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Abstract

We consider the problem of finding nearby application-peers (close
friends) over the Internet. We focus on unicast-only solutions and
introduce a new scheme —Beaconing— for finding peers that are
near. Our scheme uses distance measurement points (called bea-
cons) and can be implemented entirely in the application-layer
without investing in large infrastructure changes.

We present an extensive evaluation of Beaconing and compare it
to existing schemes including Expanding Ring searches and Trian-
gulation. Our experiments show that 3–8 beacons are sufficient to
provide efficient peer-location service on 10 000 node Internet-like
topologies. Further, our results are 2–5 times more accurate than
existing techniques.

We also present results from an implementation of Beaconing
over a non-trivialwide-area testbed. In our experiments, Beaconing
is able to efficiently (< 3 K Bytes and < 50 packets on average),
quickly (< 1 second on average), and accurately (< 20ms error on
average) find nearby peers on the Internet.

1 Introduction

Consider a distributed peer-to-peer application, such as an
application-layer reliable multicast service or Gnutella. When a
new node joins the application, it often has to find another peer
(a friend) that is already part of the application. Usually, the goal
is to find another application peer that is “near” the new host, i.e.
the goal is to find a close friend. In this paper, we consider the
problem of finding such “close friends” over the Internet. We refer
to this as the peer-finding problem, and in the rest of this paper, we
implicitly assume that the goal is to find near peers.

Efficiently locating “friends” is an important problem for many
applications, especially the emerging peer-to-peer distributedappli-
cations. For example, in application-layer multicast, finding peers
is useful for creating efficient distribution trees; for an application
like Gnutella, finding the nearest peer can reduce network load for
queries and responses. Efficient solutions for peer finding is also
beneficial to legacy (non peer-to-peer) applications. Peer finding
schemes can be used to locate near mirrors for file transfers [8], or
to locate nearby sources in a content distribution network 1. Peer-
finding schemes can naturally be used to implement application-
layer anycasting services [4]. Lastly, the reachability of native mul-
ticast groups over the Internet is currently being extended by setting
up dynamic unicast tunnels between multicast-enabled regions of

1See, for example, http://www.stardust.com/cdn

the Internet [9, 7]. A solution developed for peer finding can be ap-
plied directly to create efficient tunnels. Such a solution would not
only be useful for multicast, but also for efficiently deploying new
overlay networks [2, 1].

In this paper, we specifically consider the case when the number
of possible peers is large and individually probing the whole set to
find a near server [6] is not a viable solution. We also consider cases
when the set of peers changes rapidly and passive measurement-
based techniques [18] incur high error rates. Even under these con-
ditions, the peer-finding problem can be solved relatively easily if
we assume network-layer assistance such as native IP multicast,
Global Internet Anycast (GIA [15]), or Internet-wide distance maps
(IDMaps [13]). The goal of this paper is evaluate different solutions
to this problem that can be implemented over the Internet with-
out investing in global infrastructure-level changes or additions (as
would be required by both IDMaps and GIA). A special case we
focus on is when unicast forwarding is the only available primitive,
as is the case on the current Internet. (Even though the protocols
have been in place for many years, native multicast reachability re-
mains poor or non-existent over large parts of the Internet [3].) In
the absence of all network-layer assistance, efficiently solving the
peer-finding problem is challenging.

1.1 Challenges for unicast-only solutions

If a native multicast or anycast service is not available, and an
infrastructure-based solution such as IDMaps is not viable, then the
peer-finding problem poses several challenges. There are two main
problems:� Finding the peers: The identities of the current set of peers

is dynamic and unknown. Of course, in some applications,
there may be a set of peers who are always present, e.g. the
data source in a application layer multicast application. How-
ever, knowing the identities of a single (or a small set of) nodes
that are always present does not necessarily help in solving
the nearest peer problem since there may be other closer nodes
which are also participating in the application.� Estimating distances: Given a network address of a peer, it
is often not possible to reliable estimate how “far” away it is.
There has been recent work [16] in using IP addresses and
BGP prefixes to estimate proximity of hosts. However, such
information is rather course grained (on the order of AS-AS
distances) and does not provide enough resolution for many
applications. Hence, some other mechanism has to be used to
scalably map addresses to useful distances, and we describe a
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new technique that works irrespective of the structure of the
addresses.

1.2 Overview of our approach

We introduce a new technique called Beaconing. A set of
application-level processes in the network act as “beacons” and
we find peers using mutual distance measurements to these bea-
cons. Our solution most closely resembles the triangulation [12]
and weighted triangulationapproaches [11]. Like these approaches,
our scheme does not require any changes to the infrastructure and
works over only IP unicast; however, as described later in this pa-
per, our overall approach is quite different comprared to the trian-
gulation approaches. In our simulation experiments, using the same
number of beacons and the same run-time overhead, our schemes
provide 2–5 times more accurate results.

1.3 Roadmap

The rest of this paper is organized as follows: in the next sec-
tion we formally define the near peer-finding problem and discuss
several possible solutions, including Beaconing. In Section 3, we
discuss issues related to the efficient implementation of the bea-
coning scheme over the current Internet protocols. In Section 4,
we present a comprehensive performance evaluation of each of the
peer-finding techniques using both simulations and Internet-based
measurements. We discuss related work in Section 5, and conclude
in Section 6.

2 Peer Finding: Problem Statement and
Solutions

We begin with a formal description of the peer-finding problem.
We describe our approach in Section 2.2 and discuss existing tech-
niques in Section 2.3.

2.1 Problem Statement

Formally, the peer finding problem can be modeled as follows:
Assume a set of hosts H arranged in some arbitrary topology T .

Let A be the current set of hosts that participate in some applica-
tion (A � H). Let n =2 A be a host that wishes to join the appli-
cation. The peer-finding problem finds a node p, s.t. p 2 A and8q 2 A; dist(p; n) � dist(q; n), i.e. p is already part of the appli-
cation and is the closest such host to the new host n.

Clearly, the peer finding problem can be solved according to a
number of distance measures, e.g. hop count in the underlying net-
work, application-perceived latency, etc. As we will see differ-
ent mechanisms will implicitly impose their own measure of dis-
tance, e.g. if expanding ring multicast is used to solve the peer-
finding problem then the distance measure will end up being the
hop count in the underlying network. Some methods may not al-
ways find the “nearest” peer. We will quantify the performance of
each algorithm using both absolute error and relative error (defined
as dist(q;n)�dist(p;n)dist(p;n) ). 2

2Note that it is possible to define directed versions of the peer finding problem if
the distance function is not symmetric. In all of the techniqueswe evaluate, it is only
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Figure 1: Finding peers using Beaconing

2.2 Finding peers using Beaconing

We designate a set of k hosts (B0; : : : ; Bk�1) to be beacons. A bea-
con is a host that measures and collects distance information from
hosts in an application. The identity of the beacons could be com-
piled into the application or it can be dynamic. It is sufficient for
each application peer to know the identityof one beacon or the iden-
tity of some centralized node which can provide the current set of
beacons. In general, beacons are regular Internet hosts and may par-
ticipate in the application. We next describe an algorithm that will
correctly solve the nearest peer-finding problem. Note that the al-
gorithm tacitly assumes that the triangle inequality holds over the
distance measure used.

2.2.1 Beaconing algorithm

We use the same terminologyas before (A is the set of nodes already
in the application, and n is the new peer joining the application).
Our description below will refer to Figure 1.3

1. Each host h inA periodically measures and reports its own dis-
tance (from that beacon) back to the beacon. Each beacon thus
maintains a list of its own distance to each host in A. For ex-
ample, in Figure 1, hosts p, q, ..., u periodically measure their
own distances to B0 and report this value to B0. They repeat
this procedure for all other beacons.

2. Host n measures and sends its own distance d to a single bea-
con (say B0).

3. BeaconB0 sends ton a list containing the identities of all hosts
inAwithin distance d��. (The beacon compiles this list using
the periodic distance information it receives from all the hosts
in A.) The parameter � should be chosen such that the nearest
node is within � hops of n with high probability. Of course, it

possible to efficiently find the node that is closest fromn, i.e. the solution finds p, s.t.8q 2 A; dist(n! p) � dist(n! q). Since we cannot influence how directed
distances are handled, we do not explicitly consider this issue again.

3The figure is for illustrative purposes only; clearly on the Internet, inter-node
distances are not equivalent to 2-D Euclidean distances as shown in the figure.
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is possible to underestimate � and the algorithm will fail in this
case. We resolve this issue in Section 2.2.4.

If we assume the triangle inequality holds over the distances,
then the list of hosts returned by B0 list includes all the nodes
inA within distance � of noden, e.g. hosts p and q in Figure 1.
Of course, it also includes a number of other nodes , e.g. host s,
inAwhose distances happen to be in the range dist(n;B0)��.

4. Host n repeats this procedure by sending its own distance
(in hops) to other beacons bi and accumulates a number of
prospective near peers. The hosts in A that are in fact close
to n appear in all of these lists.

5. As n communicates with more beacons, the intersection of
suitable nodes reduces (to hosts p and q in Figure 1). The pro-
cedure is terminated when the resultant set (S) is reduced to
some reasonable number or when n has communicated with
all beacons.

6. The final peer is chosen from S using one of three methods:

(a) Some node in S is chosen uniformly at random

(b) Host n measures its distance to all nodes in S and
chooses the best one. This technique is only useful ifjSj � jAj. The hosts in S are either very close to n
or quite far from n and the granularity of these distance
measurements can be relatively coarse.

(c) The set S is further processed using the information al-
ready available at n and some node is chosen as a result
of this processing. We next describe a postprocessing
heuristic that has performed well in our experiments.

2.2.2 Postprocessing the final set

We compute a new distance measure from n using the follow-
ing procedure: We assume that the host n is at the origin of a k-
dimensional space and we “compute” the distance from n to all
nodes in S using the distances returned by the beacons. Let D(i)
be the distance from n to host i in S (assuming n is at the origin of
the space). Then:D(i) = k�1Xj=0(dist(i; Bj) � dist(n;Bj))2:

We then choose the host i s.t. D(i) is lowest. This technique is
not perfect, i.e. a node i that is not the nearest peer may have the
lowest D(i). For example, some nodes that are relatively far away
from n could have the same set of distances to all the beacons due
to symmetry in the topology (See Figure 2). In the rest of this paper,
we refer to this postprocessing technique as Vectoring.

2.2.3 Discussion

Clearly, beaconing is a relatively simple algorithm that can be im-
plemented using only unicast communication. The amount of state
at each beacon isO(jAj) and the number of messages exchanged is
exactly k + S, where k is the number of beacons. Using our post
processing techniques, the communication cost of choosing from
the final set is reduced to zero, so the number of messages in this
case is reduced to k.

There are three interesting issues that immediately have to be
considered:

1. Number of beacons: A natural question to ask is how many
beacons do we need in order for our techniques to be efficient?
It is easy to show that in the 2-D Euclidean case, as long as a
suitable � is chosen, only three beacons are enough to break all
symmetry and always provide correct answers. However, no
such fixed number is enough in networks with arbitrary topolo-
gies. Our experiments show that relatively few beacons, e.g.3–8 beacons for a 10 000 node Internet-like topology, are both
necessary (to reduce overhead) and sufficient (more beacons
don’t help).

2. Placement of beacons: Clearly, if all the beacons are co-
located their effectiveness is mitigated. We have experimented
with different beacon placements, including k-center place-
ment heuristics. Our results show that being able to precisely
place beacons can be useful, but even beacons placed uni-
formly at random within stub nodes perform almost as well as
the k-center placement.

3. Distance measurements: The effectiveness of beaconing de-
pends entirely on the robustness of the underlying distance
measurements. This is not a problem for simulations since we
have complete knowledge of the underlying topology. This is-
sue, however, does have to be confronted for a real implemen-
tation. We have developed a cheap and robust latency mea-
surement technique (described in Section 3) that we use for
Internet-based experiments.

2.2.4 Correctness

The beaconing algorithm as described will fail if the triangle in-
equality is violated in the distance measure. This is relatively
straightforward to see and an example is shown in Figure 3. In this
case, the nearest peer n is not included in the final set and thus can-
not be chosen by Beaconing.

The algorithm, however, has a more subtle flaw. Figure 4 shows
a case when it fails even if the triangle inequality is preserved by
the distance measure. Define the �-ball around the node n to be the
set of nodes within � hops ofn. In general, beaconing fails any time
a � is chosen such that the nearest node is not within the �-ball of
the new node n. Since every node in the final set must be returned
by every beacon (because we compute the intersection of the hosts
returned by every beacon), our scheme will miss the nearest node
if it is not within the �-ball of node n w.r.t. every beacon.

Note that if the triangle inequalityholds, then the error in the bea-
coning scheme is entirely due to postprocessing as long as the final
node node selected is within the �-ball around n. It is possible to
repeat the beaconing scheme with increasing values of � and select
the nearest node (if any) within the �-ball of n. If the triangle in-
equality holds, then this iterative scheme, at the expense of run-time
overhead, will always find the correct node.

2.3 Other Techniques

In the rest of this section, we describe four classes of other tech-
niques to solve the near peer finding problem. We begin with the
obvious centralized random selection.
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2.3.1 Centralized Random Selection

In this case, all nodes in A register with a well-known node w.
When n decides to join the application,w chooses some node i 2 A
uniformly at random as the “nearest” peer for n. This scheme has
extremely low run-time overhead, but also incurs a high error rate.

2.3.2 Triangulation and Weighted Triangulation

The triangulation method, due to Hotz [12], also computes dis-
tances using a set of measurement points called beacons.

Given a host i in A and k beacons B0; : : : ; Bk�1 , the trian-
gulation method described by Hotz [12] defines a n-tuple Di =hdist(i; B0); dist(i; B1); : : : ; dist(n;Bk�1)i . A similar tupleDn = hdist(n;B0); dist(n;B1); : : : ; dist(n;Bk�1)i is also de-
fined for the new node n. Next, we need the Avg(i; n) function
which is defined asAvg(i; n) = Max(i; n) +Min(i; n)2
where the Max and Min functions are defined as:Max(i; n) = min(jDi + nij) and Min(i; n) = max(jDi � nij)
where the max and min are the usual arithmetic max. and min.
computed componentwise over the k-tuples. The triangulation
scheme chooses the peer i with the lowest value of Avg(i; n).

Weighted triangulation [11] uses the same computation but as-
signs higher distances to backbone links such that after triangula-
tion, the servers which are close to the client have a better chance
of being selected. In Internet-based experiments reported in [11],
the weighted scheme performs slightly better than Hotz triangula-
tion. However, this scheme requires some way of recognizing when

a distance is being measured across backbone links. We only exper-
iment with the pure triangulation scheme in our simulations.

2.3.3 Expanding Ring Multicast and Broadcast

These are two classical techniques that are extremely efficient but
require network-level multicast (or broadcast). In expanding ring
multicast, all nodes in A join a well-known multicast group. Hostn too joins this group and begins sending messages to group with in-
creasing TTL. Since these messages will first be seen by nodes near-
est to n (with respect to hop count), they will be the first to respond
to n. Host n finds its nearest peer simply by listening on the mul-
ticast group for the first response to its peer solicitation messages.
This protocol is extremely robust since it does not require any cen-
tralized state at any node and is also efficient since it does not in-
volve any application-layer distance computations. The expanding
ring broadcast scheme is similar except all nodes in the network re-
ceive the messages and only nodes in A respond.

In our performance analysis, we will compare Beaconing to all
of the techniques described above (except weighted triangulation).
Next we describe two other schemes that can be used to efficiently
solve the peer-finding problem. However, both these schemes re-
quire new network services (beyond multicast) to be globally de-
ployed. We do not consider these schemes further.

2.3.4 Techniques requiring global service deployment

The peer-finding problem can effectively be solved using Global In-
ternet Anycast [15]. All nodes inA could join an anycast group andn could find a near peer by sending a message to the anycast group.
While this scheme could potentially be even more efficient than ex-
panding ring multicast, it requires global anycast support from all
participating domains. While there is an effort for standardizing
the GIA protocols [14], such services will likely not be globally
available in the near future. An Internet-measurement infrastruc-
ture such as IDMaps [13] can also be used to solve the peer finding
problem. IDMaps are an Internet-wide service that provides dis-
tance information between any two nodes in the Internet. IDMaps
could be used (along with a centralized directory of current peers)
to find near peers or they can even be used in the beaconing proto-
col to find the best host in the reduced set. Unlike GIA, IDMaps do
not require global changes to the network infrastructure; however,
IDMaps do require Internet-wide deployment and are not likely to
be available in the near future.

3 Implementing Beaconing on the Inter-
net

We have implemented the Beaconing scheme at the application
layer and run a number of tests with hosts and beacons on several
Internet sites. We were able to access hosts at eighteen different do-
mains, and a snapshot of our test topology is shown in Figure 5. The
beaconing code was written in C, and was approximately 500 lines
at the hosts and 250 lines at the beacons. The most interesting is-
sue that we had to contend with in our implementation was that of
distance measurement.4

4While we used traceroute to create the topology shown in Figure 5, we did
not want to rely on traceroute in the actual beaconing code. The major reason
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Measuring Distances We used application-layer latency as our
primary distance metric. We measure distance by recording the
round-trip of 2 byte UDP packets sent between a beacon and ap-
plication peers. Ideally, we would like to send a few measurement
packets and use some function of these measurements (e.g. the
mean) of the RTTs as our distance measure. However, we found that
the measurements between different host pairs had enough variance
that a fixed number of RTTs would certainly be too conservative for
some pairs and not enough for others. Instead, we use the follow-
ing dynamic scheme: we continually measure the 95% confidence
intervals of our samples till the intervals reduce to less than 10% of
the mean, using at least three samples to compute the RTT.

Figure 6 is a measure of the effectiveness of our distance mea-
surement scheme: each point corresponds to an actual distance
which is a mean of one thousand probes and a sampled distance
which was computed using our on-line confidence interval method.
The points are distance measurements computed between hosts in
our Internet testbed. For each data point, we computed the ac-

was because traceroute is not installed on security conscious hosts since it re-
quires superuser privileges. Further, if we use traceroute, either it would have
to be spawned (several times) by our process, or our code would require root per-
mission to run since traceroute like functionality needs access to raw IP sockets. We
wanted a pure application-level solution that could be run by unprivileged applica-
tions and users.

tual measurement and then analyzed the probe data to determine
the value that would have been obtained by the confidence interval
computation. In the plot, points on the 45� line correspond to ex-
periments where the sample measurement was exactly the same as
the actual measurement and deviations from the 45� line are mea-
surement errors. For the confidence interval scheme, on average we
had to use six round-trips before the confidence intervals stabilized.
As the plot shows, the confidence interval method works extremely
well and compensates for both network-layer congestion and the
fact that these experiments were conducted in user-space and were
subject to the usual process scheduling and swapping.

Choosing Delta We use the followingscheme to choose the value
of �: The new node provides the beacon with an initial delta. If the
beacon cannot find any peers for the given delta, it increase the delta
until it finds at least one peer. This ensures that all of the beacons
return at least one node. In case the intersection of these lists is null,
we choose the host that is returned by the maximum number of bea-
cons.

4 Performance Analysis

In this section, we present a set of simulation and Internet-based
measurement results about beaconing and compare them to other
techniques for peer-finding. We begin with a discussion of our ex-
perimental methodology, and show a set of simulation results about
Beaconing. In Section 4.3, we compare Beaconing to other tech-
niques including expanding ring searches and triangulations; we
conclude this section with experimental results from our implemen-
tation.

4.1 Experimental Methodology

We used the Georgia Tech Internet Topology Modeler (GT-ITM [5])
to create our simulation topologies. In our simulations, we used�10,000 node Transit-Stub (TS) graphs. We experimented on fifty
randomly generated TS graphs; each of these graphs had between
700–1000 stub domains. We distributed �500 application peers
uniformly at random within the stub domains. The new node was
also placed uniformlyat random at some stub domain and we exper-
imented with up to 10 different placements of the new node without
changing the set of application peers or the beacons. In all our ex-
periments (except the one that compares beacon placement strate-
gies), we placed beacons in stub nodes chosen uniformlyat random.

4.2 Simulation Results

There were three main objectives for our simulations:� Quantify the accuracy of the beaconing scheme,� Quantify the effect and overhead of the number of beacons,
and� Understand how beacon placement affects accuracy.
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4.2.1 Effect of varying number of beacons and �
We experimented with different numbers of beacons in our simula-
tions. In Figures 7 and 8, we plot the overhead and accuracy of our
schemes as the number of beacons is varied over the same topology.
(In Figure 7, each message, regardless of size, is counted once. We
report actual byte overheads in Section 4.4). If we use k beacons
and S is final set, then for the pure Beaconing scheme, the number
of messages is exactly k+jSj; in case our postprocessing technique
is used, the number of messages is exactly k. As expected, the size
of the final set decreases as the number of beacons is increased. In
our experiments, about 7 beacons were enough to essentially reduce
the size of the final set to its minimum.

As the value of � is increased, the size of the final set increases.
In case all of the hosts in the final set are probed, this directly con-
tributes to higher message overhead. Of course, as more hosts are
probed, the resultant accuracy also increases. Thus, the value of �
can be used to trade off some accuracy for message overhead. Us-
ing the post-processing technique eliminates the expensive probing
of the final set, but almost always incurs a small error. Thus, if an
application requires a very high degree of accuracy, it should use
a relatively large value for � and not use the post-processing step.

Of course, such applications will pay both in terms of running time
and message overhead; however, for most applications, we believe
a smaller value of � is a reasonable compromise.

We have also experimented with a hybrid approach where we
probe a fixed number of hosts instead of probing each host. The
order in which the hosts are probed is determined by Vectoring.
This scheme has the pleasant property of bounded overhead and
performs better than pure Vectoring. In our experiments (not plot-
ted), the average error decreases linearly with the number of hosts
probed. Specifically, when we experimented with this technique
over a using a number of topologies and beacon placements, the av-
erage error decreased from �2 hops to< 1 hop when we used eight
probes instead of just picking the node ranked lowest by Vectoring.

4.2.2 Effect of different beacon placement strategies

Placement Final (S) Message Average
Strategy Set size Overhead Error (hops)
Unif. Random 17.5 48.1 1.46
Random Stub Border 17.3 46.6 1.42
K-center 16.6 45.8 1.37

Table 1: Effect of different beacon placement strategies.

Table 1 shows the effect of different beacon placement strategies.
We compare placing beacons uniformly at stub nodes to two dif-
ferent techniques. We constrain the beacon placements to only the
nodes that are at the borders of stub domains; this is equivalent to
the case when beacons are placed at randomly chosen stub gateway
routers. This ensures that only one beacon is placed in any single
stub domain. In the second case, we place beacons using a k-center
heuristic that minimizes the maximum distance from a beacon to
any other node. The results shown in Table 1 correspond to sce-
narios with seven beacons and are averages of 100 different beacon
placements with 10 new nodes for each placement. For these ex-
periments, we set the value of � to be 1: this ensures that the aver-
age error from Beaconing is maximized since the resultant set is the
smallest. Our results show that being able to place beacons is useful
for all metrics; however, even beacons placed uniformly at random
perform well compared to the more sophisticated placement tech-
niques we investigated.

4.3 Comparison to other techniques

In this section, we compare Beaconing to Random selection, Ex-
panding Ring Multicast, Expanding Ring Broadcast, and Hotz Tri-
angulation [11]. In Figure 9, we plot the average error for each of
these techniques; the average message overhead is shown in Fig-
ure 10. For both beaconing and triangulation, we used 7 beacons in
these experiments. The points on x-axis for these plots correspond
to an experiment index. In each experiment, we fixed the beacon
and the A set node placements and varied the placement of the n
node uniformly at random. Each point is an average of 10 differ-
ent placements of the n node and we used 20 different topologies
in these experiments.

As expected, random selection incurs the most error and this er-
ror is on the order of the diameter of the topology. Obviously, the
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Figure 10: Message Overhead: Beaconing vs. other tech-
niques

expanding ring searches incur no error and are not shown in Fig-
ure 9. Beaconing with � = 3 is almost as accurate as expanding
ring searches but as shown in Figure 10, does incur much higher
overheads due to probing. Beaconing with � = 1 is about 2–5 times
accurate than the Triangulation schemes, but does incur about 3–4
times higher overhead. Beaconing with Vectoring is almost as ac-
curate as Beaconing with � = 1, and has the same overhead as Tri-
angulation. Note that in these topologies, the number of messages
sent by the expanding ring searches is more than both beaconing
and triangulation. Overall, these experiments show that Beaconing
with high � can be used to provide extremely accurate results at the
cost of run-time overhead. Further, Beaconing with Vectoring is al-
most as effective (average error about two hops) and consumes an
order of magnitude less resources. Lastly, we note that we did com-
pute 95% confidence intervals for all of these results but have not
included them in the plots to preseve legibility. However, those re-
sults do show that the accuracy of Beaconing has significantly lower
variance than Triangulation.
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Figure 11: Byte overhead for Beaconing
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Figure 12: Average time taken for Beaconing

4.4 Results from Internet-based Experiments

Beaconing performed extremely well on our wide-area testbed. We
ran several thousand experiments over a one month period between
18 different Internet sites (as shown in Figure 5). In these experi-
ments, we used between 3–4 beacons and between 9–14 application
peers. We experimented with about one hundred different place-
ments of beacons and clients, and these placements were chosen
uniformly at random. Figures 11, 12, 13 show cumulative distri-
butions of the byte overhead, elapsed time, and average error for
1000 randomly chosen experiments. Most of our experiments con-
sume less than 2K bytes (approximately 60 2 byte UDP packets) of
network bandwidth per join. This value includes the probes sent for
distance measurement and accounts for IP and UDP headers (which
account for over 90% of the byte overhead). The vast majority of
our experiments took less than 1 second, as measured in application
space, to complete. Some experiments (� 30 out of 1000) did take
longer but we believe this is due to packet losses on the wide-area,
and local scheduling effects.

Figures 13 and 14 quantify the errors due to Beaconing. There
were two sources of errors in our experiments: we used a very small
value of � (as explained in Section 3), and the triangle inequality did
not hold between certain sets of sites. We used the small � to reduce
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Figure 13: Average error vs. number of beacons
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run-time overhead and these errors can be fixed by using the itera-
tive procedure described in Section 2.2.4. However, the errors due
to the violation of the triangle ineq. cannot be handled by Beacon-
ing. As shown in Figure 13, about 60% of our runs were perfect. A
small fraction of runs (about 10%) did find a node that was more
than twice as far as the closest node. This often happened when
closest node was very near and the algorithm selected the second
closest node. However, the relative error, plotted in Figure 13, is
very high in these cases. We quantify our errors with respect to ac-
tual latencies in Figure 14. The x-axis of Figure 14 shows the ac-
tual error in milliseconds (i.e. the difference in latency between the
actual closest node and the node returned by beaconing). We plot
these actual errors against the relative error shown in Figure 13. As
is clear from Figure 14, most of high relative errors correspond to
relatively low actual errors. Thus, on our wide-area experiments,
beaconing is able to find relatively close friends quickly and effi-
ciently.

5 Related Work

Guyton et. al. [11] present a taxonomy for locating peers on the In-
ternet. They classify existing techniques into reactive gathering and

proactive gathering categories. Expanding ring searches are clas-
sified under the reactive category. Our work can loosely be classi-
fied under hop-count probing along with the triangulation-basedap-
proaches. We have already discussed Hotz Triangulation [12] and
its weighted counterpart [11] in Section 2.3. We note that the num-
ber of beacons needed by both types of triangulation, as reported
in [11], is an order of magnitude higher than the number of beacons
we need.

Network layer anycasting [17, 15] can be used to solve the
nearest peer problem by grouping all peers in the same anycast
group. Conversely, Beaconing can be used to implement network-
layer anycasting. The major difference between previous work in
application-layer anycasting [4] and this work is that Beaconing is
applicable to very large and dynamic groups. The techniques de-
scribed in [8, 6] cannot be used to scalably solve the peer-finding
problem for large applications.

A completely different approach to finding the nearest peer is to
use passive measurements, as described in [18]. If the nearest peer
tends to remain relatively static, then passive measurement tech-
niques can be used with great success. Thus, the efficacy of this
technique will be a function of application-specific dynamics.

In our work, we did not take the network address structure into
account. However, a promising approach is to try to map addresses
back to AS numbers and use globally available BGP routing table
snapshots to make informed choices about nearby peers. This tech-
nique has been used successfully to cluster HTTP clients [16] for
the purposes of proxy positioning and server replication. Solving
peer-location solely using such clustering is likely to be difficult
since AS controllers may not be willing to divulge their topology
and all decisions have to be made at AS granularities. However, this
technique can be used in conjunction with Beaconing as a postpro-
cessing stop to reduce the size of the final set.

Lastly, a global distance measurement service such as
IDMaps [13] can be used to solve the nearest peer problem.
The architecture for IDMaps [10] is designed to scale for Internet-
wide deployment, while our techniques are specifically designed
for per-application use. Some of the distance inference techniques
developed as part of the IDMaps work, e.g. inferring distances
between points given limited set of measurements to Tracers, can
be very useful for Beaconing.

6 Conclusions

The problem of efficiently finding nearby application peers has
gained in importance with the emergence of wide-area peer-to-peer
applications and network services that use replicated servers. In
this paper, we have described a new algorithm for finding nearby
application-level peers that can be used by all of these applications.
Our solution is most closely related to hop-count probing methods
such as Triangulation [12]. As such, it can be implemented by arbi-
trary end-points without investing in any new network-layer infras-
tructure.

Compared to existing techniques, Beaconing provides between2–5 times better accuracy in our simulations while using the same
amount of resources at run-time. Further, we require an order of
magnitude less number of measurement points (beacons) as com-
pared to existing techniques. The run-time overhead of Beaconing
can be traded off against accuracy using a single parameter. We
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have implemented Beaconing and experimented on a non-trivial
wide-area testbed. Beaconing is able to efficiently (< 3 K Bytes
and < 50 packets on average), quickly (< 1 second on average),
and accurately (< 20 ms error on average) find nearby peers on the
Internet.
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