
Linguistic, Philosophical, and Pragmatic
Aspects of Type-Directed Natural Language

Parsing

Sebastian Shaumyan1 and Paul Hudak2

1 Yale University, Department of Computer Science, New Haven CT 06520, USA
2 Yale University, Department of Linguistics, New Haven CT 06520, USA

Abstract. We describe how type information can be used to infer gram-
matical structure. This is in contrast to conventional type inference in
programming languages where the roles are reversed, structure determin-
ing type. Our work is based on Applicative Universal Grammar (AUG),
a linguistic theory that views the formation of phrase in a form that is
analogous to function application in a programming language. We de-
scibe our overall methodology including its linguistic and philosophical
underpinnings.
The natural language parser that we have constructed should be inter-
esting to computer scientists in the way in which AUG relates to types
and combinatory calculus, and to linguists in the way in which a very
simple, brute force parsing strategy performs surprisingly well in both
performance and accuracy. Both computer scientists and linguists should
also be interested in the convergence of the theory of functional program-
ming languages and AUG with regard to their conceptual bases. Both
have been motivated by entirely different goals and have developed in-
dependently, but they are rooted in a common conceptual system of an
applicative calculus.

1 Functional Programming Languages and Applicative

Universal Grammar: a Common Paradigm

The central goal of a theoretical study of linguistics is to reveal how a human
being uses languages to express and communicate thought. The philosophy of
language is concerned with evaluating how particular theories of language suc-
ceed in attaining this central goal. Finally, the pragmatics of language concerns
itself with the ability to implement a theory, for example in the form of a natu-
ral language processing system. Linguists and computer scientists benefit from
exchanges concerning theory, philosophy, and pragmatics.

In this paper we touch on all three of these issues. We first argue that the the-
ories of functional languages and Applicative Universal Grammar (AUG) share
a common underlying paradigm. By paradigm we mean a pattern of thought, a
system of concepts and assumptions underlying a group of theories, regardless
of how they differ from one another in detail. Some of the fundamental ideas
of this common paradigm can be traced to the works of Haskell B. Curry on

combinatory logic and its philosophical and linguistic implications. Indeed, our
argument leads to the realization of a natural language parser written in the
functional language Haskell, and based on the theory of AUG.

The first complete description of AUG was published in 1965 [16], unifying
the categorical calculus of Lesniewski [12] with the combinatory calculus of Curry
and Feys [5]. The semantic theory of AUG was presented in [17], and its use in
the translation of natural languages is given in [19]. A full description of the
current state of AUG is given in [18].

A description of the feasibility of natural language parsing using AUG was
first given in [11] as a literate Haskell [10] program. The functional language
Haskell is named in the memory of Haskell B. Curry, the logician whose work on
combinatory logic provides much of the foundation for both functional program-
ming languages and AUG. Indeed, Curry himself was interested in the study of
natural language and grammatical structure [4]. Related work on using a func-
tional language for NLP may be found in [6], which differs from ours by being
based on principles proposed by Montague [15].

2 The Rise of Functional Programming Languages

The earliest programming languages were developed with one goal in mind: to
provide a vehicle through which one could control the behavior of computers.
This goal seemed reasonable, but quickly ran into two problems: first, it became
obvious that what was easy for a machine was not necessarily easy for a human
being; and second, as the number of different kinds of machines increased, the
need arose for a common language with which to program them all.

Thus from raw object code and primitive assembly languages, a large number
of high-level programming languages emerged, beginning with FORTRAN in the
1950’s. High-level languages are generally divided into two classes: imperative
languages and declarative languages. Imperative languages are lower level—they
say a lot about how to compute a result—whereas declarative languages are at a
higher level—they say most about what should be computed, rather than how.
Functional programming languages are declarative languages whose underlying
model of computation is the function (in contrast to the relation that forms the
basis for logic programming languages). (See [8] for a more thorough discussion
of these issues.)

The key point here is that higher-level languages are less dependent on the
details of the underlying hardware. The earliest programming languages de-
pended on the hardware completely, reflecting fairly accurately the structure of
the underlying machine. The emergence of high-level imperative languages was
a considerable step forward; still, it was only a partial liberation from the ma-
chine. Only through the emergence of declarative languages, in particular pure
functional languages, did a fairly complete liberation take place.

Indeed, in studying any language—a programming language, a language of
mathematics or logic, or a natural language such as English or Russian—we must
distinguish two very different kinds of structure: the physical structure and the

functional structure of language. The physical structure of programming lan-
guages is a reflection of the physical structure of the computer. The physical
structure of natural language is so-called phrase-structure, which reflects the ac-
tion of the human machine; i.e. the organs of speech. Because of the dependence
on the human organs of speech, natural language has a linear phrase-structure.
However, the essential structure of natural language, its functional structure, is
independent of the linear phrase-structure.

The parallel between programming languages and natural languages with
respect to the distinction of the physical structure and functional structure is
clear. Does this distinction apply to the languages of mathematics and logic?
We find a partial answer to this question in the illuminating studies of Haskell
B. Curry, who distinguished two kinds of structure: the structure of concatena-
tive systems in standard formalizations of logic and the applicative structure of
ob-systems in combinatory logic. In Curry’s terminology, a concatenative system
is a concrete system depending on physical properties of signs; that is, on their
properties represented as linear strings. The concatenation operation is an op-
eration of combining signs in their linear order. Here’s how Curry contrasts the
concatenative structure and the applicative structure:

“In the first place, combinatory logic was formulated as a system in which
the formal objects were rather differently conceived than was the case in
the standard formalization of logic. The standard procedure at that time
was to demand that the formal objects be expressions of some “object
language;” this means that they be strings formed from the symbols of
that object language by concatenation. In combinatory logic these formal
objects, called obs, were wholly unspecified. It was merely postulated
that there was a binary operation of application among them, that the
obs be constructed from the primitive objects, called atoms, by these
operations, and that the construction of an ob be unique. This means
that the obs were thought of not as strings of atoms, but as structures
like a genealogical tree. [4, pp. 64–65]

From this discussion we adopt the premise that the applicative structure is the
essential structure of any language—a programming language, a language of
mathematics or logic, or a natural language.

3 The Rise of Applicative Universal Grammar

Applicative Universal Grammar (AUG) develops the ideas of Ferdinand de Saus-
sure about language as a system of signs. It is based on the observation that some
fundamental ideas of linguistics and combinatory logic converge. Thus AUG con-
sists of a formal model of natural languages, called genotype, that is based on
combinatory logic.

The basic concept of AUG is the applicative structure, which contrasts sharply
with the concept of phrase structure, the standard formal system in many lin-
guistic theories. The essential properties of the applicative structure of AUG are
characterized by the following principles:

Principle 1 The Transfer Principle.
A grammatical structure or class is independent of its symbolic representa-

tion, and so may be transferred from one symbolic device into another without
changing its meaning.

For example, subject-object relations can be represented by case markers
as in Russian or Latin or by word order as in English. In a Russian sentence
consisting of three words—subject, predicate, and direct object—the words can
be permuted in six different ways without changing the meaning of the sentence.
Grammatical relations are invariant of their symbolic representations.

Principle 2 The Genotype-Phenotype Principle.
Grammatical structures and classes, independent of their symbolic represen-

tation, form a universal system of grammatical categories of natural languages,
called a genotype. Symbolic representations of grammatical structures and classes
of specific natural languages form concrete systems called phenotypes.

This principle is a corollary of the Transfer Principle, and further constrains
grammar by imposing the genotype and phenotype levels on it. It calls for a
revision of linguistic theories which confound these levels.

In accordance with the Genotype-Phenotype Principle, we must clearly dis-
tinguish rules of grammar from laws of grammar. Rules of grammar are language-
specific; they are part of phenotypes. Laws of grammar are universals underlying
rules of grammar; they are part of the genotype. A law of grammar is an invariant
over a class of particular rules of grammar.

As an example, consider the active/passive distinction in English:

Columbus discovered America.
America was discovered by Columbus.

Various formulations of the rule of passivization in English greatly differ in detail,
but it is generally agreed that (1) passive in English applies to strings in which
two noun phrases and a verb occur in this order: First Noun Phrase—Active
Verb—Second Noun Phrase; and (2) passivization involves the postponing of
the preverbal noun phrase and presposing of the postverbal noun phrase: Second
Noun Phrase—Passive Verb—First Noun Phrase. In other words, the standard
rule of passivization in English is stated in terms of the word order.

A rule of passivization such as this is clearly language specific. Since different
languages have different word order—for example, in Malagasy, the direct ob-
ject precedes the verb and the subject follows the verb—there must be distinct
language-specific rules of passivization for these other languages. Furthermore, in
languages such as Russian or Latin where word order does not have grammatical
meaning, the rule of passivization is stated in terms of case endings.

From the perspective of the Transfer Principle, we face an empirical ques-
tion: is there an invariant of the particular rules of passivization in particular
languages? We believe that there is: a universal law that we call the Law of
Passivization. This law is roughly characterized by two invariant processes: (1)

a conversion of the predicate relation, and (2) a superposition of the second term
of the converted predicate with an oblique term. This law will become clearer
later, although its complete formulation is beyond the scope of this paper, and
may be found in [18].

We claim that the Law of Passivization—and other laws as well—are univer-
sal. But in fact, in some cases a law is simply not applicable to certain languages,
and the Law of Passivization is no exception: the active/passive correspondance
does not exist in some languages. Our use of the term “universal” is from the
perspective of treating the theory of grammar as a highly abstract branch of
linguistics whose goal is to establish a single hypothetical grammatical system
from which all possible structures and entities may be deduced. Universal laws
hold for this abstract system, but concrete languages are in many cases subsets
of the whole system, and thus certain laws may not be applicable.

This should not deter us from seeking universal laws, for two important
reasons. First, the universal laws allow us to recognize common characteristics
of otherwise very different languages. Second, they allow us to imagine, theo-
retically at least, what the instantiation of particular laws might look like in
languages for which they are currently not applicable.

Principle 3 The Principle of Semiotic Relevance.
The only distinctions that are semiotically relevant are those that correlate

with the distinctions between their signs, and, vice versa, the only distinctions
between signs that are relevant are those that correlate with the distinctions be-
tween their meanings.

One can never overstate the significance of the Principle of Semiotic Rel-
evance. If one wants to present de Saussure’s doctrine in a single theoretical
statement, the Principle of Semiotic Relevance is it. This principle defines the
essence of linguistic reality, and is a keystone of the semiotic study of language.

The Principle of Semiotic Relevance is a powerful constraint on the theory
of grammar, and not all linguistic theories conform well with this principle.
For example, generative phonology [13, 3, 7] considers only the sound patterns
of morphemes, completely disregarding their meanings. As a result, it wrongly
identifies certain morphemes by posting fictitious relationships between them.
The fundamental error of generative phonology is that is generates away cognate
forms based entirely on formal criteria without regard to the meanings of the
forms. For example, disregard of the meanings of the forms of morphemes leads
to a confusion between synchrony and diachrony [18].

The opposite error is encountered in generative semantics, which fails to
support distinctions in meanings with concomitant distinctions in phonic ex-
pressions. Consider, for instance, the famous McCawley’s analysis of ‘kill’ as a
causative verb in English. In a bracketed notation this analysis reads: (cause
(become (minus alive))); that is, “cause becomes minus alive,” which is meant
to be a semantic componential analysis of the verb ‘kill’. This analysis is weak
because it is based on the idea that given a possible paraphrase of the verb ‘kill’,
it must therefore ipso facto be considered a causative verb. In accordance with

the Principle of Semiotic Relevance, any difference between linguistic meanings
must be correlated with differences between phonic expressions. Real causative
verbs are characterized by appropriate phonic markers as in the forms sit : set (I
sit by the table, I set the table,) and fall : fell (the tree falls, the lumberjack fells
the tree). The verb ‘kill’ has none of these phonological markers of the causative
meaning.

Linguistic meaning is vital for communication, and is an essential aspect of
every use of language; but the linguistic meaning does not constitute the total
meaning of a sentence or word. Consider the sentence ‘Garry Kasparov and
I.B.M.’s computer Deep Blue came to draw in the fourth game yesterday.’ The
linguistic meaning of the sentence is determined by the dictionary and the rules
of the grammar of English. But the sentence means more than that. A man who
knows chess can infer from the context of the word ‘game’ that it was the game
of chess. He may also infer that Kasparov and Deep Blue had played three games
before the game yesterday. He may infer further that Deep Blue is a superstrong
chess program because Kasparov is the world champion of chess. A man who
does not know chess cannot infer from the meaning of the word ‘game’ that it
was a chess game. From The sentence ‘John killed a bear’ we infer that John
caused a bear not to be alive, but causation is an inferential meaning that is
parasitic on the linguistic meaning of kill.

The total meaning of a sentence or word is a compound containing the linguis-
tic meaning combined with other kinds of meaning just as a chemical compound
contains a certain substance combined with other substances. To isolate a cer-
tain substance from other substances, one uses chemical reagents. The analysis
of meaning is mental chemistry. The chemical reagent of the linguist is the Prin-
ciple of Semiotic Relevance. Using it, the linguist isolates the linguistic meaning
in its pure form.

Principle 4 The Unity of Syntactic and Semantic Representation.
Syntactic and Semantic representation cannot be separated from each other;

they constitute a unique representation, called contensive representation.

This principle is a corollary of the Principle of Semiotic Relevance. It fol-
lows from this principle that any distinction in semantic representation must
correlate with a distinction in syntactic representation, and vice versa: any dis-
tinction in syntactic representation must correlate with a distinction in semantic
representation. A system of contensive representation is called contensive syntax.

Contensive syntax is a new concept which should not be confused with se-
mantics. The existence of semantic rules presupposes the existence of syntactic
rules. In contrast, contensive syntax is a unitary system of rules which is, so to
speak, a chemical bond of structure and meaning. Just as water is a completely
new substance in comparison with hydrogen and oxygen taken separately, so
contensive syntax is a completely new entity in comparison with structure and
meaning, which taken separately are not part of linguistics; they are part of
logic.

The fundamental constraint on the combination of signs is the Sign Combi-
nation Principle.

Principle 5 The Sign Combination Principle.
A sign, called an operator, combines with one or more signs, called its operands,

to form a new sign, called its resultant, on condition that its meaning is incom-
plete and needs to be supplemented by meanings of other signs.

For example, verbs and adjectives are operators with respect to nouns be-
cause meanings of verbs and adjectives are incomplete and are in need of sup-
plementation by meanings of nouns. Consider ‘boy’ or ‘paper.’ The meanings of
these nouns are complete. Take now ‘writes’ and ‘white.’ We ask: Who writes?
What is white? The meanings of the words are incomplete. They need to be
supplemented by meanings of nouns such as ‘boy’ or ‘paper’. In ‘the boy writes’
the verb ‘writes’ is an operator and ‘the boy’ is its operand; in ‘white paper’
the adjective ‘white’ is an operator and ‘paper’ is its operand. Similarly, the
meaning of prepositions is incomplete without supplementation by meaning of
nouns; therefore prepositions are operators with respect to nouns. In ‘on the ta-
ble,’ ‘on’ is an operator and ‘the table,’ its operand. Furthermore, the meaning
of a conjunction is incomplete, and needs to be supplemented by the meaning
of words belonging to basic word categories—nouns, adjectives, verbs, adverbs,
or complete sentences. Therefore a conjunction is an operator with respect to
expressions of all these categories: in ‘black and white,’ ‘and’ is an operator with
respect to ‘black’ and ‘white.’

In a later section we will see more elaborate examples of the Sign Combination
Principle, including chains and hierarchies of meaning supplementations.

Principle 6 The Principle of Monotonic Constructions.
Any combination of linguistic units has a unique construction; in algebraic

terms, any combination of linguistic units is non-associative.

Being a corollary of the Sign Combination Principle, the Principle of Mono-
tonic Constructions is of paramount importance for linguistics. It excludes sys-
tems such as generalized categorial grammar [14], whose associativity means that
a sentence can be bracketed in every possible way. Moorgat motivates the use of
the associative calculus as follows:

The application analysis for ‘John loves Mary’ is strongly equivalent to
the conventional phrase-structure representation for a sequence subject—
transitive verb—direct object, with the transitive verb and the direct
object grouped into a VP constituent. Suppose now that we are not so
much interested in constituent structure, as commonly understood, but
rather in the notion of derivability, that is, in the question: Given a se-
quence of input types (viewed as sets of expressions), what type(s) can
be derived from the concatenation of the input sentences? It will be clear
that the result type S would also be derivable in the transitive verb had
been assigned the type NP \ (S/NP) instead of (NP \ S)/NP [14, p.
148].

Associativity considerably simplifies the construction of mathematical models
of language, but it distorts linguistic reality. Associativity is motivated primarily

by convenience: an associative calculus is much more convenient for parsing a
string of words in a purely mechanical fashion. The trouble is, as follows from
the Sign Combination Principle, the sentences of a natural language have a non-
associative structure. Thus if we want to understand their structure, we have no
choice but to construct a non-associate calculus.

Principle 7 The Principle of Type Assignment.
Every sign of the applicative system is assigned a type which defines its syn-

tactic function.

The Principle of Type Assignment is subject to the following conditions:

1. Inclusion. Every atomic sign is assigned a characteristic type.
2. Exclusion. No sign belongs to more than one characteristic type.
3. Superposition. Every sign can be assigned a complementary type superposed

on its characteristic type.
4. Polymorphism. Some signs can be assigned variable types. The range of a

variable type includes concrete types having related functions.

Principle 8 The Superposition Principle.
If in a given context C a unit A takes on the function of the unit B as its

complementary function, a syncretic unit 〈A/B〉 is formed. We say that A and B
are superposed in the syncretic unit 〈A/B〉, and we call the operation of forming
〈A/B〉 the superposition of A with B. Given 〈A/B〉, A is called the basis, and
B the overlay.

Superposed types are governed by the following principles:

1. Existence. The unit 〈x/y〉 exists in a given context C if the unit x is super-
posed with the unit y.

2. Identity. A superposed unit is distinct from its basis. Two superposed types
are the same only if their bases and overlays are the same.

3. Inheritance. In any context C in which a superposed unit exists, it has those
normal properties possessed by its basis.

Let us turn to examples of superposition. Consider the word ‘lion’. The char-
acteristic meaning of ‘lion’ is the name of an animal. But in combination with
some words it takes on the meaning ‘a famous and important person,’ as in a
‘literary lion’. The characteristic meaning of black is ‘of the darkest color,’ but
the word may take on the meaning ‘very bad,’ as in ‘black despair’. These are
examples of the action of modifying contexts. A modifying context changes the
meaning of the word with which it comes: the word becomes synonymous with
some other word or expression. In our examples, the word ‘lion’ is synonymous
with ‘a famous and important person’ in the context of literary; and the word
‘black’ is synonymous with ‘very bad’ in the context of despair. Due to the action
of its modifying context the meaning of a word becomes figurative, representing
a syncretism of two meanings: the initial meaning of the word and the meaning

of the expression with which the word is synonymous. This is a case of polysemy.
Due to the action of the modifying context the word becomes polysemous.

Nouns and adjectives seem to behave in a similar way: in some contexts
they fulfill the role of the argument of a predicate, in other contexts, the role
of an attribute of a noun. If we classify nouns and adjectives as polymorphic,
then we must admit that their polymorphism is identical and that nouns and
adjectives are identical at the level of their phrasal projection. But the resulting
type ambiguity of lexical classes would then conflict with the generally accepted
notion of lexical classes as morphologically and syntactically distinct entities. In
search of a plausible explanation, we arrive at the hypothesis of a hierarchy of
syntactic types assigned to each lexical class. It is this hierarchy that is explained
by the Superposition Principle.

This analysis reveals the opposition between the noun and the adjective: the
characteristic type of the noun is the complementary type of the adjective, and,
conversely, the characteristic type of the adjective is the complementary type of
the noun. A sign with a complementary type superposed on its characteristic
type displays duality: it takes on the properties of the complementary type su-
perposed on its characteristic type but retains at least part of properties of its
characteristic type.

4 Parsing Natural Language Based on AUG

To understand the way in which parsing using AUG works, it is useful to think
of words and phrases as atoms and expressions, respectively, in a typed language
of combinators. For our simplified version of AUG, there are just two primitive
types: T representing terms (for example, nouns such as ‘friend’ and noun phrases
such as ‘my friend’), and S representing complete sentences (such as ‘my friend
runs’). The only non-primitive type is of the form Oxy, denoting phrases that
transform phrases of type x to modified phrases of type y; this is the most
important concept behind the AUG formalism.

For example, the word ‘my’ is treated as having type OTT since it is applied
to a term of type T to obtain a modified term, also of type T (every word is
pre-assigned one or more types in this way). Thus the construction of the noun
phrase ‘my friend’ can be described by an inference:

‘my’ :: OTT ‘friend’ :: T

‘my friend’ :: T

More generally, we can use the following rule to describe the application of one
phrase, p of type Oxy, to another, q of type x:

p :: Oxy q :: x

p q :: y

Clearly, types of the form Oxy correspond to function types, written as (x → y) in
more conventional notation, while the typing rule above is the standard method

for typing the application of a function p to an argument value q. The O for
function types is used in the descriptions of AUG cited above, and for the most
part we will continue to use the same notation here to avoid any confusion
with type expressions in Haskell; in our program, the types of natural language
phrases are represented by data values, not by Haskell types. Another advantage
of the prefix O notation is that it avoids the need for parentheses and allows a
more compact notation for types.

The results of parsing a complete sentence can be described by a tree struc-
ture labelled with the types of the words and phrases that are used in its con-
struction. The following example is produced directly by the program described
later from the input string "my friend lives in Boston".

in Boston

[OTOOTSOTS] [T]

my friend lives ________/

[OTT] [T] [OTS] [OOTSOTS]

_____/ _____________/

[T] [OTS]

________________/

[S]

Notice that, to maintain the original word order, we have allowed both forward
and backward application of functions to arguments. The first of these was de-
scribed by the rule above, while the second is just:

q :: x p :: Oxy

q p :: y

For example, in the tree above, we have used this rule to apply the phrase
in Boston to the intransitive verb lives; the function acts as a modifier, turning
the action of ‘living’ into the more specific action of ‘living in Boston’.

It is sometimes useful to rearrange the trees produced by parsing a phrase so
that functions are always written to the left of the arguments to which they are
applied. This reveals the applicative structure of a particular phrase and helps
us to concentrate on underlying grammatical structure without being distracted
by concerns about word order — which vary considerably from one language to
another. Rewriting the parse tree above in this way we obtain:

in Boston

[OTOOTSOTS] [T]

________/ lives my friend

[OOTSOTS] [OTS] [OTT] [T]

__________/ _____/

[OTS] [T]

_____________/

[S]

In situations where the types of subphrases are not required, we can use a flat-
tened, curried form of these trees, such as in Boston lives (my friend), to
describe the result of parsing a phrase. The two different ways of arranging a
parse tree shown here correspond to the concepts of phenotype and genotype
grammar described earlier.

One of the most important tasks in an application of AUG is to assign suitable
types to each word in some given lexicon or dictionary. The type T is an obvious
choice for simple nouns like ‘friend’ and ‘Boston’ in the example above. Possessive
pronouns like ‘my’ can be treated in the same way as adjectives using the type
OTT. In a similar way, intransitive verbs, like ‘lives’, can be described by the
type OTS transforming a subject term of type T into a sentence phrase of type
S. The word ‘in’, with type OTOOTSOTS, in the example above deserves special
attention. Motivated by the diagram above, we can think of ‘in’ as a function
that combines a place of type T (where?), an action of type OTS (what?), and a
subject of type T (who?) to obtain a sentence phrase of type S.

One additional complication we will need to deal with is that, in the general
case, a single word may be used in several different ways, with a different type
for each. In this paper we adopt a simple solution to this problem by storing
a list of types for each word in the lexicon. We will see later how we can take
advantage of this, including the possibility of a word having several roles (and
types) simultaneously in the same sentence.

5 An NLP Prototype Written in Haskell

Our NLP prototype was written in Haskell [10], a standard for non-strict purely
functional programming languages. Tutorial information on Haskell may be
found elsewhere [1, 9]; in the following discussion we assume basic familiar-
ity with the language. Our use of Haskell is fitting since the language is, in
fact, named for the logician Haskell B. Curry whose work on combinatory logic
cited above provides much of the foundation for both functional programming
and AUG. As mentioned earlier, Curry himself was interested in the study of
linguistics [4].

5.1 Types, Trees and Sentences

Our first task in the implementation of the parser is to choose a representation
for types. Motivated by the description above, we define:

> data Type = T | S | O Type Type deriving Eq

The specification deriving Eq declares that the new datatype Type is a member
of Haskell’s pre-defined class Eq, and that the system should therefore derive a
definition of equality on values of type Type. This is needed so that we can test
that the argument type of a function is equal to the type of value that it is
applied to.

The result of parsing a string will be a tree structure with each node anno-
tated with a list of types (each type corresponding to one possible parse).

> type TTree = (Tree,[Type])

> data Tree = Atom String | FAp TTree TTree | BAp TTree TTree

Applications of one tree structure to another are represented using the FAp (for-
ward application) and BAp (backward application) constructors.

We will also need a way to display typed tree structures, and so we define a
function:

> drawTTree :: TTree -> String

to display a typed tree in the form shown earlier.

The first step in the parser is to convert an input string into a list of words,
each annotated with a list of types. For simplicity, we use the Atom constructor
so that input sentences can be treated directly as lists of typed trees:

> type Sentence = [TTree]

> sentence :: String -> Sentence

> sentence = map wordToTTree . words

> where wordToTTree w = (Atom w, wordTypes w)

The function wordTypes used here maps individual words to the corresponding
list of types. For example, wordTypes "friend" = [T]. This function can be
implemented in several different ways, for example, using an association list or,
for faster lookup, a binary search tree. For all of the examples in this paper, we
used a simple (unbalanced) binary search tree containing 62 words. However,
we will not concern ourselves with any further details of the implementation of
wordTypes here.

The following text strings will be used to illustrate the use of the parser in
later sections:

> myfriend = "my friend lives in Boston"

> oldfriend = "my old friend who comes from Moscow"

> long = "my old friend who comes from Moscow thinks that\

> \ the film which he saw today was very interesting"

For example, the first stage in parsing the myfriend string is to split it into the
following list of typed tree values:

? sentence myfriend

[(Atom "my",[OTT]),

(Atom "friend",[T]),

(Atom "lives",[OTS]),

(Atom "in",[OTOOTSOTS]),

(Atom "Boston",[T])]

5.2 From Sentences to Trees

We have already described how individual words, or more generally, phrases
can be combined by applying one to another. Now consider the task of parsing
a sentence consisting of a list of words [w1, ..., wn]. One way to proceed
would be to choose a pair of adjacent words, wi and wi+1, and replace them with
the single compound phrase formed by applying one to the other, assuming, of
course, that the types are compatible. Repeating this process a total of n − 1
times reduces the original list to a singleton containing a parse of the given
sentence.

The most important aspect of this process is not the order in which pairs of
phrases are combined, but rather the tree structure of the final parsed terms. In
this sense, the goal of the parser is to find all well-typed tree structures that can
be formed by combining adjacent phrases taken from a given list of words.

5.3 Enumerating Types/Trees

We wish to define the following function to enumerate all of the typed trees that
can be obtained from a given sentence:

> ttrees :: Sentence -> [TTree]

The simplest case is when the list has just one element, and hence there is just
one possible type:

> ttrees [t] = [t]

For the remaining case, suppose that we split the input list ts into two non-empty
lists ls, rs such that ts = ls ++ rs. Using recursion, we can find all the trees
l than can be obtained from ls and all the trees r that can be obtained from
rs. We then wish to consider all pairs of these that can be combined properly to
form a well-typed phrase. This yields the final line in the definition of ttrees:

> ttrees ts = [t | (ls,rs) <- splits ts, l <- ttrees ls,

> r <- ttrees rs,

> t <- combine l r]

The function splits is used here to generate all pairs of non-empty lists (ls,rs)
such that ls ++ rs = ts. It can be defined using:

> splits :: [a] -> [([a],[a])]

> splits ts = zip (inits ts) (tails ts)

> inits, tails :: [a] -> [[a]]

> inits [x] = []

> inits (x:xs) = map (x:) ([]:inits xs)

> tails [x] = []

> tails (x:xs) = xs : tails xs

For example:

? inits "abcde"

["a", "ab", "abc", "abcd"]

? tails "abcdef"

["bcde", "cde", "de", "e"]

? splits "abcdef"

[("a","bcde"), ("ab","cde"), ("abc","de"), ("abcd","e")]

The function combine is used in ttrees to generate all possible typed trees, if
any, that can be obtained by combining two given typed trees. For the framework
used in this paper, the only way that we can combine these terms is to apply
one to the other.3 To allow for variations in word order, we consider both the
possibility that l is applied to r, and also that r is applied to l:

> combine :: TTree -> TTree -> [TTree]

> combine l r = app FAp l r ++ app BAp r l

The rule for application of one term to another is encoded as follows:

> app :: (TTree -> TTree -> Tree) -> TTree -> TTree -> [TTree]

> app op (a,ts) (b,ss)

> = [(op (a,[O x y]) (b,[x]), [y]) | (O x y)<-ts, z<-ss, x==z]

The expression (op (a,[O x y]) (b,[x]), [y]) here corresponds to the rule
that, if a has type O x y and b has type x, then the application of a to b has type
y. The use of singleton lists signals that the type of an application is uniquely
determined by the type of its arguments. Clearly, we could extend the definition
of combine to deal with other methods of combining terms in extended AUG
frameworks.

The fact that we allow two different ways of combining a pair of terms by
applying either one to the other, causes an exponential increase in the number
of possible parse trees that might, in theory, need to be considered. For example,
we can show that there are 8,448 different ways to construct a parse tree for a
sentence like oldfriend in Section 5.1 with only 7 words! Fortunately, the use
of types eliminates almost all of these. Using the Gofer interpreter, we obtain
just three parses for this sentence with no noticeable delay:

? (map show . ttrees . sentence) oldfriend

["(my (old (who friend (from Moscow comes))),[T])",

"(my (who (old friend) (from Moscow comes)),[T])",

"(who (my (old friend)) (from Moscow comes),[T])"]

(8302 reductions, 23220 cells)

3 This limitation is not as severe as it might sound, linguistically, since currying permits
application to several arguments. The parse described earlier involving the word ‘in’,
with type OTOOTSOTS, is an example of this, as are transitive and ditransitive verbs,
having types OTOTS and OTOTOTS, respectively.

We comment on these parses in more detail in Section 6.
For larger sentences, however, the definition of ttrees is not efficient enough.

Fortunately, there is a much more efficient algorithm (described in [11]) based
on tabulation [2]. With this change, our Haskell interpreter takes just a second to
determine that there are 60 different parses of the 19 word sentence long given
earlier, and this result would be at least an order of magnitude faster if it were
compiled. (The original program took over 8 hours to achieve the same task!)

6 A Simple Example

For the purposes of simple experiments, we combine the components of the parser
described above by defining the function:

> explain :: String -> String

> explain = unlines . map drawTTree . fastTtrees . sentence

For example, consider the phrase ‘my old friend who comes from Moscow’. The
result of parsing this phrase using our program are shown in Figure 1. As the
figure shows, there are three different ways to parse this phrase, each of which
produces a term phrase of type T. Without a deeper underlying semantics for the
language, it is difficult to justify any formal statement about these three parses.
However, from an informal standpoint, for example by observing the grouping
of words, we can argue that all three of these parses are valid interpretations of
the original phrase, each with slightly different meaning and emphasis:

– my (old (who friend (from Moscow comes))): The words ‘friend who comes
from Moscow’ are grouped together; of all my friends who come from Moscow,
this phrase refers to the one that is old.

– my (who (old friend) (from Moscow comes)): In this case, the emphasis
is on the word ‘my’; perhaps you also have an old friend who comes from
Moscow, but in this phrase, I am referring specifically to my old friend from
Moscow.

– who (my (old friend)) (from Moscow comes): A reference to ‘my old friend’
who comes from Moscow (but doesn’t necessarily live there now).

When we started work on the program described in this paper, we were concerned
that the rules for constructing parses of sentences were too liberal and that, even
for small sentences, we would obtain many different parses, perhaps including
some that did not make any sense. From this perspective, it is encouraging to
see that there are only three possible parses of the example sentence used here
and that all of them have reasonable interpretations. Of course, it is possible
that there may be ways of interpreting this phrase that are not included in the
list above; these might be dealt with by adding new types for some of the words
involved to reflect different usage or meaning. Another possibility is that we
might find a phrase with different interpretations that cannot be distinguished by
their grammatical structure alone, in which case some form of semantic analysis
may be needed to resolve any ambiguities.

? explain "my old friend who comes from Moscow"

my (old (who friend (from Moscow comes))):

from Moscow

[OTOOTSOTS] [T]

friend who comes ________/

[T] [OTOOTST] [OTS] [OOTSOTS]

________/ _____________/

[OOTST] [OTS]

old __________________/

[OTT] [T]

my ____________________/

[OTT] [T]

________________/

[T]

my (who (old friend) (from Moscow comes)):

old friend from Moscow

[OTT] [T] [OTOOTSOTS] [T]

_____/ who comes ________/

[T] [OTOOTST] [OTS] [OOTSOTS]

___________/ _____________/

[OOTST] [OTS]

my ____________________/

[OTT] [T]

_________________________/

[T]

who (my (old friend)) (from Moscow comes):

old friend

[OTT] [T]

my _____/ from Moscow

[OTT] [T] [OTOOTSOTS] [T]

________/ who comes ________/

[T] [OTOOTST] [OTS] [OOTSOTS]

_______________/ _____________/

[OOTST] [OTS]

______________________/

[T]

Fig. 1. Parsing the phrase ‘my old friend who comes from Moscow’.

While it seems reasonable to allow three different parses for the sentence
above, we may be a little concerned about the 60 different parses mentioned
above for the 19 word sentence that was used as a test in the previous sections.
However, it turns out that half of these parse trees include one of the three
different trees for ‘my old friend who comes from Moscow’ as a proper subphrase;
this immediately introduces a factor of three into the number of parses that are
generated. Similar multiplying factors of two and five can be observed in other
parts of the output. Once we have identified these common elements, the results
of the parser are much easier to understand.

Clearly, a useful goal for future work will be to modify the parser to detect
and localize the effect of such ambiguities. For example, it might be useful to
redefine TTree as ([Tree],[Type]) and store lists of subphrase parse trees at
each node, rather than generating whole parse trees for each different combina-
tion subphrase parse trees.

6.1 A Refined Domain of Types

The datatype Type used to capture AUG types is actually a simplifed version of
that used in AUG. Thus we have extended it to the following:

data Type = T | S | T1 | T2 | T3 | O Type Type | Sup Type Type

The new constructor Sup is for superposition, and will be explained later. The
new constructors T1, T2, and T3 capture a refined viewpoint of noun phrases
called primary, secondary, and tertiary terms, respectively. This refinement is
then reflected in the types of words and phrases that expect arguments or return
results in this refined set. For example, the types of intransitive, transitive, and
ditransitive verbs are given by O T1 S, O T2 (O T1 S), and O T3 (O T2 (O T1 S)),
respectively.

To see the effect of this change, under the original scheme the sentence ‘he
knew that his mother was ill’ has two valid parses:

was ill his mother

[OOTTOTS] [OTT] [OTT] [T]

_________/ _________/

[OTS] [T]

that __________________/

[OST] [S]

knew __________________/

[OTOTS] [T]

___________________/ he

[OTS] [T]

_________________/

[S]

was ill his mother

[OOTTOTS] [OTT] [OTT] [T]

_________/ _________/

[OTS] [T]

knew he that __________________/

[OTOTS] [T] [OST] [S]

_________/ __________________/

[OTS] [T]

______________________/

[S]

But the second of these is nonsense, since it reverses the roles of the noun
phrases ‘he’ and ‘that his mother was ill’ with respect to the verb ‘knew’. How-
ever, by declaring ‘he’ as T1, ‘that’ as OST2, and ‘knew’ as OT2OT1S, we arrive
at the single sensible parse:

was ill his mother

[OOTTOT1S] [OTT] [OTT] [T]

_________/ _________/

[OT1S] [T]

that __________________/

[OST2] [S]

knew __________________/

[OT2OT1S] [T2]

___________________/ he

[OT1S] [T1]

_________________/

[S]

6.2 Superposition

An important aspect of AUG is its ability to deal with a word or phrase serving
several simultaneous grammatical roles in a single sentence. The best example of
this is the gerund, and we have implemented the rules to make this work. As an
example, consider the sentence ‘I see her coming home’. Here the word ‘coming’
serves both as an object (action) that is being seen, and as a verb applied to
a secondary term ‘home’. To represent phrases having more than one meaning,
AUG uses the notation 〈t1/t2〉 which is read: “the type t1 superposed on type
t2.” The typing rules for superposition are given in Figure 2.

We have implemented these rules, using the constructor Sup in the revised
Type datatype to represent superposed types. As an example of the new parser
in action, the parse of the sentence given above is:

p :: Ox〈y/x〉 q :: x

p q :: 〈y/x〉

p :: Oxy q :: 〈x/z〉

p q :: y

p :: Oxy q :: 〈z/x〉

p q :: 〈z/y〉

p :: 〈Oxy/z〉 q :: x

p q :: y

p :: 〈z/Oxy〉 q :: x

p q :: 〈z/y〉

p :: 〈Oxy/z〉 q :: 〈x/u〉

p q :: y

Fig. 2. Typing Rules for Superposition

coming home

[T/OT2OT1S] [T]

her ____________/

[OTT] [T/OT1S]

see ______________/

[OT2OT1S] [T]

______________/ I

[OT1S] [T1]

_____________/

[S]

6.3 Expanded Vocabulary

We have also expanded the vocabulary and dictionary search mechanism in
several ways:

1. We have increased the number of words considerably; currently the vocabu-
lary contains over 2000 words.

2. Many of these words have multiple types. For example, ‘branch’ has both
types T and OT1S.

3. We have implemented a simple form of singular/plural word inference.

6.4 Passivization

As a final extension of our basic scheme, we have added the notion of passiviza-
tion to our parser. With this extension, we have defined a function passive that
first parses a source string, passivizes the abstract parse, then regenerates the
string in passive form. For example:

? passive "my friend will bring hats home"

"hats will be brought home by my friend"

Note that this also required dealing with verb tenses, which we implemented
at least to a limited extent. Note also the introduction of the word ‘by’ when
moving to the passive form. Overall this is not a trivial transformation, and is a
promising indication of the viability of our approach.

7 Conclusion

The history of computer science, mathematical logic, and linguistics presents
a striking parallel with respect to their approach to language. Computer sci-
ence constructs programming languages. Metamathematics is concerned with
a critique of existing languages of mathematics and with constructing better
languages. Linguistics is concerned with developing formal structures modeling
natural languages.

Every language–a programming language, a language of logic or mathemat-
ics, or a natural language—depends on a physical substratum, which makes the
existence of the language possible. The physical structure of programming lan-
guages is a reflection of the physical structure of the computer. The physical
structure of natural language is so-called phrase structure which reflects the ac-
tion of the human machine: the organs of speech. Thus natural language has
a linear phrase-structure. The essential structure of natural language, its func-
tional structure, is independent of the linear phrase-structure, because the raison
d’etre of language, the sole reason for the existence of language, is to be a tool for
the expression of thought and communication. Hence the need for a functional
structure of language.

In computer science, mathematical logic, and linguistics we observe a con-
sistent trend towards liberation from dependence on the physical structure of
languages towards the representation of its pure functional structure. In com-
puter science we observe three stages: (1) languages reflecting physical structure
of computers; (2) imperative languages: a mixture of physical and functional
structure; and (3) functional (applicative) languages: pure functional structure.
In mathematical logic we observe two stages: (1) concatenative languages, tied
to the linear representation of abstract systems; and (2) applicative languages,
independent of the linear representation of abstract systems. Finally, in linguis-
tics we observe two stages: (1) phrase-structure grammar, a mixed system tied
to the linear representation/physical system; and (2) applicative grammar, a
pure functional system. We also observe a strong correspondence between the
functional structure of new functional programming languages such as Haskell
and the functional structure of genotype, the underlying language of AUG.

8 Acknowledgements

We would like to thank Mark Jones, now at Nottingham University, for doing
much of the initial Haskell programming on this project when he was at Yale,
and who should probably be a co-author if time constraints had permitted it for
him. Also thanks to the second author’s funding agencies, DARPA under grant
number F30602-96-2-0232, and NSF under grant number CCR-9633390.

References

1. R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
New York, 1988.

2. R.S. Bird and O. de Moor. Relational program derivation and context-free lan-
guage recognition. In A.W. Roscoe, editor, A Classical Mind: Essays in Honour

of C.A.R. Hoare, pages 17–35. Prentice-Hall International Series in Computer Sci-
ence, 1994.

3. Noam Chomsky. On the notion ‘rule of grammar’. In Proceedings of Symposium

in Applied Mathematics, volume 12 (Structure of Language and Its Mathematical
Aspects). 1961.

4. H.B. Curry. Some logical aspects of grammatical structure. In Structure of lan-

guage and its mathematical aspects. American Mathematical Society, Providence,
1961.

5. H.B. Curry and R. Feys. Combinatory Logic, Vol. 1. North-Holland, Amsterdam,
1958.

6. R. Frost and J. Launchbury. Constructing natural language interpreters in a lazy
functional language. The Computer Journal, 32(2):108–121, April 1989.

7. Morris Halle. The Sound Pattern of Russian. Mouton, The Hague, 1959.
8. P. Hudak. Conception, evolution, and application of functional programming lan-

guages. ACM Computing Surveys, 21(3):359–411, 1989.
9. P. Hudak and J. Fasel. A gentle introduction to Haskell. ACM SIGPLAN Notices,

27(5), May 1992.
10. P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the Programming

Language Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM

SIGPLAN Notices, 27(5), May 1992.
11. M.P. Jones, P. Hudak, and S. Shaumyan. Using types to parse natural language. In

Proceedings of Glasgow Functional Programming Workshop. IFIP, Springer Verlag,
1995.

12. Stanislaw Lesniewski. Grundzuge eines neuen Systems der Grundlagen der Math-
ematik. Fundamenta Mathematicae, 14:1–81, 1929.

13. Theodore M. Lightner. Generative phonology. In William Orr Dingwall, editor,
Survey of Linguistic Science, pages 489–574. Linguistics Program, University of
Maryland, 1971.

14. M. Moortgat. The generalized categorial grammar. In Flip G. Droste and John E.
Joseph, editors, Linguistic Theory and Grammatical Description, pages 489–574.
John Benjamins Publishing, Amsterdam/Philadelphia, 1991.

15. Richard Montague. Formal philosophy. In R.H. Thomason, editor, Selected writ-

ings of Richard Montague. Yale University Press, New Haven, CT, 1974.
16. Sebastian Shaumyan. Strukturnaja lingvistika, 1965.
17. Sebastian Shaumyan. Applicative grammar as a semantic theory of natural lan-

guage. University of Chicago Press, 1977.
18. Sebastian Shaumyan. A Semiotic Theory of Language. Indiana University Press,

1987.
19. Sebastian Shaumyan. Applicative universal grammar as a linguistic framework

of the translation model. In Proceedings of the Fifth International Conference on

Symbolic and Logical Computing. Dakota State University, Madison, Dakota, 1991.

This article was processed using the LaTEX macro package with LLNCS style

