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14 Parity matters 4015 Consequences of the heat kernel estimates 4216 Appendix: the list of the lettered conditions 441 IntroductionConsider the heat equation @f@t = �f ; (1.1)where f = f(t; x) is a function of t > 0 and x 2 Rn, and � is the Laplace operator in Rn. Thefundamental solution to (1.1) is given by the classical Gauss-Weierstrass formulaf(t; x) = 1(4�t)n=2 exp �jxj24t ! :The function pt(x; y) = f(t; x� y) is called the heat kernel of the Laplace operator.In the past 30-35 years, there have been numerous works devoted to estimates of heat kernelsin various settings (see, for example, books and surveys [4], [15], [16], [24], [34], [50], [53], [63],[64]). These are parabolic equations with variable coe�cients, the heat equation on Riemannianmanifolds, the discrete heat equation on graphs, and the heat semigroups on general metricmeasure spaces including fractal-like sets. Despite of the high diversity of the underlying spacesand equations, in many important cases the heat kernel is naturally de�ned and, moreover,admits the so-called Gaussian estimates.For any metric measure space M with distance d and measure �, denote by B(x; r) the openmetric ball of radius r centered at x, and by V (x; r) its measure �. Suppose �rst that M iseither a discrete group or a Lie group, with properly de�ned d; � and the heat kernel pt(x; y).Assume that the volume growth of M is polynomial, that is, for some � > 0,V (x; r) ' r� (1.2)(here the sign ' means that the ratio of both sides of (1.2) stays between two positive constants).Then the heat kernel on M admits the following Gaussian estimate (see [62], [36])pt(x; y) ' t��=2 exp��d2(x; y)ct � (1.3)(where the positive constant c may be di�erent for the upper and lower bounds). The heatkernel in Rn obviously satis�es (1.3) with � = n.Suppose now that M is a complete manifold with non-negative Ricci curvature. Then thefollowing estimate of Li and Yau [46] is well-knownpt(x; y) ' 1V (x;pt) exp��d2(x; y)ct � : (1.4)In particular, if V (x; r) ' r� then the heat kernel satis�es again the estimate (1.3).As we see, for groups of the polynomial growth and for non-negatively curved manifolds,the heat kernel is fully determined (up to constant factors) by the volume growth function. In2



other words, the potential theory on such spaces is characterized by a single parameter � - theexponent of the volume growth.The presence of the Gaussian estimates (1.3) or (1.4) re
ects certain properties of the spaceM . In particular, (1.4) implies that the Markov process Xt with the transition density pt(x; y)has the di�usion speed of the order t 12 . The latter means that the process Xt started at a pointx �rst exits the ball B(x;R) at the time t ' R2.The development of Markov processes on fractals and the fractal like graphs ( [10], [7], [29],[35], [39], [40], [41], [43], [44], [57], [65] etc.) has led to construction of homogeneous metricspacesM where the process Xt has the di�usion speed of the order t 1� , with some � > 2. Such aprocess Xt is referred to as subdi�usive, and is characterized by two parameters � and �, whichdetermine sub-Gaussian estimates of the heat kernel:pt(x; y) ' t��=� exp ��d�(x; y)ct � 1��1! : (1.5)Here � is the exponent of the volume growth as in (1.2). The Gaussian estimate (1.3) is aparticular case of (1.5) for � = 2.Barlow and Bass [7] showed that the sub-Gaussian estimates (1.5) with � > 2 can take placenot only on singular spaces such as fractals but also on smooth Riemannian manifolds, for acertain range of time. Similar estimates hold for random walks on certain fractal-like graphs [8],[38]. It has become apparent that a large and interesting class of homogeneous spaces featuressub-Gaussian estimates of the heat kernel. The potential theory on such spaces is determinedby the two parameters and hence, cannot be recovered only from the volume growth1.A natural question arises:How to characterize those spaces which admit sub-Gaussian estimates (1.5) of theheat kernel?If M is a complete non-compact Riemannian manifold then the validity of the Gaussianestimate (1.3) is known to be equivalent to the following two conditions: the volume growth(1.2) and the Poincar�e inequality �(N)1 (B(x; r)) � cr2 ; (1.6)where �(N)1 (B) is the �rst non-zero eigenvalue of the Neumann boundary value problem inthe ball B (see [51], [30]; similar results are known also for graphs [27] and for abstract localDirichlet spaces [55]). It may be tempting to conjecture that by replacing in (1.6) r2 by r� , oneobtains equivalent conditions for sub-Gaussian estimates. However, this conjecture is false. Atthe present time, no similar characterization of the spaces with sub-Gaussian estimates seemsto be known. All examples of spaces where (1.5) is proved are fractal-like spaces featuring aself-similarity structure.The purpose of this paper is to provide a new approach to obtaining sub-Gaussian estimatesof the heat kernel. Our point of departure is the understanding that, apart from the uniformvolume growth V (x; r) ' r�, we have to introduce additional hypotheses, which would containthe second parameter � and provide the necessary homogeneity of the space (just the uniformvolume growth is not enough for the latter).1The parameters � and � must satisfy the inequalities 2 � � � �+ 1, which seem to be the only constrainton � and �. We are indebted to Martin Barlow for providing us with the evidence for the latter.3



Let g(x; y) be the Green kernel on M , that isg(x; y) = Z 10 pt(x; y)dt:Recall that, in Rn, g(x; y) = cn jx� yj�(n�2) if n > 2 and g � 1 if n � 2.Our general result says the following:Given the parameters � > � � 2, the two-sided sub-Gaussian estimatept(x; y) ' t��=� exp ��d�(x; y)ct � 1��1! (1.7)holds if and only ifV (x; r) ' r� and g(x; y)' d(x; y)�(���): (1.8)We do not specify here the ranges of the variables x; y; t; r because they are di�erent fordi�erent settings. In the present paper, we treat the case when the underlying space is a graph,and the time is also discrete. However, the graph case contains already all di�culties. Wepresent the proof in the way that only minimal changes are required to pass to a general settingof abstract metric spaces, which will be dealt with elsewhere. The exact statements are givenin the next section. Note that our result is new even for the Gaussian case � = 2.The hypothesis (1.8) consists of two conditions of di�erent nature. The �rst one is a geometriccondition of the volume growth whereas the second is an estimate of a fundamental solution to anelliptic equation. Neither of them separately implies the heat kernel bounds (1.7). Surprisinglyenough, the exponent � which provides the scaling of the space and time variables for a parabolicequation, can be recovered from an elliptic equation, although combined with the volume growth.The paper is arranged as follows. In Section 2, we state the main result - Theorem 2.1. InSection 3, we introduce the necessary tools such as the discrete Laplace operator, its eigenvalues,the mean exit time, etc. In Section 4 we describe the scheme of the proof of Theorem 2.1 aswell as some consequences. In particular, we mention some other conditions equivalent to (1.7).The actual proof of Theorem 2.1 consists of many steps which are considered in details in therest Sections 5 - 15.notationThe letters c; C are reserved for positive constants not depending on the variables in question.They may be di�erent on di�erent occurrences, even within the same formula. All results ofthe paper are quantitative in the sense that the constants in conclusions depends only on theconstants in hypotheses.The relation f ' g means that the ratio of the functions f and g is bounded from above andbelow by positive constants, for the speci�ed range of the variables. If one of those functionscontains a sub-Gaussian factor exp���d�ct � 1��1� then the constant c in exp may be di�erentfor the upper and lower bounds (cf. (1.7)).We use a number of lettered formulas such as (UE), (LE) etc., to refer to the most importantand frequently used conditions. In Appendix, we provide a complete list of all such formulas.4



2 Statement of the main resultThroughout the paper, � denotes an in�nite, connected, locally �nite graph. If x; y 2 � thenwe write x � y provided x and y are connected by an edge. The graph is always assumednon-oriented, that is x � y is equivalent to y � x. We do not exclude loops so that x � x ispossible. If x � y then xy denotes the edge connecting x and y. The distance d(x; y) is theminimal number of edges in any edge path connecting x and y.Assume that graph � is endowed by a weight �xy which is a symmetric non-negative functionon � � � such that �xy > 0 if and only if x � y. Given �xy , we de�ne also a measure � onvertices by �(x) :=Xy�x �xyand �(A) :=Xx2A�(x);for any �nite set A � �. The couple (�; �) is called a weighted graph. Here � refers both to theweight �xy and to the measure �.Any graph � admits a standard weight which is de�ned by �xy = 1 for all edges xy. For sucha weight, �(x) is equal to the degree of the vertex x, that is the number of its neighbors.Any weighted graph has a natural Markov operator P (x; y) de�ned byP (x; y) := �xy�(x) : (2.1)Clearly, we have Xy2�P (x; y) = 1 (2.2)and P (x; y)�(x) = P (y; x)�(y): (2.3)For the Markov operator P , there is an associated random walk Xn, jumping at each time n 2 Nfrom a current vertex x to a neighboring vertex y with probability P (x; y). The process Xn isMarkov and reversible with respect to measure �. If � is the standard weight on � then Xn iscalled a simple random walk on �.Conversely, given a countable set � with a measure � and a Markov operator P (x; y) on �satisfying (2.3), the identity (2.1) uniquely determines a symmetric weight �xy on � � �. Thenone de�nes edges xy as those pairs of vertices for which �xy 6= 0, and obtains a weighted graph(�; �): One has to assume in addition that the resulting graph � is connected and locally �nite.Let Pn denote the n-th convolution power of the operator P . Alternatively, Pn(x; y) is thetransition function of the random walk Xn, i.e.Pn(x; y) = Px (Xn = y) :De�ne also the transition density of Xn, or the heat kernel, bypn(x; y) := Pn(x; y)�(y) :As obviously follows from (2.3), pn(x; y) = pn(y; x):5



The only a priori assumption which we normally make about the transition probability isthe following: P (x; y) � p0; 8x � y; (p0)where p0 is a positive constant. Due to (2.2), the hypothesis (p0) implies that the degree of eachvertex x 2 � is uniformly bounded from above. The latter is in fact equivalent to (p0), providedXn is a simple random walk.By sub-Gaussian heat kernel estimates on graphs we will mean the following inequalities:pn(x; y) � Cn��=� exp ��d(x; y)�Cn � 1��1! (UE)and pn(x; y) + pn+1(x; y) � cn��=� exp ��d(x; y)�cn � 1��1! ; n � d(x; y); (LE)where x; y are arbitrary points on � and n is a positive integer.Let us comment on the di�erences between (UE) and (LE). First observe that pn(x; y) = 0whenever n < d(x; y) (indeed, the random walk cannot get from x to y in a number of stepssmaller than d(x; y)). Therefore, the restriction n � d(x; y) in (LE) is necessary. We couldassume the same restriction in (UE) but if pn(x; y) = 0 then (UE) is true anyway. Anotherdi�erence - using pn + pn+1 in (LE) in place of pn in (UE) - is due to the parity problem.Indeed, if the graph � is bipartite (for example, ZD) then pn(x; y) = 0 whenever n and d(x; y)have di�erent parities. Therefore, the lower bound for pn cannot hold in general, and we stateit for pn + pn+1 instead. Alternatively, one could say that the lower bound holds either for pnor for pn+1. The structure of the graph may cause one of pn, pn+1 to be small (or even vanish)but it is not possible to decide a priori which of these two terms admits the lower bound (seeSection 14 for more details).Denote by B(x;R) a ball on � of radius R centered at x, and by V (x;R) its measure, that isB(x;R) := fy 2 � : d(x; y)< Rg ; V (x;R) := �(B(x;R)):We say that the graph (�; �) has the regular volume growth of degree � ifV (x;R) ' R�; 8x 2 �; R � 1: (V )The Green kernel of (�; �) is de�ned byg(x; y) := 1Xn=0 pn(x; y):Assuming that � > �, the estimates (UE) and (LE) imply, upon summation in n,g(x; y) ' d(x; y)�
; 8x 6= y (G)where 
 = � � �. It turns out that (G) together with the volume growth condition (V ) issu�cient to recover the heat kernel estimates (UE) and (LE), as is stated in the following maintheorem.Theorem 2.1 Let � > � > 1 and 
 = �� �. For any in�nite connected weighted graph (�; �)satisfying (p0), the following equivalence holds(V ) + (G)() (UE) + (LE):6



Remark 2.1 Under the hypotheses (V ) and (G), some partial heat kernel estimates were ob-tained by the second author [60].It is well known that a simple random walk in ZD admits the Gaussian estimatecn�D=2 exp��d2(x; y)cn � � pn(x; y) � Cn�D=2 exp��d2(x; y)Cn � ; (2.4)the lower bound being subject to the restrictions n � d(x; y)(mod2) and d(x; y) � n: SimilarGaussian estimates were proved also for more general graphs, under various assumptions (see[36], [52], [22], [27]). It is easy to see that (2.4) is equivalent to (UE) + (LE) for � = D and� = 2 (see Section 14 for the parity matters).Barlow and Bass [8] constructed a family of graphs - graphical Sierpinski carpets (resemblingin the large scale the multi-dimensional Sierpinski carpet), which are characterized by the twoparameter � and �, and heat kernels on those graphs satisfy the sub-Gaussian estimates (UE)and (LE). In general, the parameters � and �, for which (UE) and (LE) may take place, mustsatisfy the following inequalities 2 � � � �+ 1; (2.5)which can be seen as follows. By [9, Theorem 2.1], the lower bound in (V ) implies the on-diagonal upper bound pn(x; x) � Cn��=(�+1): By the result of [47], the upper bound in (V )implies the on-diagonal lower bound pn(x; x) � c (n logn)��=2. Comparing these estimates withthe on-diagonal lower and upper bounds implied by (LE) and (UE), we obtain (2.5) (cf. [4,Theorem 3.20 and Remark 3.22], [57] as well as Lemma 5.4 below).The sub-Gaussian estimates for di�erent � and � are related as follows. Consider the righthand side of (UE) and (LE) as a function of � and �. It is easy to see that it decreases as �and �=� simultaneously increase (assuming d(x; y) � n). In particular, (UE) gets stronger (and(LE) gets weaker) on increasing of � (while keeping the same �) whereas in general there is nomonotonicity in �.The estimates (UE) and (LE) were proved by Jones [38] for the graphical Sierpinski gasket.The latter is a graph which is obtained from an equilateral triangle by a fractal-like construction(see Fig. 1). The reason for a subdi�usive behaviour of the random walk on such graphs is thatthey contain plenty of \holes" of all sizes, which causes the random walk to spend more time oncircumventing the obstacles rather than on moving away from the origin.
Figure 1 A fragment of the graphical Sierpinski gasketIt is possible to show that (V ) and (G) imply � � 2 (see Lemma 5.4). The assumption � > �is necessary to ensure the �niteness of the Green function. It is known that either g(x; y) is �nite7



for all x; y or g � 1. In the �rst case the graph (�; �) is called transient and the second case -recurrent (for example, ZD is transient if D � 3 and recurrent otherwise). Hence, Theorem 2.1serves only transient graphs.The question of �nding equivalent conditions for the sub-Gaussian estimates (UE) and (LE)is equally interesting for recurrent graphs. By the way, the graph on Fig. 1 is recurrent2. Indeed,the volume function on this graph obviously admits the estimateV (x; r) � Cr2;which implies the recurrence (see [18], [64]). Alternatively, one can see directly that � < �because the parameters � and � for Sierpinski gasket are � = log 3log 2 and � = log 5log 2 (see [4]).Some hints on the recurrent case are given below in Section 4.3 PreliminariesIf P is the Markov operator of a weighted graph (�; �) and I is the identity operator then� := P � I is called the Laplace operator of (�; �). For any set A � �, denote by A the setcontaining all vertices of A and all their neighbors. If a function f is de�ned on A then �f isde�ned on A and �f(x) =Xy�xP (x; y)f(y)� f(x) = 1�(x)Xy2� (rxyf)�xy ; (3.1)where rxyf := f(y)� f(x):Note that although the summation in the second sum in (3.1) runs over all vertices y, thesummand is non-vanishing only if y � x.The following is a discrete analogue of the Green formula: for any �nite set A and for allfunctions f and g de�ned on A,Xx2A�f(x)g(x)�(x) = Xx2A;y=2A (rxyf) g(x)�xy � 12 Xx;y2A (rxyf) (rxyg)�xy : (3.2)We say that a function v is harmonic in set A if v is de�ned in A and �v = 0 in A. Similarly,we say that a function v is superharmonic if �v � 0. Observe that the inequality �v � 0 isequivalent to v(x) �Xy�xP (x; y)v(y):The latter implies, in particular, that the in�mum of a family of superharmonic functions isagain superharmonic.For any non-empty set A � �, let c0(A) be the set of functions on � whose support is �niteand is in A. Denote by �A the Laplace operator with the vanishing Dirichlet boundary conditionon A, i.e. �Af(x) := � �f; x 2 A;0; x =2 A:2Plenty of examples of transient graphs and fractals with sub-Gaussian heat kernel bounds can be found in[4], [7], [8]. 8



The operator �A is symmetric with respect to the measure � and is non-positive de�nite.Moreover, it is essentially self-adjoint in L2(A; �).For a �nite set A, denote by jAj its cardinality. If A is �nite and non-empty then the operator��A has jAj non-negative eigenvalues which we enumerate in the increasing order and denoteas follows: �1(A) � �2(A) � ::: � �jAj(A):It is known that all eigenvalues �i(A) lie in the interval [0; 2] and that �1(A) 2 [0; 1] (see forexample [19], [22, Section 3.3]). The smallest eigenvalue �1(A) admits the variational de�nition�1(A) = inff2c0(A) �(�f; f)(f; f) = inff2c0(A) 12Px�y(rxyf)2�xyPx f2(x)�(x) ; (3.3)where (f; g) :=Xx2� f(x)g(x)�(x):If A = B(x;R) then we write for simplicity�(x;R) := �1(B(x;R)):Given a non-empty set A � �, let XAn be the random walk on (�; �) with the killing conditionoutside A. Its Markov operator PA(x; y) is de�ned byPA(x; y) := � P (x; y); x; y 2 A;0; otherwise.The transition function PAn (x; y) of XAn is de�ned inductively: PA0 (x; y) = �xy andPAn+1(x; y) =Xz2� PAn (x; z)PA(z; y) =Xz2� PA(x; z)PAn (z; y): (3.4)As easily follows from (3.4), the function un(x) = PAn (x; y) satis�es in A � N the discrete heatequation un+1 � un = �Aun : (3.5)The heat kernel pAn (x; y) of XAn is de�ned bypAn (x; y) := PAn (x; y)�(y) :As follows from (2.1), pA is symmetric in x and y. In particular, the kernel pAn (x; y) satis�es theheat equation (3.5) both in (n; x) and (n; y). If f(x) is a function on A then the functionun(x) := PAn f(x) =Xy2A pAn (x; y)f(y)�(y)solves in A � N the heat equation (3.5) with the initial data u0 = f and the boundary dataun(x) = 0 if x =2 A.The Green function of XAn is de�ned byGA(x; y) := 1Xn=0PAn (x; y):9



The alternative de�nition is that the function GA(x; y) is the in�mum of all positive fundamentalsolutions of the Laplace equation in A. If the Green function is �nite then, for any y 2 A, we have�AGA(�; y) = ��y . The opposite case, when GA(x; y) � +1, is equivalent to the recurrence ofthe process XAn .The Green kernel gA(x; y) is de�ned bygA(x; y) = GA(x; y)�(y) = 1Xn=0 pAn (x; y):Clearly, the Green kernel is symmetric in x, y. Therefore, if gA is �nite then gA is superharmonicin A with respect to both x and y, and is harmonic away from the diagonal x = y. Observethat if �(x) ' 1 (which in particular follows from (V )) then GA(x; y) ' gA(x; y) and pAn (x; y) 'PAn (x; y).It is easy to see that the kernels pAn (x; y) and gA(x; y) increase on enlarging of A and tendto the global kernels pn(x; y) and g(x; y) (de�ned in Section 2) as an increasing sequence of setsA exhausts �.If A is �nite and non-empty then it makes sense to consider the Dirichlet problem in A� �u = f in A;u = h in A nA; (3.6)where f and h are given function on A and A n A respectively. As follows easily from themaximum principle, the solution u exists and is unique. For a �nite set A, c0(A) is identi�edwith all functions on A extended by 0 outside A. Then the equation�Au = f ;where u and f are in c0(A), is equivalent to the Dirichlet problem (3.6) with h = 0. Its solutionis given by means of the Green operator GA as follows:u(x) = �GAf(x) = �Xy GA(x; y)f(y): (3.7)In other words, we have GA = (��A)�1 :For any set A � � and a point x 2 �, de�ne the mean exit time EA(x) byEA(x) :=Xy2AGA(x; y): (3.8)As follows from the above discussion, the function EA(x) solves the following boundary valueproblem in A: � �u = �1 in A;u = 0 outside A: (3.9)Denote by TA the �rst exit time from set A for the process Xn, that is,TA := minfk : Xk =2 Ag:We claim that EA(x) = Ex(TA), which justi�es the term \mean exit time" for EA. Indeed, TAcoincides with the cardinality of all n = 0; 1; 2; ::: for which XAn is in A, that is,TA = 1Xn=0 1fXAn 2Ag ;10



whence Ex(TA) = 1Xn=0Px�XAn 2 A� = 1Xn=0Xy2APAn (x; y) =Xy2AGA(x; y) = EA(x):If A = B(x;R) then we use a shorter notationE(x;R) := EB(x;R)(x):Another function associated with the exit time is the exit probability de�ned by	An (x) := Px fXk =2 A for some k � ng = PxfTA � ng : (3.10)In other words, 	An (x) is the probability that the random walk Xk started at x will at least onceexit A by time n. Alternatively, 	An (x) can be de�ned as the solution un(x) to the followinginitial boundary value problem in A �N8<: un+1 � un = �un;u0(x) = 0; x 2 A;un(x) = 1; x =2 A and n � 0: (3.11)If A = B(x;R) then we will use the shorter notation	n(x;R) := 	B(x;R)n (x):In conclusion of this section, we prove two useful consequences of the condition (p0):P (x; y) � p0; 8x � y: (p0)Proposition 3.1 If (p0) holds then, for all x 2 � and R > 0 and for some C = C(p0),V (x;R) � CR�(x): (3.12)Remark 3.1 Inequality (3.12) implies that, for a bounded range of R, V (x;R) ' �(x).Proof. Let x � y. Since P (x; y) = �xy�(x) and �xy � �(y), the hypothesis (p0) impliesp0�(x) � �(y): Similarly, p0�(y) � �(x). Iterating these inequalities, we obtain, for arbitrary xand y, pd(x;y)0 �(y) � �(x): (3.13)Another consequence of (p0) is that any point x has at most p�10 neighbors. Therefore, any ballB(x;R) has at most CR vertices inside. By (3.13), any point y 2 B(x;R) has measure at mostp�R0 �(x), whence (3.12) follows.Proposition 3.2 Assume that the hypothesis (p0) holds on (�; �). Let function v be non-negative in A and superharmonic in A. Then, for all points x; y 2 A, such that x � y, wehave v(x) ' v(y).Proof. Indeed, the superharmonicity of v impliesv(x) �Xz�x P (x; z)v(z) � P (x; y)v(y);whence v(x) � p0v(y) by (p0). In the same way, v(y) � p0v(x) whence the claim follows.11



4 Outline of the proof and its consequencesThe proof of Theorem 2.1 consists of many steps. Here we describe the logical order of thesesteps. The rest of the paper is arranged in the way that each section treats a certain topiccorresponding to one or more steps in the proof of Theorem 2.1.Apart from the conditions (V ), (G), (UE) and (UE) described in Section 2, we introducehere some more lettered conditions which will be widely used in the proof.We say that the Faber-Krahn inequality holds on (�; �) if, for some positive exponent �,�1(A) � c�(A)�1=� ; (FK)for all non-empty �nite sets A � �. In particular, (FK) holds in ZD with � = D=2. If � isin�nite and connected and if � is the standard weight on � then (FK) automatically holds with� = 1=2 (see [9, Prop. 2.5]). We will be interested in (FK) with � = �=� where � and � arethe parameters from (UE) and (LE), in which case we have � > 1.An easy consequence of (UE) is the diagonal upper estimatepn(x; x) � Cn��=�; (DUE)for all x 2 � and n � 1.Consider the following estimates for the mean exit time and the exit probability:E(x;R)' R� (E)for all x 2 �; R � 1, and 	n(x;R) � C exp ��R�Cn� 1��1! ; (	)for all x 2 �, R > 0 and n � 1. For example, (E) and (	) hold in ZD with � = 2.The part (V )+(G) =) (UE) of Theorem 2.1 is proved by the following chain of implications.(V ) + (G)+Prop:5:5 +Prop:6:3(FK) (E)+Prop:5:1 +Prop:7:1(DUE) (	)| {z }+Prop:8:1(UE)The relations between the exponents �; �; 
 and � involved in all conditions are as follows:�� � = 
 and �=� = �:Given (DUE) and (	); one obtains easily the full upper bound (UE) using the approachof Barlow and Bass [6] (see Section 8). The method of obtaining the Faber-Krahn inequality(FK) from (V ) and (G) is based on ideas of Carron [14]. The implication (FK) =) (DUE) is adiscrete modi�cation of the approach of the �rst author [31]. The implication (V )+(G) =) (E)was originally proved by the second author [57], and here we give a simpler proof for that.12



The crucial part of the proof of the upper estimate (UE) is the implication (E) =) (	):The following nearly Gaussian estimate is true always, without assuming (E) or anything else:	n(x;R) � CV (x;R)�(x) exp��R2Cn� (4.1)(see [56] and [32, p.355]). However, (4.1) is not good enough for us even if neglecting the factorV (x;R) in front of the exponential. Indeed, the range of n for which we will apply (	), is n > R(see the proof of Proposition 8.1). Assuming � > 2; we have in this range�R�n � 1��1 > R2n ;so that (	) is stronger than (4.1).We provide here an entirely new argument for (E) =) (	), which is based on investigationof solutions of the equation �v = �v: The function v can be estimated by comparing it to�u = �1 (and the latter is related to the mean exit time). On the other hand, the function(1+�)nv(x) satis�es the discrete heat equation and, hence, can be compared to 	An (x) by usingthe parabolic comparison principle (see Section 7 for details). Another proof of (E) =) (	) canbe obtained by using the probabilistic method of Barlow and Bass [5], [6], [7].Before we consider the proof of the lower bound (LE), let us introduce the following condi-tions.The near-diagonal lower estimatepn(x; y) + pn+1(x; y) � cn��=�, if d(x; y)� �n1=� ; (NLE)for some positive constant �. Obviously, (NLE) is equivalent to (LE) in the range d(x; y) ��n1=�.As an intermediate step, we will use the following diagonal lower estimate for the killedrandom walk: pB(x;R)2n (x; x) � cn��=�; if n � "R� ; (DLE)for some positive constant ":We say that the Harnack inequality holds on (�; �) if, for any ball B(x; 2R) � � and for anynon-negative function u in B(x; 2R) which is harmonic in B(x; 2R),maxB(x;R)u � H minB(x;R)u ; (H)for some constant H � 1. The Harnack inequality re
ects certain homogeneity of the graph.For example, it holds for ZD with the standard weight but fails on the connected sum of twocopies of ZD as well as on a binary tree.The scheme of the proof of (V ) + (G) =) (LE) is shown on the diagram below. From theprevious diagram, we know already that the conditions (FK) and (E) follow from (V ) + (G),
13



as well as the implications (FK) =) (DUE) and (E) =) (	).(V ) + (G)+Prop:5:5;6:3z }| {(FK) (E) (G)+Prop:5:1 +Prop:7:1 +Prop:10:1(DUE)+Prop:12:3[deriv] (	) + (V )| {z }+Prop:9:1(DLE) + (E) (H)+Prop:11:2[osc]| {z }+Prop:13:1(NLE) + (V )| {z }+Prop:13:2(LE)The central point in the diagram is Proposition 13.1 where (NLE) is obtained from (DUE),(DLE), (E) and (H). The proof goes through the intermediate steps which are denoted hereby [osc] and [deriv]. The former refers to the oscillation inequality (11.7) obtained from (H)in Propositions 11.1 and 11.2, and the latter refers to the upper estimate (12.5) for jpn+2 � pnjobtained from (DUE) in Proposition 12.3.The idea of obtaining (NLE) by means of an elliptic Harnack inequality seems to haveappeared independently in the papers by Auscher [2], [3] and Barlow { Bass [6], [7], [8] (see alsoa recent preprint by Hebisch and Salo�-Coste [37]). Basically, one views the heat equation forthe heat kernel as an elliptic equation with a non-trivial right-hand side:�(pn + pn+1) = f; where f = pn+2 � pn:The elliptic Harnack inequality and the upper bound for E(x; r) allow to estimate the oscillationof pn + pn+1 via f (in the continuous setting, this argument is classical and is due to Moser[48]). On the other hand, the on-diagonal upper bound for pn implies a suitable estimate forthe discrete time derivative pn+2�pn (the fact that estimates of the time derivatives of the heatkernel can be obtained from (DUE) is well-known in the context of manifolds and goes backto Cheng { Li { Yau [17] and Davies [25], [26]; see also [33]). Having an upper bound for theoscillation of pn + pn+1 and the on-diagonal lower bound for pn + pn+1, one gets (NLE). Thechaining argument for the implication (NLE) + (V ) =) (LE) is nowadays standard and goesback to Aronson [1].The method of obtaining (DLE) from (	) and (V ) used in Proposition 9.1, is well known.Its various modi�cations can be found in [6], [11], [21], [23], [47], [54] and possibly in otherplaces.The claim that the Green kernel estimate (G) implies the elliptic Harnack inequality (H)would not surprise experts. In the context of the uniformly elliptic operators in RD, this was�rst observed by Landis [45, p.145-146] and then was elaborated by Krylov { Safonov [42] andFabes { Stroock [28]. However, this claim becomes rather non-trivial for arbitrary graphs (andmanifolds) because of topological di�culties. We provide here a new, simple and general proofof the implication (G) =) (H), which is based on a potential theoretic approach of Boukricha[12].Finally, the converse implication (UE)+ (LE) =) (V )+ (G) is quite straightforward and isproved in Proposition 15.1. 14



As a consequence of the above diagrams, we see that the following equivalence takes places:(FK) + (V ) + (E) + (H)() (UE) + (LE):It is possible to show that this equivalence is true also for recurrent manifolds. Furthermore,the Faber-Krahn inequality (FK) turns out to follow from (V ) + (E) + (H) so that(V ) + (E) + (H)() (UE) + (LE): (4.2)The condition (H) ensures here a necessary homogeneity of the graph whereas (V ) and (E)provide the exponents � and �, respectively.Another consequence of the proof is that(V ) + (UE) + (H)() (UE) + (LE) (4.3)(see Remark 15.1). There is a number of conditions given in terms of capacities, eigenvaluesetc., which can replace (E) or (UE) in (4.2) and (4.3), respectively. In the presence of (V ) and(H), the purpose of the other condition is to recover the exponent � in (UE) and (LE). Notethat if � = 2 then (UE) in (4.3) can be replaced by (DUE) (cf. [37]).The complete proofs of (4.2), (4.3) and other related statements will be given elsewhere.5 The Faber-Krahn inequality and on-diagonal upper boundsRecall that a Faber-Krahn inequality holds on (�; �) if there are constants c > 0 and � > 0 suchthat, for all non-empty �nite sets A � �,�1(A) � c�(A)�1=� (FK)We discuss here relationships between eigenvalues estimates like (FK) and estimates of theGreen kernel, heat kernel and volume growth. The outcome will be the following implications(V ) + (G) =) (FK) =) (DUE);which are contained in Propositions 5.5 and 5.1, respectively, and which constitute a part of theproof of Theorem 2.1.Proposition 5.1 Let (�; �) satisfy (p0), and let � be a positive number. Then the followingconditions are equivalent:(a) The Faber-Krahn inequality (FK).(b) The on-diagonal heat kernel upper bound, for all x 2 � and n � 1,pn(x; x) � Cn�� : (DUE)(c) The estimate of the level sets of the Green kernel, for all x 2 � and t > 0,�fy : g(x; y) > tg � Ct� ���1 (5.1)provided � > 1. 15



The analogue of Proposition 5.1 for manifolds was proved by Carron [14]. The equivalence(a) () (b) was proved also in [31] for heat kernels on manifolds, and in [20, Proposition V.1]for random walks satisfying in addition the condition infx P (x; x) > 0.We will provide detailed proof only for the implications (a) =) (b) and (c) =) (a) which weuse in this paper. The implication (b) =) (c) can be proved in the following way. By theoremof Varopoulos [61], (DUE) implies a Sobolev inequality. Then one applies argument of [14,Proposition 1.14] (adapted to the discrete setting) to show that (5.1) follows from the Sobolevinequality.Note that our proof of (a) =) (b) goes through for any � > 0. If � > 1 then one could applythe approach of [14] using a Sobolev inequality as an intermediate step between (a) and (b). Ingeneral, we use instead a Nash type inequality which will be obtained in the following lemma.Lemma 5.2 Let (�; �) be a weighted graph (which is not necessarily connected). Assume that,for any non-empty �nite set A � �, �1(A) � �(� (A)); (5.2)where �(�) is a non-negative non-increasing function on (0;1). Let f(x) be a non-negativefunction on � with �nite support. DenoteXx2� f(x)�(x) = a and Xx2� f2(x)�(x) = b:Then, for any s > 0, 12Xx�y(rxyf)2�xy � (b� 2sa)�(a=s): (5.3)Proof. If b� 2sa < 0 then (5.3) trivially holds. So, we can assume in the sequel thats � b2a: (5.4)Since b � amax f; (5.4) implies s < max f and, therefore, the following setAs = fx 2 � : f(x) > sg :is non-empty (see Fig. 2).
A

As={f > s}

f(x)

Γ Figure 2 Sets A and AsConsider function h = (f � s)+. This function belongs to c0(As) whence we obtain, by thevariational property (3.3) of eigenvalues,12Xx�y(rxyh)2�xy � �1(As)Xx2�h2(x)�(x): (5.5)16



Let us estimate all terms in (5.5) via f . We start with the obvious inequalityf2 � (f � s)2+ + 2sf = h2 + 2sf;which holds for any s � 0. It implies h2 � f2 � 2sf whenceXx2�h2(x)�(x) � b� 2sa: (5.6)The de�nition of As implies �(As) � a=s whence, by (5.2)�1(As) � � (� (As)) � �(a=s): (5.7)Clearly, we have also Xx�y(rxyh)2�xy �Xx�y(rxyf)2�xy :Combining this with (5.7), (5.6) and (5.5), we obtain (5.3).We will apply Lemma 5.2 for function �(v) = cv�1=� : Choosing s = b4a in (5.3) we obtain12Xx�y(rxyf)2�xy � c a�2=�b1+1=� : (5.8)This is a discrete version of the Nash inequality (cf. [49], [13]).Proof of (a) =) (b) in Proposition 5.1.STEP 1. Let f be a non-negative function on � with �nite support. Denote for simplicityb =Xx2� f2(x)�(x) and b0 =Xx2�[Pf(x)]2�(x);where P is the Markov operator of (�; �). Then we haveb� b0 = (f; f)L2(�;�) � (Pf; Pf)L2(�;�) = (f; (I � P2)f)L2(�;�):Clearly Q := P2 is also a Markov operator on � reversible with respect to �, and it is associatedwith another structure of a weighted graph on the set �. Denote this weighted graph by (��; ��).As a set, �� coincides with � and the measures � and �� on vertices are the same. On the otherhand, points x; y are connected by an edge on �� if there is a path of length 2 from x to y in �,and the weight ��xy on edges of �� is de�ned by��xy = Q(x; y)�(x):Denote by �� the Laplace operator of (��; ��). Then �� = P2 � I and, by the Green formula(3.2), b� b0 = �Xx2� f(x)��f(x)�(x) = 12 Xx;y2�(rxyf)2��xy: (5.9)STEP 2. If A is a non-empty �nite subset of � then [22, Lemma 4.3] says that3��1(A) � �1(A) ; (5.10)3The proof of (5.10) is based on the variational property (3.3) and on the fact that all eigenvalue of ��Abelong to the interval [�1(A); 2� �1(A)]. 17



where ��1(A) is the �rst eigenvalue of ���A. By the Faber-Krahn inequality (FK) for the graph(�; �), we obtain ��1(A) � c�(A)�1=� : (5.11)Since (p0) and Proposition 3.1 imply�(A) �Xx2AV (x; 2) � CXx2A�(x) = C�(A) = C��(A);(5.11) yields (FK) for the graph (��; ��).Remark 5.1 The only place where (p0) is used in the proof of (a) =) (b) is to ensure that�(A) � C�(A): If this inequality holds for another reason then the rest of the proof goes in thesame way.STEP 3. For some �xed y 2 �, denote fn(x) = pn(x; y) andbn =Xx2� f2n(x)�(x) = p2n(y; y):Then fn+1 = Pfn and we obtain by (5.9)bn � bn+1 = 12 Xx;y2�(rxyfn)2��xy :The graph (��; ��) satis�es (FK) so that Lemma 5.2 can be applied. SinceXx2� fn(x)�(x) =Xx2�Pn(x; y) = 1 ;(5.8) yields 12 Xx;y2�(rxyfn)2��xy � c b1+1=�n ;whence bn � bn+1 � cb1+1=�n : (5.12)In particular, we see that bn > bn+1.Next we apply an elementary inequality�(x� y) � x� � y�x��1 + y��1 ; (5.13)which is true for all x > y > 0 and � > 0. Taking x = b�1=�n+1 and y = b�1=�n , we obtain from(5.13) and (5.12)�(b�1=�n+1 � b�1=�n ) � b�1n+1 � b�1nb�(��1)=�n+1 + b�(��1)=�n = bn � bn+1b1=�n+1bn + b1=�n bn+1 � cb1+1=�n2b1+1=�n = c2 ;whence b�1=�n+1 � b�1=�n � c2� = const:Summing up this inequality in n, we conclude b�1=�n � cn and bn � Cn�� :18



Since bn = p2n(y; y), we have proved that, for all y 2 � and n � 1,p2n(y; y) � Cn�� ; (5.14)which is (DUE) for all even times.STEP 4. By the semigroup identity, we have, for any 0 < k < m,pm(x; y) =Xz2� pm�k(x; z)pk(z; y)�(z): (5.15)In particular, if m = 2n, k = n and y = x thenp2n(x; x) =Xz2� p2n(x; z)�(z): (5.16)On the other hand, (5.15), the Cauchy{Schwarz inequality and (5.16) implyp2n(x; y) =Xz2� pn(x; z)pn(z; y)�(z) � "Xz2� p2n(x; z)�(x)#12 "Xz2� p2n(y; z)�(z)#12 ;whence p2n(x; y) � p2n(x; x)1=2p2n(y; y)1=2: (5.17)Together with (5.14), this yields p2n(x; y) � Cn�� , for all x; y 2 �. This implies (DUE) also forodd times if we observe that, by (5.15) and (2.2),p2n+1(x; y) =Xz2� p2n(x; z)P (z; y)� maxz2� p2n(x; z): (5.18)Proof of (c)) (a) in Proposition 5.1. Let A be a non-empty �nite subset of � and letf 2 c0(A) be the �rst eigenfunction of ��A. We may assume that f � 0. Let us normalize fso that max f = 1 and let x0 2 A be the maximum point of f . The equation ��Af = �1(A)fimplies, by (3.7), f(x) = �1(A)Xy2AGA(x; y)f(y)whence, for x = x0, 1 = �1(A)Xy2AGA(x0; y)f(y) � �1(A)Xy2AGA(x0; y)and �1(A) � 0@maxx2A Xy2AGA(x; y)1A�1 : (5.19)On the other hand, for any x 2 A,Xy2AGA(x; y) =Xy2A gA(x; y)�(y) = Z 10 � fgA(x; �) > tgdt:Fix some t0 > 0 and estimate the integral above using (5.1), gA � g and the fact that� fgA(x; �) > tg � �(A):19



Then we obtainXy2AGA(x; y) � Z t00 �(A)dt+ Z 1t0 Ct� ���1 dt = �(A)t0 + Ct� 1��10 :Let us choose t0 ' �(A)� ��1� to equate the two terms on the right-hand side, whenceXy2AGA(x; y) � C�(A)1=� : (5.20)Finally, (5.20) and (5.19) imply (FK).The second result of this section will be preceded by two lemmas. We say that a weightedgraph (�; �) satis�es the doubling volume condition ifV (x; 2R) � CV (x;R); 8x 2 �; R > 0: (D)Clearly, (D) is a weaker assumption than (V ).Lemma 5.3 If (�; �) satis�es (D) then, for all x 2 � and R > 0,�(x;R) � CR2 (5.21)Proof. Let us apply the variational property (3.3) with the test functionf(y) = (R� d(x; y))+ 2 c0(B(x;R)):Since jryzf j � 1; (3.3) and (D) imply�(x;R) � 12Py�z(ryzf)2�yzPy f2(y)�(y) � CV (x;R)R2V (x;R=2) � C 0R2 ;which was to be proved.The next lemma was proved in [57] but we give here a shorter proof.Lemma 5.4 Let (�; �) satisfy (p0). If (V ) and (G) hold, with some positive parameters � and
, then �� 
 � 2 :Proof. By (5.19), we have�(x;R)�1 � maxy2B(x;R) Xz2B(x;2R)G(y; z): (5.22)By (G) and Proposition 3.2, G(y; y) is uniformly bounded from above. Using (G) to estimateG(y; z) for y 6= z and (V ), we obtainXz2B(y;2R)G(y; z) = G(y; y) + dlog2ReXi=�1 Xz2B(y;2�iR)nB(y;2�i�1R) g(y; z)�(z)� C + C dlog2ReXi=�1 �2�iR��
 V (y; 2�iR)� C 241 + dlog2ReXi=�1 �2�iR���
35 : (5.23)20



A straightforward computation of the sum (5.23) yields, for large R,Xz2B(y;2R)G(y; z) � C8<: R��
 ; � > 
;log2R; � = 
;1; � < 
: (5.24)Combining (5.22) and (5.24), we obtain�(x;R) � c8<: R�(��
); � > 
;(log2R)�1 ; � = 
;1; � < 
: (5.25)By Lemma 5.3, we have (5.21) which together (5.25) implies �� 
 � 2:Proposition 5.5 Let (�; �) satisfy (p0). If (V ) and (G) hold, with some positive parameters �and 
, then the Faber-Krahn inequality (FK) holds with the parameter � = ���
 .Proof. Note that, by Lemma 5.4, we have � > 
 so that � is positive and, moreover, � > 1.Let us verify that �fy : g(x; y) > tg � const t��=
 : (5.26)Then (5.1) would follow with � = ���
 , which implies (FK), by Proposition 5.1.The upper bound in (G) and (p0) imply that, for all x; y (including the case x = y - seeProposition 3.2), g(x; y)� Cmin(1; d(x; y)�
): (5.27)If t � C then the set fy : g(x; y)> tg is empty, and (5.26) is trivially true.Assume now t � C. Then (5.27) implies�fy : g(x; y) > tg � �fy : d(x; y) < (t=C)�1=
g = V (x; (t=C)�1=
):Since R := (t=C)�1=
 � 1, we can apply here the upper bound from (V ) and obtain (5.26).6 The mean exit time and the Green kernelThe purpose of this section is to verify the part (V ) + (G) =) (E) of the proof of Theorem 2.1.Recall that (E) stands for the conditionE(x;R) ' R�; 8x 2 �; R � 1: (E)Alongside with the mean exit time EA(x); consider and the maximal mean exit time EA de�nedby EA := supy EA(y): (6.1)If A = B(x;R) then we write E(x;R) := EB(x;R): We will use also the following hypothesis:E(x;R) � CE(x;R); 8x 2 �; R > 0 (E)21



Proposition 6.1 The upper bound in (E) implies, for all x 2 � and R � 1,E(x;R) � CR�: (6.2)The lower bound in (E) implies E(x;R) � cR�: (6.3)Consequently, (E) implies (E) and E(x;R) ' R�: (6.4)Proof. To show (6.2), let us observe that, for any point y 2 B(x;R), we have B(x;R) �B(y; 2R), whenceE(x;R) = supy2B(x;R)EB(x;R)(y) � supy2B(x;R)EB(y;2R)(y) = supy2B(x;R)E(y; 2R)� CR�:The lower bound (6.3) is obvious by E � E. Finally, (E) follows from (E) and (6.4) if R � 1,and (E) holds trivially if R < 1.Proposition 6.2 For any non-empty �nite set A � �, we have�1(A) � (EA)�1: (6.5)Proof. Indeed, this is a combination of (5.19) and de�nition of E (see (3.8) and (6.1)).The next statement was proved in [57].Proposition 6.3 Let (�; �) satisfy (p0). If (V ) and (G) hold, with some positive parameters �and 
, then (E) holds as well with � = �� 
:Proof. Denote A = B(x;R). Applying (3.8), the obvious inequality gA � g, as well as (V )and (G), we obtain (cf. (5.23) and (5.24))E(x;R) =Xy2A gA(x; y)�(y) �Xy2A g(x; y)�(y) � CR��
 :Observe that, by Lemma 5.4, we know already that � > 
.For the lower bound of E(x;R), let us prove thatgA(x; y) � c d(x; y)�
; 8y 2 B(x; "R) n fxg (6.6)provided " > 0 is small enough. Consider the functionu(y) = g(x; y)� gA(x; y)which is harmonic in A. By the maximum principle, its maximum is attained at the boundaryof A whence, by (G), 0 � u(y) � CR�
 :Therefore, gA(x; y) = g(x; y)� u(y) � c d(x; y)�
 � CR�
 : (6.7)If R is large enough and if d(x; y) � "R with a small enough " then the second term in (6.7) isabsorbed by the �rst one whence (6.6) follows.22



Summing up (6.6) over y we obtain (cf. (5.23) and (5.24))E(x;R) =Xy2A gA(x; y)�(y) � Xy2B(x;"R)nfxg gA(x; y)�(y) � cR��
 :If R is not big enough then the above argument does not work. However, in this case weargue as follows. If the random walk starts at x then TB(x;R) � R. Hence, we always haveE(x;R) = Ex(TB(x;R)) � R which yields the lower bound in (E), provided R � const.Assuming that (V ) and (E) hold, there are the following general relations between theexponents � and �: if the graph transient then 2 � � � � and if it is recurrent then 2 � � � �+1- see [57]. See also [58], [59] for various de�nitions of dimensions of graphs.7 Sub-Gaussian termThe following statement is crucial for obtaining the o�-diagonal upper bound of the heat kernel.It contains the part (E) =) (	) of the proof of Theorem 2.1.Proposition 7.1 Assume that the graph (�; �) possesses the property (E). Then, for all x 2 �,R > 0 and n � 1, we have 	n(x;R) � C exp ��R�Cn� 1��1! : (	)We start with the following lemma.Lemma 7.2 Assume that the hypothesis (E) holds on (�; �). Let A = B(x0; r) be an arbitraryball on � and let v be a function on A such that 0 � v � 1. Suppose that v satis�es in A theequation �v = �v; (7.1)where � is a constant such that � � (EA)�1: (7.2)Then v(x0) � 1� " ; (7.3)where " > 0 depends on the constants in the condition (E) (see Fig. 3).
Figure 3 The value of the function v at the point x0 does not exceed 1� ".23



Proof. Denote for simplicity u(x) = EA(x) and recall that u 2 c0(A) and �u = �1 in A(cf. (3.9)). Denote also �0 := (EA)�1 = 1max u :Consider the function w = 1� �02 u. Then 12 � w � 1 and, in A,�w = �02 � �0w � �w:Since v � 1 and w = 1 outside A, the maximum principle for the operator � � � implies thatv � w in A. In particular,v(x0) � w(x0) = 1� �02 u(x0) � 1� u(x0)2maxu:The hypothesis (E) yields u(x0)maxu = E(x0; r)E(x0; r) � c;whence (7.3) follows.Lemma 7.3 Assume that (�; �) satis�es (E). Let A = B(x0; R) be an arbitrary ball on �, andlet v be a function on A such that 0 � v � 1. If v satis�es in A the equation (7.1) with aconstant � such that CR�� � � < � (7.4)then v(x0) � exp��c�1=�R� : (7.5)Here � is an arbitrary constant, C is some constant depending on the condition (E), and c > 0is some constant depending on � and on the condition (E).Proof. The hypothesis (E) implies (E) and E(x;R) ' R� (see Proposition 6.1). Choosethe constant C in (7.4) so big that the lower bound in (7.4) implies � � E(x;R)�1. Then, byLemma 7.2, we obtain v(x0) � 1� ": If we have in addition�1=�R � const (7.6)then (7.5) is trivially satis�ed. In particular, if R is in the bounded range then (7.6) is truebecause � is bounded from above by (7.4).Hence, we may assume in the sequel thatR > C 0 and � > C 00R�� ; (7.7)with large enough constants C 0 and C00 (in particular, C 00 � C). The point of the present lemmais that it improves the previous one for this range of R and �. Choose a number r from theequation � = Cr�� , where C is the same constant as in (7.4). The above argument shows thatLemma 7.2 applies in any ball of radius r. Let xi, i � 1, be a point in the ball B(x0; (r+1)i) inwhich v takes the maximum value in this ball, and denote mi = v(xi) (see Fig. 4). For i = 0,we set m0 = v(x0). 24



Figure 4 The points xi where v(x) takes the maximum values.For each i � 0, consider the ball Ai = B(xi; r). SinceAi � B(xi; r+ 1) � B(x0; (r+ 1)(i+ 1));we have maxAi v � mi+1:Applying Lemma 7.2 to the function v=mi+1 in the ball Ai, we obtainmi � (1� ")mi+1:Iterating this inequality k := bR=(r+ 1)c times and using mk � 1, we concludev(x0) = m0 � (1� ")k: (7.8)By the conditions (7.7) and (7.4) and by the choice of r, we havek ' Rr ' �1=�R;so that (7.8) implies (7.5).Lemma 7.4 Assume that (�; �) satis�es (E). Let A = B(x0; R) be an arbitrary ball in � , andlet wn(x) be a function in A�N such that 0 � w � 1. Suppose that w solves in A�N the heatequation wn+1 � wn = �wn (7.9)with the initial data w0 � 0 in A (see Fig. 5). Then, for all n � 1,wn(x0) � exp �c�R�n � 1��1 + 1! : (7.10)
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Figure 5 The value of the function w at the point (x0; n) is a�ected by the initial valuew = 0 and by the boundary condition w � 1.Proof. Consider �rst two trivial cases. If R� � Cn then (7.10) is true just by w � 1provided c is small enough. Since �w(x) depends only on the immediate neighbors of x, onegets by induction that wk(x) = 0 for all x 2 B(x0; R� k): Therefore, if R > n then wn(x0) = 0;and (7.10) is true again.Hence, we may assume in the sequel that, for a large enough C,Cn1=� < R � n: (7.11)Fix some � > 0 and �nd a function v(x) on A solving the boundary value problem� �v = �v in A;v = 1 in A nA:The function un(x) := (1 + �)nv(x) solves the heat equation (7.9) and satis�es the followingboundary conditions: un(x) � 1 for x 2 A n A and u0(x) � 0 for x 2 A. By the paraboliccomparison principle, we have w � u. Assume for a moment that � satis�es the hypothesis (7.4)of Lemma 7.3. Then we estimate v(x0) by (7.5) and obtainwn(x0) � (1 + �)nv(x0) � exp��n� c�1=�R� :Now choose � from the condition c�1=�R = 2�n, that is,� = �cR2n� ���1 : (7.12)As follows from (7.11), this particular � satis�es (7.4). Therefore, the above application ofLemma 7.3 is justi�ed, and we obtainwn(x0) � exp(��n) = exp �c0�R�n � 1��1! ;�nishing the proof.Proof of Proposition 7.1. Denote A = B(x0; R). By (3.11), the function wn(x) := 	An (x)satis�es all the hypotheses of Lemma 7.4. Hence, (	) follows from (7.10).8 O�-diagonal upper bound of the heat kernelHere we prove the following implication(FK) + (E) =) (UE) (8.1)which will �nish the proof of the heat kernel upper bound in Theorem 2.1. Indeed, togetherwith the implications (V ) + (G) Prop:5:5=) (FK)and (V ) + (G) Prop:6:3=) (E)(8.1) yields the part (V ) + (G) =) (UE) of Theorem 2.1.26



Proposition 8.1 On any graph (�; �), we have(DUE) + (	)=)(UE): (8.2)In particular, if (p0) holds on (�; �) then(FK) + (E) =) (UE) (8.3)Proof. By Proposition 5.1, (p0) and (FK) imply the (DUE). By Proposition 7.1, (E)implies (	). Hence, the implication (8.3) is a consequence of (8.2).To prove (8.2), let us �x some points x; y 2 � and denote r = d(x; y)=2. Since the ballsB(x; r) and B(y; r) do not intersect, the semi-group identity (5.15) and the symmetry of theheat kernel imply, for any triple of non-negative integers k, m, n such that k +m = n,pn(x; y) � Xz=2B(x;r)pm(x; z)pk(z; y)�(z) + Xz=2B(y;r) pm(x; z)pk(z; y)�(z)� supz pk(z; y) Xz=2B(x;r)Pm(x; z) + supz pm(x; z) Xz=2B(y;r)Pk(y; z)= supz pk(y; z)Px (Xm =2 B(x; r)) + supz pm(x; z)Py (Xk =2 B(x; r)) :As follows from the de�nition (3.10) of 	,Px (Xm =2 B(x; r)) � 	m(x; r):Hence, we obtain the following general inequality, which is true for all reversible random walks:pn(x; y) � supz pk(y; z)	m(x; r) + supz pm(x; z)	k(y; r): (8.4)As follows from (5.17), the diagonal upper bound (DUE) implies, for all x; y 2 �,pn(x; y) � Cn��=�; (8.5)provided n is even. Using inequality (5.18), we see that (8.5) holds also for odd n. Assumingn � 2, choosing k ' m ' n=2 and applying (8.5) and (	) to estimate the right-hand side of (8.4),we obtain (UE). If n = 1 then (UE) follows trivially from (8.5) and the fact that pn(x; y) = 0whenever d(x; y)> n.9 On-diagonal lower boundIn this section, we prove the part (	) + (V ) =) (DLE) of Theorem 2.1.Proposition 9.1 Assume that the hypothesis (	) holds on (�; �). For arbitrary x 2 � andR > 0, denote A = B(x;R). Then the following on-diagonal lower bound is truepA2n(x; x) � cV (x; Cn 1� ) ; (9.1)provided n � "R�, where " is a su�ciently small positive constant depending only on the con-stants from (	).If in addition (V ) holds thenpA2n(x; x) � cn��=�; 8n � "R� : (DLE)27



Remark 9.1 Since p2n � pA2n for any A = B(x;R), inequality (DLE) implies p2n(x; x) �cn��=�, for all positive integers n.Proof. Let us �x some r 2 (0; R) and denote B = B(x; r). Since pB � pA, it will su�ce toprove (9.1) for pB instead of pA, for some r < R. The semigroup identity (5.15) for pB and theCauchy-Schwarz inequality implypB2n(x; x) =Xz2B pBn (x; z)2�(z) � 1�(B)  Xz2B pBn (x; z)�(z)!2 : (9.2)Let us observe that Xz2B pBn (�; z)�(z) + 	Bn (�) = 1: (9.3)Indeed, the �rst term in (9.3) is the probability that the random walk Xk stays in B up to thetime k = n whereas 	Bn is the probability of the opposite event.By the hypothesis (	), we have	Bn (x) = 	n(x; r) � C exp �� r�Cn� 1��1! : (9.4)Choosing r = Cn1=� for large enough C and assuming n � "R� for su�ciently small " > 0 (thelatter ensures r < R) we obtain from (9.4) 	n(x; r) � 12 whence, by (9.3),Xz2B pBn (x; z)�(z) � 12 :Therefore, (9.2) yields pB2n(x; x) � 1=4V (x; r) = 1=4V (x; Cn1=�) ;�nishing the proof.10 The Harnack inequality and the Green kernelRecall that the weighted graph (�; �) satis�es the elliptic Harnack inequality if, for all x 2�; R > 0 and for any non-negative function u in B(x; 2R) which is harmonic in B(x; 2R),maxB(x;R)u � H minB(x;R)u ; (H)with some constant H > 1. In this section we establish that (H) is implied by the condition(G). Recall that the latter refers tog(x; y)' d(x; y)�
; 8x 6= y: (G)Consider the following annulus Harnack inequality for the Green kernel: for all x 2 � andR > 1, maxy2A(x;R) g(x; y) � C miny2A(x;R) g(x; y) (HG)where A(x;R) := B(x;R) nB(x;R=2): 28



Proposition 10.1 Assume that (p0) hold and the graph (�; �) is transient. Then(G) =) (HG) =) (H):Since the implication (G) =) (HG) is obvious, we need to prove only the second implication.The main part of the proof is contained in the following lemma.Lemma 10.2 Let U0 � U1 � U2 � U3 be a sequence of �nite sets in � such that Ui � Ui+1,i = 0; 1; 2. Denote A = U2 n U1, B = U0 and U = U3. Then, for any function u which isnon-negative in U2 and harmonic in U2, we havemaxB u � HminB u ; (10.1)where H := maxx2B maxy2B maxz2A GU(y; z)GU(x; z) (10.2)(see Fig. 6).
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UFigure 6 The sets B = U0, A = U2 n U1 and U = U3Remark 10.1 Note that no a priori assumption has been made about the graph (�; �) (exceptfor connectedness and unboundedness). If the graph is transient then, by exhausting � by asequence of �nite sets U , we can replace GU in (10.2) by G. Note also that, without loss ofgenerality, one can take U2 = U1.Proof. The following potential-theoretic argument is borrowed from [12]. We use thenotation of Section 3. Given a non-negative harmonic function u in U2, denote by Su thefollowing class of superharmonic functions:Su = �v : v � 0 in U; �v � 0 in U , and v � u in U1	 :De�ne the function w on U by w(x) = min fv(x) : v 2 Sug : (10.3)Clearly, w 2 Su. Since the function u itself is also in Su, we have w � u in U . On the other hand,by de�nition of Su, w � u in U1, whence we see that u = w in U1 (see Fig. 7). In particular, itsu�ces to prove (10.1) for w instead of u. 29



U1 UU1

_Figure 7 The function u, a function v 2 Su and the function w = minSu v. The latter isharmonic in U1 and in U n U1.Let us show that w 2 c0(U). Indeed, let v(x) = EU(x). Then, by (3.9) and the strongminimum principle, v is superharmonic and strictly positive in U . Hence, for a large enoughconstant C, we have Cv � u in U1 whence Cv 2 Su and w � Cv. Since v = 0 in U n U , thisimplies w = 0 in U n U and w 2 c0(U).Denote f := ��w and observe that f � 0 in U . Since w 2 c0(U), we have, for any x 2 U ,w(x) =Xz2U GU(x; z)f(z): (10.4)Next we will prove that f = 0 outside A so that the summation in (10.4) can be restricted toz 2 A. Given that much, we obtain, for all x; y 2 B,w(y)w(x) = Pz2A GU(y; z)f(z)Pz2A GU(x; z)f(z) � H;whence (10.1) follows.We are left to verify that w is harmonic in U1 and outside U1. Indeed, if x 2 U1 then�w(x) = �u(x) = 0;because w = u in U1. Let �w(x) 6= 0 for some x 2 U n U1. Since w is superharmonic, we have�w(x) < 0 and w(x) > Pw(x) =Xy�x P (x; y)w(y):Consider the function w0 which is equal to w everywhere in U except for the point x, and w0at x is de�ned to satisfy w0(x) =Xy�xP (x; y)w0(y):Clearly, w0(x) < w(x), and w0 is superharmonic in U . Since w0 = w = u in U1, we have w0 2 Su.Hence, by the de�nition (10.3) of w, w � w0 in U which contradicts w(x) > w0(x).Proof of Proposition 10.1. Now we assume (HG) and prove (H). Given any ballB(x0; 2R) of radius R > 4 and a non-negative harmonic function u in B(x0; 2R); de�ne thesequence of radii R0 = R, R1 = 32R and R2 = 2R and denote Ui = B(x0; Ri) for i = 0; 1; 2 andU3 = �. By Lemma 10.2, we have the inequality (10.1) which will imply (H) provided we canshow that the Harnack constant H from (10.2) is bounded from above, uniformly in x0 and R.Indeed, if x; y 2 B(x0; R) and z 2 A = B(x0; 2R) n B(x0; 32R) then both distances d(z; x) andd(z; y) are between R=2 and 7R=2. By iterating (HG) in the annuli centered at z, we obtainG(y; z)G(x; z) = g(z; y)g(z; x) � const;30



whence we see that H is indeed uniformly bounded from above.The condition R > 4, which we have imposed above, ensures that Ui � Ui+1, which isrequired for Lemma 10.2. If R � 4 then (H) simply follows from (p0) and Proposition 3.2.11 Oscillation inequalitiesFor any non-empty �nite set U and a function u on U , denoteoscU u := maxU u�minU uThe purpose of this section is to prove the estimate (11.7) below which will provide the step(H) =) [osc] of the prove of Theorem 2.1.Proposition 11.1 Assume that the elliptic Harnack inequality (H) holds on (�; �). Then, forany " > 0, there exists � = �(";H) < 1 such that, for any ball B(x;R) and for any function ude�ned in B(x;R) and harmonic in B(x;R), we haveoscB(x;�R) u � " oscB(x;R) u : (11.5)Proof. Fix a ball B(x;R) and denote for simplicity Br = B(x; r). Let us prove that, forany r 2 (0; R=3], oscBr u � (1� �) oscB3r u; (11.6)where � = �(H) 2 (0; 1). Then (11.5) follows from (11.6) by iterating.If r � 1 then the left hand side of (11.6) vanishes, and (11.6) is trivially satis�ed. If r > 1then B2r � B3r, and the function u � minB3r u is non-negative in B2r and harmonic in B2r.Applying the Harnack inequality (H) to this function, we obtainmaxBr u�minB3r u � H �minBr u�minB3r u�and oscBr u � (H � 1)�minBr u�minB3r u� :Similarly, we have oscBr u � (H � 1)�maxB3r u�maxBr u� :Summing up these two inequalities, we concludeoscBr u � C�oscB3r u� oscBr u� ;whence (11.6) follows.Proposition 11.2 Assume that the elliptic Harnack inequality (H) holds on (�; �). Let u 2c0(B(x;R)) satisfy in B(x;R) the equation �u = f . Then, for any positive r < R,oscB(x;�r) u � 2 �E(x; r) + "E(x;R)�max jf j ; (11.7)where � and " are the same as in Proposition 11.1.31



Proof. Denote for simplicity Br = B(x; r). By de�nition of the Green function, we haveu(y) = � Xz2BRGBR(y; z)f(z)whence, using (3.8), we obtain max juj � E(x;R)max jf j :Let v 2 c0(Br) solve the Dirichlet problem �v = f in Br (see Fig. 8). In the same way, wehave max jvj � E(x; r)max jf j :
Figure 8 The functions u and v in the case f � 0.The function w = u � v is harmonic in Br whence, by Proposition 11.1,oscB�r w � " oscBr w:Since w = u on Br nBr, the maximum principle implies thatoscBr w = oscBrnBr w = oscBrnBr u � 2max jujHence, oscB�r u �oscB�r v+ oscB�r w � 2max jvj+ 2"max juj � 2 �E(x; r) + "E(x;R)�max jf j ;which was to be proved.12 Time derivative of the heat kernelThe purpose of this section is to show that an on-diagonal upper bound of the heat kernel impliesa certain upper bound of its time derivative. Given a function un(x) on � � N, by \the timederivative" of u we mean the di�erence@nu := un+2 � un :Let us emphasize that this is not un+1 � un.The main result of this section is Proposition 12.3 which constitutes the part (DUE) =)[deriv] of the proof of Theorem 2.1. 32



Proposition 12.1 Let A be a non-empty �nite subset of � and f be a function on A. De�neun(x) = PAn f(x)Then, for all integers 1 � k � n,k@nukL2(A;�) � 1k kun�kkL2(A;�) :Proof. The proof follows the argument from [17]. Let �1,�2; :::; �jAj be the eigenfunctions ofthe Laplace operator ��A and �1,�2,...,�jAj be the corresponding eigenvalues. Let us normalize�i's to form an orthonormal basis in L2(A; �). The function f can be expanded in this basisf =Xi ci�i:Since PA = I � (��A), we obtain un =Xi �ni �i (12.1)where �i := 1� �i are eigenvalues of the Markov operator PA.In particular, we have kunk2L2(A;�) =Xi �2ni :From (12.1), we obtain un � un+2 =X�1� �2i ��ni �iand kun � un+2k2L2(A;�) =Xi �1� �2i �2 �2ni : (12.2)Note that j�ij � 1 and, hence, �2i 2 [0; 1]. For any a 2 [0; 1], we have1 � (1 + a+ a2 + :::+ ak)(1� a) � kak(1� a)whence (1� a) ak � 1k :Applying this inequality for a = �2i , we obtain from (12.2)kun � un+2k2L2(A;�) � 1k2 Xi �2(n�k)i = 1k2 kun�kk2L2(A;�)which was to be proved.Proposition 12.2 Let A be a non-empty �nite subset of �. Then, for all x; y 2 A,��@npA(x; y)�� � 1kqpA2m(x; x)pA2(n�m�k)(y; y); (12.3)for all positive integers n;m; k such m+ k � n.33



Proof. From the semigroup identity (5.15) for pA, we obtain@npA(x; y) =Xz2A pAm(x; z)@n�mpA(z; y)�(z);whence ��@npA(x; y)�� � 

pAm(x; �)

L2(A;�) 

@n�mpA(y; �)

L2(A;�) :By Proposition 12.1, 

@n�mpA(y; �)

L2(A;�) � 1k 

pAn�m�k(y; �)

L2(A;�)for any 1 � k � n�m. Since

pAm(x; �)

2L2(A;�) =Xz2A pAm(x; z)2�(z) = pA2m(x; x);we obtain (12.3).Proposition 12.3 Suppose that (DUE) holds, that is, for all x 2 � and n � 1,pn(x; x) � Cn�� : (12.4)Then, for all x; y 2 � and n � 1, j@np(x; y)j � Cn���1: (12.5)Proof. Assume �rst n > 3. Then we can choose k and m in (12.3) so that k ' m ' n=3and n �m� k ' n=3 . As follows from (12.4), for any non-empty �nite set A � �,pA2m(x; x) � Cn�� and pA2(n�m�k)(y; y) � Cn�� ;whence, by Proposition 12.1, ��@npA(x; y)�� � Cn���1:By letting A! �, we obtain (12.5).If n � 3 then (12.5) follows from the trivial inequality j@npj � pn + pn+2 and the fact that(12.4) implies a similar bound for pn(x; y) (cf. 5.17) and (5.18)).The phenomenon that the time derivative of the heat kernel decays as n!1 faster than theheat kernel itself is well known in the context of manifolds (see, for example, [25], [26], [33]). Theanalogue of the time derivative in the setting of graphs is @np rather than pn+1 � pn. Indeed,in ZD (as well as in any bipartite graph) pn(x; x) = 0 if n is odd. Therefore, the di�erencepn+1(x; x)� pn(x; x) is equal either to pn+1(x; x) or to �pn(x; x), and, hence, decays as n!1at the same rate as pn(x; x).13 O�-diagonal lower boundAn important intermediate step in proving the lower estimate (LE) is a near-diagonal lowerestimate pn(x; y) + pn+1(x; y) � cn��=�; (NLE)34



for all x; y 2 � and n � 1 such that d(x; y)� �n1=� : (13.1)In this section, we will �nish the prove of the lower bound (LE) in Theorem 2.1 as on thefollowing diagram:(V ) + (G) =) (FK) + (V ) + (E) + (H) =) (NLE) + (V ) =) (LE):The �rst implication here is given by Propositions 5.5, 6.3 and 10.1 whereas the other two willbe proved below.Let us recall that (DLE) refers to the lower boundpB(x;R)2n (x; x) � cn��=�; 8n � "R� ; (DLE)with some small enough " > 0, and (DUE) refers to the upper boundpn(x; x) � Cn��=�: (DUE)Denote for simplicity by (E �) the upper bound in (E), that isE(x;R) � CR� ; 8x 2 �; R � 1: (E �)Proposition 13.1 For any graph (�; �) we have(DUE) + (DLE) + (E �) + (H) =) (NLE): (13.2)Consequently, if (p0) holds on (�; �) then(FK) + (V ) + (E) + (H) =) (NLE): (13.3)Proof. Let us �rst show how the second claim follows from the �rst one. Recall that, byProposition 5.1, (FK) =) (DUE), by Proposition 7.1, (E) =) (	) and, by Proposition 9.1,(	) + (V ) =) (DLE). Hence, the hypotheses of (13.3) imply the hypotheses of (13.2).To prove (13.2), �x x 2 �, n � 1 and setR = �n" �1=� ; (13.4)for a small enough positive ". So far we assume only that " satis�es (DLE) but later, one moreupper bound on " will be imposed. Denote A = B(x;R) and introduce the functionu(y) := pAn (x; y) + pAn+1(x; y):By the hypothesis (DLE), we have u(x) � cn��=� . Let us show thatju(x)� u(y)j � c2n��=�; (13.5)for all y such that d(x; y) � �n1=� , which would imply u(y) � c2n��=� , hence proving (NLE).The function u(y) is in the class c0(A) and solves the equation �u(y) = f(y) wheref(y) := pAn+2(x; y)� pAn (x; y):35



The on-diagonal upper bound (DUE) implies, by Proposition 12.3,maxy jf(y)j � Cn�=�+1 : (13.6)By (H) and Proposition 11.2, we have, for any 0 < r < R and for some � 2 (0; 1),oscB(x;�r) u � 2 �E(x; r) + "2E(x;R)�max jf j : (13.7)By Proposition 6.1, (E �) implies a similar upper bound for E. Estimating max jf j by (13.6),we obtain from (13.7) oscB(x;�r) u � Cr� + "2R�n�=�+1 :Choosing r to satisfy r� = "2R� and substituting from (13.4) n = "R�, we obtainoscB(x;�r) u � C "2R�n�=�+1 = C"n��=�;which implies oscB(x;�r) u � c2n��=� ; (13.8)provided " is small enough.Note that �r = �"2=�R = �"2=� �n" �1=� = �"1=�n1=� = �n1=�where � := �"1=�. Hence, (13.8) implies (13.5) provided d(x; y) � �n1=�, which was to be proved.The �nal step in proving the part (V ) + (G) =) (LE) of Theorem 2.1 is covered by thefollowing statement. Denote by (V �) the lower bound in (V ), that isV (x;R) � cR�; 8x 2 �; R � 1: (13.9)Proposition 13.2 Assume that (�; �) satis�es (p0). Then(NLE) + (V �) =) (LE):We precede the proof with the following lemmas. Denote for simplicity~Pn = Pn + Pn+1 ; (13.10)where Pn is the n-convolution power of the Markov operator P . In particular, we havePnPm = Pn+m: (13.11)We need a replacement for this property for the operator ~Pn, which is stated below in Lemma13.5.Lemma 13.3 Assume that (p0) holds on (�; �), Then, for all integers n � l � 1 such thatn � l(mod2); (13.12)we have Pl(x; y) � Cn�lPn(x; y) ; (13.13)for all x; y 2 �, with a constant C = C(p0). 36



Proof. By the semigroup property (5.15), we havePk+2(x; y) =Xz2� Pk(x; z)P2(z; y) � Pk(x; y)P2(y; y):Using (p0); we obtain P2(y; y) =Xz�y P (y; z)P (z; y) � p0Xz�y P (y; z) = p0whence Pk+2(x; y) � p0Pk(x; y). Iterating this inequality, we obtain (13.13) with C = p�1=20 .Lemma 13.4 Assume that (�; �) satis�es (p0). Then, for all integers n � l� 1 and all x; y 2 �,~Pl(x; y) � Cn�l ~Pn(x; y); (13.14)where C = C(p0).Remark 13.1 Note that no parity condition is required here in contrast to the condition (13.12)of Lemma 13.3.Proof. This is an immediate consequence of Lemma 13.3 because both Pl(x; y) and Pl+1(x; y)can be estimated from above via either Pn(x; y) or Pn+1(x; y) depending on the parity of n andl.Lemma 13.5 Assume that (�; �) satis�es (p0). Then, for all n;m 2 N and x; y 2 �, we havethe following inequality ~Pn ~Pm(x; y) � C ~Pn+m+1(x; y); (13.15)where C = C(p0):Proof. Observe that, by (13.10) and (13.11),~Pn ~Pm = (Pn + Pn+1)(Pm + Pm+1) = Pn+m + 2Pn+m+1 + Pn+m+2:By Lemma 13.3, Pn+m(x; y) � CPn+m+2 whence~Pn ~Pm (x; y) � C(Pn+m+1 + Pn+m+2) = C ~Pn+m+1:Lemma 13.6 Assume that (�; �) satis�es (p0). Then, for all x; y 2 � and k;m; n 2 N suchthat n � km+ k � 1, we have the following inequality� ~Pm�k (x; y) � Cn�km ~Pn(x; y): (13.16)Proof. By induction, (13.15) implies� ~Pm�k (x; y) � Ck�1 ~Pkm+k�1(x; y):From inequality (13.14) with l = km+ k � 1, we obtain~Pkm+k�1(x; y) � Cn�km�(k�1) ~Pn(x; y)37



whence (13.16) follows.Proof of Proposition 13.2. Since~Pn(x; y) = (pn(x; y) + pn+1(x; y))�(y);(NLE) can be stated as follows:~Pn(x; y) � cn��=��(y); if d(x; y) � �n1=�: (13.17)The required (LE) takes the form~Pn(x; y) � cn��=��(y) exp"��d�(x; y)cn � 1��1# : (13.18)To prove (13.18), �x x; y 2 �, n � d(x; y) and consider the following cases:Case 1. d(x; y)� �n1=�;Case 2. �n1=� < d(x; y) � "n;Case 3. "n < d(x; y) � n.Here � is the constant from (13.17) and " > 0 is a small constant to be chosen later. In the�rst case, (13.18) coincides with (13.17). In the third case, (13.18) becomes~Pn(x; y) � cn��=��(y) exp(�Cn); (13.19)which can be deduced directly from (p0). Indeed, depending on the parity of n, there is a pathfrom x to y of length either n or n + 1. The Px-probability that the random walk will followthis path is at least p�(n+1)0 , whence ~Pn(x; y) � exp(�Cn):This implies (13.19) using the fact that �(y) � C. The latter is proved as follows. Take in(13.17) x � y and n ' ��� . Then (13.17) implies1 � ~Pn(x; y) � c���(y)whence �(y) � C.Consider the main second case. Denote d = d(x; y), take a positive integer k such thatk � d ; (13.20)and de�ne m by m = bnk c � 1: (13.21)Since k � d � "n, we see that n=k � "�1 and m is positive. Since n � k(m + 1), Lemma 13.6applies and yields Cn�mk ~Pn(x; y) � � ~Pm�k (x; y): (13.22)In order to estimate � ~Pm�k (x; y), observe that there exists a sequence o1,o2,:::,ok of points on� such that x = o1; y = ok and, for all i = 1; 2; :::; k� 1;d(oi; oi+1) � dd(x; y)k e =: r: (13.23)38



x=o1

o2
o3 y=ok

ok-1Figure 9 The chain of balls B(oi; r)Clearly, we have� ~Pm�k (x; y) � Xz12B(o1;r) ::: Xzk�12B(ok�1;r) ~Pm(x; z1) ~Pm(z1; z2)::: ~Pm(zk�1; y): (13.24)Assume that we have in addition 3r � �m1=�: (13.25)Since d(zi�1; zi) � 3r, each ~Pm(zi�1; zi) can be estimated by (13.17) as follows:~Pm(zi�1; zi) � cm��=��(zi):The same applies to ~Pm(x; z1) and ~Pm(zk�1; y). Using the lower bound of the volume (13.9), weobtain from (13.22) and 13.24)Cn�mk ~Pn(x; y) � (cm��=�)k�1V (o1; r):::V (ok�1; r)�(y) � ckm�(�=�)kr�(k�1)�(y):Hence, ~Pn(x; y) � cn�mk+km�(�=�)kr�(k�1) � ckm��=� � rm1=���(k�1) ; (13.26)where we have used the fact that n �mk + k � 3k which follows from (13.21).Before we go further, let us specify the choice of k to ensure that both (13.20) and (13.25)holds. Using de�nition (13.21) and (13.23) of m and r, we see that (13.25) is equivalent toC dk � � �nk�1=�or k � C�� ���1 �d�n � 1��1 : (13.27)Let k be the minimal possible integer satisfying (13.27). By the hypothesis d � �n1=�, we havek ' �d�n � 1��1 : (13.28)The condition (13.20) follows from the hypothesis n � "�1d provided " is small enough.From (13.28), (13.21) and (13.25), we obtainm ' �nd� ���1 and r ' �nd� 1��1 :Hence, by (13.26) and m � n=k,~Pn(x; y) � ckm��=� � n��=�k�=� exp(�Ck) � n��=� exp(�C 0k):Substituting here k from (13.28), we obtain (13.18).39



14 Parity mattersLet us recall that (LE) contains the estimate for pn + pn+1 rather than for pn. In this section,we discuss to what extent it is possible to estimate pn from below. In general, there is no lowerbound for pn(x; y) for the parity reason. Indeed, on any bipartite graph, the length of any pathfrom x to y has the same parity as d(x; y). Therefore, pn(x; y) = 0 if n 6� d(x; y)(mod2).We immediately obtain the following result for bipartite graphs.Proposition 14.1 If (�; �) is bipartite and satis�es (LE) thenpn(x; y) � cn��=� exp ��d(x; y)�cn � 1��1! ; (14.1)for all x; y 2 � and n � 1 such thatn � d(x; y) and n � d(x; y)(mod2): (14.2)Proof. Indeed, assuming (14.2), n+1 and d(x; y) have di�erent parities whence pn+1(x; y) =0, and (14.1) follows from (LE).If there is enough \mixing of parity" in the graph then one does get the lower bound regardlessof the parity of n and d(x; y).Proposition 14.2 Assume that graph (�; �) satis�es (p0); (LE) and the following \mixing"condition: there is an odd positive integer n0 such thatinfx2�Pn0(x; x) > 0: (14.3)Then the lower bound (14.1) holds for all n > n0 and x; y 2 � provided n � d(x; y):For example if n0 = 1 then the hypothesis (14.3) means than each point x 2 � has a loopedge xx. If n0 = 3 and there are no loops then (14.3) means that, for each point x 2 �, thereis an edge triangle xy, yz, zx. This property holds, in particular, for the graphical Sierpinskigasket - see Fig. 1.Proof. By (9.2), we obtain, for any positive integer m,p2m(x; x) � 1V (x;m+ 1) 0@ Xz2B(x;m+1)pm(x; z)�(z)1A2 = 1V (x;m+ 1) :The condition (p0) and Proposition 3.1 imply V (x;m+ 1) � Cm+1�(x) whenceP2m(x; x) = p2m(x; x)�(x) � C�m�1:Since we will use this lower estimate only for bounded range of m � m0, we can rewrite it asP2m(x; x) � c; (14.4)where c = c(m0) > 0.Assuming n > n0, we have, by the semigroup property (5.15),pn(x; y) =Xz2� pn�n0(x; z)Pn0(z; y) � pn�n0 (x; y)Pn0(y; y) (14.5)40



and in the same way pn(x; y) � pn�n0+1Pn0�1(y; y): (14.6)By the hypothesis (14.3), we can estimate Pn0(y; y) from below by a positive constant. AlsoPn0�1(y; y) is bounded below by a constant as in (14.4). Hence, adding up (14.5) and (14.6), weobtain pn(x; y) � c(pn�n0(x; y) + pn�n0+1(x; y)): (14.7)The right-hand side of (14.7) can be estimated from below by (LE) whence (14.1) follows.Finally, let us show an example which explains why in general one cannot replace in (LE)pn + pn+1 by pn even assuming the parity condition n � d(x; y)(mod2).Example 14.1 Let (�; �) be ZD with the standard weight �xy = 1 for x � y, and let D > 4.We modify � by adding one more edge � of weight 1, which connects the origin o = (0; 0; :::; 0)to the point (1; 1; 0; 0; :::; 0), and denote the new graph by (�0; �0).
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-mFigure 10 Every path of odd length from x to y goes through o and �.Clearly, the volume growth and the Green kernel on (�0; �0) are of the same order as on(�; �), that is V (x; r) ' rD and g(x; y)' d(x; y)2�D:Hence, for both graphs one has by Theorem 2.1pn(x; y) � Cn�D=2 exp��d2(x; y)Cn � (14.8)and a similar lower bound (LE) for pn + pn+1. Since ZD is bipartite, we have for (�; �), byProposition 14.1, pn(x; y) � cn�D=2 exp��d2(x;y)cn �if n � d(x; y) and n � d(x; y)(mod2) (14.9)Let us show that (�0; �0) does not satisfy (14.9). Fix some (large) odd integer m and considerpoints x = (m;m; 0; 0; :::; 0) and y = �x (see Fig. 10).41



The distance d(x; y) on � is equal to 4m, whereas the distance d0(x; y) on �0 is 4m� 1, dueto the shortcut �. Denote n = m2. Then n � d0(x; y)(mod2) and n > d0(x; y). Let us estimatefrom above pn(x; y) on (�0; �0) and show that it does not satisfy the lower bound (14.9). Since nis odd and all odd paths from x to y have to go through the edge �, the strong Markov propertyyields pn(x; y) = nXk=0Px(� = k)pn�k(o; y) ; (14.10)where � is the �rst time the random walk hits the point o. If n� k < m then pn�k(o; y) = 0. Ifn� k � m then we estimate pn�k(o; y) by (14.8) as followspn�k(o; y) � C(n� k)D=2 � CmD=2 :Therefore, (14.10) implies pn(x; y) � Cm�D=2Px f� <1g :The Px-probability to hit o is of the order g(x; o)' m2�D. Hence, we obtainpn(x; y) � Cm�(3D=2�2) = Cn�(3D=4�1) = o(n�D=2)so that the lower bound (14.9) cannot hold.A more careful argument shows that, in fact, pn(x; y) ' n�(D�1).15 Consequences of the heat kernel estimatesHere we prove the remaining part of Theorem 2.1 as stated in the next proposition.Proposition 15.1 Assuming (p0), we have(LE) + (UE) =) (V ) + (G):Proof. The Green kernel is related to the heat kernel byg(x; y) = 1Xn=0 pn(x; y): (15.1)Let x 6= y. Then p0(x; y) = 0, and the upper bound (UE) for pn implies the upper bound for gas follows: g(x; y)� C 1Xn=1 n��=� exp �c�d�n � 1��1! ;where d = d(x; y). By estimating the sum via an integral, we obtain g(x; y) � Cd�
 with
 = � � �. Similarly, one proves g(x; y) � Cd�
 using (LE) and the obvious consequence of(15.1) g(x; y)� 12 1Xn=1(pn(x; y) + pn+1(x; y)):Let us prove the upper bound for the volumeV (x;R) � CR�; (V �)42



for any x 2 � and R � 1. Indeed, for any n 2 N, we haveXy2� pn(x; y)�(y) � 1 (15.2)whence XyeB(x;R) (pn(x; y) + pn+1(x; y))�(y) � 2and V (x;R) � 2� infy2B(x;R) (pn(x; y) + pn+1(x; y))��1 :Taking n ' R� and applying (LE), we see that the inf is bounded below by cn��=� ' R��whence (V �) follows.Let us prove the lower bound for the volumeV (x;R) � cR�: (V �)We �rst show that (UE) and (V �) imply the following inequalityXy=2B(x;R)pn(x; y)�(y) � 12 ; 8n � "R� ; (15.3)provided " > 0 is su�ciently small. Denoting Rk = 2kR, we haveXy=2B(x;R)pn(x; y)�(y) � C Xy=2B(x;R)n��=� exp"�c�d(x; y)�n � 1��1#� C 1Xk=0 Xy2B(x;Rk+1)nB(x;Rk)n��=� exp24�c R�kn ! 1��135� C 1Xk=0R�kn��=� exp24�c R�kn ! 1��135= C 1Xk=0� 2kRn1=��� exp24�c� 2kRn1=�� ���135 : (15.4)If R=n1=� is large enough then the right hand side of (15.4) is majorized by a geometric series,and the sum can be made arbitrarily small, in particular, smaller than 1=2.From (15.2) and (15.3), we concludeXy2B(x;R)pn(x; y)�(y) � 12 ; (15.5)whence V (x;R) � 12  supy2B(x;R)pn(x; y)!�1 :Finally, choosing n = ["R�] and using the upper bound pn(x; y) � Cn��=�, we obtain (V �).43



This argument works only if "R� � 1. Let us now prove (V �) for the opposite case when"R� < 1. To that end, de�ne R0 by "R�0 = 1. Then we have R < Ro. By the hypothesis (p0)and Proposition 3.1, we have V (x;R0) � C�(x). Combining with the lower bound (V �) forV (x;R0), we obtain �(x) � c > 0. In particular, for any R > 0, we have V (x;R) � c, whichimplies (V �) for the bounded range of R.Remark 15.1 Using similar argument, one can show also the following implication(V ) + (UE) + (H) =) (LE): (15.6)Indeed, as we have seen in the above proof, (UE) implies (G �) which together with (V ) isenough to obtain (E �) (see Proposition 6.3). From (UE) and (V ), one obtains the diagonallower bound p2n(x; x) � cn��=�. Indeed, from (9.2) and (15.5) with R = Cn1=�, we deducep2n(x; x) � 1V (x;R)0@ Xy2B(x;R)pn(x; y)d�(y)1A2 � 14V (x;R) ' n��=�:From this estimate, one gets (DLE) (see [54]; the argument is similar to the proof of (6.6)).Also, (DUE) follows trivially from (UE). Hence, having (DUE), (DLE), (E �) and (H), weobtain (NLE) by Proposition 13.1 and then deduce (LE) from (NLE) + (V ) by Proposition13.2.The implication (15.6) yields that (V ) + (UE) + (H) is equivalent to either of our mainconditions (V ) + (G) and (UE) + (LE). Indeed, we have(V ) + (G) =) (V ) + (UE) + (H) =) (UE) + (LE) ;where the �rst implication follows by Theorem 2.1 and Proposition 10.1, and the second is thesame as (15.6). We are left to close the circle by Theorem 2.1 or Proposition 15.1.16 Appendix: the list of the lettered conditionsHere we provide a list the lettered conditions frequently used in the paper. The relations betweenthe exponents �; �; 
; � are as follows:� > � � 2; 
 = �� � and � = �=�:In all conditions, n is an arbitrary positive integer, R is an arbitrary positive real, x; y arearbitrary points on �, subject to additional restrictions if any. The constants C; c; �, ", p0 arepositive. V (x;R) ' R�; 8R � 1 (V )E(x;R)' R�; 8R � 1 (E)g(x; y)' d(x; y)�
; x 6= y (G)V (x; 2R) � CV (x;R) (D)E(x;R) � CE(x;R) (E)�1(A) � c�(A)�1=� ; for all non-empty �nite sets A � � (FK)44
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