprocessor schedulingwith the di�erent bundles being executed by di�erent processors. A task thenmay consist of several bundles to take advantage of preemption and of theshared{memory processor architecture. The result is a slightly more expensivescheduler.At this stage, multi{tasking can be supported even if task isolation by meansof private address spaces is not provided. A private address space serves for twobasic purposes. On the one hand it implements memory protection, isolatingprograms from each other. On the other hand it de�nes a logical address spacefor program execution, enabling code/data relocation at runtime. Being relo-catable is also a property of position independent code, which then needs tobe generated by a compiler. In addition, the use of secure programming lan-guages supports program isolation without the necessity of address space pro-tection hardware. Therefore, the minimal basis to support multi{tasking is taskscheduling. Task isolation is the minimal extension of task scheduling. It is usedto generally improve system availability and in those cases where neither the12



programming language nor the compiler supports the nucleus.5.2.4 Multi{User/Multi{TaskingThe fourth operation mode being supported by the nucleus family is the naturalconsequence of the two modes discussed before. There is little more of function-ality to add. Global multi{user mode of operation is made feasible by enforcingnetwork integrity, whilst local multi{user function is directly supported by taskisolation. The nucleus then provides general security measures, with completelyisolating di�erent (user/system) domains from each other.6 Adaptive Operating System ArchitectureThe operating system building block of Peace is mainly represented by Pose,which implements a family of parallel operating systems. Pose services areapplication{oriented extensions of the Peace minimal basis, i.e., of the nucleusand the kernel. These services are provided by teams of lightweight processesand, usually, are executed in non{privileged user mode. Since the representationof the functional hierarchy of Peace enables an almost arbitrarily decentraliza-tion of the building blocks, this does not enforce a microkernel approach and,thus, the need for multi{tasking on a single node.6.1 Active ObjectsDistributed memory architectures at least call for an object{based system de-sign. In Pose, system services are represented by active objects, i.e., teams oflightweight processes implement system functions such as process managementor �le handling. Consequently, requesting the execution of a system servicerequires to send a message to some process. A typical client{server relation isestablished. Pose then consists of a multitude of cooperating teams distributedover the nodes. These teams are called manager.The consequent usage of teams for system service encapsulation has severalbene�ts. It provides a natural basis for building application{oriented operatingsystems. System services need only be present if they are required, meaningthat the corresponding teams are created and loaded on{demand. Especially inthe case of massively parallel systems, it is not required that user teams sharethe same node with system teams. This signi�cantly reduces global systeminitialization time and makes the parallel system to appear as a processor bankwhose purpose is to exclusively execute user applications.Following the team structuring approach, the notion of a system call (ser-vice invocation) is slightly di�erent from the traditional viewpoint of a trap.A system call must be requested by means of message passing, distinguishingbetween local and remote operation. In order to hide all these properties fromboth the service user (client) and the service provider (server), a Peace systemcall in general takes the form of remote object invocation [19].13



6.2 Functional ReplicationThere are several reasons for service replication in massively parallel, distributedsystems. One aspect is to avoid the presence of bottlenecks when a managertends to be overloaded by too many service requests. Another case is redun-dancy for fault tolerant purposes. Furthermore, there might be replicated I/Ohardware units such as disks. In all these cases, managers are replicated becauseof performance, availability, or architectural reasons.This leads to the concept of distributed managers. The set of managers ofthe same type (i.e., class) constitutes a Peace administrator. For scalabilityreasons, processes should not be aware of using replicated services. Rather theyinteract with an administrator. In this situation, the administrator has to keeptrack of which manager is to be selected for service execution. For these reasons,the Peace administrator concept is not only supported by a number of man-agers, but also by a related porter that directs requests to the proper managerand, thus, serves as an administrator interface (Figure 4).
Figure 4: System AccessThe porter takes the form of a library; it is part of the team address spaceof the service{requesting process. Dependent on the type of service, the portermay also encapsule private threads. For example, using porter threads enablesservice{related exception handling on a message{passing basis.6.3 Third Party Con�gurationAbove all, a parallel operating system must be designed such that the amountof system software which is to be executed by each node can be reduced to anabsolute minimum; otherwise, system bootstrapping becomes a nightmare. Forthis reason, Pose distinguishes between site{dependent and site{independent14



managers.A site{dependent manager typically provides low{level and hardware{related services. For example, the disk manager encapsules device dependentfunctions and, thus, must reside in a node that has a disk attached. It is site{dependent, whereas the �le manager, which uses the disk manager, may resideelsewhere and is considered as site{independent. Another example of a site{dependent manager is the kernel team. If dynamic process management is re-quired on a node, a kernel must be present on that node to construct/destructprocess objects. A process manager, however, is site{independent. It may resideon any other node and may also be responsible for the management of severalnodes.The property of being con�gurable is absolutely necessary to meet the needsfor massively parallel systems. Except in the case of site{dependent managers,a third party is able to establish Peace (i.e., Pose) con�gurations based on theindividual needs of parallel/distributed applications. The con�guration decisionthen will be made with respect to either performance, protection, or hardwareavailability.6.4 Incremental LoadingThe basic idea in Peace is to perform on{demand loading of system services[23]. That is, system services are only loaded at the time when they are reallyneeded. On{demand loading of services at runtime can be accomplished eitherexplicitly, by using dedicated system calls, or implicitly, during service invo-cation if the corresponding manager does not yet exist. The latter approachrequires close cooperation with the Roi layer.If service addressing fails, a server fault is raised, similar to a page faultin virtual memory systems. Handling a server fault results in the loading ofthe requested service, i.e., the proper manager team is created and given aprogram for execution. 4 Entity (or server) faults are propagated to a systemteam called plumber. Basically, this means that, once having determined that theentity is not yet available, a stub routine requests entity loading by instructingthe plumber accordingly (Figure 5). The stub passes the load request to theplumber which then takes charge of all activities related to the loading of thespeci�ed entity. Note, the porter takes the form of a system library and belongsto the team of the thread that caused the entity fault. As long as fault handlingis in progress, on behalf of the porter the thread is blocked on the plumber,waiting for loading to be completed.The plumber maps entity names onto �le names, i.e., associates with entitiesa �le that describes the team image to be loaded. With each entity name severalattributes are stored. For example, the �le may describe either a plain teamimage or a complete boot image. In case of site{dependent managers, the node4Any kind of service that can be loaded on demand is in no way distinguished from anapplication process. Thus, on{demand loading works for both user and system applications.The general term entity is used for teams that belong to either of these application classes. Inthis sense, the server fault actually means an entity fault.15



Figure 5: Entity Fault Handlingaddresses are stored with the entity name. A distinction between the single{tasking or multi{tasking mode of operation for the entity is also made.In Peace, the minimal basis for dynamic restructuring requires no complexmemory management functions. A maxim was that even with a single{taskingnucleus instance, which is not based on address space protection and, therefore,encompasses no memory management functions, dynamic restructuring of thenode of that nucleus must be feasible yet. This node, e.g., must be given multi{tasking capability by exchanging the kernel and then allocating tasks. If thePeace kernel comes up, and so the nucleus, it always assumes non{protectedaddress spaces. The capability to protect address spaces is the kernel taughtby the memory manager, a side{independent system team which is loaded ondemand.7 Related WorksThe Peace approach goes beyond that what is presently intended by state{of{the{art microkernel designs, it de�nes a microkernel family. In systems such asMach [28] and Chorus [22], the microkernel is a fairly complex component, usedto support the implementation of operating system services and the processingof distributed applications. As in Peace, a Chorus operating system is consid-ered as a member of a family of functional units, with a unit being representedby a (multi{threaded) system server process, i.e., an active object. Peace alsoapplies the family concept to structure the kernel and not only an operatingsystem. This results in a (multi{threaded) kernel implementation with a dis-16



tinguished component, the nucleus, providing a common process execution andcommunication environment. The Chorus microkernel (also termed nucleus) isthe only choice applications have. In Peace, the nucleus family presents anassortment of up to eight di�erent members.Ra [2] is a minimal kernel for the Clouds distributed operating system [8].The Ra kernel is designed to support the implementation of large scalableobject{based systems. Ra is a fairly complex minimal kernel too, implement-ing segment{based virtual memory management and short term scheduling. Atbest, Ra can be compared to the Peace nucleus instance that provides taskisolation, which is one of the most complexest nucleus family members at all.Clouds distinguishes between objects and threads, i.e., it is structured bypassive objects. The rationale for this approach is to avoid performance penal-ties caused by the virtually more complex code of multi{threaded server im-plementations. That multi{threaded server are more complex is only true forcompletely hand{coded implementations, but not for implementations that aresupported by a class{based stub generator as in Peace [19]. Any way, reducingserver code complexity by downward migration of functions into the minimalkernel as followed with Ra is not the ultima ratio. It makes the minimal basismore complex and, thus, more overhead{prone.The system which comes very close to Peace is Choices [6]. Many ideasfound in Choices are present in Peace, and vice versa. This is because bothsystems share the same fundamental, classic idea of a family of operating sys-tems [11]. They extend this idea into object{oriented, distributed/parallel en-vironments. As Choices, Peace is a class{hierarchical system. By means ofthe nucleus family, Peace further distinguishes between a number of opera-tion modes a node of a massively parallel system is exposed to. It is exactlythis feature which becomes more and more important for forthcoming paralleloperating systems.Dynamic restructuring in Peace is related to active and passive objects.Introducing active objects is straightforward and based on services to create anddestroy teams of lightweight processes. Exchanging passive objects is limited tothe nucleus. This is in contrast to Clouds, e.g., where arbitrary passive objectsmay be dynamically introduced. For this purpose Clouds relies on the segment{based virtual memory management service of the Ra kernel. These constraintsare not given with Peace in general. There are some Peace family membersimplementing segment{based virtual memory management; there are othersnot being dependent on the presence of address space protection hardware andsupporting dynamic restructuring yet.8 ConclusionThe paper described rationale and concepts for the design of scalable operatingsystems for massively parallel systems. The program family concept combinesa number of solutions to di�erent application requirements. This concept pro-motes not only customized operating systems from the application point ofview (top{down customization), but also from the hardware architecture point17



of view (bottom{up customization).A distinction between operating system family and a nucleus family must bemade to meet the performance requirements of forthcoming massively parallelsystems. In the former case, the family is built by a number of site{independentfunctional units representing typical operating system services. In the lattercase, a platform for both kernel construction and application processing is pro-vided. A member of the nucleus family must be an abstract data type to allowa number of di�erent implementations to coexist. The nucleus family takes theform of an assembly camp, but not the single nucleus implementation. Fromthis assembly camp the proper solution is selected to optimally support a givenapplication. This way, the Peace approach provides a scalable, i.e.,Wyniwyg-architecture (What You Need Is What You Get) for both the kernel and theoperating system. A single solution always is a bad compromise if utmost high-est communication performance must be guaranteed and a large spectrum ofapplications must be supported.Approaching the family concept as exempli�ed with Peace makes micro-kernels appear as extensions to a minimal basis. That is, Peace provides aframework not only to build upward scalable but also downward scalable kernelarchitectures, an important property of parallel operating systems. The micro-kernel as being understood to date is merely a member of the Peace family.To keep things right in mind: the functionality of state{of{the{art microker-nel architectures facilitate scalability but at the same time forms an essentialscalability handicap in case of unnecessary functionality is provided. Thus, thePeace family design bridges the gap between distributed systems and massivelyparallel systems which are based on distributed memory architectures.The family is designed, constructed and implemented following theparadigm of object orientation [7]. Classes implement system features and in-heritance (i.e., subclassing) is used to derive new features or specializations ofexisting ones. First experiences with objective Peace show that object orien-tation is superior to non{object oriented approaches. This is true for aspectssuch as maintainability, extensibility and performance of the resulting operatingsystem. It is indeed a myth that object orientation makes the implementationof very high{performance operating systems impossible. Rather, it is true thatobject orientation is the only chance to build high{performance systems whilemaintaining a clean and evolutionary system structure.The object{oriented paradigm in design and implementation of a dis-tributed/parallel operating systems is widely accepted but, with the exceptionof a few operating systems, e.g., Choices and Peace, not applied in correspon-dence to Wegners de�nition [27]. A general problem for commercial systemslike Mach or Chorus is how to organize a complete redesign of their operat-ing system. There are plans going into this direction and which shows thatthe system's investigators are encouraged of the object{oriented paradigm. Un-fortunately, as pointed out by Neurath, they can't enjoy all the opportunitiesobject{orientation o�ers because of their market constraints.18



References[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, H. M. Levy, \SchedulerActivations: E�ective Kernel Support for the User-Level Managementof Parallelism",ACM Operating Systems Review, 25, 5, pp. 95-109, Pro-ceedings of the Thirteenth ACM Symposium on Operating System Prin-ciples, Paci�c Grove, CA, 1991[2] J. M. Bernabeu Auban, P. W. Hutto, M. Yousef, A. Khalidi, M. Ahamad,W. F. Appelbe, P. Dasgupta, R. J. LeBlanc, U. Ramachandram, \TheArchitecture of Ra: A Kernel for Clouds", Georgia Institute of Technol-ogy, Technical Report GIT-ICS-88/25, 1988[3] P. M. Behr, W. K. Giloi, W. Schr�oder, \Synchronous versus AsynchronousCommunication in High Performance Multicomputer Systems", IFIPWorking Conference 5, Stanford, August 22-26, 1988[4] R. Berg, J. Cordsen, J. Heuer, J. Nolte, B. Oestmann, M. Sander, H.Schmidt, F. Sch�on, W. Schr�oder-Preikschat \The Peace Family of Dis-tributed operating Systems", Technical Report, GMD FIRST, Berlin,1991[5] G. S. Blair, J. J. Gallagher, J. Malik, \Genericity vs Inheritance vs Dele-gation vs Conformance vs...", Journal of Object-Oriented Programming,Vol. 2, No. 3, pp. 11-17, 1989[6] R. Campbell, G. Johnston, V. Russo, \Choices (Class Hierarchical OpenInterface for Custom Embedded Systems)", ACM Operating SystemsReview, 21, 3, pp. 9-17, 1987[7] J. Cordsen, W. Schr�oder-Preikschat, \Object-Oriented Operating SystemsDesign and the Revival of Program Families", Proceedings of the SecondInternational Workshop on Object Orientation in Operating Systems,IEEE 91TH0392-1, pp. 24-28, Palo Alto, CA, October 17-18, 1991[8] P. Dasgupta, R. J. LeBlanc Jr., W. F. Appelbe, \The Clouds DistributedOperating System: Functional Description, Implementation Details andRelated Work", Proceedings of the 8th International Conference on Dis-tributed Computer Systems, pp. 2-9, IEEE, San Jose, CA (USA), June,1988[9] M. Gien, \Micro-kernel Architecture - Key to Modern Operating SystemDesign", Technical Report CS/TR-90-42.1, Chorus systemes, Paris, 1990[10] W. K. Giloi, W. Schr�oder-Preikschat, \Programming Models for MassivelyParallel Systems", International Symposium on New Information Tech-nologies 91, Tokyo, Japan, 1991[11] A. N. Habermann, L. Flon, L. Cooprider, \Modularization and Hierarchyin a Family of Operating Systems", Comm. ACM, 19, 5, 266-272, 1976[12] D. C. Halbert, P. D. O`Brien, \Using Types and Inheritance in Object-Oriented Languages", IEEE Software, 9, 71-79, 1987[13] C. Hewitt, \Viewing Control Structures as Patterns of Passing Messages",Arti�cial Intelligence 8, 323-364, 197719



[14] J. Lions, \Unix Operating System Source Code Level Six", Department ofComputer Science, The University of New South Wales, Second Printing,1977[15] B. H. Liskov, S. Zilles, \Programming with Abstract Data Types", SIG-PLAN Notices, 9, 4, 1974[16] H. Mierendor�, \Bounds on the Startup Time for the Genesis Node",ESPRIT Project No. 2447, Technical Report, GMD F2.G1, Bonn, 1989[17] J. K. Millen, \Security Kernel Validation in Practice", Comm. ACM, 19,5, 243-250, 1976[18] B. J. Nelson, \Remote Procedure Call", Carnegie-Mellon University, Re-port CMU-81-119, 1982[19] J. Nolte, \Language Level Support for Remote Object Invocation", Tech-nical Report, GMD FIRST, Berlin, Germany, 1991[20] OSF, \Microkernel Program - Background and RI Goals", Research Insti-tute Notes, Volume 1, Issue 2, 1990[21] D. L. Parnas, \Designing Software for Ease of Extension and Contraction",IEEE Transaction on Software Engineering, Vol. SE-5, No 2, 1979[22] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,F. Herrman, C. Kaiser, S. Langois, P. Leonard, W. Neuhauser, \ChorusDistributed Operating Systems", Computing Systems Journal, Vol. 1,No. 4, University of California Press and Usenix Association, also asTechnical Report CS/TR-88-7.9, Chorus systemes, Paris, 1988[23] H. Schmidt, \MakingPeace a Dynamic Alterable System", Proceedings ofthe 2nd European Distributed Memory Computing Conference, Munich,Germany, April 22-24, 1991[24] W. Schr�oder, \A Distributed Process Execution and Communication Envi-ronment for High-Performance Application Systems", Lecture Notes inComputer Science, Vol. 309 (1988), 162-188, Springer-Verlag, Proceed-ings of the International Workshop on "Experiences with DistributedSystems", Kaiserslautern (West Germany), September 28-30, 1987[25] W. Schr�oder-Preikschat, \Overcoming the Startup Time Problem in Dis-tributed Memory Architectures", Proceedings of the 24th Hawaii Inter-national Conference on System Sciences, Vol. 1 , 551-559, 1991[26] B. Stroustrup, \The C++ Programming Language", Addison-Wesley Pub-lishing Company, 1986[27] P. Wegner, \Classi�cation in Object-Oriented Systems", SIGPLAN No-tices, Vol. 21, No. 10, pp. 173-182, 1986[28] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W.Bolosky, D. Black, R. Baron, \The Duality of Memory and Communi-cation in the Implementation of a Multiprocessor Operating System",ACM Operating Systems Review, 21, 5, pp. 63-76, Proceedings of theEleventh ACM Symposium on Operating System Principles, Austin,Texas, 1987 20


