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Abstract

We present a method for optimizing and automating compo-
nent and transistor sizing for CMOS LC oscillators. We ob-
serve that the performance measures can be formulated asposyn-
omial functions of the design variables. As a result, the LC os-
cillator design problems can be posed as ageometric program,
a special type of optimization problem for which very efficient
globaloptimization methods have recently been developed. The
synthesis method is therefore fast, and determines the globally
optimal design; in particular the final solution is completely in-
dependent of the starting point (which can even be infeasible),
and infeasible specifications are unambiguously detected. We
can rapidly compute globally optimal trade-off curves between
competing objectives such as phase noise and power.

1 Introduction

LC oscillators are commonly used in CMOS radio-frequency inte-
grated circuits (RF-ICs) because of their good phase noise charac-
teristics and their ease of implementation [1, 2, 3, 4, 5]. However,
no systematic design methodology exists to account for the many
specifications (phase noise, power dissipation, voltage swing, tun-
ing range . . . ). Typical design strategies have tried to achieve a low
phase noise by using the largest possible inductance value [3], or by
using inductors with the lowest possible series resistance [4]. How-
ever, an optimal design requires the simultaneous consideration of
both active and passive devices.

In this paper, we propose a new method for the design of LC
oscillators. We illustrate our technique for the specific architecture
of Figure 1. The method is easily extensible to other LC oscillator
architectures. We formulate the design problem as a special type
of optimization problem, called geometric programming (GP). We
provide an overview GP in§2 and then outline the design vari-
ables in§3. In §4, we obtain the equivalent circuit model for the
LC oscillator using the inductor model presented in [6] and simple
transistor models. In§5, we use these models and the phase noise
model of [5] to show how the design specifications can be posed in
a way suitable for geometric programming.

This geometric program formulation allows us to obtain glob-
ally optimal designs very efficiently, thereby permitting the de-
signer to spend more time exploring design trade-offs rather than
sizing inductors and devices. We illustrate our method with design
examples in§6 and optimal performance tradeoff curves in§7.
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Figure 1: Complementary LC oscillator.

2 Geometric Programming

Letf be a real-valued function ofn real, positive variablesx1, . . . , xn.
It is called aposynomialfunction if it has the form

f(x1, . . . , xn) =

t∑
k=1

ckxα1k
1 xα2k

2 · · ·xαnk
n ,

wherecj ≥ 0 andαij ∈ R. Whent = 1, f is called amonomial
function. Ageometric program(see [7]) has the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, 2, . . . , m,

gi(x) = 1, i = 1, 2, . . . , p,
xi > 0, i = 1, 2, . . . , n,

(1)

wherefi are posynomial functions andgi are monomial functions.
The most important feature of geometric programs is that they

can beglobally solved with great efficiency, with no initial point
needed, using newly developed interior-point methods [8, 9, 10].
To carry out the designs described in this paper we implemented
in MATLAB a very simple (primal barrier) method for solving the
convex form of a GP [10]. Despite the simplicity of the method,
and the inefficiency of our implementation, all the design problems
in this paper were solved under one second on a personal computer.

3 Design variables

To design the oscillator we specify the following twelve variables:

• Spiral inductor: number of turnsn, turn widthw, turn spac-
ing s and outer diameterdout.
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• Transistors: width (Wn andWp) and length (Ln andLp).

• Varactor: maximum valueCv,max and minimum valueCv,min.

• Load capacitance:Cload.

• Bias current:Ibias. Since the thermal noise of the tail current
source in the vicinity of the frequency of oscillation does not
affect the phase noise of the oscillator due to its differential
operation [5], we useIbias as a design parameter rather than
the bias transistor dimensions.

4 Model for the LC oscillator

4.1 Inductor model

In this paper, we consider planar spiral inductors. One can easily
extend the method to other inductors such as bond wires [1], auto-
transformers [3] and non-standard spiral inductors [2].

A spiral inductor is characterized by the number of turnsn, the
turn widthw, the turn spacings, and the outer diameterdout. The
inductor can be implemented with or without a patterned ground
shield (PGS) [11] (a grounded polysilicon shield broken regularly
in the direction perpendicular to the inductor current flow).

Figure 2 shows a commonly used circuit model for the inductor
(with or without PGS) (see [6]). This model is accurate for lightly
doped substrates as long as the assumption of a lumped model is
valid. In [12], it is shown that the inductor circuit element values
are posynomial functions of the design variables (n, dout, w and
s). The inductanceL can be modeled by a monomial function of
the design variables with typical errors of only 3% (see [13]).
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Figure 2: Simplified inductor model.

4.2 Varactor model

There are several varactor options for frequency tuning [14] such
as junction diodes, MOS capacitors and accumulation mode capac-
itors. In this paper, we use a generic varactor model although mod-
els specific to a particular implementation can also be used. The
varactor capacitance ranges from some minimum valueCv,min to
some maximum valueCv,max. The ratioCv,max/Cv,min is limited
due to physical limitations of the varactor. The varactor quality fac-
tor Qv depends on the frequency of operation. For simplicity, we
assume a constant quality factor value equal to its minimum value
across the tuning range. We model the varactor as an ideal capaci-
tor in series with a resistorRv = Qv/ (Cvω). We will see that this
simplification is not critical since the varactor contributes little to
the total oscillator phase noise (see§6).

4.3 Transistor model

We now describe an analytical model for short-channel devices.
More accurate models for transistors that are still compatible for
geometric programming are available [15].

• Transconductancegm: A simple model for the transcon-
ductance of short-channel devices is [16],

gm = µCoxWEsat/2, (2)

whereµ is the mobility of the carriers in the channel,Cox is
the oxide capacitance,W is the transistor width, andEsat is
the field at which the carrier velocity reaches half its satura-
tion velocity.

• Output conductancegd: We use a simple monomial model
for the short-channel transistor output conductance that was
used in [15],

gd = λI0.6L−1W 0.4, (3)

whereλ is a fitting parameter,I is the transistor drain current
andL is the transistor channel length.

• Capacitances:We model the gate-to-drain (Cgd), the drain-
to-bulk (Cdb) and the gate-to-source (Cgs) capacitances with
posynomial expressions in the transistor width and length
(see [16, 15]).

4.4 Tank model
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Figure 3: Complementary LC oscillator.

We model the tank with the equivalent small signal differen-
tial mode circuit shown in Figure 3, where the dashed lined is an
effective AC ground for differential operation. We now define:

• Tank inductance (Ltank)is given by the monomial,

Ltank = 2L. (4)

• Tank capacitance(Ctank)is given by,

Ctank = 1
2
(4Cgd,n + Cgs,n + Cdb,n + 4Cgd,p

+Cgs,p + Cdb,p + CL + Cv),
(5)

which is a posynomial function of the design variables since
it is a sum of posynomial functions.

• Tank load conductance (gtank) is given by,

gtank = (gd,n + gd,p + gv + gL) /2, (6)

wheregv, the effective parallel varactor conductance, and
gL, the effective parallel inductor conductance, are given by
the posynomial expressions (see [12]),

gv =
Cvarω

Qv
, gL =

1

Rp
+

1

(Lω)2 /Rs

.



Sincegd,n andgd,p are also given by posynomial functions
of the design variables, expression (6) forgtank is a posyno-
mial function of the design variables.

• Tank effective negative conductance (gneg;tank) is deter-
mined by the transconductance of the cross-coupled transis-
tor pairs. To improve the1/f3 corner of the phase noise it is
convenient to have a symmetric tank (gm,n = gm,p) [5]. For
symmetric tanks,gneg,tank is given by the monomial expres-
sion,

gneg,tank = −(gm,n + gm,p)/2 = −gm,n. (7)

5 Design specifications

We now show that the design specifications for the LC oscillator
can be expressed as either monomial equality constraints, or posyn-
omial inequality constraints, and therefore can be handled by GP.

Quiescent power

The quiescent power is given by the product of the supply voltage
Vdd and the bias currentIbias,

P = IbiasVdd. (8)

Since equation (8) is monomial, we can bound the maximum qui-
escent power with a monomial constraint (P ≤ Pmax).

Differential voltage amplitude

The amplitude of the differential voltage across the tank is de-
termined by whether the oscillator is operating in current limited
mode or in voltage limited mode. It can be expressed as,

Vamp = min{Ibias/gtank, Vdd}. (9)

We can impose a minimum swing (Vamp ≥ Vamp,min) with the two
monomial constraints,

Vamp,min ≤ Vdd Vamp,min ≤ IbiasRtank. (10)

Phase noise model

In the1/f2 region of the phase noise spectrum, the single sideband
phase noise at an offset frequency (foff ) is given by [5]

L(foff) =
Γ2

rms

8π2f2
off

·
∑

i2n/∆f

q2
max

, (11)

where

• Γrms ≈ 1/2 for differential noise sources.

• qmax is the total charge swing of the tank and is given by the
monomial expression,

qmax = CtankVamp =
Vsw

Ltankω2
res

. (12)

• ∑ i2n/∆f is the sum of the current noise densities of the dif-
ferential equivalent of individual noise sources: the transistor
channel thermal noise (i2M,dT/∆f ), the transistor gate noise

(i2M,gT/∆f ), the inductor thermal noise (i2RL/∆f ) and the

varactor thermal noise (i2CV /∆f ), as depicted in Figure 4.

� Transistor channel thermal noise. In [5], it is shown
that the total differential thermal current noise density due to
the active devices is given by the posynomial expression,

i2M,dT

∆f
=

1

2

(
i2M,dn

∆f
+

i2M,dp

∆f

)
, (13)

where for short-channel devices,

i2M,d

∆f
=

4kTγIbias

EsatL
, (14)

wherek is Boltzman constant,T is the temperature in Kelvin
andγ ≈ 2 for short channel transistors. This simple model
agrees well with measurements [5].

� Transistor gate noise. Since the gate noise sources are
in parallel with the drain noise sources, they add in the same
way [5]. Therefore, the total differential transistor gate cur-
rent noise density is given by the posynomial expression,

i2M,gT

∆f
=

1

2

(
i2M,gn

∆f
+

i2M,gp

∆f

)
, (15)

where for short-channel devices,

i2M,g

∆f
=

4kTδω2C2
gsEsatL

5Ibias
, (16)

where the parameterδ takes a value close to twiceγ (see [16])
andCgs is the gate to source capacitance. SinceCgs is given
by a posynomial expression, equation (16) is also posyno-
mial.

Vdd

Ibias

L L

Rp Rp

RsRs

Cv CvRv Rv

v2
Rp
∆f

v2
Rp
∆f

v2
Rs
∆f

v2
Rs
∆f

v2
Cv
∆f

v2
Cv
∆f

MN2

MP2

MN1

MP1

i2
M,gp
∆f

i2
M,gn
∆f

i2
M,dn
∆f

i2
M,dp
∆f

i2
M,gp
∆f

i2
M,gn
∆f

i2
M,dn
∆f

i2
M,dp
∆f

Figure 4: Noise sources in the LC oscillator.

�Inductor noise. There are two noise sources from the in-
ductors: the ohmic losses in the winding and the losses in the
substrate,

i2RL

∆f
= 2 · 4kT

RL,p
≈ 8kT

[
1

Rp
+

1

(Lω)2 /Rs

]
. (17)



Since Rp, L and Rs are given by monomial expressions
(see [12]), equation (17) is a posynomial function of the de-
sign variables.

�Varactor noise. The varactor noise can be modeled with
the monomial expression,

i2CV

∆f
= 2 · 4kT

Rv,p
≈ 8kTCvω

Qv
, (18)

whereRv,p is the equivalent varactor parallel resistance.

SinceΓrms is a constant,qmax is monomial in the design
variables and the noise sourcesi2n/∆f are posynomial in
the design variables, expression (11) is a posynomial equa-
tion of the design variables. Therefore, we can minimize the
phase noise at a given frequency. To guarantee a minimum
phase noise over the entire tuning range, we can impose the
constraint (L(foff) ≤ Lmax(foff )) over several frequencies
within the tuning range.

Resonance frequency

We can impose a constraint on the maximum resonance frequency
ωres,max. This constraint together with a constraint on the tuning
range is equivalent to specifying a center resonance frequency. The
maximum tank resonance frequency is given by the posynomial
expression:

ωres,max =
1

LtankCtank,min
. (19)

We can therefore impose a minimum requiredωres,max with the
posynomial constraintωres,max ≥ ωres,max,req. This constraint
is always active (i.e., it is practically an equality). If it were not
active the inductor could contribute additional capacitance to the
tank, which would translate into a higherQL.

Tuning range

The tuning range is specified with two constraints

LtankCtank,min ≤ 1/ω2
max (20)

LtankCtank,max ≥ 1/ω2
min. (21)

Constraint (21) is not posynomial and cannot be handled di-
rectly by GP. Since constraint (20) is always tight at the optimum,
we can handle constraint (21) indirectly. We rewrite constraint (21)
as,

ω2
minCtank,max ≥ ω2

maxCtank,min.

Now we letr = ω2
res,max/ω2

res,min, and obtain

(r − 1)
Ctank,min

Cv,max
+ r

Cv,min

Cv,max
≤ 1. (22)

Thus, we can substitute (21) by the posynomial constraint (22).

Inductor constraints

It is shown in [12] that many inductor specifications have the form
of posynomial inequalities. For example, specifications on mini-
mum and maximum inductance, on maximum area, on minimum
turn spacing and width are monomial while specifications on min-
imum quality factor and minimum self-resonance frequency are
posynomial.

Geometry constraints

We can require that the width and length of the devices be con-
strained within some range using monomial constraints,

Wmin ≤ W ≤ Wmax Lmin ≤ L ≤ Lmax. (23)

We can also limit the inductor area by imposing the monomial con-
straintd2

out ≤ Amax.

Loop gain

For a complementary LC oscillator, the loop gain condition is

(gm,n + gm,p) /2 ≥ αggtank,

whereαg is the excess gain and it is typically≈ 2 − 3. Since we
havegm,n = gm,p the loop gain condition is given by a posynomial
constraint,

gm,n ≥ αggtank.

Varactor tuning range

Although the absolute value of the varactor capacitance is typically
not limited, the maximum tuning ratioβv = Cv,max/Cv,min is
limited. We impose a maximumβv with the monomial constraint
Cv,max ≤ βvCv,min.

6 Design examples

In this section, we show two oscillator designs. The LC oscillators
are designed in a standard0.35µm five metal layer2.5V CMOS
process.

Constraint Specification Achieved

Phase Noise600kHz minimize −124.2dBc/Hz
ωres 1.8GHz 1.8GHz
Cload ≥ 0.2nF 0.83nF
Itail ≤ 5mA 5mA
Vsw ≥ 2V 2.5V
Tuning range ≥ 10% 10%
dout ≤ 300µm 300µm
Excess loop gainαg ≥ 3 3

Table 1: Specifications for example 1.

The objective in the first example is to minimize phase noise in
an LC oscillator built using spiral inductors with PGS. The desired
and achieved specifications are shown in Table 1. We note that
many of the constraints are tight,i.e., power, voltage swing, tuning
range and area are all set to the limit specified. Table 2 shows the
optimal oscillator design obtained. It is important to note that sig-
nificant phase noise is contributed by both the transistors (≈ 52%)
and the inductors (≈ 44%). This shows that a design solely based
on maximizing the inductor or its quality factor will not be opti-
mum.

In the second design example we limitIbias to only 1.6mA.
Table 3 shows the desired and achieved specifications. The differ-
ential swing voltage constraint is now tight. In table 4 we show the
optimal design for the second example. The phase noise is around
7dB worse than in the first example and the relative contributions
from the inductor and the transistors are≈ 50% and≈ 46%, re-
spectively.

This result is consistent with our intuition: increasingIbias re-
sults in significant improvements in phase noise only if the oscil-
lator operates in current limited mode. We cannot achieve a sig-
nificant increase in the charge swing,qmax, in the voltage limited
mode. Therefore, if the available power is low, it is necessary to to
operate in deep current limited regime. This corresponds to smaller
average transistor currents which results in smaller noise current
density. Optimization of the inductorQ is more helpful in this
case.



Inductor Transistors
L 3.9nH Wn/Ln 17.0/0.35µm
n 4 Wp/Lp 52.7/0.35µm
dout 300µm CNMOS 0.07pF
w 23.2µm CPMOS 0.21pF
s 1.8µm gm 2mS
Rs 6.5Ω 1/gds,n 5.5kΩ
CL 0.3pF 1/gds,p 1.7kΩ
RL,p 332Ω Tank

Varactor Rtank 500Ω
Cv,max 0.81pF Ctank 1.1pF− 0.9pF
Cv,min 0.41pF qmax 2.3pC

Rv,p 4.2kΩ i2
M,d

/∆f 117.7pA2/Hz

i2
RL

/∆f 99.2pA2/Hz

i2
CV

/∆f 7.9pA2/Hz

Table 2: Oscillator design for example 1.

Constraint Specification Achieved

Phase Noise600kHz minimize −118.5dBc/Hz
ωres 1.8GHz 1.8GHz
Cload ≥ 0.2nF 0.2nF
Itail ≤ 1.6mA 1.6mA
Vsw ≥ 2V 2V
Tuning range ≥ 10% 10%
dout ≤ 300µm 300µm
Excess loop gainαg ≥ 3 3

Table 3: Specifications for example 2.

Inductor Transistors
L 10.0nH Wn/Ln 6.8/0.35µm
n 6 Wp/Lp 21.0/0.35µm
dout 300µm CNMOS 0.03pF
w 13.0µm CPMOS 0.08pF
s 1.8µm gm 2.4mS
Rs 17.4Ω 1/gds,n 15.8kΩ
CL 0.24pF 1/gds,p 5.0kΩ
RL,p 804Ω Tank

Varactor Rtank 1250Ω
Cv,max 0.32pF Ctank 0.43pF− 0.36pF
Cv,min 0.16pF qmax 0.71pC

Rv,p 10.7kΩ i2
M,d

/∆f 38.0pA2/Hz

i2
RL

/∆f 41.0pA2/Hz

i2
CV

/∆f 3.1pA2/Hz

Table 4: Oscillator design for example 2.
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Figure 5: Minimum phase noise versus power limit for different tuning ranges.

7 Trade-off curves

By repeatedly solving optimal design problems as we sweep over
values of some of the specifications, we can obtain globally opti-

mal trade-off curves for the LC oscillator. In Figure 5 we show the
trade-off curves of the minimum achievable phase noise versus qui-
escent power for different three tuning ranges. The rest of the specs
are set to the values in table 2. As an RF designer might suspect, the
phase noise decreases with higher power and smaller tuning range.
What is difficult to know, without using the tool described in this
paper, is exactly how these parameters trade off.

8 Conclusions

In this paper, we have shown how a commonly used LC oscillator
can be optimizedrapidly andgloballyby posing the design problem
as a geometric program. This formulation permits the designer to
quickly explore globally optimal tradeoff curves between different
specifications. The method allows the simultaneous optimization
of all passive and active components.
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