[soefficiency Function: A Scalability Metric for Parallel Algorithms

and Architectures

Ananth Grama, Anshul Gupta and Vipin Kumar
Department of Computer Science,
University of Minnesota

Minneapolis, MN 55455

This paper provides a tutorial introduction to a performance evaluation metric called the iso-
efficiency function. Traditional methods for evaluating serial algorithms are inadequate for
analyzing the performance of parallel algorithm-architecture combinations. Isoefficiency function
has proven useful for evaluating the performance of a wide variety of such combinations.

On a sequential computer, the fastest algorithm for solving a given problem is the best algorithm.
However, the performance of a parallel algorithm for a specific problem instance on a given number
of processors provides only limited information. The time taken by a parallel algorithm to solve a
problem instance depends on the problem size, the number of processors used to solve the problem,
and machine characteristics such as: processor speed, speed of communication channels, type of
interconnection network, and routing techniques. An algorithm that yields good performance for a
selected problem on a fixed number of processors on a given machine may perform poorly if any of
these parameters are changed. Hence, the evaluation of a parallel algorithm on a parallel computer
requires a more comprehensive analysis, and the study of scalability aids us in this analysis. The
scalability of a parallel system is a measure of its capacity to deliver linearly increasing speedup
with respect to the number of processors used. It reflects the capacity of the parallel system to
effectively utilize an increasing amount of processing resources.

Scalability analysis of an architecture-algorithm combination helps us in answering the following
questions: How does increasing the number of processors affect the performance of an algorithm?
How does changing the problem size affect performance? How does changing the computation speed
of the processors, or the communication speed of the interconnection network affect the performance
of a parallel computer for a given algorithm? What is the best algorithm and architecture for solving
a problem as the problem size and number of processors change?

A number of performance evaluation metrics have been developed to study the scalability of
parallel algorithms and architectures [3, 4, 10, 11, 12]. Kumar and Gupta [7] provide a compre-
hensive survey of different methods of scalability analysis. The isoefficiency function is one such
metric. It relates the size of the problem being solved to the number of processors required to
maintain the efficiency at a fixed value. An important feature of the isoefficiency function is that
it succinctly captures the effects of characteristics of the parallel algorithm as well as the parallel
architecture on which it is implemented, in a single expression. The isoefficiency function enables us
to determine the degree of scalability of a parallel system with respect to the number of processors,
the speed of processors, and the communication bandwidth of the interconnection network. Thus

we can compare various combinations of parallel algorithms and architectures for a range of prob-
lem sizes and number of processors. Hence, using isoefficiency, we can determine the best parallel
algorithm-architecture combination for a problem under a variety of situations without having to
explicitly analyze all possible combinations under all possible conditions. The following sections
present a discussion of the terminology necessary to use this metric followed by a number of useful
examples of isoefficiency analysis.

1 Definitions and Assumptions

In this section, we introduce the terminology used in the rest of the paper. Since a parallel algorithm
cannot be evaluated in isolation from the architecture it is implemented on, we define a parallel
system as the combination of a parallel algorithm and a parallel architecture. Together, a parallel
architecture and the parallel algorithm running on it constitute a parallel system. The time taken
by an algorithm to execute on a single processor is called the sequential execution time and is
denoted by T;. The execution time of the corresponding parallel algorithm on p identical processors
is called the parallel execution time and is denoted by Tp. A parallel algorithm incurs several
overheads during execution. These include overheads due to idling, communication, and contention
over shared data structures. The sum total of time spent by all processors doing work which is
not done by the sequential algorithm is termed as the total overhead and is denoted by T,. In
general, T, is a function of problem size and the number of processors. Since the sum total of time
spent by all processors is pT’p, and the total overhead is T,, we can see that

pTP = Tl + To
or
T+,
Tp = % (1)

The speedup () obtained from a parallel system is defined as the ratio of the sequential
execution time to the parallel execution time. Therefore,

_ ﬂ pT

S = S 2
TP T1‘|'To

The efficiency (F) of a parallel system is defined as the ratio of the speedup obtained to the
number of processors used. Therefore,

)
P

T
Tl + To

- 2)

1+ 72

For certain parallel architecture-algorithm combinations, T, can be negative. This implies that
the speedup obtained from p processors may exceed p. This phenomenon is called superlinear

speedup. An example of a parallel system capable of exhibiting such behavior is one in which

memory is hierarchical and the access time increases (in discrete steps) with the memory used
by the program. In this case, the effective computation speed of a large program may be slower
on a serial processor than on a parallel computer employing similar processors. This is because
a sequential algorithm using M bytes of memory will use only M/p bytes on each processor of
a p-processor parallel computer. In this case, cache and virtual memory effects may reduce the
effective computation rate of a serial processor. In order to simplify presentation, we assume that
T, is non-negative in the rest of the paper.

During the course of analyzing parallel systems, we frequently encounter the notion of the size
of the problem being solved. So far we have used this term informally without providing a rigorous
definition. One way of expressing the problem size is to represent it by a parameter of the input
size. For example, for any matrix problem involving n» X n matrices the problem size could be
denoted by n. A drawback of this definition is that the interpretation of problem size changes from
one problem to another. For example, doubling the input size results in an 8-fold increase in the
serial execution time for matrix multiplication and a 4-fold increase for matrix addition. A better
definition of the size or the magnitude of the problem would be such that irrespective of the problem,
doubling the problem size always means performing twice the amount of computation. Therefore,
we choose to express problem size in terms of the total number of basic operations inherent in the
problem. According to this notion, the problem size for n x n matrix multiplication is @(n?), while
that for the addition of two n x n matrices is ©(n?). In order to keep the problem size unique for
a given problem, we define it as the number of operations the best sequential algorithm executes
in order to solve the problem on a single processor. For some problems, the best algorithm is
not known; for others, the asymptotically best algorithm may have worse performance than other
algorithms for problem instances of interest. In these cases, we can use the number of operations
in the serial algorithm that is considered best for such problem instances. For example, for matrix
multiplication, the simple ©(n?) algorithm is often the algorithm of choice, even though Strassen’s
algorithm has a better asymptotic complexity. The problem size is a function of the size of the
input. We will use the symbol W to denote problem size. If the cost of executing each operation
is t., then T = Wit..

We illustrate these terms using a simple example.

e Example 1: Adding n numbers on a p-processor hypercube

Consider the problem of adding n numbers. For this problem the number of operations, and hence
the problem size W is equal to n. If we assume that each addition takes ¢. time, then 7} is equal to
nt.. 1 Now consider a parallel algorithm for adding n numbers using a p-processor hypercube. This
algorithm is shown in Figure 1 for n = 16 and p = 4. Each processors is allocated n/p numbers. In the
first step of this algorithm, each processor locally adds its n/p numbers in ©(n/p) time. The problem
i1s now reduced to adding the p partial sums on p processors. These can be done by propagating and
adding the partial sums as shown in Figure 1. A single step consists of one addition and one nearest
neighbor communication of a single word, each of which is a constant time operation. For the sake of
simplicity, let us assume that it takes one unit of time to add two numbers and also to communicate a
number between two processors. Therefore, n/p time is spent in adding the n/p local numbers at each
processor. After the local addition, the p partial sums are added in logp steps, each step consisting

!In reality the number of basic operations, W, is n — 1 and the sequential execution time 7} is given by (n — 1)t..

For large values of n, W and 71 can be approximated by n and nt. respectively.

(© (d)

Figure 1: Computing the sum of 16 numbers on a 4-processor hypercube.

of one addition and one communication. Thus, the total parallel execution time T, is n/p + 2logp.
The same task can be accomplished sequentially in n time units. Thus, out of the n/p + 2logp time
units that each processor spends in parallel execution, n/p time is spent in performing useful work.
The remaining 2logp units of time per processor contribute to a total overhead of

T, = 2plogp (3)

The speedup S and efficiency E for this algorithm are given by

T1 n
S=—=——— 4
Tp %+210gp (4)
p=S-_" (5)

p n+2plogp

In the next section we formalize the notion of scalability of a parallel system.

2 Scalability of Parallel Systems

The number of processors used is an upper bound on the speedup achievable by a parallel system
and the speedup for a single processor is one. If more than one processor is used, the speedup
obtained is usually less than the number of processors. Let us further investigate how the speedup
changes with the number of processors. Consider the problem of adding n numbers on a p-processor
hypercube discussed in Example 1. FEquations 4 and 5 can be used to calculate the speedup and
efficiency for any given pair of n and p. Figure 2 plots speedup against number of processors for
a few different values of n up to 32 processors. Table 1 shows the efficiencies corresponding to the
values of n and p used in Figure 2.

Figure 2 and Table 1 illustrate two things. First, for a given problem instance, the speedup does
not increase linearly as the number of processors is increased. The speedup curve tends to saturate.
In other words, the efficiency drops with increasing number of processors. This phenomenon is true
for all parallel systems, and is often referred to as Amdahl’s law. Second, a larger instance of the

same problem yields a higher speedup (efficiency) for the same number of processors.

35 T
. Linear

30 [_
25 N
n=512
n=320 |
S n=192 |
n=64 -

|

35 40

Figure 2: Speedup vs. number of processors for adding a list of numbers on a hypercube.

p—| 1 4 8 16 32
n|
64 [1.0 .80 .57 .33 .17
192 [1.0 .92 .80 .60 .38
320 [1.0 .95 .87 .71 .50
512 [1.0 .97 .91 .80 .62

Table 1: Efficiency as a function of n and p for adding n numbers on p-p rocessor hypercubes.

Given that increasing the number of processors reduces efficiency and increasing the size of the
computation increases efficiency, it should be possible to keep the efficiency constant by increasing
both the size of the problem and the number of processors simultaneously. For instance, in Table
1, the efficiency of adding 64 numbers on a hypercube with four processors is 0.80. If the number
of processors is increased to eight and the size of the problem is scaled up to add 192 numbers, the
efficiency remains 0.80. Further increasing p to 16 and n to 512 also results in the same efficiency.
This behavior is exhibited by a large class of parallel systems. For these systems, the efficiency of
parallel execution can be maintained at a constant value by simultaneously increasing the number
of processors and the size of the problem being solved. We call such systems scalable parallel

systems.

2.1 The Isoefficiency Metric

We have defined a scalable parallel system as one in which efficiency can be kept constant as the
number of processors is increased, provided that the problem size is also increased. A natural
question is, “at what rate should the problem size be increased with respect to the number of

processors to keep the efficiency fixed?”. For different parallel systems, the size of the problem to
be solved has to increase at different rates in order to maintain a fixed efficiency as the number
of processors is increased. This rate determines the degree of scalability of the parallel system. In
this subsection we introduce a metric for quantitatively determining the degree of scalability of a
parallel system.

Consider the efficiency of a parallel algorithm defined by Equation 2. Substituting 773 = t.W

into this equation, we get:
1

EF=——0Hf
L+ 4

(6)

In Equation 6, if the problem size W is kept constant and p is increased, then the efficiency
decreases because the total overhead T, increases with p. If W is increased while keeping the
number of processors constant, then, for scalable parallel systems, the efficiency increases. This is
because for a given p, T, grows slower than ©(W). For these parallel systems, the efficiency can
be maintained at a desired value (between 0 and 1) by increasing p, provided W is also increased.
For different parallel systems, W has to be increased at different rates with respect to p in order to
maintain a fixed efficiency. For example, in some cases, W might need to grow as an exponential
function of p to keep the efficiency from dropping as p is increased. Such parallel systems are
considered poorly scalable. On parallel systems with these characteristics, it is difficult to obtain
good speedups for a large number of processors, unless the size of the problem being solved is
enormously large. Conversely, if W needs to grow only linearly with respect to p, then the parallel
system is considered highly scalable. This is because it delivers speedups increasing linearly with
respect to the number of processors for problem sizes increasing at reasonable rates.

For scalable parallel systems, the efficiency can be maintained at a desired value (between 0 and
1) if the ratio T,,/W in the expression for efficiency is maintained at a constant value. To maintain
a certain efficiency £ (0 < £ < 1), we manipulate Equation 6 to get:

To_t(l—E)
w o F
1 E
W= —(—T,
tc(l—E)

Let K = E/(t.(1 — E)) be a constant depending on the efficiency. The equation above can be
rewritten as follows:

W =KT, (7)

From Equation 7 the problem size W can usually be obtained as a function of p by algebraic
manipulations. This function dictates the rate of growth of W required to keep the efficiency fixed
as p is increased. We call this function the isoefficiency function of the parallel system. The
isoefficiency function of a parallel system determines the ease with which it can achieve speedups
increasing in proportion to the number of processors. A small isoefliciency function implies that
small increments in the problem size are sufficient for efficient utilization of an increasing number
of processing elements, and hence the parallel system is highly scalable. Conversely, a large isoeffi-
ciency function indicates a poorly scalable parallel system. The isoefficiency function does not exist
for unscalable parallel systems because in such systems, the efficiency cannot be kept at constant

value as p increases, no matter how fast the problem size is increased.

¢ Example 2:
The expression for the overhead function of the problem of adding n numbers on a p-processor hyper-
cube is given in Equation 3. Substituting the value of 7T}, in Equation 7, we get

W =2Kplogp (8)

Thus the asymptotic isoefficiency function for this parallel system is ©(plogp). This means that if
the number of processors is increased from p to pl, the problem size (in this case, n) will have to
be increased by a factor of pl logpl/(p logp) to get the same efficiency as on p processors. In other
words, increasing the number of processors by a factor of pl /p requires n to be increased by a factor

of p' logpl/(p logp), in order to increase the speedup by a factor of pl/p.

In the simple example of adding » numbers, the communication overhead is a function of only
p. In general, it can depend on both the problem size and the number of processors. A typical
overhead function may have several different terms of different orders of magnitude with respect to
p and W. When there are multiple terms of different orders of magnitude in the overhead function,
it may be impossible or cumbersome to obtain the isoefficiency function as a closed form function
of p. For instance, consider a hypothetical parallel system, for which 7, = p*/2 + p¥/4W3/4. In
this case Equation 7 will be W = Kp*/? + Kp¥/*W3/*. It is difficult to solve for W in terms of
p. Recall that the condition for constant efficiency is that the ratio of T, and W should remain
fixed. As p and W increase in a parallel system, the efficiency is guaranteed not to drop if none
of the terms of T, grow faster than W. Therefore, if T, has multiple terms, we balance W against
each individual term of T, to compute the respective isoefficiency function. The component of T},
that causes the problem size to grow at the fastest rate with respect to p determines the overall
asymptotic isoefficiency function of the computation.

¢ Example: 3

Consider a hypothetical parallel algorithm-architecture combination for which T, = p/2 + p3/4W3/4,
If we 1gnore the second term of 7, and use only the first term in Equation 7, we get

W = Kp*? 9)

Now consider only the second term of the overhead function and repeat the above analysis. Equation
7 now takes the form

W = Kp?lAw3/4
W1/4 — [{p3/4
W = K*p? (10)

In order to ensure that the efficiency does not decrease as the number of processors increase, the first
and the second term of the overhead function require the problem size to grow as ©(p®/?) and ©(p?),
respectively. The asymptotically higher of the two rates should be regarded as the overall asymptotic
isoefficiency function. Thus, the isoefficiency function is ©(p?) for this parallel system. This is because

if the problem size W grows as ©(p?), then T, would remain of the same order as W.

By performing isoefliciency analysis, we can test the performance of a parallel program on a few
processors, and then predict its performance on a larger number of processors. However, the utility
of the isoefficiency analysis is not limited to predicting the impact on performance of an increasing
number of processors. As we shall see in later sections, it can also be used to study the behavior of
a parallel system with respect to changes in other hardware related parameters, such as the speed
of the processors and the data communication channels.

2.2 Cost-Optimality and Isoefficiency Function

A parallel system is cost-optimal if the product of the number of processors and the parallel
execution time is proportional to the execution time of the best known serial algorithm on a single
processor. In other words, a parallel system is cost-optimal if and only if

pTp x W
Substituting Tp from the right hand side of Equation 1, we get
T1 + TO x W

Since T7 = Wt., we have
Wt.+T, x W

W T, (11)

Equation 11 suggests that a parallel system is cost-optimal if its overhead function and the
problem size are of the same order of magnitude. This is exactly the condition required to maintain
a fixed efficiency while increasing the number of processors in the parallel system (Equation 7). It
follows then that conforming to the isoefficiency relation between the problem size and the number
of processors is a way to retain the cost-optimality of a parallel system as it is scaled up.

2.3 A Lower Bound on Isoefficiency Function

We discussed earlier that a smaller isoefficiency function indicates better scalability. A natural
question to ask then is: how small an isoefficiency function can be and what is an ideally scalable
parallel system? If a problem consists of W basic operations, then no more than W processors can be
used to solve the problem in a cost-optimal fashion. If the problem size grows at a rate slower than
O(p) as the number of processors increases, then eventually the number of processors will exceed
W, and, even in an ideal parallel system with no communication or other overheads, the efficiency
will drop because the processors exceeding W will have no work to do. Thus asymptotically, the
problem size has to increase at least as fast as ©(p) to maintain a constant efficiency and hence Q(p)
is the asymptotic lower bound on the isoefficiency function. It also follows that the isoefficiency

function of an ideally scalable parallel system is ©(p).

2.4 Degree of Concurrency and Isoefficiency Function

The lower bound of Q(p) is imposed on the isoefficiency function of a parallel system by the number
of operations that can be performed concurrently. We define the maximum number of tasks that can

be executed simultaneously at any given time in a parallel algorithm as its degree of concurrency.
The degree of concurrency is a measure of the number of operations that an algorithm can perform
in parallel in a problem of size W and is independent of the parallel architecture. If C(W) is
the degree of concurrency of a parallel algorithm, then given a problem of size W, at most C(W)
processors can be employed effectively. For example, using Gaussian elimination to solve a system of
n equations with n variables, the total amount of computation is ©(n>). However, the n variables
have to be eliminated one after the other, and eliminating a particular variable involves ©(n?)
computations. Thus, at most O(n?) processors can be kept busy at any given time. Now if
W = ©(n?) for this problem, then the degree of concurrency C(W) is @(W?2/3). Since, if given a
problem of size W, at most @(W2/3) processors can be used, then given p processors, the size of the
problem should be at least Q(p3/2) in order to use all the processors. Thus, the isoefficiency function
of this computation due to concurrency is @(p3/2). The isoefliciency function due to concurrency
is optimal (i.e., ©(p)) only if the degree of concurrency of the parallel algorithm is @(W). If the
degree of concurrency of an algorithm is less than ©(W), then the isoefficiency function due to
concurrency can be worse (greater) than O(p). In such cases, the overall isoefficiency function
of a parallel system is given by the maximum of the isoefliciency functions due to concurrency,
communication, and other overheads.

3 Illustrations of Isoefficiency Analysis

In this section, we illustrate the utility of isoefficiency analysis using different examples. Often we
are faced with a need for comparing the performance of two parallel algorithms for a large number
of processors. The asymptotic isoefficiency function provides us with such a tool. The algorithm
with the smaller asymptotic isoefficiency function yields better performance as the number of
processors becomes large. We illustrate this in Subsection 3.1 using the example of two parallel
algorithms for computing the matrix-vector product. For certain parallel systems, changing speed
of processors and communication channels impacts scalability moderately. However, for some
other parallel systems, this impact is significant. This effect of machine specific parameters on the
scalability is illustrated in Subsection 3.2 in the context of a parallel algorithm for computing Fast
Fourier Transforms. Some parallel algorithms have low overhead due to communication, idling
and contention, but offer limited concurrency. For many of these algorithms, concurrency plays
a critical role in determining the overall isoefficiency. We illustrate this using Dijkstra’s all pairs
shortest path algorithm in Subsection 3.3. There are other algorithms which have a low overhead
due to communication and idling, and offer a high degree of concurrency, but suffer from contention
over shared data structures. For many of these algorithms, it is difficult to analytically model the
overheads due to contention. In Subsection 3.4, we demonstrate in the context of the dynamic load
balancing problem how the isoefficiency function can be used to determine the scalability of such
algorithms.

3.1 Comparing two parallel algorithms

The asymptotic values of the isoefficiency function can be used to compare the performance of
various algorithms as the number of processors becomes large. We illustrate this using the exam-

ple of two parallel algorithms for computing a matrix-vector product on a hypercube connected

computer.

¢ Example 4: Stripe Based Matrix-Vector Product on a Hypercube

Consider the problem of multiplying an n x n matrix with an n x 1 vector. The number of basic
operations needed for this matrix-vector product, and the problem size W is equal to n?. If the time
taken by a single addition and multiplication operation 1s ¢., then the sequential execution time of
this algorithm is n?t.; i.e., Ty = n’t, [5].

Matrix A Vector x Processors

(@) Initial partitioning of the matrix (b) Distribution of the full vector among all
and the starting vector x the processors by all-to-all broadcast
Matrix A Vector y

[=]
-]
[]
[]
(2]
[=]

B ([o] [[[i
(c) Entire vector distributed to each (d) Final distribution of the matrix
processor after the broadcast and the result vector y

Figure 3: Multiplication of an n x n matrix with an n X 1 vector using row-wise striped data

partitioning.

Figure 3 illustrates a parallel formulation of this algorithm based on striped partitioning of the matrix
and the vector. Each processor is assigned n/p rows of the matrix and n/p elements of the vector.
Since the matrix-vector multiplication requires the vector to be multiplied with each row of the matrix,
every processor needs the entire vector. In order to accomplish this, in the first step, each processor
broadcasts its n/p elements of the vector to every other processor. This operation is also referred to
as an all-to-all broadcast. After this step, each processor has the vector available locally and n/p rows
of the matrix. Using these, it computes the dot products locally, and at the end of this step, each
processor has n/p elements of the resulting vector.

Let us now analyze the performance of this parallel formulation for a hypercube connected computer.
The first step of the algorithm involving the all-to-all broadcast of packets of size n/p among p

10

processors can be performed in ¢;logp + tyn(p — 1)/p time [5]. Here, ¢, is the startup time of the
communication network and %, is the per-word transfer time. For large values of p this can be
approximated to t5 log p+1t,n. Assuming that an addition and a multiplication takes ¢, units of time,
each processor spends ¢.n?/p units of time in multiplying its n/p rows with the vector. Thus, the
parallel execution time of this procedure is given by:

77,2

Tp =t.— +tslogp +tun (12)
p

The corresponding speedup S and efficiency F are given by:

_ p
S= 1+ p(ts log p+twn) (13)

ten?

1
B = sty (14)

ten?

Now we derive an expression for the isoefficiency function for this parallel formulation. Using the
relation T, = pTp — T1, we get the following expression for the overhead function of the striped
matrix-vector multiplication on the hypercube:

T, =tsplogp+tynp (15)

We can determine the isoefficiency function from the equation W = KT, (Equation 7). Let us rewrite
this relation for our parallel formulation of matrix-vector multiplication, first with only the 5 term of
T,.

W = Ktsplogp (16)

Equation 16 gives the isoefficiency term with respect to the message startup time. Similarly, the ¢,
term of the overhead function can be balanced against the problem size W as follows:

n? = Ktynp

n=Ktyp
W =n? = K*2p? (17)

From Equations 16 and 17 it can be inferred that the overall asymptotic rate at which the problem

size needs to increase with the number of processors in order to maintain a fixed efficiency is ©(p?).

Example 5: Checkerboard Based Matrix-Vector Product on a Hypercube

Consider an alternate partitioning of the matrix and the vector for computing the matrix-vector
product. Instead of partitioning the matrix into stripes, we now divide it into p squares, each of
dimensions (n/,/p) x (n/,/p). This partitioning is referred to as checkerboard partitioning [5]. The
parallel matrix-vector multiplication algorithm based on this partitioning is illustrated in Figure 4.
The vector itself is distributed along the last column of the mesh.

In the first step of the algorithm, the vector is aligned along the diagonal processors. For this, all
processors of the last column send their n/,/p elements of the vector to the diagonal processor of
their respective rows. Then a column-wise one-to-all broadcast of these n/,/p elements is performed.

11

(& Initial data distribution and communication (b) One-to-all broadcast of portions of
steps to align the vector along the diagonal the vector along processor columns

Matrix A Vector y

(c) Single-node accumulation of partial results (d) Fina distribution of the result vector

Figure 4: Matrix-vector multiplication using checkerboard partitioning.

After this communication step, the vector is aligned along the rows of the matrix. Each processor
performs n?/p multiplications and locally adds up the n/./p sets of products. As shown in Figure
4(c), each processor now has n/,/p partial sums which need to be accumulated along each row to
obtain the resultant vector. Hence, the last step of the algorithm is a single node accumulation of
these n/,/p values in each row, with the last processor of the row as the destination. The operation
of this algorithm is illustrated in Figure 4.

We now analyze the performance of this algorithm on a hypercube connected computer with store
and forward routing [5]. The first step of sending a message from the last processor of a row to the
diagonal processor can be performed in at most ¢, 4, (n/,/p)log,/p. The second communication
step distributes copies of the vector among the rows of processors and involves one-to-all broadcasts
in all the columns of processors as shown in Figures 4(b) and 4(c). This step can be performed in
(ts —|—twn/\/§) log \/p. If a multiplication and an addition is assumed to take ¢, units of time, then each
processors spends approximately t.n? /p time performing computation. Now if the resultant vector has
to be placed in the last column of processors like the starting vector, then a single node accumulation
of components of size n/,/p of the vector has to be performed in each row of processors. Ignoring the
time required for performing additions during this step, the accumulation can be performed with a
communication time of (¢, + t,n/\/p)log./p. Summing up the time taken by all the steps, the total
parallel execution time for this procedure 1s given by the following equation :

12

2
Tp = t,— + 1, + 2t, log \/p + 3ty —=log \/p
P b

7

This can be approximated by

77,2

Tp =t.,— +1, logp—i—%twilogp (18)
p

VP

From this equation, the total overhead T, is given by:
3
T, =tsplogp + §twn\/ﬁlogp

As before, we can equate each term in this overhead function with the problem size W. For the
isoefficiency due to ¢, we have W o« Kt plogp, where K = 1/(t.(1 — E)). For isoefficiency due to t,,
equating W with K'T,, we have

3
n*t, = K §twn\/ﬁlogp

y
n= I’gt—\/ﬁlogp

9¢2
n®=K*>%plog’p

412
Therefore, the isoefficiency due to #,, is given by O(p log2 p). Since this term asymptotically dominates
the O(plogp) term due to ¢,, the overall isoefficiency of this formulation is given by O(p log? p).

From these two examples, we can see that the isoefficiency function of the stripe based matrix-
vector product algorithm is @(p?), because it is asymptotically higher than the ©(plog? p) isoeffi-
ciency function of the checkerboard based algorithm. This implies that as the number of processors
is increased, the stripe based formulation will require much larger problem sizes to yield the same
efficiencies as the checkerboard based formulation.

3.2 Predicting effects of machine specific parameters

Isoefficiency analysis can be used to predict the effect of such machine specific parameters as
processor speed and speed of communication channels (startup time, per-word transfer time, etc.).
In this section, we illustrate how isoefliciency analysis is useful in making such predictions.

¢ Example 6: Fast Fourier Transforms

Consider the Cooley-Tukey algorithm for computing an n-point single dimensional unordered radix-2
FFT [2,5]. Figure 5 illustrates the algorithm graphically. The sequential complexity of this formulation
is given by ©(nlogn). In this section, we will use a parallel formulation of this algorithm based on
the binary exchange method for a hypercube based computer. In this parallel formulation, shown
in Figure 5, we partition the vectors into blocks of n/p contiguous elements and assign one such block
to each processor. Let the hypercube being used be d-dimensional (i.c., p = 2%) and let n = 2". An
interesting property of the mapping shown in Figure 5 is that the vector elements residing on different
processors are combined during the first d iterations, while the pairs of elements combined during the

13

Figure 5: A 16-point FFT on four processors. P; denotes processor number ¢ and m refers to the

iteration number.

last (r — d) iterations reside on the same processors. Hence, this parallel FFT algorithm involves inter-
processor communication only during d = log p of the log n iterations. Each communication operation
involves exchanging n/p words of data. Thus, the time spent in communication during the execution
of the entire algorithm is (¢; + t,n/p)logp. In each iteration, a processor updates n/p elements of
vector R. If a complex multiplication and addition takes time ¢., then the parallel execution time of
the n-point parallel FFT on a p-processor hypercube is given by:

Tp:tcglogn—l—tslogp—l—tw%logp (19)
From this equation, we can also see that the total overhead T, is given by:
T, =tsplogp+tynlogp
We know that the problem size for an n-point FFT is given by:

W =nlogn (20)

Following the methodology of Examples 4 and 5, we can determine the isoefficiency by equating the
problem size with the total overhead. For isoefficiency due to t;, we have W oc t,plogp, which

14

corresponds to an isoefficiency function of @(plogp). The isoefficiency due to the ¢,, term can also be
determined similarly:

nlogn = Ktynlogp
logn = Ktylogp
n = pKtt_Z
nlogn = Ktyp&ielogp
E 1ty B tu
W = —p1-F % | 21
1—Et.7 csp (21)

If the term t, E/(t.(1 — E)) is less that 1, then the rate of growth of problem size dictated by
Equation 21 is less than ©(plogp), and hence the overall isoefficiency function is ©(plogp) for this
parallel system. On the other hand, if ¢, F/(t.(1 — E)) exceeds 1, then Equation 21 determines the
overall isoefficiency function which is now greater than ©(plogp). Also, in this case, the asymptotic
isoefficiency function depends on the relative values of /(1 — E), t,, and t.. Thus, the FFT algorithm
is somewhat unique in that the asymptotic isoefficiency function is a function of the desired efficiency
and hardware dependent parameters. In fact the efficiency corresponding to ¢, E/(t.(1—E)) = 1, (i.e.,
E/(1—FE)=t./ty, or E =t./(t. +ty)) acts as a threshold value. For a given hypercube connected
computer with fixed t. and t,,, efficiencies up to this values can be obtained easily. But efficiencies
much higher than this threshold can be obtained only if the problem size is extremely large.

Let us examine the effect of the value of ¢, E/(t.(1 — E)) on the isoefficiency function. Consider
the computation of an n-point FFT on a p-processor hypercube on which ¢, = t.. The isoefficiency
function of the parallel FFT on this machine is E/(1 — E)p®/0=F)logp. Now for E/(1 - F) < 1
(i.e. E < 0.5) the overall isoefficiency is ©(plogp), but for E' > 0.5, the isoefficiency function is much
worse. For instance, if £ = 0.9, then F/(1 — F) = 9 and hence the isoefficiency function becomes

O(p?logp). Now consider the computation of an n-point FFT on a p-processor hypercube on which
tw = 2t.. The threshold efficiency is 0.33. The isoefficiency function for £ = 0.33 is O(plog p), for
E =05 it is O(p? logp), and for E = 0.9 it becomes O(p!®log p).

The above examples show that there is a limit on the efficiency that can be obtained for
reasonable problem sizes, and this limit is determined by the ratio of the CPU speed and the
bandwidth of the communication channels of the hypercube. This limit can be raised by increasing
the bandwidth of the communication channels. On the other hand, making the CPU’s faster without
improving the communication bandwidth lowers this threshold. Hence, this parallel formulation
of FFT performs poorly on a hypercube whose communication and computation speeds are not
balanced. If the hardware is balanced with respect to communication and computation speeds,
then the FFT algorithm is fairly scalable on a hypercube with an overall isoefficiency function of
O(plogp), and good efficiencies can be expected for reasonably large number of processors.

This example illustrates how the isoefficiency function can be used to derive the effect of various
machine specific factors. For a more detailed scalability analysis of this and other parallel FFT
algorithms, see [2, 5].

3.3 Impact of Concurrency on Scalability

We have seen that the maximum concurrency in a parallel algorithm often limits the number of

processors that can be effectively utilized. Therefore, the problem size has to grow fast enough

15

so that it is possible to use the increased number of processors. For many algorithms limitations
imposed by concurrency plays a dominant role in determining overall scalability. We illustrate this
in the context of Dijkstra’s all pairs shortest path algorithm.

e Example 7: Dijkstra’s All Pair’s Shortest Path Algorithm

Consider the all-pairs shortest path problem for a dense graph with n vertices. The problem involves
finding the shortest path between each pair of vertices in the graph. The best known serial algorithm
for solving this takes time ©(n?) time. This problem can also be solved using n instances of the single-
source shortest path problem. The single source shortest path problem determines the shortest path
from one vertex to every other vertex in the graph. The sequential complexity of the single-source
shortest path problem is ©(n?). Therefore, by executing one instance of the single-source shortest
path algorithm for each of the n vertices, we can solve the all-pairs shortest path problem.

A simple parallel formulation of this algorithm can be derived by using n processors with each processor
executing a single-source shortest path problem independently. Since each of these computations is
independent of the other, the parallel formulation requires absolutely no communication. It may
therefore seem that this algorithm is the best possible algorithm.

Let us consider the scalability resulting from the concurrency in this parallel algorithm. Since the
algorithm can use at most n processors, p = n, and since the problem size W is ©(n?), W must
grow at least as ©(p?) to be able to use additional processors. This function determines the overall
isoefficiency of the parallel formulations. This isoefficiency is relatively high and other algorithms with
better isoefficiencies are available.

This example illustrates how isoefliciency captures the concurrency inherent in a parallel algo-
rithm. An algorithm may appear attractive because of lack or absence of communication, but may
indeed perform poorly for higher number of processors because of limited concurrency. See [5, 9]
for scalability analysis of a number of other shortest-path algorithms.

3.4 Impact of Contention for Shared Data Structures

For some parallel algorithms, it is difficult to compute the parallel execution time analytically, as
the effects of certain overheads such as those due to contention are difficult to model. In such
applications, isoefliciency analysis may still be a useful tool for analyzing the scalability. In this

subsection, we present one such parallel algorithm.

¢ Example 8: Dynamic Load Balancing

Consider an application with the following characteristics:
— The work available at any processor can be partitioned into independent work pieces as long as
it 1s more than some non-decomposable unit.
— It is difficult to estimate the amount of computation associated with a piece of work.

— A reasonable work splitting mechanism is available; ¢.e., if work w at one processor is partitioned
into two parts ¥w and (1 —)w, then there exists an arbitrarily small constant «(> 0), such that
Yw > aw and (1 — ¢Y)w > aw. The role of « is to set a bound on the load imbalance resulting
from work splitting.

16

Instances of applications which conform to these characteristics are found in depth first search of
large unstructured trees used for solving discrete optimization problems [6]. Some parallel algorithms
for solving this problem employ the following dynamic load balancing strategy. All work is initially
assigned to one processor. An idle processor P; selects a processor P, using some selection criterion
and sends it a work request. If processor P, has no work, then it responds with a reject message; else,
it partitions its work into two parts and sends one of the pieces to P;. This process continues until
all processors exhaust the available work. Various selection criteria have been proposed in literature
[6, 8]. One technique referred to as Global Round Robin (GRR) maintains a global pointer G located
at one of the processors. This pointer initially points to the first processor in the ensemble. Each
time an idle processor needs to select P,, it reads the current value of (¢, and requests work from Pg.
Before the next request from an idle processor is processed, the global pointer is incremented by one
(modulo p). The global pointer distributes the work requests evenly over the various processors.

We can see that the non-deterministic nature of the algorithm makes it impossible to evaluate the exact
parallel execution time of such an algorithm. However, it is possible to bound the communication cost
of such an algorithm. As shown in [6, 5], an upper bound on the number of communications required
for this algorithm is O(plogW). Each communication takes O(logp) time, and the total overhead
resulting from the communication of work is bounded by O(plogplog W). As before, this term can be
equated with the problem size W to yield the isoefficiency resulting from communication overheads.
Therefore,
W x O(plogplog W)

Substituting the value of W from the right hand side of the expression back into the right hand side and
ignoring the double log terms, we can see that the isoefficiency of this algorithm due to communication
overheads is O(plog? p).

This term however does not specify the overall isoefficiency of the system because the algorithm has
overheads in addition to that for communicating work. In this algorithm a global variable is accessed
repeatedly. If many processors try to access it at the same time, then only one will succeed, and others
will have to wait due to contention. We analyze the isoefficiency due to contention as follows:

The global variable is accessed O(plog W) number of times (for read and increment operations) over
the entire execution. If processors are efficiently utilized, then the total time of execution is ©(1/p).
Assume that while solving some specific problem instance of size W on p processors, there is no
contention. In this case, W/p is much more than the total time over which the shared variable is
accessed. Now, as we increase the number of processors, the total time of execution (i.e., W/p)
decreases but the number of times the shared variable is accessed increases. There is thus a crossover
point beyond which the shared variable access will become a bottleneck and the overall execution time
cannot be reduced further. This bottleneck can be eliminated by increasing W at a rate such that the
ratio between W/p and O(plog W) remains the same. Equating W/p and O(plog W) and simplifying
yields an isoefficiency term of O(p?log p).

Thus, since the isoefficiency due to contention asymptotically dominates the i1soefficiency due to com-
munication, the overall isoefficiency is given by O(p? logp).

In this example, we have seen how it is possible to model overheads due to contention using
the isoefficiency metric. A number of other dynamic load balancing algorithms have been analyzed
in [6, 8]. In [6], it is experimentally shown that dynamic load balancing schemes with better
isoefficiency functions outperform those with poorer isoefficiency functions.

17

4 Summary and Concluding Remarks

The isoefficiency metric is useful in situations in which we are interested in obtaining linearly
increasing performance with the number of processors. If the rate of growth of problem size is the
same as that specified by the isoefficiency function, then the speedup obtained from the parallel
system is linear. In certain cases, it may not be possible or desirable to increase the problem size
at the rate specified by the isoefficiency function. If this rate is smaller than the isoefficiency then
the speedup is sublinear. For a given rate of growth of problem size, the speedup curve can be
used as a scalability metric. If the problem size is increased linearly with the number of processors,
the speedup curve is referred to as scaled speedup [3]. The rate of growth of problem size may
also be constrained by the amount of memory in the parallel computer. In this case, the problem
size is increased at the fastest rate allowed by the available memory. These metrics have been
investigated by Worley [12], Gustafson [3] and Sun and Ni [10]. In many situations, the rate of
growth of problem size is dictated by the time available to solve the problem. In these cases, the
problem size is increased with number of processors in such a way that the parallel runtime remains
constant. The scalability issues for such problems have been explored by Worley [12], Gustafson
[3], and Sun and Ni [10]. It is also possible to keep the problem size fixed and use the speedup curve
as a scalability metric. Performance issues related to fixed problem size case have been addressed
in [1].

There are certain interesting relationships between isoefficiency and some of these metrics. It
can be shown that if the isoefficiency function is greater than ©(p), then for a scalable parallel
system, the problem size cannot be increased indefinitely while maintaining a fixed execution time,
no matter how many processors are used [1, 7]. In [1], we have shown that for a class of parallel
systems, the relationship between the problem size and the number of processors on which the

problem executes in minimum time is specified by the isoefficiency function.

Acknowledgements

This work was supported by Army Research Office grant #28408-MA-SDI to the University of
Minnesota and by the Army High Performance Computing Research Center at the University of
Minnesota. The authors would also like to thank Daniel Challou for his help in the preparation of
this document.

References

[1] Anshul Gupta and Vipin Kumar. Performance properties of large scale parallel systems.
Journal of Parallel and Distributed Computing (special issue on supercomputer performance),
November 1993. Also available as Technical Report 92-32, Department of Computer Science,
University of Minnesota, Minneapolis, MN.

[2] Anshul Gupta and Vipin Kumar. The scalability of FFT on parallel computers. IEEE Trans-
actions on Parallel and Distributed Systems, 4(8):922-932, August 1993. A detailed version
available as Technical Report TR 90-53, Department of Computer Science, University of Min-

nesota, Minneapolis, MN.

18

[3]

[4]

[12]

John L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532-533,
1988.

John L. Gustafson. The consequences of fixed time performance measurement. In Proceedings
of the 25th Hawaii International Conference on System Sciences: Volume III, pages 113-124,
1992.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel
Computing: Design and Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA,
1994.

Vipin Kumar, Ananth Grama, and V. Nageshwara Rao. Scalable load balancing techniques
for parallel computers. Technical Report 91-55, Computer Science Department, University of
Minnesota, 1991. To appear in Journal of Distributed and Parallel Computing, 1994.

Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms and architec-
tures. Technical Report TR 91-18, Department of Computer Science Department, University
of Minnesota, Minneapolis, MN, 1991. To appear in Journal of Parallel and Distributed Com-
puting, 1994. A shorter version appears in Proceedings of the 1991 International Conference
on Supercompuling, pages 396-405, 1991.

Vipin Kumar and V. N. Rao. Parallel depth-first search, part II: Analysis. International
Journal of Parallel Programming, 16(6):501-519, 1987.

Vipin Kumar and Vineet Singh. Scalability of Parallel Algorithms for the All-Pairs Shortest
Path Problem. Journal of Parallel and Distributed Computing, 13(2):124-138, October 1991. A
short version appears in the Proceedings of the International Conference on Parallel Processing,
1990.

Xian-He Sun and L. M. Ni. Another view of parallel speedup. In Supercomputing 90 Proceed-
ings, pages 324-333, 1990.

Xian-He Sun and Diane Thiede Rover. Scalability of parallel algorithm-machine combinations.
Technical Report IS-5057, Ames Laboratory, lowa State University, Ames, [A, 1991. To appear
in IFEF Transactions on Parallel and Distributed Systems.

Patrick H. Worley. The effect of time constraints on scaled speedup. STAM Journal on Scientific
and Statistical Computing, 11(5):838-858, 1990.

19

