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ABSTRACT

We investigate CPS translatability of typed A-calculi with
inductive and coinductive types. We show that tenable
Plotkin-style call-by-name CPS translations exist for sim-
ply typed A-calculi with a natural number type and stream
types and, more generally, with arbitrary positive inductive
and coinductive types. These translations also work in the
presence of control operators and generalize for dependently
typed calculi where case-like eliminations are only allowed
in non-dependent forms. No translation is possible along the
same lines for small ¥-types and sum types with dependent
case.

Categories and Subject Descriptors

F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Functional constructs, Control prim-
itives, Type structure; F.4.1 [Mathematical Logic and
Formal Languages|: Mathematical Logic—Lambda calcu-
lus and related systems, Proof theory

General Terms
theory

Keywords

inductive and coinductive types, CPS translations, typed
A-calculi, classical logic and control, dependent types

1. INTRODUCTION

Background

Continuation-passing style (CPS) is a style of programming
well suited for program analyses and optimizations, so CPS
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languages are commonly used as intermediate languages in
compilers, see, e.g., [3} 18]. CPS translations are transfor-
mations converting programs into CPS terms. In a sem-
inal paper [41], Plotkin defined call-by-value and call-by-
name CPS translations for the untyped A-calculus and es-
tablished some of their important properties. Felleisen et
al. [17] extended the call-by value translation to also cover
their control operator C. Meyer and Wand [32] showed that
Plotkin’s call-by-value CPS translation is type-correct in a
simply typed setting. Griffin [23] noted that Felleisen’s C
types with the double negation rule of classical logic and
showed that both Felleisen’s CPS translation and its call-
by-name version correspond to well-known embeddings of
classical logic into intuitionistic logic. Subsequently, typed
CPS translations and correctness results have been given
for more powerful typed A-calculi, see, e.g., [27,(28, 8], and
applied to the compilation and optimization of typed lan-
guages, see, e.g., [19,/44]. Griffin’s discovery initiated a series
of studies on the computational content of classical proofs
where CPS translations are a frequently employed tool, see,
e.g., [13,33,138,139, 34, (12| 4} 42, 24, 25, 35, (36, [6].

Inductive and coinductive types, see, e.g., [31} 29, 20, [15,
40], are syntactic representations for initial algebras (such
as natural numbers and lists) resp. final coalgebras (such as
conatural numbers and streams) in typed A-calculi. Despite
being pervasive in the type-theoretical literature on func-
tional languages and proof assistants, we are not aware of
any study of CPS translations for (co)inductive types.

Contribution

The purpose of this paper is to present CPS translations for
(co)inductive types. Our contribution is three-fold.

First, we extend the typed version of Plotkin’s call-by-
name CPS translation to (co)inductive types. More pre-
cisely, we define a type-preserving and reduction-preserving
CPS translation for A,,., a simply-typed A-calculus with
sum and product types and positive inductive and coinduc-
tive types. A salient feature of our translation is that it
also applies under y and v. This is required for the trans-
lation to enjoy a substitution property for types and hence
for scaling it up for more powerful type disciplines such as
polymorphism or higher-order polymorphism. One of the
effects is that strictly positive (co)inductive types such as
Nat = uZ. 1+ Z get transformed into (double negations of)
non-strictly positive ones such as Nat® = puZ. 1 + ==Z, cf.
[11].

Second, we consider the CPS translation of AA, ,, which



extends \,, with a control operator A described in [42].
Since the CPS translation provides an embedding from lan-
guages with control to languages without control, the target
language remains A, ,. This allows us to use the translation
to prove that every number-theoretic function representable
in AA,,, is also representable in A, ., indicating one possi-
ble line of application for CPS translations for (co)inductive
types.

Third, we study extensions of the suggested translation
for more powerful type disciplines. Building on [8], one can
show that the translation scales up to systems with depen-
dent types. However, we prove that the translation is ex-
tendable neither to small ¥-types nor to sum types with de-
pendent case. For the latter, we analyse Geuvers’ proof
of inconsistency of classical logic in the Calculus of Inductive
Constructions to conclude that the translation developed in
this paper, which is the natural generalization of Plotkin’s
original CPS translation, cannot be extended to deal with
dependent case analysis.

Besides, our results shed some light on the simulability of
inductive types by coinductive types and vice versa, cf. [2],
and the computational content of commuting reductions, cf.

[26].

Organization of the paper

The paper is organized as follows. In Section [2] we re-
view CPS translation of the standard extension of simply
typed A-calculus with sums and products, empty and unit
types. In Section[3, we generalize this for a source language
with natural numbers and streams. In Section (4, we extend
these translations further to a system with general positive
(co)inductive types. In all cases, we consider a standard
CPS translation and an alternative “de Morgan” version
in which the CPS image of a sum type (resp. an inductive
type) is defined via a product type (resp. a coinductive type).
Further we show the translations to be type-preserving and
reduction-preserving.

In Section [5, we briefly discuss extensions of the sys-
tems introduced with commuting conversions. In Section
6] we extend the source language with a control operator,
and prove that the extended CPS is correct wrt. typing
and convertibility, and conclude that every number-theoretic
function representable in the source language is also repre-
sentable in the target language (without control).

In Section [7} we discuss generalizations of the transla-
tion to the Calculus of Inductive Constructions (CIC). We
first present the translation of the Calculus of Constructions
(CC) and then discuss specific type constructions of CIC.

In Section [8, we list some conclusions and directions for
future research.

2. SIMPLY TYPED LAMBDA-CALCULUS
WITH SUM AND PRODUCT TYPES

We start by introducing A4 x, a simply typed A-calculus
with sum and product types, an empty type and a unit
type (in other words, a term calculus for full intuitionistic
propositional logic) and looking at its CPS translation. We
use it as a base for extensions we are interested in and as
an instructive example, since sum and product types are
prototypical for inductive and coinductive types.

The language of the system Ay x (types, objects) is given

by the grammar

AB,C = X|A->B|A1+A4|0]|A xA]|1
M,N,P z|Ax. M| N P |inl(M) |inr(M)

| case(N, u. P, u. Py) | V(N)

| (M, Ma) | ) | (V) | snd(NV)

The typing and reduction rules of A} x appear in Fig.

The most straightforward generalization of Plotkin’s [41]
call-by-name CPS translation of A gives a translation of A4
to itself. This is presented in Fig. [2]in a semi-optimized,
“near-colon” version. There and elsewhere below, L is a dis-
tinguished type variable (for the answer type), —A is used
as shorthand for A — 1. Numerous other generalizations
are possible. To demonstrate this, we look also at a variant
where +, 0 are treated differently, derived from the intu-
itionistic de Morgan laws =(A; + Az) &2 =41 x 24y, =0 = 1.
This different translation, with Ay as the target calculus, is
given in Fig. (3.

Both translations are correct in the sense of preserving
typing and reductions. The proof hinges on a substitution
lemma.

LEMMA 1  (SUBSTITUTION LEMMA).

1. (a) conT[A][coNT[C]/—Z] = coNT[A[C/Z]],
(b) cpsT[A][coNT[C]/—-Z] = cpsT[A[C/Z]].

2. (a) (IM]:K)[cPs[P]/u] —5 [M[P/u]]:(K[cPs[P]/u]),
(b) cps[M][cPs[P]/u] - cpS[M[P/u]].

ProPOSITION 1 (CORRECTNESS).

1. IfT - M: A, then
(a) cpsT[I'] + K : cONT[A] impliesT F [M]:K : L,
(b) cpsT[I'] F cps[M] : cpsT[A].

2. If M —»p M', then
(a) [M]:K —5 [M']:K,
(b) cpS[M] —5 cps[M'].

3. NATURAL NUMBERS AND STREAMS

We continue by CPS translating the simplest examples of
inductive and coinductive types: the natural number type
Nat = uZ. 1 + Z and stream types Str(A) =vZ. A x Z. To
keep the presentation simple, we equip the natural number
types with iteration and case and stream types with coitera-
tion and projections (as opposed to, say, primitive recursion
resp. primitive corecursion). The language of the system
ANat,str 1S given by the grammar

A B,C ...| Nat| Str(A)

M,N,P ... o|s(M) | niter(N, P,,u. Ps)
| ncase(N, Po,u. Ps) | scoit(M,y. Qn,y, Q:)
| cons(Mp, My) | hd(N) | tI(N)

The typing and reduction rules are given in Fig. [4.
Translating Nat and Str(A), we keep in mind the isomor-
phisms Nat = 1+Nat, Str(A) = AxStr(A), proceed from the
translations of 4, x from Sec.[2] and strive for preserving the
isomorphisms. Such translations are possible in terms of the
types Nat® = puZ. 1 + =—Z (modulo rejecting ——1 in favor
of 1) and Str°(A) = vZ. A x =—Z, doubly negated modifica-
tions of Nat and Str(A). Note that while Nat, Str(A), just as



Typing rules:

NLx:A+ M:B

Fr'-rN:A—>B T'THFP:A

Ftz:C if(x:C)inT ThFHX.M:A—>B '-NP:B
'EM: A THM: A, 'EFN:A + A F,u:All—Pl:C F,U:AQ'—PQZC TEN:O
FHinl(M): Ay + A, Thkinr(M): A + A, 'k case(N,u. Pr,u. P,):C '-V(N):C
Fl—Ml:Al FI—MQ:AQ FFN:A1><A2 FI—N:A1><A2
Fl‘(Ml,M2>ZA1><A2 I+ <>1 F"fSt(N):Al F"Sﬂd(N)!AQ
B-reduction rules:
(Az. M) P — M]J[P/x]
case(inl(M),u. Pi,u. P2) — Pi[M/u]
case(inr(M),u. Pi,u. Ps) — Py[M/u]
fSt((Ml,Mz)) — M
Snd((Ml,Mz)) — Mo

Figure 1: Typing and reduction rules of A; «

Translation of types:

CcPST[A]
CONT[X]
CcoNT[A — B]
CONT[A; + A;]
CcONT[0]
CONT[A1 x A5]
CONT[1]
Translation of objects:
cps[M] =
[«]:K
[Az. M]:K
[N P]:K
[inl(M)]:K
[inr(M)]:
[case(N,u. Pi,u. P>)]:K
[V(V)]:
[(My, M2)]:K
)
)
)

=5 5
1 T T T T T

[fst(N)]: K
(N]:K
01K =

Translation of contexts:

CPST[¢]
cpsT[I, 2 : C]

= -—CONT[A]

-X

—(cpsT[A] — cpsT[B])
—(cPsT[A1] + cpsT[A,])
-0

—=(cpsT[A1] x cPST[A:])

= -1

Ak, [M]:k

r K

K (Az. cps[M])
[N]:(An. n cps[P] K)
K inl(cps[M])

K inr(cps[M])
[N]:(An. case(n,u. [P1]:K,u. [P2]:K))
[N]:(An. V(n))

K (cps[M:], cps[Ma])
[N]:(An. fst(n) K)
[NV]:(An. snd(n) K)

K )

(]
= ¢pST[I'], z : cpsT[C]

Figure 2: CPS translation of A} «




Translation of types:

CONT[[A1 + Az]]
coNT[0]

Translation of objects:
[inl(M)]:K
[inr(M)]: K
[case(N,u. Pi,u. P>)]:K
[V(N)]:K

—0PST[A1] X ~CPST[A1]
1

fst(K) cps[M]

snd(K) cps[M]

[INT:(Au. [P1]:K, Au. [P2]:K)
[NT:()

Figure 3: Alternative CPS translation of A

Typing rules:

I - M : Nat ''FN:Nat THP,:C T,u:C#HF Ps:C
TFo:Nat T F s(M):Nat T F niter(N, Po,u. P.) : C
P'N:Nat THP,:C Thu:Nat-P,:C T FHFM:D T,w:DFQr:A T,y:DF Q::D
' F ncase(N, Py, u. Ps) : C T F scoit(M,y. Qn,y. Q) : Str(A)
' Mp,:A T F M;:Str(A) T F N:Str(A) ' - N:Str(4)
T F cons(Mp, M;):Str(A) T F hd(N): A T F ti(N): Str(A)
B—reduction rules:
niter(o, P, u. Ps) — P,
niter(s(M), Po,u. Ps) — Ps[niter(M, Py, u. Ps)/u]
ncase(o, Po,u. Ps) — P,
ncase(s(M), P,,u. Ps) — Ps[M/u]
hd(scoit(M,y. Qn,y- Q1)) — Qn[M/y]
ti(scoit(M,y. Qn,y. Q) — scoit(Q:[M/yl,y. Qn,y. Q)
hd(cons(My, My)) — My
tli(cons(My, My)) — My

Figure 4: Typing and reduction rules of Ayat st




any “normal” (co)inductive types are strictly positive, Nat®
and Str°(A) are non-strictly positive. The language of the
system Anate sere IS given by the grammar

A/ B,C = ...|Nat®|Str‘(A)

M,N,P = ...|0"|s"(M)] niter'(N, Py,u. Ps)
| ncase® (N, P,,u. Ps) | scoit“(M,y. Qn,y,Q+)
| cons®(Mp, My) | hd®(IV) | tI°(IV)

The typing and reduction rules for this system appear in
Fig. 5.

The two translations of Ay x from Sec.2]lead to two trans-
lations for Anat,se. The more straightforward translation is
given in Fig.[6. The other is a derivate from the intuition-
istic isomorphism —Nat 2 Str(_L), an instance of a gener-
alization of the intuitionistic de Morgan law for inductive
types. This translation, presented in Fig. has Agyc as
the target system. Observe that the second translation of
Nat is smoother. (In the first one, the clumsiness in the
rendering of niter is due to a misbalance in the number of
negations; the bureaucracy marked by an underline replaces
three negations by one. In the second translation, no such
misbalance arises.)

Again, both translations are correct.

PROPOSITION 2.
1. IfT' b M : A, then cpsT[I'] F cPs[M] : cpsT[A].
2. If M —»g M', then cPs[M] —5 cps[M'].

Note that our second translation provides a simulation of
an inductive type by a coinductive type, which, however,
only works, if the whole language is translated. This can be
contrasted with the recent work [2] by Altenkirch on repre-
senting function types with inductive domains as coinductive
types.

4. GENERAL POSITIVE INDUCTIVE AND
COINDUCTIVE TYPES

The underlying idea behind the translation of Nat(A) and
Str(A) extends to arbitrary positive inductive and coinduc-
tive types (with iterators and destructors resp. coiterators
and constructors as the elimination resp. introduction oper-
ators). We now sketch this extension. Our source system of
interest is A, ,,, an extension of Ay «. The language is given
by the grammar

AB,C == ...|uZ AlvZ A
M,N, P o |inz a(M) | iter(N,u. P) |in '(N)
| coit(M,y. Q) | out™ ' (M) | outz a(N)

The raw types uZ. A, vZ. A are legal if A is positive wrt.
Z, in which case an operator Map, , is defined such that

'+ M:A[D/Z) Tyz:DF P:C
' Map, ,(M,z. P): A[C/Z]

The typing and reduction rules of A, , appear in Fig.
Generalizing the translations of Sec. [3] we arrive at two
translations of A, ., the first into A, ., the second into A,;
the second translation draws on the isomorphism
-uZ.A[~Z|Z] =2 vZ.-A. The translations are presented
in Figs.[9,[10] Note that here the second translation of p is
even more smooth than the first than in the previous section,

since the first involves a map operator in the translation of
iter while the second does not.

Both translations are type-preserving; the preservation of
convertibility depends on the exact definitions of the map
operators.

Inconveniences with map operators are an inherent trait
of calculi with positive (co)inductive types. These are over-
come in calculi with (co)recursors & la Mendler [31, /30, 45]
where the positivity condition can be dropped and the map
operators are not needed in order to formulate the reduc-
tion rules. CPS translations of calculi with Mendler-style
(co)inductive types will be discussed in the full version of
the paper.

5. COMMUTING REDUCTIONS

Optionally, the reduction calculus of Ay x may be com-
pleted with the so-called commuting reductions for +, 0.
These are

elim(case(N, u. Pi,u. P»)) — case(N,u. elim(P1),u. elim(P:))
elim(V(N)) —» V(N)

Here, elim(N) is a general notation for any elimination ob-
ject with N as the main argument. In the case of At «,
this covers object forms N P, case(N,u. Pi,u. P»), V(N),
fst(IV), snd(N). The two CPS translations are correct also
wrt. Bc-reductions; actually, they collaps c-reductions into
identities. This fact may be interpreted as evidence in sup-
port of the statement that commuting reductions carry no
computational content. In [26], the same effect was achieved
with a more complex CPS translation of Ay x to A.

To Anat,ser, one can add a commuting reduction for ncase
analogous that for case —

elim(ncase(N, P,, u. Ps))
— ncase(N, elim(P,), u. elim(Ps))
— and the correctness result extends. The controversial issue

of commuting reductions for niter and scoit will be analysed
in the full version of the paper.

6. CLASSICAL LOGIC

We now consider a combination of inductive types with
control. For the sake of simplicity, we only consider natural
numbers. We extend Ana with a local control operator A
introduced in [42].

The language AApa is obtained from Ay by adding an
object form Az. N with the typing rule

Lr:A—-0F N:O
' Az. N: A

a commuting reduction rule

elim(Az. N) — Ay. N[Az. y elim(z)/z]

and two further reduction rules of a specific nature

Az.z N —» N ifx ¢ FV(N)
Az.z Ay. N — Az. N[z/y]

We speak of both types of reductions as A-reductions. The
rules presented strengthen those for V from Sec.[2, so V is
definable through A: V(N) = Az. N. From a logical view-
point, the typing rule of A is the double negation rule, which
is the classical elimination rule for falsum, whereas that of



Typing rules:

TM:=—Natt [FN:Nat®* TP :C Tyu:-—-CF P,:C
TFo:Natt T F s<(M):Nat® T F niter (N, Po,u. Po) : O
' N:Nat®* T'HP,:C Tou:—==Nat*+FP:C T +FM:D T,y:DFQr:A Tyy:DF Q;:

=D

I' F ncase*(N, Py, u. Ps): C ' b scoit(M,y. Qn,y. Q¢) : Stré(A)
' Mp:A T F My:—-=Strf(4) T F N:Strf(A) ' N :Strf(A)
' F cons®(My, My) : Str(A) I'F hd(N): A T F tI%(N): ==Stre(A)
B—reduction rules:
niter(o%, Po,u. Ps) — P,
niter(s°(M), Po,u. P;) — Ps[Ak. M (An. k niter®(n, P,,u. Ps))/u]
ncase‘(o%, P,,u. Ps) — P,
ncase“(s(M), P,,u. P;) — Pi[M/u]
hd®(scoit®(M,y. Qn,y- Q1)) — Qn[M/y]
tI°(scoit (M, y. Qn,y- Q1)) —  Ak. Q:[M/y] (Am. k scoit®(m,y. Qn,y. Q+))
hd“(cons®(My, My)) — M,
tI°(cons®(Mp, My)) — M,

Figure 5: Typing and reduction rules of Ayac st

Translation of types:

coNT[Nat] = -Nat®
CONT[Str(A)] = —Str(cpsT[A])
Translation of objects:
[o]:K K of
[s(M)]:K = K s*(cps[M])

[niter(N, Py, u. Ps)]:K
[ncase(N, Py, u. Ps)]:K
[scoit(M,y. Qn,y. Qu)]:K
[cons(My,, M)]:K
[hd(N)]:K

[el(V)]: K

[N]:(An. niter®(n, cPS[P,], u. CPS[Ps][AE . u Au'. v’ k' /u))
[N]:(An. ncase®(n, [Po]: K, u. [Ps]:K))

K scoit®(cPS[M],y. cPs[Qn],y- Au'. u' cPs[Q:])

K cons®(cps[My], cPs[M.])

[N]:(An. hd“(n) K)

[N]:(An. tI°(n) K)

K)

Figure 6: CPS translation of Ayat st

Translation of types:

Translation of objects:

[niter(N, Py,
[ncase(N, P,

coNT[Nat] = Strf(l)
[o]:K = hd*(K)
[s(M)]:K = tI(K) cps[M]
u. P):K = [N]:scoit®(K, k. [Po]:k' k' Mu. [Ps]:k")
uw. P)J:K = [N]:cons*([P,]:K, Au. [Ps]:K)

Figure 7: Alternative CPS translation of Anat,se




Typing rules:
'+ M: AlpZ. A]Z)

' N:puZ A T,u:A[C/Z] - P:C

P M:pZ A

D'Finga(M):uz. A

T + iter(N,u. P): C T+ in~(

M) : AluZ. A)Z]

'M:D T,y:DFQ:AD/Z) Ttk N:AvZ A/Z) I'FN:vZ A
[ F coit(M,y. Q):vZ. A T'Fout ' (N):vZ. A T F outz a(N): AjvZ. A/Z]
B-reduction rules:
iter(inz. a(M),u. P) — P[Mapy 4(M,n.iter(n,u. P))/u]
in"(inz a(M)) — M
outz a(coit(M,y. Q)) — Map, 4(Q[M/y],m. coit(m,y. Q))
outz a(out *(M)) — M

Figure 8: Typing and reduction rules of )\, ,

Translation of types:

Translation of objects:
[inz. a(M)][:K

[iter(N, u. P)]:K
[in™ (\)]:K
[coit(M,y. Q)]:K
Jout™ 1(M)]] K
[outz. A(N)]:K

CONT[uZ. A] =
CONT[vZ. A]

—puZ. cpsT[A]
—wZ. CPST[A]

= K ing gpsrpap(cPs[M])
= [N]:(An. iter(n, u. cPS[P][Map ; cosriajiz)--7(%: T Mooz (' 2 K))/u))
= [N]:(An. in"'(n) K)
= K coit(cPS[M],y.Map ; cosriajiz/--7(CPS[Q], 2. M. u' x))
= K out™'(cps[M])
[NT:(An. outz cpsrpag(n) K)

K)

Figure 9: CPS translation of )\, ,

Translation of types:

Translation of objects:

coNT[uZ. A] = vZ. —cpsT[A]|Z/-Z]
[[inZ.A(M)]]:K = OUtZ.—(‘PST[[A]][Z/—*Z](K) CPS[[M]]
[iter(N,u. P)]:K = [N]:coit(K,k'. Au. [P]:k)
[in "(N)]:K = [N]:out '(Az. z K)

Figure 10: Alternative CPS translation of )\, .,




V is its intuitionistic counterpart, Ex falsum quodlibet. In
programming terms, Az. z N may be read as catch z in N
and V(z N) as throw z N.

Extending the translation of Sec. [3] with the clause

[Az. N|:K = ([N]:(An. V(n)))[Mr. b Aj. Ai. j K/z]

gives a CPS translation from AAp, to Anae (with intuition-
istic falsum). It is straightforward to prove the correctness
of the extended CPS translation. Here, only convertibility
is preserved.

PROPOSITION 3.
1. IfT' v M : A, then cpsT[['] F cps[M] : cpsT[A].
2. If M =ga M', then cPS[M] = cps[M'].

As an illustration of the applicability of the translation,
we show how it is possible to use its correctness to prove
that every number-theoretic function representable in AApat
is also representable in Anat,Nate-

Definition 1. Let ~ be a congruence on the objects of a
typed A-calculus, A be a closed type and |.| a mapping from
N to closed objects of type A. A function f : N — N is
(~, A, |.|)-representable if there exists a derivable judgment
xz: N F e: N such that, for every n € N, we have e[|n|/z] ~

|f nl.

In AApa, the traditional coding for N is Nat with [0] = o
and [n + 17 = s([n]), whereas, in Anat,nate, there is another
possible coding, namely Nat® with [[0]] = o and [[n + 1T =
s*(Ak. k [[n]]). In order to establish the representability
theorem, we must first relate the two representations. In
the second item below, we set L (an unspecified type thus
far) to be Nat.

LEMMA 2.
1. For every n € N, we have cps[[n]] = [n]);

2. Let 1 = Nat. There exist i : Nat® — Nat and j : Nat —
Nat® such that for every n € N, we have i[[n]] =g [n]

and j[n] =g [n]].

PROOF SKETCH. In (2), the conversion functions i and j
are

Az. niter(z,0,u. s (u (Az. 2)))
Az. niter(z,0% u. s¢ (\k. k u))

(SIS
|

O

We now turn to the representation theorem.

THEOREM 1. Ewvery function f : N — N that is (=ga, Nat,
[.1)-representable in AAna is (=g, Nat, [.])-representable in
)\Nat,NatC-

PROOF SKETCH. The proof proceeds in two steps. First
one shows that every function f : N — N that is (=ga,
Nat, [.])-representable in AAyy is (=g,Nat®, [[.]))-represent-
able in Anat,natc Then it remains to show that, in Anag,Nate, €v-
ery function that is (=g, Nat®, [[.]])-representable in Anat,nate
is also (=g, Nat, [.])-representable. [

7. CALCULUSOFINDUCTIVE CONSTRUC-
TIONS

In [8], Barthe, Hatcliff and Sgrensen showed how the typed
version of Plotkin’s call-by-name CPS translation scales up
for a large class of Pure Type Systems including the Cal-
culus of Constructions (CC) and therefore also all smaller
systems of Barendregt’s A-cube [5]. For technical simplic-
ity, most of their work is cast in the framework of domain-
free Pure Type Systems [9], a variant of Pure Type Systems
where A-abstractions do not carry the domain of their bound
variable, i.e., are of the form Az. M, in opposition to the
standard, domain-full variant.

In this section, we examine whether the translation of CC
from [8] and Sections [3, [4] are compatible and can be com-
bined and generalized to yield, in particular, a CPS transla-
tion for the Calculus of Inductive Constructions (CIC)
146], the base system of the CoqQ proof assistant. It turns out
that the translations are compatible and can be combined,
but only yield a CPS translation for a fragment of CIC. In
particular, we show that small ¥-types and sum types with
dependent eliminations cannot be CPS translated.

7.1 Calculus of Constructions

We adopt a stratified presentation of domain-free CC where
a distinction is made between (raw) kinds, constructors,
and objects at the syntax definition level. The language
of domain-free CC (kinds, constructors, objects) is given by
the grammar

S.T — %|Hz:A.T|TOX:S.T

AB,D = X|Xx.A|BP|AX.A|BD
|IIz: A. B|IIX :S. B

M,N,P == z|Xe. M|NP|\X.M|N D

The typing rules are given in Fig.[11. Because of the strat-
ification, the presentation is slightly more verbose than those
based on Pure Type Systems [5], but nevertheless equiva-
lence between the two can be shown easily.

The CPS translation of domain-free CC from [8] is given
in Fig.

The translation preserves typing and reductions.
ProposITION 4 ([8]).

1. IfT + a:b, then cPST[I'] F cPs[a] : cPsT[b];

2. Ifa -»g d’, then cpsfa] -5 cpsfa’].

It is straightforward to show that the correctness of the
translation is preserved, if CC is extended with sums, prod-
ucts, positive inductive and coinductive types in the “non-
dependent” forms introduced in previous sections. Stronger,
“dependent” versions of these constructions, in contrast,
raise a number of difficulties. These are discussed below.

7.2 Sigma-types

First, it is not possible to CPS translate small -types
along the same lines as product types. Consider CC ex-
tended with small X-types. The extended calculus features
a new constructor form Xz : A. B and new object forms



I'kFa:s 'Fa:b T'Fec:s Pka:b THb:s b=pb T ..o
ok x:0
z:abk z:a Tz:cka:b T'ka:b
Iz:AF B:% r:A+ M:B '+ N:(Ilz:A.B) TP A
' (Iz: A B): % ' Xe. M:Tlz: A. B ' W N P: B[P/x]
ILX:SF B:x% NLX:S+HM:B '-N:(IX:S.B) " D:S
TF(IIX:S. B):« T FAX.M:TIX:S. B T - N D:B[D/X]
Lx:AFT:0O Tx:AF AT ''-B:Ilz:AT) THP:A
' (Mz:AT):0O F'kXe. ATz AT I' - B P:T[P/z]

IX:SF+T:0O

LX:SkHA:T

r-pB:(IX:S8.7) '+-D:S

I (IX:S5T):0

' AX.A:TIX:S. T

I+ B D:T[D/X]

Figure 11: Typing rules for domain-free Calculus of Constructions

Objects

Constructors

Kinds

Box

Contexts

cPs[M] = Xk [M]:k
[t K = z K
[Az. M]:K = K (Az. cps[M])
[N P|:K = [N]:(An. ncps[P] K)
[AX. M|:K = K (AX. cps[M])
[N D]:K = [N]:(An. ncps[D] K)
cPsT[A] = --cps[A]
cps[X] = X
cPs[Az. A] = Az. cps[A]
cps[B P] = cps[B] cps[P]
cps[AX. A] = AX.cps[4]
cps[B D] = cps[B] cps[D]
cps[llz : A. B] = Iz :cpsT[A]. cpsT[B]
cPs[IIX : S. B] = IIX :cpsT[S]. cpsT[B]
cpsT[S] = cps[9]
cps[x] =
cPs[Ilz : A. T] = Tz :cpsT[A]. cpsT[T]
cPS[IIX : S. T] = IIX : cpsST[S]. cpsT[T]
cesT[d] = O
CPST[o] = L:%
cpsT[[,2:C] = cPsT[I'],z:cPsT[C]
cpsT[[', X: K] = cpsT[I'], X :cPsT[K]

Figure 12: CPS translation of domain-free Calculus of Constructions




(M1, Ms), fst(N), snd(N). The typing rules are

' A:x Tyz:AF B:x%
'k Xz:A. B:x

Fl—MliA F"MQB[Ml/ﬁ]
'k (M, M): ¥z : A. B

I''N:%x:A. B
I+ fst(N): A

' N:¥x:A.B
' - snd(N) : Blfst(N)/z]

and the B-rules are the obvious ones.
We would like to set

cps[Xz : A. Bl = Xz :cpsT[A]. cPsT[B]
and
[(M1, M2)]:K = K (cps[Mi],cps[M-])
[fst(M)[:K = [N]:(An. fst(n) K)
[snd(N)]: K [N]:(An. snd(n) K)

It is routine to check that the translation preserves re-
duction. But it does not preserve typing and the problem
arises with the second projection. Indeed, consider a rule
application

''N:%z: A B
' F snd(N) : B[fst(N)/x]

and assume that the translation property holds for the pre-
miss, i.e.,

cPsT[I'] F cPs[N]: =Xz : cPsT[A]. cPsT[B]
The translation property for the conclusion is
cpsT['] F Ak. cPS[N] (An. snd(n) k) : cpsT[BIfst(N)/z]]

For this to hold, we must (by successive applications of gen-
eration) have

cPsT[I'], k : ~cPs[B[fst(N)/xz]],n : Xz : cPsT[A]. cPsT[B]
F snd(n) : cpsT[B[fst(N)/z]]

which is not the case.

The difficulty of CPS translating 3-types seems closely re-
lated to the difficulties of extracting the constructive content
of the axiom of choice, see, e.g., [10].

Small ¥-types with small non-dependent split instead of
projections, on the other hand, are unproblematic. Instead
of object forms fst(IN), snd(V), they come with an object
form split(N, (z,u). P) with the typing rule

'-N:Xx:A.B I'+-FC:x Tha:Au:B+FP:C
T F split(N, (z,u). P): C

and the B-reduction rule
split((M1, Ms), (z,u). P) — P[Mi,M>/x,u]
The CPS translation is:
[split(N, (z,u). P)]:K
= [N]:(An. split(n, (z,u). cps[P]) K)

Also unproblematic for CPS translation are large X-types,
i.e. types Xz : AT. (Types Xz : T. B are inconsistent.)

7.3 Sum types

Another extension for which CPS translating fails is sum
types in their dependent version, i.e., with dependent elim-
inations. More generally, this failure applies to the depen-
dent version of any type constructions with case-like elimi-
nations (colimit-like types), e.g., natural numbers with de-
pendent primitive recursion or X-types with dependent split.

Let CCy stand for CC extended with a constructor form
A+ B and object forms inl(M), inr(M), case* (N, u. P, u. P>)
and case” (N, u. Pi,u. P»). The typing rules are

I'A:x ' B:%
'A+B:x

'-M:B
F'Finr(M): A+ B

'M:A
T Finl(M): A+ B

''-N:A+B

Nr: A+ BFC: %
Dbu:AF Py Clinl(u)/z]
I u: B+ Py: Clinr(u)/x]

' F case*(N,u. Py,u. Py) : C[N/x]

'-N:A+4+B
Tz:A+BFT:0O
Dbu:AF Py Tinl(u)/z]
T,u:B F Py :T[inr(u)/x]

[ F case®(N,u. Pi,u. Py): T[N/x]

and the S-reduction rules are the obvious ones.

Just as in the previous subsection with ¥-types, it is easy
to verify that the obvious candidate CPS translation ignor-
ing large case fails to be type-correct; moreover, for large
case, even constructing a reasonable candidate CPS coun-
terpart fails. But one can actually prove a crisp result: no
type-correct CPS translation for CC4 can exist extending
that for CC.

Recall that in CC, a classical operator is inconsistent with
dependently eliminated sum types, see e.g., [14,21]. Indeed,
such a combination allows one to construct a retract pair
from % to the type 1 + 1 of booleans. In CCA}, the type
IIX : x. X + (X — 0) is inhabited by

lem = AX.Az. zinr(Az. z inl(z))

The two functions € : Bool = %, E : x — Bool forming the
retract pair are

e = Az case”(z,u. 1,u. 0)
E = )\X. case"(lem X, u. inl({)),u. inr({)))

Theproofsp; : 11X : . X 5 e (EX),p2 : [IX : x. e (E X) —
X showing that € and E give a retract pair indeed are

p1 = AX. Az. case”(lem X, u. (),u. u x)
p2 = AX.case"(lem X,u. Az. u,u. Az. V(zx))

Further, T. Coquand [14] shows that retract pairs from x to
a small type yield an inconsistency in CC. Hence CCA is
inconsistent.

Because of the inconsistency, there is a closed object M
in CCA; such that - M : 0. Now, if a type-correct CPS
translation existed for CC4 and therefore also for CCA4,
then, in CC4, we would have

L% F cPs[M](Az. V(2)): L



which contradicts its consistency.

In a recent paper [22], H. Geuvers proved a similar result,
namely the non-derivability of induction principles in AP2.
Despite being close in spirit, the results are unrelated, since
we work in a type system with inductive types and Geuvers
does not. In fact, he shows explicitly that his techniques
cannot be adapted immediately to yield non-derivability re-
sults for type systems with inductive types and dependent
case analysis.

7.4 Summary

Summing up, the CPS translation of arrow types scales
smoothly up for II-types, but those of product and sum do
not extend for small ¥-types in their strong version and sum
types with dependent eliminations. Further we have shown
that the CPS translation for the A-cube does not admit any
type-correct extension to sum types with dependent elimi-
nation. To conclude this section, we would like to contrast
our results with [47], where H. Xi and C. Schiirmann prove
the correctness of a CPS translation for DML, and with
43], where Z. Shao and coauthors prove the correctness of
a CPS translation for TL. In these papers, the type systems
under consideration have considerable expressive power, but
are not “deeply” dependently typed. In particular, DML in-
dexes have no computational role and DML functions cannot
be defined by dependent case analysis.

8. CONCLUSION

This paper highlights a number of important characteris-
tics of CPS translations for (co)inductive types.

On the positive side, we showed that feasible CPS transla-
tions exist for (co)inductive types in simply typed A-calculi
and, moreover, they function in the presence of control op-
erators and generalize for dependently typed calculi where

case-like eliminations are only allowed in non-dependent forms.

On the negative side, we showed that no CPS translation
along the standard lines can be defined for the full Calculus
of Inductive Constructions, as the projects fails for small
3-types and sum types with dependent case analysis.

Issues for further type-theoretical study include CPS trans-
lations for alternative formulations of (co)inductive types
such as (co)inductive types with recursors & la Mendler,
commuting reductions, direct-style (DS) translations and
correspondences in the style of [7], but also the implications
of our study for program extraction.

The practical implications of our results remain to be in-
vestigated, but we believe that our analysis can be of in-
terest for practitioners interested in the use and design and
(dependently) typed programming languages.
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