
Implementation of Parallel Graph Algorithms on aMassively Parallel SIMD Computerwith Virtual ProcessingTsan-sheng Hsu�y & Vijaya Ramachandran�Department of Computer SciencesUniversity of Texas at AustinAustin, TX 78712Nathaniel DeanCombinatorics and Optimization ResearchBell Communications ResearchMorristown, NJ 07960July 22, 1993AbstractWe describe our implementation of several PRAM graph algorithms on the massively par-allel computer MasPar MP-1 with 16,384 processors. Our implementation incorporated virtualprocessing and we present extensive test data.In a previous project [13], we reported the implementation of a set of parallel graph algo-rithms with the constraint that the maximum input size was restricted to be no more than thephysical number of processors on the MasPar. The MasPar language MPL that we used forour code does not support virtual processing. In this paper, we describe a method of simulat-ing virtual processors on the MasPar. We re-coded and �ne-tuned our earlier parallel graphalgorithms to incorporate the usage of virtual processors. Under the current implementationscheme, there is no limit on the number of virtual processors that one can use in the programas long as there is enough main memory to store all the data required during the computation.We also give two general optimization techniques to speed up our computation.We tested our code with virtual processing on test graphs with various edge densities. Wealso compared the performance data for our parallel code with the performance data of sequentialcode for these problems. We found that the extra overhead for simulating virtual processors ismoderate and the performance of our code tracks theoretical predictions quite well, althoughreal-time speed-ups are quite small since the MasPar processors are rather slow. In addition,our parallel code using virtual processing runs on much larger size inputs than our sequentialcode.Key words and phrases: parallel algortithms, graph algorithms, implementation, virtualprocessing, MasPar.�Supported by NSF Grant CCR-90-23059 and Texas Advanced Research Projects Grant 003658480.yAlso supported by an IBM graduate fellowship. 1



1 IntroductionThis paper describes an on-going project for implementing parallel graph algorithms on themassively parallel machine MasPar MP-1. There has been a fair amount of prior work onimplementing parallel algorithms on massively parallel machines [1, 5, 9, 10, 11, 25, 29] sincethe completion of the �rst phase of our project reported in [13]. However, most of thiswork has been targeted towards solving problems that are highly structured and are notvery di�cult to scale up. The focus of our work is on solving graph-theoretical problems forwhich the algorithms require large amounts of non-oblivious memory accesses.In [13], we reported the implementation of several parallel graph algorithms on the Mas-Par MP-1 using the parallel language MPL [19, 20] which is an extension of the C language.The MPL language provides a very e�cient way of using the MasPar with the drawbackof requiring the speci�cation of the physical organization of the processors used in the pro-gram. Our implementation in [13] used an edge list data structure to store the input graph.An undirected edge (u; v) was stored twice as one directed edge from u to v and anotherdirected edge from v to u. Each of the two copies of an undirected edge was stored in oneprocessor along with a node. As a result, we could only handle the case when the inputgraph has no more than nproc nodes and nproc2 edges where nproc is the maximum numberof processors that we can use in the system. The machine that we used, the MasPar MP-1,had nproc = 16,384 processors. In the current paper, we report the second phase of thiswork, which consisted of implementing these algorithms to handle inputs of size greater than16,384. A major advantage in using massively parallel machines with virtual processing isthat we can solve problems on large-sized inputs that cannot be handled by conventionalsequential machines.Several parallel machines o�er the convenience of using virtual processors in their high-level programming languages. For example, the Connection Machine [18] o�ers the supportof using virtual processors with the assistance of the hardware and microcodes in the C�programming language. The parallel Fortran language used in the MasPar also supportsthe usage of virtual processors. However, these supports for using virtual processors comewith the penalty of having a very large overhead. Programs that want to achieve a highpercentage of machine utilization are either coded in low level programming language (e.g.the Paris language in the Connection Machine [5]) or coded in a language that does notsupport virtual processing (e.g. the MPL language in the MasPar [13, 29]). We have usedthe latter approach in the current work.Our results are reported in the following sections which are organized as follows. Section 2gives our implementation strategy and the programming environment of the MasPar MP-1. Section 3 gives a high-level description of our implementation. Section 4 describes ourstrategy in mapping the PRAM model and in mapping virtual processors onto the MP-2



1. Section 5 describes the implementation details of our parallel graph algorithms library.Section 6 gives performance analysis. Finally, Section 7 gives the conclusion and possiblefuture work.2 Preliminaries2.1 Implementation StrategySeveral strategies can be used to implement parallel algorithms on a parallel computer. Onepossible strategy is to implement di�erent algorithms for di�erent architectures. Since par-allel machines are widely diverse in their architectures, one can take advantage of the specialproperties o�ered by an architecture and �ne-tune the algorithms to run well on a particularmachine. For parallel algorithms using this approach, see [17, 30]. However, this time-consuming process must be carried out each time a new architecture arrives. This approachmay be useful for some of the very important subroutines used in the machine (e.g. sorting[5, 29]). However, for complicated combinatorial problems, reinventing di�erent algorithmsfor di�erent architectures tends not to be a feasible solution. As the problems get morecomplicated, it takes longer time to derive e�cient algorithms. Further, we feel that this isnot a very good strategy as one often discovers that the fundamental algorithmic techniquesunderlying the parallel algorithms for most problems are independent of the particular par-allel machine being used. Thus one should study and utilize these basic techniques to assistthe implementation of parallel algorithms.In view of the above, a natural strategy is to use parallel algorithms developed on anabstract parallel machine model. Several abstract models that are closely related to realparallel machine architectures have been proposed [4, 8, 12, 33]. Instead of using a new model,we have performed a direct implementation of parallel algorithms based on the popularPRAM model [14, 15, 32]. Although the PRAM is an idealized theoretical model that doesnot capture the real cost of performing inter-processor communications on the MasPar, webelieve that it provides a good abstract model for developing parallel algorithms. Parallelalgorithms developed on the PRAM model are often very modular in structure (or haveparallel primitives). Problems are solved by calling these parallel primitives. For solvingundirected graph problems, a set of parallel primitives required for constructing an eardecomposition has proved to be very useful [31, 37]. Our parallel implementation followsthis approach. We �rst built a kernel which consists of commonly used routines in parallelgraph algorithms. Then we implemented e�cient parallel graph algorithms developed onthe PRAM model by calling routines in the kernel.Our experience with implementing PRAM graph algorithms on the MASPAR MP-1 asreported in this paper and in [13] supports our viewpoint that e�cient PRAM algorithmsare adaptable to run on real machines. The basic primitives should be �ne-tuned for the real3



machine, but the overall structure of a complex PRAM algorithm can be mapped directlyon to the real machine.2.2 Programming EnvironmentThe MasPar computer [21] is a �ne-grained massively parallel single-instruction-multiple-data (SIMD) computer. All of its parallel processors synchronously execute the same in-struction at the same time. A simpli�ed version of its architecture is shown in Figure 1. Fordetails, see [3].Each physical processor (called a PE) is a 4-bit CPU with 64 kilobytes of main memoryand a unique ID ranging from 0 to 16,383. Through the emulation of microcode, each PEcan perform operations on 8-bit, 16-bit, 32-bit, and 64-bit data. There are two types ofinter-processor communication available. First, PE's are organized as a two-dimensionalwrap-around mesh. Each PE can communicate with its 8 nearest neighbors. This is calledthe XNET connection. Second, 16 PE's (a 4� 4 sub-mesh) are grouped into a cluster. The1024 clusters are organized as a 10-dimensional hypercube with each cluster representing anode in the hypercube. This is called the global router. Processors can communicate witheach other by using the global router. Mesh communications are about 200 times fasterthan global routing requests for transmitting 32-bit data [20, 28]. The MasPar also has anArray Control Unit (ACU) for controlling the PE's and executing sequential instructions.The MasPar PE is a very slow processor. In comparison, SUN SPARC II is more than 200times faster than a MasPar PE, while SUN SPARC 10/41 is more than 230 times faster.We used the MPL high-level programming language for coding our programs. The currentversion of the MPL compiler [19, 20] is an extension of the ANSI C language [16] with dataparallel constructs and a library of parallel primitives. (For details of the MPL language,see [23, 24]. An introduction to MPL is also given in [26].) In MPL, a variable can bedeclared with or without the attribute plural. A plural variable has a local copy (possiblywith di�erent values) in each PE, while a variable without the plural attribute has onlyone copy in the ACU. During each computation step, each PE decides whether or not toparticipate in the current computation by the value of a local 
ag. A PE that participatesin a computation step is called active. Any step that uses plural variables will be executedby each active PE. For details, see [13, 26]. It is important to note that the current versionof the MPL language does not support the use of virtual processors. Thus we had to designand implement our own scheme for virtual processing.3 High-Level Description of Our ImplementationIn our earlier implementation of parallel graph algorithms without virtual processing [13], we�rst provided a general mapping between the architecture of the MasPar and the schematic4



Global Router

ACU-PE I/O bus interface

ACU

Front End Processor

local memory
(Array Control Unit)

Sequentialize I/O request from PE
Broadcast from ACU

local memory

local memory

local memory local memory

local memorylocal memorylocal memory

local memory

PE 0
PE 1 PE nxproc-1

PE nxproc
PE nxproc+1 PE

2*nxproc-1

PE nproc-1

Xnet connections

DPU

Figure 1: System architecture for the MasPar MP-1 computer.
5



structure of the PRAM model. This mapping scheme took advantage of some of the specialproperties of the MasPar, although it was not �ne-tuned for each individual routine. Thismapping scheme will be described in Section 4.1. (This approach has been used in simulatingPRAM algorithms on various parallel architectures, e.g. see the section on simulating PRAMalgorithms in [17]. However, most of the previous results do not have any implementationdetails and provide no performance data.) Using this mapping, we then coded each simpleparallel primitive on the MasPar. While coding each primitive, we utilized the specialproperties of the MasPar to �ne-tune our code. Since each parallel primitive is very easy tocode, one would expect the �ne-tuning step to be much simpler than the �ne-tuning step ofa complicated algorithm. We implemented a set of parallel graph algorithms without virtualprocessing by calling the parallel primitives we coded and routines provided in the systemlibrary as reported in [13].Due to the constraints imposed by the programming environment on the MasPar, theabove implementation requires the size of the input to be no more than the number ofavailable physical processors. However, the parallel primitives coded can be used with anynumber of processors by invoking Brent's scheduling principle [6, 15] to simulate severalvirtual processors on one physical processor. To do this, we extended our mapping schemeto handle the allocation and simulation of virtual processors. The extended mapping will bedescribed in Section 4.2.Using our original code when no virtual processors are used [13] as a blueprint andthe extended mapping as a guideline, we transformed our code to handle the allocation ofvirtual processors. Since the MPL language does not support virtual processing, we had toimplement our own scheme for virtual processing. To do this, we re-coded and �ne-tunedthe set of parallel primitives identi�ed in [13] and several system library routines to handlethe allocation of virtual processors e�ciently. Then we implemented a set of parallel graphalgorithms by calling these parallel primitives and system routines. The primitives and graphalgorithms we implemented are described in Section 5.4 Mapping StrategyIn this section, we brie
y describe the mapping scheme we used in [13] to map the PRAMmodel onto the MasPar architecture. We then describe the mapping scheme we used inallocating virtual processors.4.1 Mapping of the PRAM Model onto the MasPar ArchitectureWe brie
y summarize the mapping scheme used in [13] to map a PRAM onto the MasPararchitecture when the two machines have the same number of processors. We mapped partof the local memory in each PE and the local memory of the ACU onto the PRAM global6



ACU

local memory of

the ACU

local memory

of each PE

global memory for the PRAM

global
data bank

local
data bank

PE PE PE

a Random Access Machine for the PRAMFigure 2: Mapping of the MasPar architecture onto the PRAM model.memory. The major di�erence between the PRAM model and the MasPar architecture isthe issue of global memory access. We partitioned the local memory bank of each PE intotwo halves. One half, which we call the global data bank of each PE, was mapped onto partof the global memory bank and the other half, which we call the local data bank of each PE,was used for storing local data for local computations. The entire local memory of the ACUwas made part of the global memory of the PRAM model. When implementing a PRAMalgorithm on the MasPar architecture, we put information that is most frequently used bya certain RAM into the global data bank of that particular PE. We put common read-onlydata into the local memory bank of the ACU and arranged for the ACU to broadcast theneeded data to all PE's. We illustrate the mapping in Figure 2. More details of this mappingcan be found in [13].4.2 Mapping of the Virtual Processors onto the MasPar ArchitectureIn our programs, each virtual processor (or VPE) is given a unique ID ranging from 0 tovnproc � 1, where vnproc is the number of virtual processors. (Note that nproc is thenumber of physical processors and they are organized as an nxproc� nyproc mesh. For themachine that we used, nproc = 16,384 and nxproc = nyproc = 128.) The number of virtualprocessors per physical processor is vpr = lvnprocnproc m. The virtual processors are arranged intoa 2-dimensional vnxproc� vnyproc mesh.For our implementation, we used the so-called hierarchical partitioning scheme [22]. Eachphysical processor simulated a vpr�1 sub-mesh of virtual processors. Thus given an nxproc�nyproc 2-dimensional mesh, the virtual machine being simulated is an (nxproc�vpr)�nyproc2-dimensional mesh. (The implementation of bitonic sort [29] with virtual processing usedthe same mapping scheme as ours.) We illustrate the mapping in Figure 3. The reason forour choice is that in our implementation of parallel algorithms, we frequently need to useoperations that can utilize the locality of data (e.g. the pre�x sum (scan) operator [4]). Thistype of data partitioning enables us to preserve the locality of data.Once our code decided on the vpr value, each plural variable allocated in the code in7



a physical processor

a virtual processorFigure 3: Mapping of 4 virtual processors onto each PE.[13] was transformed into a plural array of vpr elements in our new code. (The selection ofthe vpr value is discussed at the end of Section 5.1.3.) The ith element in the jth physicalprocessor corresponded to the local copy of virtual processor (j�1)�vpr+i. Variables used inthe code in [13] without the plural attribute were not changed in our new code. An extra 
ag(called active) in each virtual processor was allocated in our new code to indicate whetherits corresponding virtual processor was active during each step of computation. Thus givena plural variable data and a VPE with the ID w, the local copy of data was stored in the(w mod vpr)th element of the local array data in the PE with the ID j wvprk.5 Implementation of Parallel Graph AlgorithmsIn this section, we �rst describe the implementation of several data structures. Then wedescribe the parallel graph algorithms library that we have built.5.1 Data Structures5.1.1 Array and Linked ListGiven the value of vpr, we mapped a global memory array used in a PRAM algorithm ontothe MasPar by putting the ith element of the array into the ith VPE. Thus this element willbe allocated in the (i mod vpr)th element of a local array on the (j ivprk)th physical processor.We mapped a linear linked list used in a PRAM algorithm by putting each element in thelist into a di�erent VPE. Pointers in PRAM were replaced by the ID's of VPE's.5.1.2 TreeWe represented an edge in an undirected tree by two directed edges of opposite directions.A tree was represented by a list of directed edges. In implementing the tree data structureon the MasPar, we put one directed edge in one VPE with the requirement that the set ofedges that are incoming to the same vertex have to be allocated on a consecutive segment ofVPE's. Each of the two copies of an undirected edge kept a reverse pointer which pointedto the location of the other copy of the same edge. Using this representation, we can use8



the XNET connection to perform inter-processor communications needed for computing anEuler tour on a tree. Since computing an Euler tour is one of the most common subroutineson trees used by parallel graph algorithms, we saved time by using this mapping.5.1.3 Undirected GraphIn our implementation without virtual processing [13], a general undirected graph was rep-resented by a list of edges. Each edge had two copies with the two end points interchanged.We placed an edge on a MasPar PE with the requirement that the two copies of the edgehave to be located on adjacent PE's. The reason for using this data structure was twofold.First, we wanted a tree to be represented by a list of edges such that edges incident on anode were allocated in a continuous segment of processors for the ease of �nding an Eulertour in a tree. Representing an undirected edge by its two corresponding directed versionswas consistent with the representation of a tree. Second, undirected graph algorithms oftenneeded to perform operations on nodes based on information stored on the edges incident onthem. Since an undirected edge has two end points, each edge had to perform operations oneach of its two end points. Thus we needed two processors to handle one undirected edge.When virtual processing was involved, the natural candidate for our mapping was to allocateeach copy of an edge on a di�erent VPE.Let m and n be the numbers of (undirected) edges and nodes in the input graph, respec-tively. Using the naive strategy for allocating undirected graphs described in the previousparagraph, we determined the value of vpr by computing the least power of 2 that is greaterthan or equal to l2m+2nproc m. Edges were allocated among virtual processors with the ID's from2 to 2m+1. (For the easy of programming, we did not use the �rst two virtual processors forstoring edges.) The ith node was allocated to the virtual processor with the ID i. Initially,we coded the routine for �nding a spanning forestz with virtual processing using this simplestrategy.In the case when m was much greater than n, this type of data allocation scheme was notbalanced since only a small portion of the machine was performing computations related tonodes. The other drawback in using this type of allocation came from the types of operationsthat were usually used in parallel graph algorithms. It is often the case that informationrelated to edges incident on a node v had to be collected to produce data that will be storedin the processor that was allocated for v. In performing these operations, data will competewith each other to reach a small segment of processors that are physically connected to eachother. The delay for this type of inter-processor communications was very large. In order toimprove the performance of our code, we considered alternative strategies.zIn this paper, a spanning forest of a graph G is a maximal subgraph of G (w.r.t. the edges in G) that is a forest.9



Dynamic Load Balancing One possible solution for the above problem was to computedi�erent vpr values for nodes and for edges. However, for this we would have to reviseour code for parallel primitives such that each primitive knew whether it was performingoperations on edges or on nodes. Also, the code for our graph algorithms would have to bechanged. This would result in a more complicated implementation. Instead of going throughsuch a serious revision, we came up with the following simple method that did not requireus to change other programs. We �rst computed the number of virtual processors per nodeto be nfactor = jvpr�nprocn k. We then allocated the ith node to the (i � nfactor)th virtualprocessor. We had to make sure that the node numbers referred to in each edge are changedaccordingly. This was done by multiplying nfactor to every node number used in the edgelist. We then performed all of our computations as if the number of nodes is n � nfactor.(This is equivalent to adding n � (nfactor� 1) isolated vertices into the input graph.) Afterperforming the computation, data related to nodes allocated in every other nfactor virtualprocessors was collected. By performing simple preprocessing and post-processing, we evenlydistributed all nodes and did not have to track the value of vpr during each operation. Ourprevious code for �nding a spanning forest with virtual processing could be used with minormodi�cation.Note that we could apply the same technique to several data structures used in ourprograms. For example, our graph algorithms often found a spanning forest in the inputgraph and obtained an Euler tour of each of the tree in the spanning forest. The total numberof edges in the Euler tours of the forest was 2n � 2. We could apply the same technique toachieve a better load balancing by evenly distributing tour edges among physical processors.Our graph algorithms also performed range minimum queries on an array of elements whosesize was 2n � 2. We could also use this technique to achieve a better load balancing byevenly distributing elements in the array among physical processors.We tested the implementation of our parallel program for �nding a spanning forest ongraphs of three di�erent edge densities: (1) dense graphs where m = n24 ; (2) intermediate-density graphs where m = n1:5; (3) sparse graphs where m = 3n2 . Performance data isshown in Figure 4 for this problem with and without the usage of dynamic load balancing.Figure 4 shows that by using dynamic load balancing, our parallel program ran about 12times faster than our parallel program without dynamic load balancing on dense graphs. Onintermediate-density graphs, it was about 8 times faster. On sparse graphs, it was about1.5 times faster. We would expect this type of behavior as dynamic load balancing providesmore help as the graph gets denser. 10



0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = 3n/2)

without load balancing
with load balancing

0

20

40

60

80

100

120

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^(3/2))

without load balancing
with load balancing

0

50

100

150

200

250

300

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^2/4)

without load balancing
with load balancing

Figure 4: Illustrating the performance data forour parallel program for �nding a spanning for-est in graphs with and without dynamic loadbalancing.

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

S
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = 3n/2)

with load balancing only
plus compressed data structure

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

S
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^(3/2))

with load balancing only
plus compressed data structure

0

5

10

15

20

25

0 20 40 60 80 100 120

S
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^2/4)

with load balancing only
plus compressed data structure

Figure 5: Illustrating the performance datafor our parallel program for �nding connectedcomponents in graphs with and without theuse of compressed data structure. Both pro-grams were run using the same amount ofmemory per physical processor. Note thatwe can run inputs whose sizes are twice aslarge using the compressed data structure forgraphs.11



Compressed Data Structure A major goal of our implementation was to run inputs whosesizes are as large as possible. Since we have a limited amount of memory space per physicalprocessor, we wanted to minimize the amount of space used by each edge without payingtoo much overhead in computation. It turns out that except for the case of representinga tree for �nding an Euler tour, we can easily simulate the e�ect of having two processorshandling one undirected edge by performing computations twice, one from each direction.Thus our program only allocated one processor to handle each edge. A side e�ect of thisallocation scheme is that we had to write an expansion routine to convert this compressedrepresentation into the tree format if we needed to build an Euler tour. In summary, ourprogram �rst allocated vpr virtual processors per physical processor, where vpr is the leastpower of 2 that is greater than or equal to l mnprocm. In the case when 2n > vpr � nproc anda spanning tree format was needed, we doubled the value of vpr and called the expansionroutine to transform the compressed data structure into the normal graph representation.The performance data for running our program with and without the usage of compresseddata structures for graphs to �nd a spanning forest are illustrated in Figure 5. Figure 5 showsthat our program ran at about the same speed with or without the usage of compressed datastructures on dense graphs and intermediate-density graphs. Note that by using compresseddata structures, we could double the size of the largest graph we could handle. For sparsegraphs, we had to pay a little overhead in using compressed data structures. Since theoverhead was small, we decided to use compressed data structures for graphs though thecode became a bit longer. Thus when allocating vpr virtual processors to each physicalprocessor, we could run our programs on graphs with vpr �nproc nodes and vpr �nproc edgesif we did not require the usage of a spanning forest in the program. We could run programson graphs with vpr�nproc2 nodes and vpr � nproc edges if we had to use a spanning forestrepresentation during the computation. Without the usage of compressed data structures,we could only run our programs on graphs with half the number of edges.5.2 The Parallel Graph Algorithms LibraryTo build our parallel graph algorithms library, we �rst wrote a kernel that includes all ofthe commonly used subroutines for designing parallel graph algorithms. Then we built ourgraph application programs by calling routines in the kernel and routines provided in thesystem library. The structure of the whole library is shown in Figure 6.5.2.1 Routines in the System Library and the KernelWe brie
y describe the routines in the kernel. All of these routines are based on PRAMalgorithms that run in O(log n) time for an input of size n. Although some of them arenot theoretically optimal algorithms in that they perform �(n log n) work, they are within12



rotation routines list ranking

query routine for
range minimum

build table for
range minimum

segmented rotation

least common
ancestor

preorder numbering

build
Euler tour

spanning forest spanning forest

ear decomposition

strong orientation

finding all
cut edges

commonly used subroutines

graph application routines

(kernel)

connected components

ear decomposition
open system library

sorting

prefix summing

inter−processor

data combining

communication

minimumFigure 6: The structure of the routines we built for the parallel graph algorithms library. Thekernel of the library will be used by the application routines. In our coding, we also use routinesprovided in the system library. An arrow from one node to another node means the routine at thetail of the arrow (upper) is used by the routine at the head of the arrow (lower).an O(log n) factor of optimality, and they are very simple. These routines are as follows.(1) List ranking [15]. (2) Rotation. This routine rotates the data stored in a processorwith ID i to the processor with ID (i + d) mod P , where d is an input to the routine andP is the number of PE's in the system. (3) Segmented rotation. We store data in eachprocessor and partition the set of processors into sequences of consecutive segments. Thisroutine rotates the data stored in each processor within each segment. Data within eachsegment are rotated in a way similar to the rotation routine described in (2). (4) Rangeminimum [36]. (5) Euler tour construction [36]. (6) Preorder numbering [36]. (7) Leastcommon ancestor [36].When implementing the above routines in the kernel without virtual processing [13], wealso used the following routines that are provided in the system library. (1) Sorting. (2)Pre�x sums. (3) Inter-processor communication. (4) Data combining. In our implementa-tion of parallel algorithm with virtual processing, we also used the above routines. Since theMasPar does not provide virtual processing for these system routines, we coded and �ne-tuned all of these routines with virtual processing except sorting. For sorting with virtualprocessing, we used the package developed in [29]. Since the sorting package in [29] can onlyhandle the case when the number of virtual processors simulated by each physical processoris a power of two, our code inherited the same restriction.13



5.2.2 Graph Application RoutinesWe implemented parallel algorithms for the following problems using the above kernel. (1)Spanning forest [2]. (2) Minimum cost spanning forest [2]. (3) Cut edges [31]. (4) Eardecomposition of a two-edge connected undirected graph [31]. (5) Open ear decompositionof a biconnected undirected graph [31] (this algorithm was not implemented in [13]). (6)Strong orientation of a two-edge connected undirected graph [31].6 Performance AnalysisWe tested our code by generating test graphs and measuring the performance of the codeon these test graphs. In addition to testing our parallel code for the problems listed inSection 5.2.2, we also took the implementation of their corresponding sequential algorithmsdescribed in [13] and tested them on large inputs using SUN SPARC workstations. Thecorresponding sets of performance data were compared and studied. Note that a MasParMP-1 PE is about 200 times slower than a SUN SPARC II and about 230 times slower thana SUN SPARC 10/41. Thus it is to be expected that the performance of our sequentialprograms will be faster than our parallel programs in some cases, though the speed-up ofour parallel implementation was quite good, given the parameters of the MasPar MP-1.One noteworthy feature of our parallel implementation is that it could handle inputs whosesizes are much larger than the the sizes of the input that can be handled by our sequentialimplementation.The organization of this section is as follows. We �rst describe the method we used in gen-erating test graphs. Then we describe the way we tested our programs and the curve-�ttingscheme we performed on the sets of performance data. Finally, we analyze the performancedata. Since no curve-�tting was performed in our earlier work without virtual processing[13], for completeness, we include the data from [13] in our performance analysis using curve�tting.6.1 Generation of Test GraphsWe tested our programs using graphs of three di�erent edge densities as described in Sec-tion 5.1.3 and [13]. For testing the code for �nding a spanning forest and a minimumspanning forest, we generated test graphs from the class of random graphs Gn;m as describedin [13]. In addition, a random cost in the range from 0 to 99,999 (with repetition) on eachedge, instead of from 0 to 999 as used in [13], was generated for testing the routine for �ndinga minimum spanning forest.Test graphs with a given edge density, a given size, and a given property (e.g. biconnec-tivity) were generated using a similar method described in [13]. We generated a biconnectedtest graph with n vertices and m edges by �rst generating an empty graph with n vertices.14



We then chose a random length k, 3 � k � n, and k isolated vertices at random. We ran-domly permuted these k vertices and constructed a simple cycle by adding an edge betweenevery two adjacent vertices in the random permutation and by adding an edge between the�rst and the last vertices in the permutation. After that, we added non-trivial open earsof random lengths to connect all isolated vertices. To add a non-trivial open ear, we chosea random length l, 1 � l � x, where x is the number of remaining isolated vertices. Werandomly picked two non-isolated vertices u and v (without repetition). We then randomlypermuted l isolated vertices and constructed a simple path by adding an edge between everytwo adjacent vertices in the random permutation. We added an edge between u and the�rst vertex in the above permutation and another edge between v and the last vertex in theabove permutation. After connecting all isolated vertices, we randomly added edges untilall m edges were generated. A two-edge connected test graph with n vertices and m edgeswas generated in a similar fashion by \growing" ears that could possibly be cycles [13]. Thetest graphs for �nding cut edges were generated as in [13].6.2 Testing SchemeFor each size and sparsity, we generated four di�erent test graphs. We ran each program oneach test graph for 10 iterations and recorded the average of the 40 trials. The results areplotted in �gures 7 { 18.We had access to a MasPar MP-1 machine with 16,384 processors and 32 kilobytes ofavailable memory per processor. (The other 32 kilobytes of memory in each processor wasnot available to us.) We were able to test all of our programs except the one for �ndingan open ear decomposition for the value of vpr up to 64. We were only able to run ourparallel program for �nding an open ear decomposition for the value of vpr = 32. Note thatfor testing dense graphs and intermediate-density graphs, we could run programs on graphswith m = vpr � 16,384. For testing sparse graphs (m = 32n), we could only run inputs withm = 34 �vpr �16,384 since a tree data structure is required in the computation and we needed2n = 43m virtual processors to represent it. Our parallel programs for �nding a spanningforest and for �nding a minimum spanning forest used 24 kilobytes per physical processorwhen the value of vpr was 64. The rest of the programs used 32 kilobytes for the largest-sizedinputs that we have tested. We spent about 2 months to obtain all of our performance data.We ran the set of sequential algorithms implemented in [13] on a SUN SPARC 10/41machine with 32 megabytes of memory and about 80 megabytes of swapping space on inputsizes greater than 16,384. We tested the sequential programs on larger and larger inputs untileither the programs complained that the usage of the memory is too much or we waited morethan 1 day while there was only one active job running on the machine. For sparse graphs,our sequential programs ran out of available memory before we could obtain performancedata that was worse than the corresponding parallel program. However, on dense graphs15



and intermediate-density graphs, our parallel algorithms run much faster (in real CPU time)than their sequential counterparts. The likely reason is that we use a depth-�rst search inour sequential programs, which is a recursive program whose depth of recursion could be aslarge as the number of nodes in the graph.Our sequential programs were implemented with the help of the graph package NETPAD[7] developed in Bellcore as described in [13]. NETPAD uses a lot of extra memory increating a standard graph data structure. Thus we might save space by coding the sequentialalgorithms from scratch. We also note that the turn-around time (wall-clock time) for eachof our sequential programs was very large when we used more than 80% of the main memoryeven if the system had only one job active, though our time measurement routine wouldreport only a small fraction of the turn-around time. For example, for �nding a minimumspanning forest sequentially on graphs with 300,000 edges, the time measurement routinereported a total usage of 110 seconds for 10 iteration of our program. However, the turn-around time was about 20 hours. We conjecture the reason might be that the architectureof SPARC 10/41 handles swapping poorly. We were unable to �nd better routines formeasuring the performance of our sequential programs on the SPARC 10/41. For 5 of our6 parallel programs, we were able to obtain sequential performance data that was worsethan their parallel counterpart by testing large inputs. For the sequential algorithm for�nding a minimum spanning forest, the turn-around time was too long when the inputgraph had more than 300,000 edges. As a result, we did not obtain further performancedata for �nding a minimum spanning forest such that we could observe the place where thesequential performance was worse than the parallel performance as shown in other programs.Overall, we spent more than 2 months in getting all of the performance data for our sequentialprograms. For all problems, we could handle input whose sizes are 4 to 5 times larger usingour parallel code.The performance data when the input size is within 16,384 is taken from [13]. In [13],sequential programs were run on a SPARC II workstation for input sizes up to 16,384;parallel programs without virtual processing were run on a MasPar MP-1 computer with16,384 processors using 4 kilobytes of memory per PE.6.3 Least-Squares Curve FittingWe applied the least-squares �t package in Mathematica [38] to the data we obtained. Weused the following method to �nd the �tted curves for our performance data. We �rst derivedthe theoretical asymptotical running time for our parallel program. For example, our codefor �nding a spanning forest in a graph with n nodes and m edges runs in O(np � log3 n) timeusing p processors since we used an O(log2 n) time bitonic sorting routine in implementingglobal concurrent write operations. We �rst used Mathematica to �nd coe�cients c0, c1, c2,c3 and c4 such that the function c0+ c1 �x+ c2 � x � log x+ c3 � x � log2 x+ c4 �x � log3 x best �t16



the set of experimental data that we obtained with virtual processing. For the data obtainedwithout virtual processing, we used the function c0 + c1 � log x+ c2 � log2 x+ c3 � log3 x.If any of the coe�cients was negative, we forced the negative coe�cient ci with the largestinteger i to be zero and perform the �tting once again. We iterated this process until allcoe�cients were not negative. We also performed the least-squares �t for performance dataof the sequential programs when the amount of memory used in the program was within thecapacity of the main memory.To test the goodness of the curve we obtained, we computed the average error as thesquare root of 1k �Pki=1(yi�f(xi)f(xi) )2, where k is the number of experimental data points, f isthe function that describes the �tted curve and yi is the experimental value when the inputsize is xi.6.4 AnalysisIn Section 6.4.1 through Section 6.4.6, we present the performance of our code for each ofour six graph problems. The data for programs without virtual processing is taken from [13].In the following, x denotes the size of the input and x0 is the size of the input in units of10,000. In interpreting the following data, note that we present the �tting curves in terms ofx when no virtual processors are used and in terms of x0 when virtual processors are used.There is a further compression by a factor of 2 due to the compressed data structure whenvirtual processors are used. The function value of each �tted curve is the running time inseconds.6.4.1 Finding a Spanning ForestFor the parallel implementation, we modi�ed the CRCW PRAM algorithm in [2] for �ndingconnected components to �nd a spanning forest of the input graph. The original algorithmpartitions the set of vertices into a set of disjoint sets such that vertices in each set are inthe same connected component. Initially, the algorithm puts a vertex in each set. Duringthe execution, the algorithm merges two sets of vertices if they are detected to be in thesame connected component. Our program selects an edge connecting a vertex in one set to avertex in the other set while merging these two disjoint vertex sets. The sequential algorithmthat we implemented is the simple linear time depth-�rst search algorithm.The performance data without and with virtual processing are shown in Figures 7 and8 respectively. The �tted curves for the parallel performance data without virtual process-ing are 0:0003 log3 x (with 8:9% average error), 0:000095 log3 x + 0:11 (with 4:2% averageerror), and 0:00011 log3 x+ 0:11 (with 5:5% average error). for sparse graphs, intermediate-density graphs and dense graphs respectively. The corresponding �tted curves for thesequential performance data are 0:000023x (with 5:7% average error), 0:000011x (with17



4:4% average error), and 0:00001x (with 4:1% average error). The corresponding �ttedcurves for the parallel performance data with virtual processing are 0:0014x0 log3 x0+ 1:32x0+1:41 (with 7:1% average error), 0:0000091x0 log3 x0 + 0:27x0 + 0:028 (with 3:2% averageerror), and 0:000074x0 log3 x0 + 0:15x0 + 0:45 (with 9:1% average error). The corresponding�tted curves for the sequential performance data when the data is within the main memoryare 0:17x0, 0:17x0, and 0:15x0.6.4.2 Finding a Minimum Spanning ForestFor the parallel implementation, we modi�ed the algorithm in [2] for �nding connectedcomponents to �nd a minimum cost spanning forest for the input graph. This algorithmalso partitions the graph into disjoint sets of vertices. In addition, for each current setof vertices, we compute a minimum edge with exactly one end point in the set using theconcurrent write operation. This edge determines which other set of vertices is to be mergedwith its set. Once the merge is completed, the edge that caused the merging is marked asone of the edges in the minimum cost spanning forest. For sequential implementation, weimplemented the O(n + m log n)-time Kruskal's algorithm [35] for �nding a minimum costspanning forest. Although faster algorithms are known for this problem, we implementedKruskal's algorithm for its simplicity.The performance data without and with virtual processing are shown in Figures 9 and 10respectively. The �tted curves for the parallel performance data without virtual processingare 0:00033 log3 x+0:12 (with 4:5% average error), 0:00022 log3 x+0:095 (with 6:3% averageerror), and 0:00021 log3 x+0:058 (with 9:6% average error). for sparse graphs, intermediate-density graphs and dense graphs respectively. The corresponding �tted curves for the se-quential performance data are 0:0000057x log x (with 9:9% average error), 0:0000014x log x+0:0000042x+0:011 (with 10:4% average error), and 0:00000093x log x+0:0000044x+0:0099(with 8:9% average error). The corresponding �tted curves for the parallel performancedata with virtual processing are 0:0015x0 log3 x0 + 0:78x0 + 2:46 (with 14% average error),0:00037x0 log3 x0 + 0:68x0 + 0:11 (with 0:00021x0 log3 x0 + 0:67x0 (with 7:2% average error).The corresponding �tted curves for the sequential performance data when the data is withinthe main memory are 0:1x0 log x0 + 5:44, 0:056x0 log x0 + 1:78, and 0:049x0 log x0 + 1:22.6.4.3 Finding All Cut EdgesOur parallel implementation is based on [31]. We �rst obtained a rooted spanning tree Tfor the input graph G. (The current version of the program requires G to be connected.)A cut edge is a tree edge (u; v), where u is the parent of v and there is no non-tree edge(x; y) in G such that either x or y is a descendant of v or equal to v and the least commonancestor of x and y is a proper ancestor of v. This can be determined by using the Euler18



tour technique and the range minimum queries. For sequential implementation, we used alinear time algorithm for �nding all cut edges in the graph based on depth-�rst search [31].The performance data without and with virtual processing are shown in Figures 11 and 12respectively. The �tted curves for the parallel performance data without virtual processingare 0:0004 log3 x+0:013 (with 8:1% average error), 0:00014 log3 x+0:18 (with 3:6% averageerror), and 0:00015 log3 x+ 0:17 (with 3:8% average error). for sparse graphs, intermediate-density graphs and dense graphs respectively. The corresponding �tted curves for the se-quential performance data are 0:000023x + 0:00049 (with 5:7% average error), 0:000011x +0:00035 (with 4:0% average error), and 0:00001x+0:000051 (with 5:4% average error). Thecorresponding �tted curves for the parallel performance data with virtual processing are0:0019x0 log3 x0 + 1:44x0 + 1:59 (with 10:2% average error), 0:00018x0 log3 x0 + 0:61x0 + 0:27(with 2:9% average error), and 0:00043x0 log3 x0 + 0:49x0 + 0:73 (with 3:7% average error).The corresponding �tted curves for the sequential performance data when the data is withinthe main memory are 0:22x0, 0:18x0, and 0:16x0.6.4.4 Finding an Ear DecompositionFor the parallel implementation, we used the PRAM parallel algorithm in [31] for �ndingan ear decomposition on a 2-edge connected graph by calling the sorting routine, routinesin the kernel and the routine for �nding a spanning forest. For sequential implementation,we used a linear time algorithm for �nding an ear decomposition based on depth-�rst search[31].The performance data without and with virtual processing are shown in Figures 13 and 14respectively. The �tted curves for the parallel performance data without virtual processingare 0:0004 log3 x+0:021 (with 7:7% average error), 0:00014 log3 x+0:19 (with 3:5% averageerror), and 0:00015 log3 x+ 0:18 (with 3:8% average error). for sparse graphs, intermediate-density graphs and dense graphs respectively. The corresponding �tted curves for the se-quential performance data are 0:000093x (with 13:4% average error), 0:000084x (with 4:9%average error), and 0:000083x (with 4:9% average error). The corresponding �tted curvesfor the parallel performance data with virtual processing are 0:0014x0 log3 x0 + 1:43x0 + 0:36(with 5:0% average error), 0:00036x0 log3 x0 + 0:33x0 + 0:2 (with 11:0% average error), and0:00064x0 log3 x0 + 0:21x0 + 0:91 (with 5:9% average error). The corresponding �tted curvesfor the sequential performance data when the data is within the main memory are 0:57x0,0:72x0, and 0:68x0.6.4.5 Finding an Open Ear DecompositionFor the parallel implementation, we used the PRAM algorithm in [31] for �nding an openear decomposition. This routine is obtained by modifying the ear decomposition algorithm19



mentioned in the previous section. The sequential ear decomposition algorithm mentionedin the previous section [31] also �nds an open ear decomposition on a biconnected graph.The performance data without and with virtual processing are shown in Figures 15 and 16respectively. The �tted curves for the parallel performance data without virtual processingare 0:00041 log3 x+0:26 (with 5:8% average error), 0:00033 log3 x+0:27 (with 7:8% averageerror), and 0:00017 log3 x+ 0:44 (with 4:8% average error). for sparse graphs, intermediate-density graphs and dense graphs respectively, where x is the size of the input and thefunction value is the running time in seconds. The corresponding �tted curves for the parallelperformance data with virtual processing are 0:0017x0 log3 x0 + 1:59x0 + 0:24 (with 13:9%average error), 0:0014x0 log3 x0+1:03x0+0:36 (with 9:0% average error), and 0:0024x0 log3 x0+0:057x0 log x0+0:96x0+0:5 (with 7:1% average error). Note that the sequential performancedata for �nding an open ear decomposition is the same as the sequential performance datafor �nding an ear decomposition. We will not restate them here.6.4.6 Finding a Strong OrientationFor the parallel implementation, we �rst obtained an ear decomposition for the input graph.Then we directed the edges of each ear so that each ear forms a directed path or a directedcycle. Observe that the ear decomposition algorithm �rst obtained rooted spanning treeT . The edges in an ear are of the form (v1; v2), (v2; v3), : : : , (vk�1; vk), (vk; ur), (ur; ur�1),(ur�1; ur�2), : : : , (u2; u1), where (vi; vi+1) is a tree edge and vi is the parent of vi+1 in T , for1 � i < k; (ui+1; ui) is a tree edge and ui+1 is the parent of ui in T , for 1 < i � r; (vk; ur)is a non-tree edge. Thus we directed every non-tree edge (u; v) from u to v where u has asmaller ID than that of v. Then we assigned directions to tree edges in such a way thatthe edges in an ear formed a directed path or directed cycle and the �rst two ears togetherformed a directed cycle. For sequential implementation, we used a linear time algorithm for�nding a strong orientation based on a recursive version of depth-�rst search [34].The performance data without and with virtual processing are shown in Figures 17 and 18respectively. The �tted curves for the parallel performance data without virtual processingare 0:00039 log3 x+0:033 (with 7:7% average error), 0:00015 log3 x+0:18 (with 4:6% averageerror), and 0:00016 log3 x+ 0:17 (with 4:1% average error). for sparse graphs, intermediate-density graphs and dense graphs respectively, where x is the size of the input and the functionvalue is the running time in seconds. The corresponding �tted curves for the sequentialperformance data are 0:000025x (with 5:6% average error), 0:000016x + 0:00028 (with 4:7%average error), and 0:000015x + 0:0005 (with 7:3% average error). The corresponding �ttedcurves for the parallel performance data with virtual processing are 0:0021x0 log3 x0+1:39x0+1:78 (with 5:8% average error), 0:00012x0 log3 x0 + 0:42x0 + 0:032 (with 2:6% average error),and 0:00058x0 log3 x0 + 0:23x0 + 0:89 (with 5:1% average error). The corresponding �ttedcurves for the sequential performance data when the data is within the main memory are20



m = 3n=2 m = n3=2 m = n2=4no vpr vpr = 16 no vpr vpr = 16 no vpr vpr = 16m = 8,191 m = 262,142 m = 8,191 m = 262,142 m = 8,191 m = 262,142(seconds) (seconds) (seconds) (seconds) (seconds) (seconds)Spanning Forest 1.01 74.86 0.41 7.23 0.39 5.35Minimum Spanning Forest 1.05 51.97 0.73 18.58 0.70 19.69All Cut Edges 1.17 83.36 0.61 17.92 0.57 15.85Ear Decomposition 1.19 72.54 0.60 11.32 0.58 8.71Open Ear Decomposition 1.47 90.35 1.11 33.69 0.94 33.50Strong Orientation 1.20 75.35 0.63 11.61 0.60 9.06Table 1: Performance data for our parallel programs with and without virtual processing. Thedata for parallel programs without virtual processing is from [13].0:31x0, 0:25x0, and 0:22x0.6.5 Overhead for Implementing Virtual ProcessorsWe compared the amount of time used by our parallel programs with and without virtualprocessing. The performance data is shown in Table 1. Note that we ran 5 of our 6 programsfor the value of vpr up to 64 using no more than half of the available memory in thesystem. The one program that we could run only up to the value of vpr = 32, was theopen ear decomposition routine. Also, when vpr = 32, our code for open ear decompositioncould not handle inputs of size 32 � 16,384 on sparse graphs. (See Section 6.2 for details.)Hence in Table 1, we use vpr = 16 to show the performance of our parallel code when thevirtual processors simulated in each physical processor were all active. The performancedata with no virtual processing is from [13]. Our implementation of parallel algorithms withvirtual processing had excellent speed-ups on dense graphs and intermediate-density graphsin relation to the implementation without virtual processing. For example, for �nding an eardecomposition on dense graphs, we used 15 times more CPU time with virtual processingwhile handling graphs that were 32 times larger. For sparse graphs, the overhead was fairlylarge. The reason might be that for sparse graphs, using virtual processors increased thedegree of concurrency when concurrent read or write is used. Since we could not o�set it bythe use of dynamic load balancing, our implementation had a big overhead on sparse graphs.We also note that the overhead for implementing the open ear decomposition algorithms isabout twice as large as the overhead for implementing other algorithms.7 Conclusion and Future WorkWe have implemented a set of parallel algorithms for undirected graphs on the MasParMP-1 to handle sizes of the input that are larger than the number of available physicalprocessors. We tested our parallel programs on inputs whose sizes were up to 64 times largerthan the number of physical processors and compared their performance with corresponding21



sequential programs. Note that by using the full con�guration of the current machine, we cansimulate up to 128 virtual processors per physical processor. However, sharing the machinewith other users limited us to use only half of the available memory in each processor. Thusif the full machine had been available, we could have run our programs on graphs with onemillion nodes and two million edges.We note the following observations.� By using the high-level structure of the PRAM algorithms as building blocks, ourcoding and debugging e�ort was relatively small. We wrote more than 12,000 linesof parallel code for the set of parallel graph algorithms that we implemented withvirtual processing. All of the work reported here (include testing) was done within oneyear. Note that 4,000 lines of parallel code were written in 12 weeks in [13] for thesame set of parallel programs with no virtual processing. We consider our strategy forimplementing parallel graph algorithms to be promising.� We examined the variation in data we obtained on the four di�erent test graphs of agiven size and a given edge density. Most of the data points (> 90%) were within 7%of their average values. Less than 5% of the data points were more than 15% awayfrom their average values.� We compared the experimental data points with the computed points on the �ttedcurves. For programs without virtual processing, the average error for �tted curves onsparse graphs was usually larger than the average error for �tted curves on dense graphsand intermediate-density graphs. The average error was about 10% for all data setswith virtual processing. We also note that the average error for �tted curves on densegraphs and intermediate-density graphs without virtual processing is almost the samewhether we �t the data with functions dominated by log3 x or dominated by log2 x,though we used functions dominated by log3 x in the paper. However, the averageerror for sparse graphs is about twice as large if we use functions dominated with log2 xinstead of log3 x. With virtual processing, the best �t in all cases was obtained whenthe function was dominated by x0 log3 x0.Our �tted curves �t quite well on the experimental performance data. The �tted curvesshowed that the dominant term in our parallel code was log3 n both with and withoutvirtual processing. We conjecture the reason might be that our graph algorithms usuallycompute by performing O(log n) iterations and if each iteration takes �(log2 n) time,the overall time complexity is O(log3 n).� Sequential implementations usually performed badly when a fraction of their data wereplaced out of the main memory. Note that our sequential programs used extra memorybecause we used NETPAD. Thus the biggest size inputs that one can run on a SPARC10/41 would be somewhat larger than what we have shown here if a more e�cient22



coding of the graph data structure is used.� Although each MasPar MP-1 PE is much slower than the SPARC workstation, we foundthat in most of the cases, parallel programs in fact runs faster in real time comparedto sequential programs. In particular, our parallel programs were much faster on densegraphs and intermediate-density graphs than on sparse graphs. We traced our parallelprogram for �nding a spanning forest and noticed that by using our dynamic loadbalancing technique, the performance of a concurrent read or write was not too bad ona dense graph compared to the performance of the same operations on a sparse graph.Recall that our algorithm for �nding a spanning forest obtained a spanning forest byrepeatedly growing forests in parallel in a loop until the size of any tree in the currentforest could not be expended. For dense graphs, the parallel algorithms terminated infewer iterations than on sparse graphs. Thus the running time was much smaller ondense graphs than on sparse graphs. Our parallel code can also handle much largerinputs than our sequential code.� We found that our sequential program for �nding a spanning forest used about 45megabytes of memory on the largest-sized inputs. Our parallel program used no morethan 24 kilobytes of memory per physical processor on inputs whose sizes were morethan 4 times larger than the size of the largest inputs for the sequential program. Sincethere are 16,384 physical processors in the MasPar MP-1, the total memory used in ourparallel program was no more than 384 megabytes. Hence we used about 8 times morememory in our parallel programs while we could run inputs whose sizes were 4 timeslarger than the largest input size on the SPARC 10/41. In most cases, when testingthe largest size inputs, our parallel code ran faster than their sequential counterpartson dense graphs and intermediate-density graphs even when the input size was 4 timeslarger.� The current architecture of the MasPar MP-1 is not adequate to run programs thatrequire a lot of memory per physical processor. The limitation of only having 64 kilo-bytes of memory per physical processor prevents us from running inputs of larger sizes.No support from the operating system for using virtual memory also inhibits us fromrunning larger examples. It is reported in [27] that the new MasPar MP-2 upgrades theraw computation power of each individual processor while keeping its communicationhardware and limitation of memory space unchanged. For our application, we feel thatthe amount of memory in each processor should be increased and the bandwidth ofthe communication channel should be enlarged before the upgrading of the processorcomputation power.There are many avenues for future work. We list some of them.� The lack of a good graph manipulation package like NETPAD for handling large graphs23



makes it di�cult to debug our programs. In [13], NETPAD was able to help thedebugging and testing of our parallel implementation after we built an interface to useit on the MasPar. In our current implementation, the sizes of the graphs became toolarge for NETPAD to handle. Work should be done for graph manipulation (especiallyvisualization) packages on large graphs.� Our current implementation requires that vpr, the number of virtual processors simu-lated by each physical processor, be a power of 2 because of a bitonic sorting package[29] that we are using. We would like to replace this sorting package by a sortingroutine that can simulate any number of virtual processors per physical processor.� We note that our current implementation has a very large overhead on sparse graphs.More work has to be done to improve the running time on graphs that are very sparse.

24



References[1] R. Anderson and J. Setubal. On the parallel implementation of Goldberg's maximum
ow algorithm. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures,pages 168{177, 1992.[2] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for shu�e-exchange network and PRAM. IEEE Tran. on Computers, pages 1258{1263, October1987.[3] T. Blank. The MasPar MP-1 architecture. In Proc. of COMPCON Spring 90 { 35thIEEE Computer Society International Conference, pages 20{40, 1990.[4] G. E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, M.I.T., October1989.[5] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.A comparison of sorting algorithms for the Connection Machine CM-2. In Proc. 3thACM Symp. on Parallel Algorithms and Architectures, pages 3{16, 1991.[6] R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21:201{206, 1974.[7] N. Dean, M. Mevenkamp, and C. L. Monma. NETPAD: An interface graphics system fornetwork modeling and optimization. In Proc. Computer Science & Operations Research:New Developments in their Interfaces, pages 231{243. Pergamon Press, 1992.[8] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM J.Comput., 10:657{675, 1981.[9] B. Dixon and A. K. Lenstra. Factoring integers using SIMD sieves. Manuscript, 1992.[10] B. Dixon and A. K. Lenstra. Massively parallel elliptic curve factoring. Manuscript,1992.[11] W. Hightower, J. Prins, and J. Reif. Implementations of randomized sorting on largeparallel machines. In Proc. 4th ACM Symp. on Parallel Algorithms and Architectures,pages 158{167, 1992.[12] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Communications of theACM, 29:1170{1183, 1986.[13] T.-s. Hsu, V. Ramachandran, and N. Dean. Implementation of parallel graph algorithmson the MasPar. In AMS Proc. of DIMACS Workshop on Computational Support for25



Discrete Math., to appear. Also available as TR-92-38, Dept. of Comp. Sci., Univ. ofTexas at Austin.[14] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.[15] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 869{941.North Holland, 1990.[16] B. W. Kernighan and D. M. Ritchie. The C Programming language. Prentice Hall,Englewood Cli�s, NJ, 1988. Second Edition.[17] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,Hypercubes. Morgan Kaufmann, 1992.[18] C. Leiserson, Z. S. Abuhamdeh, D. Douglas, C. R. Feynmann, M. Ganmukhi, J. Hill,W. D. Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong, S-W Yang, and R. Zak.The network architecture of the Connection Machine CM-5. In Proc. 4th ACM Symp.on Parallel Algorithms and Architectures, pages 272{287, 1992.[19] MasPar Computer Co.MasPar Parallel Application Language (MPL) Reference manual,version 2.0 edition, March 1991.[20] MasPar Computer Co. MasPar Parallel Application Language (MPL) User Guide,version 2.0 edition, March 1991.[21] MasPar Computer Co. MasPar System Overview, version 2.0 edition, March 1991.[22] MasPar Computer Co. MasPar Data Display Library (MPDDL) Reference manual,version 3.0, rev. a6 edition, July 1992.[23] MasPar Computer Co.MasPar Parallel Application Language (MPL) Reference manual,version 3.0, rev. a3 edition, July 1992.[24] MasPar Computer Co. MasPar Parallel Application Language (MPL) User Guide,version 3.1, rev. a3 edition, November 1992.[25] B. Narendran and P. Tiwari. Polynomial root-�nding: Analysis and computationalinvestigation of a parallel algorithm. In Proc. 4th ACM Symp. on Parallel Algorithmsand Architectures, pages 178{187, 1992.[26] R. Pickering and J. Cook. A �rst course in programming the DECmpp/Sx. Technicalreport, para//lab, Dept. of Informatics, Univ. of Bergen, N-5020 Bergen, Norway, 1993.Series of Parallel Processing: A Self-Study Introduction.26



[27] L. Prechelt. Comparison of MasPar MP-1 and MP-2 communication operations. Tech-nical Report 16/93, Institute f�ur Programmstrukturen und Datenorganisation, Fakult�atf�ur Informatik, Universit�at Karlsruhe, Germany, April 1993.[28] L. Prechelt. Measurements of MasPar MP-1216A communication operations. TechnicalReport 01/93, Institute f�ur Programmstrukturen und Datenorganisation, Fakult�at f�urInformatik, Universit�at Karlsruhe, Germany, January 1993.[29] J. F. Prins and J. A. Smith. Parallel sorting of large arrays on the MasPar MP-1. InProc. 3rd Symp. on the Frontiers of Massively Parallel Computation, pages 59{64, 1990.[30] M. J. Quinn. Designing E�cient Algorithms for Parallel Computers. McGraw-Hill,1987.[31] V. Ramachandran. Parallel open ear decomposition with applications to graph bicon-nectivity and triconnectivity. In J. H. Reif, editor, Synthesis of Parallel Algorithms,pages 275{340. Morgan-Kaufmann, 1993.[32] J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan-Kaufmann, 1993.[33] J. T. Schwartz. Ultracomputers. ACM Trans. on Programming Languages and Systems,2:484{521, October 1980.[34] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Comput., 1:146{160, 1972.[35] R. E. Tarjan. Data Structures and Network Algorithms. SIAM Press, Philadelphia, PA,1983.[36] R. E. Tarjan and U. Vishkin. An e�cient parallel biconnectivity algorithm. SIAM J.Comput., 14:862{874, 1985.[37] U. Vishkin. Structural parallel algorithmics. In Proc. 18th ICALP, volume LNCS #510,pages 363{380. Springer-Verlag, 1991.[38] S. Wolfram. MathematicaTM A System for Doing Mathematics by Computer. Addison-Wesley, 1988.
27



0

0.2

0.4

0.6

0.8

1

1.2

1.4

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = (3/2)n)

MasPar
0.0003 log^3(X)

SPARC II
0.000023 X

0

0.1

0.2

0.3

0.4

0.5

0.6

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = n^(3/2))

MasPar
0.11 + 0.000095 log^3(X)

SPARC II
0.000011 X

0

0.1

0.2

0.3

0.4

0.5

0.6

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding a Spanning Forest (m = (n^2)/4)

MasPar
0.11 + 0.00011 log^3(X)

SPARC II
0.00001 X

Figure 7: Relative performance of the sequen-tial program on a SPARC II workstation andthe parallel program on the MasPar MP-1 for�nding connected components without virtualprocessing.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = 3n/2))

MasPar MP-1 (16384 PE’s)
1.4+X’+10^(-3)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.03+0.3X’+9*10^(-6)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n + m (in units of 10000)

Finding a Spanning Forest (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.5+0.15X’+7*10^(-5)X’log^3 X’

SPARC 10/41

Figure 8: Relative performance of the sequen-tial program on a SUN SPARC 10/41 worksta-tion and the parallel program on the MasParMP-1 for �nding a spanning forest with vir-tual processing. The least-squares-�t curvesfor the performance data of the sequential pro-gram when < 80% of the main memory areused are 0:17x, 0:17x, and 0:15x, respectively,from the top to the bottom.28



0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = (3/2)n)

MasPar
0.12+0.00033log^3 X

SPARC II
0.0000057 X log(X)

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = n^(3/2))

MasPar
0.095+0.0002log^3 X

SPARC II
0.01+0.000004X+0.000001Xlog X

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Minimum Spanning Forest (m = (n^2)/4)

MasPar
0.058 + 0.00021 log^3(X)

SPARC II
0.009+0.000004X+9*10^(-8)XlogX

Figure 9: Relative performance of the sequen-tial program on a SPARC II workstation andthe parallel program on the MasPar MP-1 for�nding a minimum spanning forest withoutvirtual processing.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180

s
e
c
o
n
d
s

n+m (in units of 10000)

Minimum Spanning Forest (m = 3n/2))

MasPar MP-1 (16384 PE’s)
2.5+0.8X’+0.002*10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

120

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Minimum Spanning Forest (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.1+0.7X’+0.0004*X’*log^3 X’

SPARC 10/41

0

20

40

60

80

100

120

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Minimum Spanning Forest (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.7X’+2*10^(-4)*X’*log^3 X’

SPARC 10/41

Figure 10: Relative performance of the se-quential program on a SUN SPARC 10/41workstation and the parallel program on theMasPar MP-1 for �nding a minimum span-ning forest with virtual processing. The least-squares-�t curves for the performance data ofthe sequential program when < 80% of themain memory are used are 5:44 + 0:20x logx,1:78 + 0:11x logx, and 1:22 + 0:10x logx, re-spectively, from the top to the bottom.29



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = (3/2)n)

MasPar
0.013 + 0.0004 * log^3(X)

SPARC II
0.00049 + 0.000023 X

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = n^(3/2))

MasPar
0.18 + 0.00014 * log^3(X)

SPARC II
0.00035 + 0.000011 X

0

0.2

0.4

0.6

0.8

1

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Finding All Cut Edges (m = (n^2)/4)

MasPar
0.17 + 0.00015 * log^3(X)

SPARC II
0.000051 + 0.00001 X

Figure 11: Relative performance of the sequen-tial program on a SPARC II workstation andthe parallel program on the MasPar MP-1 for�nding all cut edges without virtual process-ing.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n+m (in units of 10000)

Finding All Cut Edges (m = 3n/2))

MasPar MP-1 (16384 PE’s)
1.6+1.4X’+2*10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Finding All Cut Edges (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.3+0.6X’+2*10^(-4)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Finding All Cut Edges (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.7+0.5X’+4*10^(-4)X’log^3 X’

SPARC 10/41

Figure 12: Relative performance of the sequen-tial program on a SUN SPARC 10/41 worksta-tion and the parallel program on the MasParMP-1 for �nding all cut edges with virtual pro-cessing. The least-squares-�t curves for theperformance data of the sequential programwhen < 80% of the main memory are used are0:22x, 0:18x, and 0:16x, respectively, from thetop to the bottom.30



0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = (3/2)n)

MasPar
0.021+3.94*10^(-4)*log^3(X)

SPARC II
0.000093 X

0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = n^(3/2))

MasPar
0.19 + 0.00014 log^3(X)

SPARC II
0.000084 X

0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Ear Decomposition (m = (n^2)/4)

MasPar
0.18 + 0.00015 * log^3(X)

SPARC II
0.000083 X

Figure 13: Relative performance of the sequen-tial program on a SPARC II workstation andthe parallel program on the MasPar MP-1 for�nding an ear decomposition on a two-edgeconnected graph without virtual processing.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n+m (in units of 10000)

Ear Decomposition (m = 3n/2))

MasPar MP-1 (16384 PE’s)
0.4+X’+10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Ear Decomposition (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.2+0.3X’+4*10^(-4)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Ear Decomposition (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.9+0.2X’+6*10^(-4)X’log^3 X’

SPARC 10/41

Figure 14: Relative performance of the sequen-tial program on a SUN SPARC 10/41 worksta-tion and the parallel program on the MasParMP-1 for �nding an ear decomposition withvirtual processing. The least-squares-�t curvesfor the performance data of the sequential pro-gram when < 80% of the main memory areused are 0:57x, 0:72x, and 0:68x, respectively,from the top to the bottom.31



0

0.5

1

1.5

2

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Open Ear Decomposition (m = (3/2)n)

MasPar
0.26+4.13*10^(-4)*log^3(X)

SPARC II
0.000093 X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Open Ear Decomposition (m = n^(3/2))

MasPar
0.27 + 0.00033 log^3(X)

SPARC II
0.000084 X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Open Ear Decomposition (m = (n^2)/4)

MasPar
0.44 + 0.00017 log^3(X)

SPARC II
0.000083 X

Figure 15: Relative performance of the sequen-tial program on a SPARC II workstation andthe parallel program on the MasPar MP-1 for�nding an open ear decomposition on a bicon-nected graph without virtual processing.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

s
e
c
o
n
d
s

n+m (in units of 10000)

Open Ear Decomposition (m = 3n/2))

MasPar MP-1 (16384 PE’s)
0.2+1.6X’+2*10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n+m (in units of 10000)

Open Ear Decomposition (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.4+X’+10^(-3)X’log^3 X’

SPARC 10/41

0

20

40

60

80

100

0 10 20 30 40 50 60

s
e
c
o
n
d
s

n+m (in units of 10000)

Open Ear Decomposition (m = n^2/4)

MasPar MP-1 (16384 PE’s)
.5+X’+.1X’logX’+.0002X’log^3X’

SPARC 10/41

Figure 16: Relative performance of the sequen-tial program on a SUN SPARC 10/41 worksta-tion and the parallel program on the MasParMP-1 for �nding an open ear decompositionwith virtual processing. The least-squares-�tcurves for the performance data of the sequen-tial program when < 80% of the main memoryare used are 0:57x, 0:72x, and 0:68x, respec-tively, from the top to the bottom.32



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = (3/2)n)

MasPar
0.033+3.89*10^(-4)*log^3(X)

SPARC II
0.000025 X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = n^(3/2))

MasPar
0.18 + 0.00015 log^3(X)

SPARC II
0.00028 + 0.000016 X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4000 8000 12000 16000

S
e
c
o
n
d
s

2 * (# of edges)

Strong Orientation (m = (n^2)/4)

MasPar
0.17 + 0.00016 log^3(X)

SPARC II
0.0005 + 0.000015 X 

Figure 17: Relative performance of the sequen-tial program on a SPARC II workstation andthe parallel program on the MasPar MP-1 for�nding a strong orientation on a two-edge con-nected graph without virtual processing.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

s
e
c
o
n
d
s

n+m (in units of 10000)

Strong Orientation (m = 3n/2))

MasPar MP-1 (16384 PE’s)
1.8+1.4X’+2*10^(-3)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Strong Orientation (m = n^(3/2))

MasPar MP-1 (16384 PE’s)
0.03+0.4X’+10^(-4)X’log^3 X’

SPARC 10/41

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

s
e
c
o
n
d
s

n+m (in units of 10000)

Strong Orientation (m = n^2/4)

MasPar MP-1 (16384 PE’s)
0.9+0.2X’+6*10^(-4)X’log^3 X’

SPARC 10/41

Figure 18: Relative performance of the sequen-tial program on a SUN SPARC 10/41 worksta-tion and the parallel program on the MasParMP-1 for �nding a strong orientation with vir-tual processing. The least-squares-�t curvesfor the performance data of the sequential pro-gram when < 80% of the main memory areused are 0:31x, 0:25x, and 0:22x, respectively,from the top to the bottom.33


