
Isoe�ciency Function: A Scalability Metric for Parallel Algorithmsand ArchitecturesAnanth Grama, Anshul Gupta and Vipin KumarDepartment of Computer Science,University of MinnesotaMinneapolis, MN 55455This paper provides a tutorial introduction to a performance evaluation metric called the iso-e�ciency function. Traditional methods for evaluating serial algorithms are inadequate foranalyzing the performance of parallel algorithm-architecture combinations. Isoe�ciency functionhas proven useful for evaluating the performance of a wide variety of such combinations.On a sequential computer, the fastest algorithm for solving a given problem is the best algorithm.However, the performance of a parallel algorithm for a speci�c problem instance on a given numberof processors provides only limited information. The time taken by a parallel algorithm to solve aproblem instance depends on the problem size, the number of processors used to solve the problem,and machine characteristics such as: processor speed, speed of communication channels, type ofinterconnection network, and routing techniques. An algorithm that yields good performance for aselected problem on a �xed number of processors on a given machine may perform poorly if any ofthese parameters are changed. Hence, the evaluation of a parallel algorithm on a parallel computerrequires a more comprehensive analysis, and the study of scalability aids us in this analysis. Thescalability of a parallel system is a measure of its capacity to deliver linearly increasing speedupwith respect to the number of processors used. It re
ects the capacity of the parallel system toe�ectively utilize an increasing amount of processing resources.Scalability analysis of an architecture-algorithm combination helps us in answering the followingquestions: How does increasing the number of processors a�ect the performance of an algorithm?How does changing the problem size a�ect performance? How does changing the computation speedof the processors, or the communication speed of the interconnection network a�ect the performanceof a parallel computer for a given algorithm? What is the best algorithm and architecture for solvinga problem as the problem size and number of processors change?A number of performance evaluation metrics have been developed to study the scalability ofparallel algorithms and architectures [3, 4, 10, 11, 12]. Kumar and Gupta [7] provide a compre-hensive survey of di�erent methods of scalability analysis. The isoe�ciency function is one suchmetric. It relates the size of the problem being solved to the number of processors required tomaintain the e�ciency at a �xed value. An important feature of the isoe�ciency function is thatit succinctly captures the e�ects of characteristics of the parallel algorithm as well as the parallelarchitecture on which it is implemented, in a single expression. The isoe�ciency function enables usto determine the degree of scalability of a parallel system with respect to the number of processors,the speed of processors, and the communication bandwidth of the interconnection network. Thus1

we can compare various combinations of parallel algorithms and architectures for a range of prob-lem sizes and number of processors. Hence, using isoe�ciency, we can determine the best parallelalgorithm-architecture combination for a problem under a variety of situations without having toexplicitly analyze all possible combinations under all possible conditions. The following sectionspresent a discussion of the terminology necessary to use this metric followed by a number of usefulexamples of isoe�ciency analysis.1 De�nitions and AssumptionsIn this section, we introduce the terminology used in the rest of the paper. Since a parallel algorithmcannot be evaluated in isolation from the architecture it is implemented on, we de�ne a parallelsystem as the combination of a parallel algorithm and a parallel architecture. Together, a parallelarchitecture and the parallel algorithm running on it constitute a parallel system. The time takenby an algorithm to execute on a single processor is called the sequential execution time and isdenoted by T1. The execution time of the corresponding parallel algorithm on p identical processorsis called the parallel execution time and is denoted by TP . A parallel algorithm incurs severaloverheads during execution. These include overheads due to idling, communication, and contentionover shared data structures. The sum total of time spent by all processors doing work which isnot done by the sequential algorithm is termed as the total overhead and is denoted by To. Ingeneral, To is a function of problem size and the number of processors. Since the sum total of timespent by all processors is pTP , and the total overhead is To, we can see thatpTP = T1 + Toor TP = T1 + Top (1)The speedup (S) obtained from a parallel system is de�ned as the ratio of the sequentialexecution time to the parallel execution time. Therefore,S = T1TP = pT1T1 + ToThe e�ciency (E) of a parallel system is de�ned as the ratio of the speedup obtained to thenumber of processors used. Therefore, E = Sp= T1T1 + To= 11+ ToT1 (2)For certain parallel architecture-algorithm combinations, To can be negative. This implies thatthe speedup obtained from p processors may exceed p. This phenomenon is called superlinearspeedup. An example of a parallel system capable of exhibiting such behavior is one in which2

memory is hierarchical and the access time increases (in discrete steps) with the memory usedby the program. In this case, the e�ective computation speed of a large program may be sloweron a serial processor than on a parallel computer employing similar processors. This is becausea sequential algorithm using M bytes of memory will use only M=p bytes on each processor ofa p-processor parallel computer. In this case, cache and virtual memory e�ects may reduce thee�ective computation rate of a serial processor. In order to simplify presentation, we assume thatTo is non-negative in the rest of the paper.During the course of analyzing parallel systems, we frequently encounter the notion of the sizeof the problem being solved. So far we have used this term informally without providing a rigorousde�nition. One way of expressing the problem size is to represent it by a parameter of the inputsize. For example, for any matrix problem involving n � n matrices the problem size could bedenoted by n. A drawback of this de�nition is that the interpretation of problem size changes fromone problem to another. For example, doubling the input size results in an 8-fold increase in theserial execution time for matrix multiplication and a 4-fold increase for matrix addition. A betterde�nition of the size or the magnitude of the problem would be such that irrespective of the problem,doubling the problem size always means performing twice the amount of computation. Therefore,we choose to express problem size in terms of the total number of basic operations inherent in theproblem. According to this notion, the problem size for n�n matrix multiplication is �(n3), whilethat for the addition of two n� n matrices is �(n2). In order to keep the problem size unique fora given problem, we de�ne it as the number of operations the best sequential algorithm executesin order to solve the problem on a single processor. For some problems, the best algorithm isnot known; for others, the asymptotically best algorithm may have worse performance than otheralgorithms for problem instances of interest. In these cases, we can use the number of operationsin the serial algorithm that is considered best for such problem instances. For example, for matrixmultiplication, the simple �(n3) algorithm is often the algorithm of choice, even though Strassen'salgorithm has a better asymptotic complexity. The problem size is a function of the size of theinput. We will use the symbol W to denote problem size. If the cost of executing each operationis tc, then T1 = Wtc.We illustrate these terms using a simple example.� Example 1: Adding n numbers on a p-processor hypercubeConsider the problem of adding n numbers. For this problem the number of operations, and hencethe problem size W is equal to n. If we assume that each addition takes tc time, then T1 is equal tontc. 1 Now consider a parallel algorithm for adding n numbers using a p-processor hypercube. Thisalgorithm is shown in Figure 1 for n = 16 and p = 4. Each processors is allocated n=p numbers. In the�rst step of this algorithm, each processor locally adds its n=p numbers in �(n=p) time. The problemis now reduced to adding the p partial sums on p processors. These can be done by propagating andadding the partial sums as shown in Figure 1. A single step consists of one addition and one nearestneighbor communication of a single word, each of which is a constant time operation. For the sake ofsimplicity, let us assume that it takes one unit of time to add two numbers and also to communicate anumber between two processors. Therefore, n=p time is spent in adding the n=p local numbers at eachprocessor. After the local addition, the p partial sums are added in logp steps, each step consisting1In reality the number of basic operations, W , is n� 1 and the sequential execution time T1 is given by (n� 1)tc.For large values of n, W and T1 can be approximated by n and ntc respectively.3

12

13

14

15

840

1 5 9

10

11 7

62

 3

Σ ΣΣ Σ15
0
3

4
7

8
11

12

Σ Σ0 8
7 15

0 1 2 3

Σ0
15

0 1 32

(d)(c)

0 1 2 3 0 1 2 3

(a) (b)Figure 1: Computing the sum of 16 numbers on a 4-processor hypercube.of one addition and one communication. Thus, the total parallel execution time Tp is n=p + 2 log p.The same task can be accomplished sequentially in n time units. Thus, out of the n=p+ 2 logp timeunits that each processor spends in parallel execution, n=p time is spent in performing useful work.The remaining 2 logp units of time per processor contribute to a total overhead ofTo = 2p logp (3)The speedup S and e�ciency E for this algorithm are given byS = T1TP = nnp + 2 logp (4)E = Sp = nn+ 2p log p (5)In the next section we formalize the notion of scalability of a parallel system.2 Scalability of Parallel SystemsThe number of processors used is an upper bound on the speedup achievable by a parallel systemand the speedup for a single processor is one. If more than one processor is used, the speedupobtained is usually less than the number of processors. Let us further investigate how the speedupchanges with the number of processors. Consider the problem of adding n numbers on a p-processorhypercube discussed in Example 1. Equations 4 and 5 can be used to calculate the speedup ande�ciency for any given pair of n and p. Figure 2 plots speedup against number of processors fora few di�erent values of n up to 32 processors. Table 1 shows the e�ciencies corresponding to thevalues of n and p used in Figure 2.Figure 2 and Table 1 illustrate two things. First, for a given problem instance, the speedup doesnot increase linearly as the number of processors is increased. The speedup curve tends to saturate.In other words, the e�ciency drops with increasing number of processors. This phenomenon is truefor all parallel systems, and is often referred to as Amdahl's law. Second, a larger instance of thesame problem yields a higher speedup (e�ciency) for the same number of processors.4

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

Linear

n = 320

n = 64

n = 512

n = 192
S

pFigure 2: Speedup vs. number of processors for adding a list of numbers on a hypercube.p! 1 4 8 16 32n #64 1.0 .80 .57 .33 .17192 1.0 .92 .80 .60 .38320 1.0 .95 .87 .71 .50512 1.0 .97 .91 .80 .62Table 1: E�ciency as a function of n and p for adding n numbers on p-p rocessor hypercubes.Given that increasing the number of processors reduces e�ciency and increasing the size of thecomputation increases e�ciency, it should be possible to keep the e�ciency constant by increasingboth the size of the problem and the number of processors simultaneously. For instance, in Table1, the e�ciency of adding 64 numbers on a hypercube with four processors is 0.80. If the numberof processors is increased to eight and the size of the problem is scaled up to add 192 numbers, thee�ciency remains 0.80. Further increasing p to 16 and n to 512 also results in the same e�ciency.This behavior is exhibited by a large class of parallel systems. For these systems, the e�ciency ofparallel execution can be maintained at a constant value by simultaneously increasing the numberof processors and the size of the problem being solved. We call such systems scalable parallelsystems.2.1 The Isoe�ciency MetricWe have de�ned a scalable parallel system as one in which e�ciency can be kept constant as thenumber of processors is increased, provided that the problem size is also increased. A naturalquestion is, \at what rate should the problem size be increased with respect to the number of5

processors to keep the e�ciency �xed?". For di�erent parallel systems, the size of the problem tobe solved has to increase at di�erent rates in order to maintain a �xed e�ciency as the numberof processors is increased. This rate determines the degree of scalability of the parallel system. Inthis subsection we introduce a metric for quantitatively determining the degree of scalability of aparallel system.Consider the e�ciency of a parallel algorithm de�ned by Equation 2. Substituting T1 = tcWinto this equation, we get: E = 11 + TotcW (6)In Equation 6, if the problem size W is kept constant and p is increased, then the e�ciencydecreases because the total overhead To increases with p. If W is increased while keeping thenumber of processors constant, then, for scalable parallel systems, the e�ciency increases. This isbecause for a given p, To grows slower than �(W). For these parallel systems, the e�ciency canbe maintained at a desired value (between 0 and 1) by increasing p, provided W is also increased.For di�erent parallel systems, W has to be increased at di�erent rates with respect to p in order tomaintain a �xed e�ciency. For example, in some cases, W might need to grow as an exponentialfunction of p to keep the e�ciency from dropping as p is increased. Such parallel systems areconsidered poorly scalable. On parallel systems with these characteristics, it is di�cult to obtaingood speedups for a large number of processors, unless the size of the problem being solved isenormously large. Conversely, if W needs to grow only linearly with respect to p, then the parallelsystem is considered highly scalable. This is because it delivers speedups increasing linearly withrespect to the number of processors for problem sizes increasing at reasonable rates.For scalable parallel systems, the e�ciency can be maintained at a desired value (between 0 and1) if the ratio To=W in the expression for e�ciency is maintained at a constant value. To maintaina certain e�ciency E (0 < E < 1), we manipulate Equation 6 to get:ToW = tc(1� EE)W = 1tc (E1�E)ToLet K = E=(tc(1� E)) be a constant depending on the e�ciency. The equation above can berewritten as follows: W = KTo (7)From Equation 7 the problem size W can usually be obtained as a function of p by algebraicmanipulations. This function dictates the rate of growth of W required to keep the e�ciency �xedas p is increased. We call this function the isoe�ciency function of the parallel system. Theisoe�ciency function of a parallel system determines the ease with which it can achieve speedupsincreasing in proportion to the number of processors. A small isoe�ciency function implies thatsmall increments in the problem size are su�cient for e�cient utilization of an increasing numberof processing elements, and hence the parallel system is highly scalable. Conversely, a large isoe�-ciency function indicates a poorly scalable parallel system. The isoe�ciency function does not existfor unscalable parallel systems because in such systems, the e�ciency cannot be kept at constantvalue as p increases, no matter how fast the problem size is increased.6

� Example 2:The expression for the overhead function of the problem of adding n numbers on a p-processor hyper-cube is given in Equation 3. Substituting the value of To in Equation 7, we getW = 2Kp logp (8)Thus the asymptotic isoe�ciency function for this parallel system is �(p log p). This means that ifthe number of processors is increased from p to p0 , the problem size (in this case, n) will have tobe increased by a factor of p0 log p0=(p logp) to get the same e�ciency as on p processors. In otherwords, increasing the number of processors by a factor of p0=p requires n to be increased by a factorof p0 log p0=(p logp), in order to increase the speedup by a factor of p0=p.In the simple example of adding n numbers, the communication overhead is a function of onlyp. In general, it can depend on both the problem size and the number of processors. A typicaloverhead function may have several di�erent terms of di�erent orders of magnitude with respect top and W . When there are multiple terms of di�erent orders of magnitude in the overhead function,it may be impossible or cumbersome to obtain the isoe�ciency function as a closed form functionof p. For instance, consider a hypothetical parallel system, for which To = p3=2 + p3=4W 3=4. Inthis case Equation 7 will be W = Kp3=2 + Kp3=4W 3=4. It is di�cult to solve for W in terms ofp. Recall that the condition for constant e�ciency is that the ratio of To and W should remain�xed. As p and W increase in a parallel system, the e�ciency is guaranteed not to drop if noneof the terms of To grow faster than W . Therefore, if To has multiple terms, we balance W againsteach individual term of To to compute the respective isoe�ciency function. The component of Tothat causes the problem size to grow at the fastest rate with respect to p determines the overallasymptotic isoe�ciency function of the computation.� Example: 3Consider a hypothetical parallel algorithm-architecture combination for which To = p3=2 + p3=4W 3=4.If we ignore the second term of To and use only the �rst term in Equation 7, we getW = Kp3=2 (9)Now consider only the second term of the overhead function and repeat the above analysis. Equation7 now takes the form W = Kp3=4W 3=4W 1=4 = Kp3=4W = K4p3 (10)In order to ensure that the e�ciency does not decrease as the number of processors increase, the �rstand the second term of the overhead function require the problem size to grow as �(p3=2) and �(p3),respectively. The asymptotically higher of the two rates should be regarded as the overall asymptoticisoe�ciency function. Thus, the isoe�ciency function is �(p3) for this parallel system. This is becauseif the problem size W grows as �(p3), then To would remain of the same order as W .7

By performing isoe�ciency analysis, we can test the performance of a parallel program on a fewprocessors, and then predict its performance on a larger number of processors. However, the utilityof the isoe�ciency analysis is not limited to predicting the impact on performance of an increasingnumber of processors. As we shall see in later sections, it can also be used to study the behavior ofa parallel system with respect to changes in other hardware related parameters, such as the speedof the processors and the data communication channels.2.2 Cost-Optimality and Isoe�ciency FunctionA parallel system is cost-optimal if the product of the number of processors and the parallelexecution time is proportional to the execution time of the best known serial algorithm on a singleprocessor. In other words, a parallel system is cost-optimal if and only ifpTP / WSubstituting TP from the right hand side of Equation 1, we getT1 + To / WSince T1 = Wtc, we have Wtc + To / WW / To (11)Equation 11 suggests that a parallel system is cost-optimal if its overhead function and theproblem size are of the same order of magnitude. This is exactly the condition required to maintaina �xed e�ciency while increasing the number of processors in the parallel system (Equation 7). Itfollows then that conforming to the isoe�ciency relation between the problem size and the numberof processors is a way to retain the cost-optimality of a parallel system as it is scaled up.2.3 A Lower Bound on Isoe�ciency FunctionWe discussed earlier that a smaller isoe�ciency function indicates better scalability. A naturalquestion to ask then is: how small an isoe�ciency function can be and what is an ideally scalableparallel system? If a problem consists ofW basic operations, then no more thanW processors can beused to solve the problem in a cost-optimal fashion. If the problem size grows at a rate slower than�(p) as the number of processors increases, then eventually the number of processors will exceedW , and, even in an ideal parallel system with no communication or other overheads, the e�ciencywill drop because the processors exceeding W will have no work to do. Thus asymptotically, theproblem size has to increase at least as fast as �(p) to maintain a constant e�ciency and hence
(p)is the asymptotic lower bound on the isoe�ciency function. It also follows that the isoe�ciencyfunction of an ideally scalable parallel system is �(p).2.4 Degree of Concurrency and Isoe�ciency FunctionThe lower bound of
(p) is imposed on the isoe�ciency function of a parallel system by the numberof operations that can be performed concurrently. We de�ne the maximum number of tasks that can8

be executed simultaneously at any given time in a parallel algorithm as its degree of concurrency.The degree of concurrency is a measure of the number of operations that an algorithm can performin parallel in a problem of size W and is independent of the parallel architecture. If C(W) isthe degree of concurrency of a parallel algorithm, then given a problem of size W , at most C(W)processors can be employed e�ectively. For example, using Gaussian elimination to solve a system ofn equations with n variables, the total amount of computation is �(n3). However, the n variableshave to be eliminated one after the other, and eliminating a particular variable involves �(n2)computations. Thus, at most O(n2) processors can be kept busy at any given time. Now ifW = �(n3) for this problem, then the degree of concurrency C(W) is �(W 2=3). Since, if given aproblem of size W , at most �(W 2=3) processors can be used, then given p processors, the size of theproblem should be at least
(p3=2) in order to use all the processors. Thus, the isoe�ciency functionof this computation due to concurrency is �(p3=2). The isoe�ciency function due to concurrencyis optimal (i:e:, �(p)) only if the degree of concurrency of the parallel algorithm is �(W). If thedegree of concurrency of an algorithm is less than �(W), then the isoe�ciency function due toconcurrency can be worse (greater) than �(p). In such cases, the overall isoe�ciency functionof a parallel system is given by the maximum of the isoe�ciency functions due to concurrency,communication, and other overheads.3 Illustrations of Isoe�ciency AnalysisIn this section, we illustrate the utility of isoe�ciency analysis using di�erent examples. Often weare faced with a need for comparing the performance of two parallel algorithms for a large numberof processors. The asymptotic isoe�ciency function provides us with such a tool. The algorithmwith the smaller asymptotic isoe�ciency function yields better performance as the number ofprocessors becomes large. We illustrate this in Subsection 3.1 using the example of two parallelalgorithms for computing the matrix-vector product. For certain parallel systems, changing speedof processors and communication channels impacts scalability moderately. However, for someother parallel systems, this impact is signi�cant. This e�ect of machine speci�c parameters on thescalability is illustrated in Subsection 3.2 in the context of a parallel algorithm for computing FastFourier Transforms. Some parallel algorithms have low overhead due to communication, idlingand contention, but o�er limited concurrency. For many of these algorithms, concurrency playsa critical role in determining the overall isoe�ciency. We illustrate this using Dijkstra's all pairsshortest path algorithm in Subsection 3.3. There are other algorithms which have a low overheaddue to communication and idling, and o�er a high degree of concurrency, but su�er from contentionover shared data structures. For many of these algorithms, it is di�cult to analytically model theoverheads due to contention. In Subsection 3.4, we demonstrate in the context of the dynamic loadbalancing problem how the isoe�ciency function can be used to determine the scalability of suchalgorithms.3.1 Comparing two parallel algorithmsThe asymptotic values of the isoe�ciency function can be used to compare the performance ofvarious algorithms as the number of processors becomes large. We illustrate this using the exam-ple of two parallel algorithms for computing a matrix-vector product on a hypercube connected9

computer.� Example 4: Stripe Based Matrix-Vector Product on a HypercubeConsider the problem of multiplying an n � n matrix with an n � 1 vector. The number of basicoperations needed for this matrix-vector product, and the problem size W is equal to n2. If the timetaken by a single addition and multiplication operation is tc, then the sequential execution time ofthis algorithm is n2tc; i.e., T1 = n2tc [5].
 the processors by all-to-all broadcast
(b) Distribution of the full vector among all

0

1

p-1

0 1 p-1

0 1 p-1

0 1 p-1

0 1 p-1

0

1

p-10 1 p-1

p-1

p-1

.

.
P

P

P

1

0

.

.

P

P

P

1

0

0

1

p-1

n/p n

(d) Final distribution of the matrix
 and the result vector

(c) Entire vector distributed to each
 processor after the broadcast

p-1

.

.

P

P

P

0

1

Processors

.

.

P

P

P

0

1

p-1

(a) Initial partitioning of the matrix
 and the starting vector

Matrix Vector

VectorMatrix A x

yA

x

yFigure 3: Multiplication of an n � n matrix with an n � 1 vector using row-wise striped datapartitioning.Figure 3 illustrates a parallel formulation of this algorithm based on striped partitioning of the matrixand the vector. Each processor is assigned n=p rows of the matrix and n=p elements of the vector.Since the matrix-vector multiplication requires the vector to be multiplied with each row of the matrix,every processor needs the entire vector. In order to accomplish this, in the �rst step, each processorbroadcasts its n=p elements of the vector to every other processor. This operation is also referred toas an all-to-all broadcast. After this step, each processor has the vector available locally and n=p rowsof the matrix. Using these, it computes the dot products locally, and at the end of this step, eachprocessor has n=p elements of the resulting vector.Let us now analyze the performance of this parallel formulation for a hypercube connected computer.The �rst step of the algorithm involving the all-to-all broadcast of packets of size n=p among p10

processors can be performed in ts log p + twn(p � 1)=p time [5]. Here, ts is the startup time of thecommunication network and tw is the per-word transfer time. For large values of p this can beapproximated to ts log p+ twn. Assuming that an addition and a multiplication takes tc units of time,each processor spends tcn2=p units of time in multiplying its n=p rows with the vector. Thus, theparallel execution time of this procedure is given by:TP = tcn2p + ts logp + twn (12)The corresponding speedup S and e�ciency E are given by:S = p1 + p(ts log p+twn)tcn2 (13)E = 11 + tsp log p+twnptcn2 (14)Now we derive an expression for the isoe�ciency function for this parallel formulation. Using therelation To = pTP � T1, we get the following expression for the overhead function of the stripedmatrix-vector multiplication on the hypercube:To = tsp log p+ twnp (15)We can determine the isoe�ciency function from the equation W = KTo (Equation 7). Let us rewritethis relation for our parallel formulation of matrix-vector multiplication, �rst with only the ts term ofTo. W = Ktsp logp (16)Equation 16 gives the isoe�ciency term with respect to the message startup time. Similarly, the twterm of the overhead function can be balanced against the problem size W as follows:n2 = Ktwnpn = KtwpW = n2 = K2t2wp2 (17)From Equations 16 and 17 it can be inferred that the overall asymptotic rate at which the problemsize needs to increase with the number of processors in order to maintain a �xed e�ciency is �(p2).� Example 5: Checkerboard Based Matrix-Vector Product on a HypercubeConsider an alternate partitioning of the matrix and the vector for computing the matrix-vectorproduct. Instead of partitioning the matrix into stripes, we now divide it into p squares, each ofdimensions (n=pp) � (n=pp). This partitioning is referred to as checkerboard partitioning [5]. Theparallel matrix-vector multiplication algorithm based on this partitioning is illustrated in Figure 4.The vector itself is distributed along the last column of the mesh.In the �rst step of the algorithm, the vector is aligned along the diagonal processors. For this, allprocessors of the last column send their n=pp elements of the vector to the diagonal processor oftheir respective rows. Then a column-wise one-to-all broadcast of these n=pp elements is performed.11

AMatrix

(a) Initial data distribution and communication
 steps to align the vector along the diagonal

(b) One-to-all broadcast of portions of
 the vector along processor columns

. .

.

.

Vector

Vector

y

x

. .

.

.

(d) Final distribution of the result vector(c) Single-node accumulation of partial results

Matrix A

nn=ppnpp
P0 P1 Ppp-1Ppp Pp-1

P0 P1 Ppp-1Ppp Pp-1
P2pp

P2pp
Figure 4: Matrix-vector multiplication using checkerboard partitioning.After this communication step, the vector is aligned along the rows of the matrix. Each processorperforms n2=p multiplications and locally adds up the n=pp sets of products. As shown in Figure4(c), each processor now has n=pp partial sums which need to be accumulated along each row toobtain the resultant vector. Hence, the last step of the algorithm is a single node accumulation ofthese n=pp values in each row, with the last processor of the row as the destination. The operationof this algorithm is illustrated in Figure 4.We now analyze the performance of this algorithm on a hypercube connected computer with storeand forward routing [5]. The �rst step of sending a message from the last processor of a row to thediagonal processor can be performed in at most ts + tw(n=pp) logpp. The second communicationstep distributes copies of the vector among the rows of processors and involves one-to-all broadcastsin all the columns of processors as shown in Figures 4(b) and 4(c). This step can be performed in(ts+twn=pp) logpp. If a multiplication and an addition is assumed to take tc units of time, then eachprocessors spends approximately tcn2=p time performing computation. Now if the resultant vector hasto be placed in the last column of processors like the starting vector, then a single node accumulationof components of size n=pp of the vector has to be performed in each row of processors. Ignoring thetime required for performing additions during this step, the accumulation can be performed with acommunication time of (ts + twn=pp) logpp. Summing up the time taken by all the steps, the totalparallel execution time for this procedure is given by the following equation :12

TP = tcn2p + ts + 2ts logpp+ 3tw npp logppThis can be approximated by TP = tcn2p + ts log p+ 32 tw npp log p (18)From this equation, the total overhead To is given by:To = tsp logp+ 32twnpp log pAs before, we can equate each term in this overhead function with the problem size W . For theisoe�ciency due to ts, we have W / Ktsp logp, where K = 1=(tc(1 �E)). For isoe�ciency due to tw,equating W with KTo, we have n2tc = K 32twnpp logpn = K 32 twtc pp logpn2 = K294 t2wt2c p log2 pTherefore, the isoe�ciency due to tw is given by �(p log2 p). Since this term asymptotically dominatesthe �(p log p) term due to ts, the overall isoe�ciency of this formulation is given by �(p log2 p).From these two examples, we can see that the isoe�ciency function of the stripe based matrix-vector product algorithm is �(p2), because it is asymptotically higher than the �(p log2 p) isoe�-ciency function of the checkerboard based algorithm. This implies that as the number of processorsis increased, the stripe based formulation will require much larger problem sizes to yield the samee�ciencies as the checkerboard based formulation.3.2 Predicting e�ects of machine speci�c parametersIsoe�ciency analysis can be used to predict the e�ect of such machine speci�c parameters asprocessor speed and speed of communication channels (startup time, per-word transfer time, etc:).In this section, we illustrate how isoe�ciency analysis is useful in making such predictions.� Example 6: Fast Fourier TransformsConsider the Cooley-Tukey algorithm for computing an n-point single dimensional unordered radix-2FFT [2, 5]. Figure 5 illustrates the algorithmgraphically. The sequential complexity of this formulationis given by �(n logn). In this section, we will use a parallel formulation of this algorithm based onthe binary exchange method for a hypercube based computer. In this parallel formulation, shownin Figure 5, we partition the vectors into blocks of n=p contiguous elements and assign one such blockto each processor. Let the hypercube being used be d-dimensional (i:e:, p = 2d) and let n = 2r. Aninteresting property of the mapping shown in Figure 5 is that the vector elements residing on di�erentprocessors are combined during the �rst d iterations, while the pairs of elements combined during the13

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

P3

P2

P1

P0

Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

Y[8]

Y[9]

Y[10]

Y[11]

Y[12]

Y[13]

Y[14]

Y[15]

m = 0 m = 1 m = 2 m = 3

Figure 5: A 16-point FFT on four processors. Pi denotes processor number i and m refers to theiteration number.last (r�d) iterations reside on the same processors. Hence, this parallel FFT algorithm involves inter-processor communication only during d = log p of the logn iterations. Each communication operationinvolves exchanging n=p words of data. Thus, the time spent in communication during the executionof the entire algorithm is (ts + twn=p) logp. In each iteration, a processor updates n=p elements ofvector R. If a complex multiplication and addition takes time tc, then the parallel execution time ofthe n-point parallel FFT on a p-processor hypercube is given by:TP = tcnp logn+ ts logp+ tw np log p (19)From this equation, we can also see that the total overhead To is given by:To = tsp logp+ twn logpWe know that the problem size for an n-point FFT is given by:W = n logn (20)Following the methodology of Examples 4 and 5, we can determine the isoe�ciency by equating theproblem size with the total overhead. For isoe�ciency due to ts, we have W / tsp logp, which14

corresponds to an isoe�ciency function of �(p log p). The isoe�ciency due to the tw term can also bedetermined similarly: n logn = Ktwn log plogn = Ktw log pn = pK twtcn logn = KtwpKtw log pW = E1� E twtc p E1�E twtc log p (21)If the term twE=(tc(1 � E)) is less that 1, then the rate of growth of problem size dictated byEquation 21 is less than �(p log p), and hence the overall isoe�ciency function is �(p log p) for thisparallel system. On the other hand, if twE=(tc(1 � E)) exceeds 1, then Equation 21 determines theoverall isoe�ciency function which is now greater than �(p log p). Also, in this case, the asymptoticisoe�ciency function depends on the relative values of E=(1�E), tw and tc. Thus, the FFT algorithmis somewhat unique in that the asymptotic isoe�ciency function is a function of the desired e�ciencyand hardware dependent parameters. In fact the e�ciency corresponding to twE=(tc(1�E)) = 1, (i:e:,E=(1� E) = tc=tw, or E = tc=(tc + tw)) acts as a threshold value. For a given hypercube connectedcomputer with �xed tc and tw, e�ciencies up to this values can be obtained easily. But e�cienciesmuch higher than this threshold can be obtained only if the problem size is extremely large.Let us examine the e�ect of the value of twE=(tc(1 � E)) on the isoe�ciency function. Considerthe computation of an n-point FFT on a p-processor hypercube on which tw = tc. The isoe�ciencyfunction of the parallel FFT on this machine is E=(1 � E)pE=(1�E) logp. Now for E=(1� E) � 1(i.e. E � 0:5) the overall isoe�ciency is �(p log p), but for E > 0:5, the isoe�ciency function is muchworse. For instance, if E = 0:9, then E=(1� E) = 9 and hence the isoe�ciency function becomes�(p9 log p). Now consider the computation of an n-point FFT on a p-processor hypercube on whichtw = 2tc. The threshold e�ciency is 0.33. The isoe�ciency function for E = 0:33 is �(p log p), forE = 0:5 it is �(p2 log p), and for E = 0:9 it becomes �(p18 log p).The above examples show that there is a limit on the e�ciency that can be obtained forreasonable problem sizes, and this limit is determined by the ratio of the CPU speed and thebandwidth of the communication channels of the hypercube. This limit can be raised by increasingthe bandwidth of the communication channels. On the other hand, making the CPU's faster withoutimproving the communication bandwidth lowers this threshold. Hence, this parallel formulationof FFT performs poorly on a hypercube whose communication and computation speeds are notbalanced. If the hardware is balanced with respect to communication and computation speeds,then the FFT algorithm is fairly scalable on a hypercube with an overall isoe�ciency function of�(p log p), and good e�ciencies can be expected for reasonably large number of processors.This example illustrates how the isoe�ciency function can be used to derive the e�ect of variousmachine speci�c factors. For a more detailed scalability analysis of this and other parallel FFTalgorithms, see [2, 5].3.3 Impact of Concurrency on ScalabilityWe have seen that the maximum concurrency in a parallel algorithm often limits the number ofprocessors that can be e�ectively utilized. Therefore, the problem size has to grow fast enough15

so that it is possible to use the increased number of processors. For many algorithms limitationsimposed by concurrency plays a dominant role in determining overall scalability. We illustrate thisin the context of Dijkstra's all pairs shortest path algorithm.� Example 7: Dijkstra's All Pair's Shortest Path AlgorithmConsider the all-pairs shortest path problem for a dense graph with n vertices. The problem involves�nding the shortest path between each pair of vertices in the graph. The best known serial algorithmfor solving this takes time �(n3) time. This problem can also be solved using n instances of the single-source shortest path problem. The single source shortest path problem determines the shortest pathfrom one vertex to every other vertex in the graph. The sequential complexity of the single-sourceshortest path problem is �(n2). Therefore, by executing one instance of the single-source shortestpath algorithm for each of the n vertices, we can solve the all-pairs shortest path problem.A simple parallel formulation of this algorithm can be derived by using n processors with each processorexecuting a single-source shortest path problem independently. Since each of these computations isindependent of the other, the parallel formulation requires absolutely no communication. It maytherefore seem that this algorithm is the best possible algorithm.Let us consider the scalability resulting from the concurrency in this parallel algorithm. Since thealgorithm can use at most n processors, p = n, and since the problem size W is �(n3), W mustgrow at least as �(p3) to be able to use additional processors. This function determines the overallisoe�ciency of the parallel formulations. This isoe�ciency is relatively high and other algorithms withbetter isoe�ciencies are available.This example illustrates how isoe�ciency captures the concurrency inherent in a parallel algo-rithm. An algorithm may appear attractive because of lack or absence of communication, but mayindeed perform poorly for higher number of processors because of limited concurrency. See [5, 9]for scalability analysis of a number of other shortest-path algorithms.3.4 Impact of Contention for Shared Data StructuresFor some parallel algorithms, it is di�cult to compute the parallel execution time analytically, asthe e�ects of certain overheads such as those due to contention are di�cult to model. In suchapplications, isoe�ciency analysis may still be a useful tool for analyzing the scalability. In thissubsection, we present one such parallel algorithm.� Example 8: Dynamic Load BalancingConsider an application with the following characteristics:{ The work available at any processor can be partitioned into independent work pieces as long asit is more than some non-decomposable unit.{ It is di�cult to estimate the amount of computation associated with a piece of work.{ A reasonable work splitting mechanism is available; i:e:, if work w at one processor is partitionedinto two parts w and (1�)w, then there exists an arbitrarily small constant �(> 0), such that w > �w and (1 �)w > �w. The role of � is to set a bound on the load imbalance resultingfrom work splitting. 16

Instances of applications which conform to these characteristics are found in depth �rst search oflarge unstructured trees used for solving discrete optimization problems [6]. Some parallel algorithmsfor solving this problem employ the following dynamic load balancing strategy. All work is initiallyassigned to one processor. An idle processor Pi selects a processor Pa using some selection criterionand sends it a work request. If processor Pa has no work, then it responds with a reject message; else,it partitions its work into two parts and sends one of the pieces to Pi. This process continues untilall processors exhaust the available work. Various selection criteria have been proposed in literature[6, 8]. One technique referred to as Global Round Robin (GRR) maintains a global pointer G locatedat one of the processors. This pointer initially points to the �rst processor in the ensemble. Eachtime an idle processor needs to select Pa, it reads the current value of G, and requests work from PG.Before the next request from an idle processor is processed, the global pointer is incremented by one(modulo p). The global pointer distributes the work requests evenly over the various processors.We can see that the non-deterministic nature of the algorithmmakes it impossible to evaluate the exactparallel execution time of such an algorithm. However, it is possible to bound the communication costof such an algorithm. As shown in [6, 5], an upper bound on the number of communications requiredfor this algorithm is O(p logW). Each communication takes O(logp) time, and the total overheadresulting from the communication of work is bounded by O(p logp logW). As before, this term can beequated with the problem size W to yield the isoe�ciency resulting from communication overheads.Therefore, W / O(p logp logW)Substituting the value ofW from the right hand side of the expression back into the right hand side andignoring the double log terms, we can see that the isoe�ciency of this algorithm due to communicationoverheads is O(p log2 p).This term however does not specify the overall isoe�ciency of the system because the algorithm hasoverheads in addition to that for communicating work. In this algorithm a global variable is accessedrepeatedly. If many processors try to access it at the same time, then only one will succeed, and otherswill have to wait due to contention. We analyze the isoe�ciency due to contention as follows:The global variable is accessed O(p logW) number of times (for read and increment operations) overthe entire execution. If processors are e�ciently utilized, then the total time of execution is �(W=p).Assume that while solving some speci�c problem instance of size W on p processors, there is nocontention. In this case, W=p is much more than the total time over which the shared variable isaccessed. Now, as we increase the number of processors, the total time of execution (i:e:, W=p)decreases but the number of times the shared variable is accessed increases. There is thus a crossoverpoint beyond which the shared variable access will become a bottleneck and the overall execution timecannot be reduced further. This bottleneck can be eliminated by increasing W at a rate such that theratio between W=p and O(p logW) remains the same. Equating W=p and O(p logW) and simplifyingyields an isoe�ciency term of O(p2 log p).Thus, since the isoe�ciency due to contention asymptotically dominates the isoe�ciency due to com-munication, the overall isoe�ciency is given by O(p2 logp).In this example, we have seen how it is possible to model overheads due to contention usingthe isoe�ciency metric. A number of other dynamic load balancing algorithms have been analyzedin [6, 8]. In [6], it is experimentally shown that dynamic load balancing schemes with betterisoe�ciency functions outperform those with poorer isoe�ciency functions.17

4 Summary and Concluding RemarksThe isoe�ciency metric is useful in situations in which we are interested in obtaining linearlyincreasing performance with the number of processors. If the rate of growth of problem size is thesame as that speci�ed by the isoe�ciency function, then the speedup obtained from the parallelsystem is linear. In certain cases, it may not be possible or desirable to increase the problem sizeat the rate speci�ed by the isoe�ciency function. If this rate is smaller than the isoe�ciency thenthe speedup is sublinear. For a given rate of growth of problem size, the speedup curve can beused as a scalability metric. If the problem size is increased linearly with the number of processors,the speedup curve is referred to as scaled speedup [3]. The rate of growth of problem size mayalso be constrained by the amount of memory in the parallel computer. In this case, the problemsize is increased at the fastest rate allowed by the available memory. These metrics have beeninvestigated by Worley [12], Gustafson [3] and Sun and Ni [10]. In many situations, the rate ofgrowth of problem size is dictated by the time available to solve the problem. In these cases, theproblem size is increased with number of processors in such a way that the parallel runtime remainsconstant. The scalability issues for such problems have been explored by Worley [12], Gustafson[3], and Sun and Ni [10]. It is also possible to keep the problem size �xed and use the speedup curveas a scalability metric. Performance issues related to �xed problem size case have been addressedin [1].There are certain interesting relationships between isoe�ciency and some of these metrics. Itcan be shown that if the isoe�ciency function is greater than �(p), then for a scalable parallelsystem, the problem size cannot be increased inde�nitely while maintaining a �xed execution time,no matter how many processors are used [1, 7]. In [1], we have shown that for a class of parallelsystems, the relationship between the problem size and the number of processors on which theproblem executes in minimum time is speci�ed by the isoe�ciency function.AcknowledgementsThis work was supported by Army Research O�ce grant #28408-MA-SDI to the University ofMinnesota and by the Army High Performance Computing Research Center at the University ofMinnesota. The authors would also like to thank Daniel Challou for his help in the preparation ofthis document.References[1] Anshul Gupta and Vipin Kumar. Performance properties of large scale parallel systems.Journal of Parallel and Distributed Computing (special issue on supercomputer performance),November 1993. Also available as Technical Report 92-32, Department of Computer Science,University of Minnesota, Minneapolis, MN.[2] Anshul Gupta and Vipin Kumar. The scalability of FFT on parallel computers. IEEE Trans-actions on Parallel and Distributed Systems, 4(8):922{932, August 1993. A detailed versionavailable as Technical Report TR 90-53, Department of Computer Science, University of Min-nesota, Minneapolis, MN. 18

[3] John L. Gustafson. Reevaluating Amdahl's law. Communications of the ACM, 31(5):532{533,1988.[4] John L. Gustafson. The consequences of �xed time performance measurement. In Proceedingsof the 25th Hawaii International Conference on System Sciences: Volume III, pages 113{124,1992.[5] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to ParallelComputing: Design and Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA,1994.[6] Vipin Kumar, Ananth Grama, and V. Nageshwara Rao. Scalable load balancing techniquesfor parallel computers. Technical Report 91-55, Computer Science Department, University ofMinnesota, 1991. To appear in Journal of Distributed and Parallel Computing, 1994.[7] Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms and architec-tures. Technical Report TR 91-18, Department of Computer Science Department, Universityof Minnesota, Minneapolis, MN, 1991. To appear in Journal of Parallel and Distributed Com-puting, 1994. A shorter version appears in Proceedings of the 1991 International Conferenceon Supercomputing, pages 396-405, 1991.[8] Vipin Kumar and V. N. Rao. Parallel depth-�rst search, part II: Analysis. InternationalJournal of Parallel Programming, 16(6):501{519, 1987.[9] Vipin Kumar and Vineet Singh. Scalability of Parallel Algorithms for the All-Pairs ShortestPath Problem. Journal of Parallel and Distributed Computing, 13(2):124{138, October 1991. Ashort version appears in the Proceedings of the International Conference on Parallel Processing,1990.[10] Xian-He Sun and L. M. Ni. Another view of parallel speedup. In Supercomputing '90 Proceed-ings, pages 324{333, 1990.[11] Xian-He Sun and Diane Thiede Rover. Scalability of parallel algorithm-machine combinations.Technical Report IS-5057, Ames Laboratory, Iowa State University, Ames, IA, 1991. To appearin IEEE Transactions on Parallel and Distributed Systems.[12] Patrick H.Worley. The e�ect of time constraints on scaled speedup. SIAM Journal on Scienti�cand Statistical Computing, 11(5):838{858, 1990.
19

