
Constrution of UOWHF: Tree Hashing RevisitedPalash SarkarCryptology Researh CentreApplied Statistis UnitIndian Statistial Institute203, B.T. RoadKolkata 700035, Indiae-mail: palash�isial.a.inAbstratWe present a binary tree based parallel algorithm for extending the domain of a UOWHF.The key length expansion is 2m bits for t = 2; m(t+1) bits for 3 � t � 6 andm�(t+blog2(t�1))bits for t � 7, where m is the length of the message digest and t � 2 is the height of the binarytree. The previously best known binary tree algorithm required a key length expansion ofm� 2(t � 1) bits. We also obtain the lower bound that any binary tree based algorithm mustmake a key length expansion of 2m bits if t = 2 and a key length expansion of m � (t + 1)bits for t � 3. Hene for 2 � t � 6 our algorithm makes optimal key length expansion and forpratial sized proessor trees the key length expansion is lose to the lower bound.Keywords : UOWHF, hash funtion, binary tree.1 IntrodutionDigital signature shemes are important onstituents of modern ryptography. Customarily digitalsignatures are built out of trapdoor one-way funtions. However, Naor and Yung [5℄ have shownthat it is possible to build seure digital signature shemes from 1-1 one-way funtions. Thisonstrution is important sine a one-way funtion is a weaker primitive than a trapdoor one-wayfuntion. A key omponent of the Naor-Yung onstrution is universal one-way hash funtion(UOWHF), whih was also introdued in [5℄.A UOWHF is a keyed family of funtions and is a weaker primitive than the usual ollisionresistant funtion. For a usual ollision resistant hash funtion (CRHF), the adversary has to �nda ollision for the �xed hash funtion. On the other hand, in ase of UOWHF the adversary hasto ommit to an input and then the funtion for whih the adversary has to �nd a ollision isspei�ed. The adversary wins if he an suessfully �nd a ollision for the spei�ed funtion. Sinethe adversary has to ommit to the input before the funtion is spei�ed, the adversary's taskis more diÆult than in the ase of CRHF and hene a UOWHF is a weaker primitive. In fat,Simon [8℄ has shown that there is an orale relative to whih UOWHFs exist but not CRHFs.There is another important pratial reason for preferring UOWHFs to CRHFs. As mentionedin [1℄, the birthday attak does not apply to UOWHFs. Hene the size of the message digest anbe signi�antly shorter.From the above disussion it follows that it is important to look for eÆient onstrutions ofUOWHFs. However, like most basi ryptographi primitives (say symmetri iphers) it is virtually1



impossible to onstrut a keyed family of hash funtions and prove it to be a UOWHF. In viewof this, the approah suggested by Bellare and Rogaway [1℄ is to key one of the standard hashfuntions like SHA-1 or RIPEMD-160 and assume it to be a UOWHF. It seems more reasonable tomake this assumption when the input is a short �xed length string rather than in the ase wherethe input an be arbitrarily long strings.This brings us to the problem of extending the domain of UOWHF in a seure manner. ForCRHF a tehnique for doing this has been desribed by Merkle [3℄ and Damg�ard [2℄. However,in [1℄ it has been shown that this onstrution fails for UOWHFs. A onsequene of this result isthat any extension of the domain of a UOWHF entails an inrease in the size of the key to the hashfuntion. It has been shown in [1℄ that by signing (k; hk(x)) (k is the key, x is the message and hkis the hash funtion) it is possible to build a seure signature sheme. Thus minimizing the size ofk is of great pratial signi�ane. In other words, it is important to look for onstrutions whihextend the domain of a UOWHF and for whih the resulting inrease in key length is the minimumpossible.A sequential onstrution for extending UOWHF based on the Merkle-Damg�ard onstruionwas obtained by Shoup [7℄. The sheme requires a key length expansion of t�m, where m is thesize of the message digest and 2t � 1 is the number of times the hash funtion hk is invoked. (TheShoup onstrution works even if the number of invoations of hk is not of the form 2t � 1.) In alater work, Mironov [4℄ proved the key length expansion to be optimal for the Shoup onstrution.For pratial purposes, it is of interest to onsider parallel hashing shemes. Binary tree basedhash algorithm will provide speed-up by a fator of 2tt over the sequential algorithm to hash amessage of length 2t(n �m) � (n � 2m) using a binary tree of height t (see Proposition 2). Thisspeed-up an provide substantial savings in time for hashing long messages espeially in situationswhere suh omputations have to be performed repeatedly.A tree based onstrution for seurely extending the domain of UOWHF was desribed in [1℄.For binary trees the onstrution required a key length expansion of m� 2(t� 1), for a binary treeof 2t � 1 proessors (and hene 2t � 1 invoations of hk).In this work, we onsider binary tree based algorithm for extending the domain of a UOWHF.We show that the onstrution in [1℄ is not optimal and present a binary tree based parallel shemefor extending the domain of a UOWHF. The key length expansion is 2m bits for t = 2; m(t + 1)bits for 3 � t � 6 and m � (t + blog2(t � 1)) bits for t � 7. This is a signi�ant improvementover the sheme in [1℄. The improvement is ahieved by using the Shoup onstrution along ertainpaths in the binary tree. We use the proof tehnique used in [4℄ to show the orretness of ouronstrution.We obtain a lower bound on the amount of key expansion required by any binary tree basedalgorithm for extending the domain of a UOWHF. We show that the key length must inrease byat least 2m bits if t = 2 and by at least m� (t+1) bits if t � 3. Hene for 2 � t � 6 our algorithmmakes optimal key length expansion. Further, for t = 7; 8, the key length expansion made by ouralgorithm is m bits more than the lower bound and hene is nearly optimal. Note that pratialproessor trees will usually have t � 8.A onsequene of our lower bound result is that the key length expansion made by any binarytree based algorithm must be m bits more than the key length expansion made by the Shouponstrution, whih is a sequential algorithm. This suggests that there will be a trade-o� of at leastm bits in key length expansion for ahieving speed-up through parallelism.For binary tree based algorithms with t � 7, there is a gap between the lower bound (m�(t+1))and what has been ahieved (m� (t+ blog2(t� 1))). It is an open problem to try and lose this2



gap.2 PreliminariesLet fhkgk2K be a keyed family of hash funtions, where eah hk : f0; 1gn ! f0; 1gm. In this paperwe require n � 2m. Consider the following adversarial game.1. Adversary hooses an x 2 f0; 1gn.2. Adversary is given a k whih is hosen uniformly at random from K.3. Adversary has to �nd x0 suh that x 6= x0 and hk(x) = hk(x0).We say that fhkgk2K is a universal one way hash family (UOWHF) if the adversary has a negligibleprobability of suess with respet to any probabilisti polynomial time strategy. A strategy A forthe adversary runs in two stages. In the �rst stage Aguess, the adversary �nds the x to whih hehas to ommit in Step 1. It also produes some auxiliary state information s. In the seond stageA�nd(x; k; s), the adversary either �nds a x0 whih provides a ollision for hk or it reports failure.Both Aguess and A�nd(x; k; s) are probabilisti algorithms. The suess probability of the strategyis measured over the random hoies made by Aguess and A�nd(x; k; s) and the random hoie of kin step 2 of the game. We say that A is an (�; a)-strategy if the suess probability of A is at least� and it invokes the hash funtion hk at most a times. In this ase we say that the adversary hasan (�; a)-strategy for fhkgk2K. Note that we do not inlude time as an expliit parameter thoughit would be easy to do so.In this paper we are interested in extending the domain of a UOWHF. Thus given a UOWHFfhkgk2K, with hk : f0; 1gn ! f0; 1gm and a positive integer L � n, we would like to onstrutanother UOWHF fHpgp2P , with Hp : f0; 1gL ! f0; 1gm. We say that the adversary has an (�; a)-strategy for fHpgp2P if there is a strategy B for the adversary with probability of suess at least �and whih invokes the hash funtion hk at most a times. Note that Hp is built using hk and henewhile studying strategies for Hp we are interested in the number of invoations of the hash funtionhk. The orretness of our onstrution will essentially be a Turing redution. We will show that ifthere is an (�; a)-strategy for fHpgp2P , then there is an (�1; a1)-strategy for fhkgk2K, where a1 isnot muh larger than a and �1 is not signi�antly lesser than �. This will show that if fhkgk2K isa UOWHF, then so is fHpgp2P .The key length for the base hash family fhkgk2K is dlog2 jKje. On the other hand, the keylength for the family fHpgp2P is dlog2 jPje. Thus inreasing the size of the input from n bits to Lbits results in an inrease of the key size by an amount dlog2 jPje � dlog2 jKje. From a pratialpoint of view a major motivation is to minimise this inrease in the key length.3 Known ConstrutionsWe briey disuss the onstrutions whih have already been proposed.
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3.1 Sequential ConstrutionThe Merkle-Damg�ard onstrution is a well known onstrution for ollision resistant hash fun-tions. However, Bellare and Rogaway [1℄ showed that the onstrution does not diretly work inthe ase of UOWHF. In [7℄, Shoup presented a modi�ation of the MD onstrution. We brieydesribe the Shoup onstrution as presented in [4℄.Let fhkgk2K be the base family, where K = f0; 1gK . Let x be the input to Hp with jxj =r(n�m). We de�ne p = kjjm0jjm1jj : : : jjml�1 where l = 1+blog r and mi are m-bit binary stringsalled masks. The inrease in key length is lm bits. The output of Hp is omputed by the followingalgorithm.1. Let x = x1jjx2jj : : : jjxr, where jxij = n�m.2. Let IV be an n-bit initialisation vetor.3. De�ne z0 = IV , s0 = z0 �m0.4. For 1 � i � r, de�ne zi = hk(si�1jjxi) and si = zi �m�(i) where �(i) = j if 2j ji and 2j+1 6 ji.5. De�ne zr to be the output of Hp(x).The funtion hk is invoked r times and is alled the r-round Shoup onstrution. The onstrutionwas proved to be orret by Shoup in [7℄. In a later work Mironov [4℄ provided an alternativeorretness proof. More importantly, in [4℄ it was shown that the amount of key length expansionis the minimum possible for the onstrution to be orret.3.2 Tree Based ConstrutionIn [1℄ Bellare and Rogaway desribed a tree based onstrution for extending UOWHF. We brieydesribe the onstrution for binary trees.Consider a full binary tree with t levels numbered 1; : : : ; t. There are 2i�1 nodes at level i.Hene the total number of nodes in the tree is 2t � 1. The nodes are numbered 1 to 2t � 1 in theusual fashion (top to bottom and left to right). At eah node i there is a proessor Pi, whih isapable of omputing the base hash funtion hk. For the tree based onstrution we require thatn � 2m. Let x be the input to the hash funtion fHpgp2P . Here p = kjj�1jj�1jj : : : jj�t�1jj�t�1,where �i and �j are m-bit strings alled masks. The omputation of the funtion Hp(x) is thefollowing.1. Write x = x1jjx2jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n � 2m and jx2t�1 j = : : : =jx2t�1j = n.2. For 2t�1 � i � 2t � 1, do(a) ompute zi = hk(xi).(b) If i is even, ompute si = zi � �t�1 and if i is odd, ompute si = zi � �t�1.3. For i = 2t�1 � 1 downto 2, do(a) Let j = level(i).(b) Compute zi = hk(s2ijjs2i+1jjxi). 4



() If i is even, ompute si = zi � �j�1 and if i is odd, ompute si = zi � �j�1.4. De�ne hk(s2jjs3jjx1) to be the output of Hp(x).Here level(i) is the level of the tree to whih i belongs. Thus level(i) = j if 2j�1 � i � 2j � 1.It is lear that all the nodes at the same level an work in parallel. We note that in the originalalgorithm in [1℄, the strings x1; : : : ; x2t�1�1 were de�ned to be empty strings.The amount of key expansion is 2(t � 1)m bits for a tree with t levels. Thus 2(t � 1) maskseah of length m bits are required by the onstrution. We will all the above onstrution the BRonstrution.4 Improved Tree Based ConstrutionThere are 2t�1 proessors P1; : : : ; P2t�1 onneted in a full binary tree of t levels numbered 1; : : : ; twith proessors P2i�1 ; : : : ; P2i�1 at level i. The ars in the binary tree point towards the parent, i.e.the ars are of the form (2i; i) and (2i+ 1; i). Eah proessor is apable of omputing the funtionhk for any k 2 K, i.e., Pi(k; x) = hk(x), for an n-bit string x. In the rest of the paper we will alwaysassume that t � 2.The input to the funtion Hp is x of length 2t�1n + (2t�1 � 1)(n � 2m). The key p for thefuntion Hp is formed out of the key k for the funtion hk plus some additional m-bit strings. Foronveniene in desribing the algorithm we divide these additional m-bit strings into two disjointsets � = f�1; : : : ; �t�1g and � = f�0; : : : ; �l�1g, where l = 1 + blog2(t� 1). The m-bit strings �iand �j will be alled masks. Reall that for integer i, the funtion �(i) = j if 2j ji and 2j+1 6 ji.Improved Tree Constrution (ITC)1. Let x = x1jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n� 2m and jx2t�1 j = : : : = jx2t�1j = n.Note jxj = 2t(n�m)� (n� 2m).2. For 2t�1 � i � 2t � 1, do in parallel(a) zi = Pi(k; xi) = hk(xi).(b) Set si = zi � �0 if i is even and set si = zi � �1 if i is odd.3. For j = t� 1 downto 2 do� For i = 2j�1 to 2j � 1 do in parallel(a) zi = Pi(k; s2ijjs2i+1jjxi) = hk(s2ijjs2i+1jjxi).(b) Set si = zi � ��(t�j+1) if i is even and set si = zi � �t�j+1 if i is odd.4. De�ne the output of Hp(x) to be hk(s2jjs3jjx1).Remark : Note that in algorithm ITC the proessors at one level operate in parallel. Further, whenthe proessors at one level are working, the proessors at all other levels are idle. Thus proessorsan be reused and only 2t�1 proessors are atually required to implement the algorithm. However,for the sake of larity in further analysis, we will assume that 2t � 1 \virtual" proessors areavailable.We provide an explanation of the onstrution. Let P = PirPir�1 : : : Pi1 be a path of proessorsof length r from the leaf node Pir to some internal node Pi1 whih is obtained by following only5



left links, i.e., level(ir) = t and ij+1 = 2ij for j = 1; : : : ; r � 1. The ars (ij+1; ij) in the path areassigned masks aording to the Shoup onstrution. Let S be the set of ars f(2i1 + 1; i1); (2i2 +1; i2); : : : ; (2ir�1+1; ir�1)g. The onstrution also ensures that no two ars in S get the same mask.Proposition 1 The following are true for algorithm ITC.1. t parallel rounds are required to ompute the output.2. The funtion hk is invoked 2t � 1 times.3. The amount of key length expansion (jpj � jkj) is m(t+ blog2(t� 1) bits.Proof. (1) Step 2 of ITC is one parallel round. Step 3 requires (t� 2) parallel rounds and Step 4requires one round. Hene a total of t rounds are required.(2) There are 2t � 1 proessors and eah proessor invokes the funtion hk exatly one. Hene hkis invoked exatly 2t � 1 times.(3) The amount of key length expansion is m � j� [ �j. By de�nition j�j = t � 1 and j�j =1 + blog2(t� 1). Also � \� = ;.Remark : The amount of expansion in the BR onstrution is 2(t� 1)m bits. Thus with respetto key length expansion ITC is a signi�ant improvement over the BR onstrution.Proposition 2 The speed-up of Algorithm ITC over the sequential algorithm in Setion 3.1 is bya fator of 2tt .Proof. Algorithm ITC hashes a message of length 2t(n �m) � (n � 2m) into a digest of lengthm using t parallel rounds. The time taken by a single parallel round is proportional to the timerequired by a single invoation of the hash funtion hk. The sequential onstrution require 2tinvoations of the hash funtion hk on a message of length 2t(n � m) � (n � 2m). Hene thespeed-up of the binary tree algorithm over the sequential algorithm is by a fator of 2tt .Remark : The speed-up ahieved by Algorithm ITC is substantial even for moderate values of t.Suh speed-up will prove to be advantageous for hashing long messages.Theorem 3 (Seurity Redution for Hp) If there is an (�; a) winning strategy A for fHpgp2P ,then there is an ( �2t�1 ; a+ 2(2t � 1)) winning strategy B for fhkgk2K. Consequently, fHpgp2P is aUOWHF if fhkgk2K is a UOWHF.Proof. We desribe the two stages of the strategy B as follows.Bguess : (output (y; s), with jyj = n.)1. Run Aguess to obtain x 2 f0; 1gL and state information s0.2. Choose an i uniformly at random from the set f1; : : : ; 2t � 1g.3. Write x = x1jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n� 2m and jx2t�1 j = : : : = jx2t�1j =n.4. If 2t�1 � i � 2t � 1, set y = xi; u1; u2 to be the empty string and s = (s0; i; u1; u2). Output(y; s) and stop. 6



5. If 1 � i � 2t�1 � 1, then hoose two strings u1 and u2 uniformly at random from the setf0; 1gm. Set y = u1jju2jjxi and s = (s0; i; u1; u2). Output (y; s) and stop.At this point the adversary is given a k whih is hosen uniformly at random from the setK = f0; 1gK . The adversary then runs B�nd whih is desribed below.B�nd(y; k; s) : (Note s = (s0; i; u1; u2).)1. De�ne the masks �1; : : : ; �t�1; �0; : : : ; �l�1 by exeuting algorithm MDef(i; u1; u2) (alledthe mask de�ning algorithm). This de�nes the key p for the funtion Hp. Here p =kjj�1jj : : : jj�t�1jj�0jj : : : jj�l�1, where l = blog2(t� 1)+ 1.2. Run A�nd(x; p; s0) to obtain x0.3. Let v and v0 be the inputs to proessor Pi orresponding to the strings x and x0 respetively.Denote the orresponding outputs by zi and z0i. If zi = z0i and v 6= v0, then output v and v0,else output \failure".Note that Step 3 either detets a ollision or reports failure. We now lower bound the probabilityof suess. But �rst we have to speify the mask de�ning algorithm.The task of the mask de�ning algorithm MDef is to de�ne the masks �1; : : : ; �t�1; �0; : : : ; �l�1(and hene p) so that the input to proessor Pi is y. Note that the masks are not de�ned untilthe key k is given to the adversary. One the key k is spei�ed we extend it to p suh that theextension is \onsistent" with the input y to Pi to whih the adversary has already ommitted.Another point that one has to be areful about is to ensure that the key p is hosen uniformly atrandom from the set P, i.e., the masks �i and �j are hosen independently and uniformly to bem-bit strings.The mask de�ning algorithm MDef is given below. The algorithm uses an array A[℄ of length atmost (t�1) whose entries are pairs of the form (j; v) where j is an integer in the range 1 � j � 2t�1and v is an m-bit string.Algorithm MDef(i; u1; u2)(Note : i was hosen by Bguess in Step 2. u1 and u2 were hosen by Bguess either in Step 4 or inStep 5.)1. If 2t�1 � i � 2t � 1, then randomly de�ne the masks �1; : : : ; �t�1; �0; : : : ; �l�1 and exit.2. Append (2i+ 1; u2) to the array A.3. Let j = t� level(i), j1 = j � 2�(j) and i1 = 2j�j1i.4. Randomly de�ne all unde�ned masks in the set ��(j1+1); : : : ; ��(j�1).5. If j1 = 0, then zi1 = hk(xi1),6. else(a) randomly hoose u; v in f0; 1gm.(b) Append (2i1 + 1; v) to the array A.() zi1 = hk(ujjvjjxi1).7. For j2 = j1 + 1; : : : ; j � 1 do 7



(a) i2 = 2j�j2i.(b) s2i2 = z2i2 � ��(j2).() Randomly hoose w in f0; 1gm.(d) Append (2i2 + 1; w) to the array A.(e) zi2 = hk(s2i2 jjwjjxi2).8. ��(j) = z2i � u1.9. If j1 > 0, then u1 = u, u2 = v, j = j1 and go to Step 2.10. Randomly de�ne all as yet unde�ned masks �i, 0 � i � l � 1.11. Sort the array A in desending order based on the �rst omponent of eah entry (j; v).12. For i1 = 1 to t� level(i) do(a) Let (l; u) = A[i1℄.(b) Compute zl to be the output of proessor Pl. (This an be done, sine at this point allmasks used in the subtree rooted at l have already been de�ned.)() Let j = t� level(l) + 1.(d) De�ne �j = zl � u.13. Randomly de�ne all as yet unde�ned masks �j , 1 � j � t� 1.Intuitively, algorithm MDef applies the mask reonstrution algorithm for the Shoup onstrutionalong the path Pir ; Pir�1 ; : : : ; Pi1 , where i1 = i, ij = 2j�1i and level(ir) = t. This de�nes themasks ��(t�level(ij )) for 1 � j < r. To do this the algorithm guesses the inputs that the proessorsPi1 ; : : : ; Pir�1 obtain from their right desendants. These inputs along with the proper proessornumbers are added to the array A. One the de�nition of the � masks are omplete, the algorithmbegins the task of de�ning the � masks. The �rst element of the array A is (2ir�1 + 1; u) for somem-bit string u and we are required to de�ne �1. The proessor P2ir�1+1 is at the leaf level andapplies hk to x2ir�1+1 to produe z2ir�1+1. Now �1 is de�ned to be the XOR of u and z2ir�1+1.Suppose for some 2 � j � r, the masks �1; : : : ; �j�1 has already been de�ned. The urrent elementof the array A is (2ir�j+1; u) for somem-bit string u. At this point all masks present in the subtreerooted at proessor P2ir�j+1 have already been de�ned. Thus the input to proessor P2ir�j+1 isknown. Hene proessor P2ir�j+1 applies the hash funtion hk to its input to obtain the stringz2ir�j+1. The mask �j is now de�ned to be the XOR of u and z2ir�j+1.Notie that this proedure ensures that the input to proessor Pi is the string y to whih Bguesshas ommitted. We now argue that the masks are hosen randomly from the set f0; 1gm. For thiswe note that in MDef eah mask is either hosen to be a random string or is obtained by XOR witha random string. Hene all the masks are random strings from the set f0; 1gm. Also k is a randomstring and hene p is a randomly hosen key from the set P.Suppose x and x0 ollides for the funtionHp. Then there must be a j in the range 1 � j � 2t�1suh that proessor Pj provides a ollision for the funtion hk. (Otherwise it is possible to proveby a bakward indution that x = x0.) The probability that j = i is 12t�1 . Hene if the suessprobability of A is at least �, then the suess probability of B is at least �2t�1 . Also the numberof invoations of hk by B is equal to the number of invoations of hk by A plus at most 2(2t � 1).This ompletes the proof. 8



4.1 Improvement on Algorithm ITC for t = 5; 6Algorithm ITC uses two disjoint sets of masks � and �. For t = 5; 6, we have � = f�1; : : : ; �t�1gand � = f�0; �1; �2g. This results in a total of t + 2 distint masks. The next result shows thatt+ 1 masks are suÆient.Theorem 4 For t = 5; 6, it is possible to properly extend a UOWHF fhkgk2K to a UOWHFfHpgp2P using a proessor tree of 2t � 1 proessors and requiring exatly t+ 1 masks.Proof. The algorithm is same as Algorithm ITC with the following small modi�ation. In Al-gorithm ITC the sets � = f�1; : : : ; �t�1g and � = f�0; �1; �2g are disjoint. We remove thisdisjointness by setting �1 = �2. This results in a total of t+ 1 masks.We have to show that setting �1 = �2 does not a�et the orretness of the onstrution. Morepreisely, we have to provide a seurity redution similar to that of Theorem 3. A lose examinationof the proof of Theorem 3 shows that the only part of the proof whih will be a�eted by setting�1 = �2 is the mask de�ning algorithm. Thus it is suÆient to desribe a proper mask de�ningalgorithm. We desribe the mask de�ning algorithm for t = 6 whih will also over the ase t = 5.Let the proessors in T6 = (V6; A6) be P1; : : : ; P63. Suppose the output of Bguess is (y; s =(s0; i; u1; v1)). If i � 4, then the mask de�ning algorithm of Theorem 3 is suÆient to de�ne allthe masks. This is beause of the fat that in Algorithm ITC the mask �2 does not our in thesubtree rooted at i and hene we are required to de�ne only �1. The problem arises when we haveto de�ne both �1 and �2 using Algorithm MDef. Sine in this ase �1 = �2, de�ning one will de�nethe other. Thus we have to ensure that this partiular mask is not rede�ned.There are three values of i that we have to onsider, namely i = 1; 2 and 3. The ases 2 and3 are essentially the same and orrespond to the ase for t = 5. Thus there are only two ases toonsider. We desribe the ase i = 1, the other ase (i = 2; 3) being similar. The following sequeneof steps properly de�nes all the masks when i = 1.1. Randomly hoose two m-bit strings u2 and v2. De�ne �0 = u1 � hk(u2jjv2jjx2).2. Randomly hoose two m-bit strings u3 and v3.(a) Set w1 = hk(u3jjv3jjx8).(b) Set w2 = w1 � �0.() Randomly hoose an m-bit string v4.(d) Set w3 = hk(w2jjv4jjx4).(e) De�ne �2 = u2 � w3.3. (a) Set w4 = �0 � hk(x32).(b) Set w5 = �1 � hk(x33). (Note that �1 = �2 has been de�ned in Step 2(e).)() De�ne �1 = u3 � hk(w4jjw5jjx16).4. Compute the output of proessor P17 and all it w6. De�ne �2 = w6 � v3.5. Compute the output of proessor P9 and all it w7. De�ne �3 = w7 � v4.6. Compute the output of proessor P5 and all it w8. De�ne �4 = w8 � v2.7. Compute the output of proessor P3 and all it w9. De�ne �5 = w9 � v2.9



It is not diÆult to verify that the above algorithm properly de�nes all the masks. Further, eahmask is obtained by XOR with a random m-bit string and hene the onatenation of all the (t+1)masks is a random bit string of length m(t+ 1). This ompletes the proof of the theorem.Remark : It seems diÆult to extend the above tehnique for t � 7.5 Lower BoundIn this setion we obtain a lower bound on the number of masks that must be used for the treebased UOWHF onstrution to be orret. The lower bound is obtained from a neessary onditionwhih we prove �rst.Denote by Tt = (Vt; At) the full binary tree with t levels numbered 1; : : : ; t. Here Vt =f1; : : : ; 2t � 1g is the vertex set of Tt and At is the ar set of Tt. Reall that the ars pointtowards the parents, i.e. the ars are of the form (2i; i) or (2i+ 1; i). We enumerate the ar set asAt = fa2; a3; : : : ; a2t�1g, where aj = (j; b(j=2)). Let M be a set of masks and let  t : At !M bean assignment of the masks to the ars. When t is lear from the ontext we will simply write  instead of  t. The general binary tree based algorithm for omputing the message digest is givenbelow.Algorithm 1 : (omputation of Hp(x))1. Write message x = x1jjx2jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n � 2m and jx2t�1 j =: : : = jx2t�1j = n.2. For i = 2t�1; : : : ; 2t � 1, do in parallel(a) zi = Pi(k; xi) = hk(xi).(b) si = zi �  (ai).3. For j = t� 1 downto 2 do� For i = 2j�1 to 2j � 1 do in parallel(a) zi = Pi(k; s2ijjs2i+1jjxi) = hk(s2ijjs2i+1jjxi).(b) si = zi �  (ai).4. Output hk(s2jjs3jjx1) as the output of Hp(x).Remark : It is easy to see that Algorithm ITC is a speial ase of Algorithm 1 above.De�nition 5 We say that an assignment  t : At ! M is proper if Algorithm 1 ensures thatfHpgp2P is a UOWHF whenever fhkgk2K is a UOWHF.The optimality question that we onsider is the following. What is the minimum value of jM jsuh that there is a proper assignment  t : At ! M? Thus we are interested in obtaining a lowerbound on the number of masks that must be used for the onstrution to be orret. Note thatour onstrution in Setion 4 shows that t+ blog2(t� 1) masks are suÆient for fHpgp2P to be aUOWHF. Hene t+ blog2(t� 1) is an upper bound on the minimum value of jM j for whih thereis a proper assignment  t.Let S = (V;A) be a subtree of Tt with jAj � 1. The subtree S is not neessarily full and inthe degenerate ase an also be a path. For any binary tree T (not neessarily full), we denote by10



L(T ) (resp. I(T )) the set of leaf (resp. internal) nodes of T . For any subtree S = (V;A) of Tt andany assignment  t : At !M , de�ne � t(S) =La2A  t(a), i.e., � t(S) is the XOR of all the masksthat our in the subtree S under the assignment  t. If the assignment  t is lear from the ontextthen we will use only �(S) instead of � t(S). We will use the notation 0m to denote the all-zerostring of length m.Lemma 6 Let Tt = (Vt; At) be the full binary tree of t levels. Let  t : At ! M be a properassignment of masks. Then for any subtree S = (V;A) of Tt with jAj � 1, we must have � (S) 6= 0m.Proof. We show that if for any nonempty subtree S we have �(S) = 0m, then it is possible to �ndollisions for fHpgp2P even if fhkgk2K is a UOWHF. For the proof we must assume that a UOWHFexists, otherwise the result is vauously true. Let K = f0; 1gK , m = m0 +K and n = 2m+ 3. Letfh0kgk2K be a UOWHF, where h0 : f0; 1gn ! f0; 1gm0 . We de�ne fhkgk2K from fh0kgk2K in thefollowing manner. The funtion hk is a map from f0; 1gn to f0; 1gm. Let y be the input to hk. Wewrite y = y1jjy2jjy3jjy4jjy5, where jy1j = jy3j = m0, jy2j = jy4j = K and y5 = 3. Let flag(y; k) be aBoolean valued funtion whih is true (T) if and only if (y2 � y4 = k) or (y2 = k) or (y4 = k).hk(y1; y2; y3; y4; y5) = h0k(y1; y2; y3; y4; y5)jjk if y5 = 000 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jj0K if y5 = 001 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jjy2 if y5 = 010 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jjy4 if y5 = 011 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jjy2 � y4 if y5 = 100 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jj1K if y5 = 101; 110; 111 and flag(y; k) = F= 1m if flag(y; k) = T:We �rst argue that fhkgk2K is a UOWHF if fh0kgk2K is a UOWHF. From the de�nition of hk,it is lear that for the �rst six ases �nding a ollision for hk implies �nding a ollision for h0k.The probability that the adversary is able to determine y2 and/or y4 suh that the last ase oursbefore he knows k is negligible. Hene fhkgk2K is a UOWHF.Suppose S = (V;A) is a subtree of Tt with jAj � 1 and �(S) = 0m. We show that it is possibleto de�ne two strings x 6= x0 suh that Hp(x) = Hp(x0). The strings x and x0 will be written asx = x1jj : : : jjx2t�1 and x0 = x01jj : : : jjx02t�1, wherejx1j = : : : = jx2t�1�1j = jx01j = : : : = jx02t�1�1j = n� 2m = 3jx2t�1 j = : : : = jx2t�1j = jx02t�1 j = : : : = jx02t�1j = n:Let s be the root node of S with j = level(s). Let S1 = (V 0; A0) be the full binary tree oft � j + 1 levels rooted at s. Then S is a subtree of S1 and S1 is a subtree of Tt. In fat, if s = 1,then S1 = Tt. The onstrutions of the strings x and x0 are desribed next.1. Set xi = x0i for all i 2 (f1; : : : ; 2t � 1g n V 0) [ (I(S1) n I(S)).2. Set xi = 02m+3 and x0i = 12m+3 for all i 2 L(S1) n L(S).3. If (L(S) \ L(S1) = ;) then(a) Let L(S) = fi1; : : : ; irg.(b) Set xi1 = 000 = x0i1 .() Set xi = 001 = x0i for eah i 2 L(S) n fi1g.11



4. If (L(S) \ L(S1) = fi1; : : : ; irg 6= ;) then(a) Set xi1 = 02m+3, x0i1 = 12m000.(b) Set xi = 02m+21 = x0i, for eah i 2 fi2; : : : ; irg.5. For eah i 2 I(S)(a) If (2i; i); (2i + 1; i) 2 A, then xi = 100 = x0i.(b) If (2i; i) 2 A and (2i+ 1; i) 62 A, then xi = 010 = x0i.() If (2i; i) 62 A and (2i+ 1; i) 2 A, then xi = 011 = x0i.We �rst note that by onstrution x 6= x0. To see this note that if L(S1) n L(S) 6= ;, then Step 2ensures x 6= x0 else Step 4(a) ensures x 6= x0.We laim that Hp(x) = Hp(x0). Our laim onsists of two parts.1. The output of proessor Ps is 1m for both x and x0.2. For any proessor Pi with i 2 f1; : : : ; 2t�1gnV 0, the output of Pi on both x and x0 are equal.From Step 1 in the onstrution of x and x0 we know that xi = x0i for eah i 2 f1; : : : ; 2t � 1g n V 0.Thus if the �rst point is true then the seond point is also true. We now turn to the proof of the�rst point.Let zi = zi;1 : : : zi;m be the output of proessor Pi where eah zi;j 2 f0; 1g. We will all the bitszi;m0+1; : : : ; zi;m0+K the ritial bits of zi and the positions m0+1; : : : ;m0+K the ritial positions.For an m-bit string z we will denote by z() the substring of z present in the ritial positions ofz. The idea of the proof is for proessor Ps to \see" the key k in its input and output the string1m. Exatly one proessor in L(S) writes k in the ritial positions of its output. We will all thisproessor the speial proessor. All other proessors in L(S) write 0K in the ritial positions oftheir outputs. Thus the key is masked exatly one and for all the other leaf proessors Pi, themask itself is provided as part of the input to the parent P2i.Eah proessor Pi in I(S) behaves in the following fashion.1. If (2i; i) 2 A and (2i+ 1; i) 62 A, then y2 is opied to the ritial positions of the output.2. If (2i; i) 62 A and (2i+ 1; i) 2 A, then y4 is opied to the ritial positions of the output.3. If both (2i; i); (2i + 1; i) 2 A, then y2 � y4 is opied to the ritial positions of the output.Let Ri be the subtree of S rooted at proessor Pi. The above proedure ensures that for anyproessor j 2 I(S), if Rj ontains the speial proessor, then Rj `sees' �(Rj) � k in its input elseit `sees' only �(Rj) in its input.Let (y1; y2; y3; y4; y5) be the input to proessor Ps whih is the root of the subtree S. Now thereare three ases.Case 1 : ((2s; s) 2 A and (2s + 1; s) 2 A) Let �1 and �2 be the masks for the ars (2s; s) and(2s+ 1; s) respetively. In this ase �(S) = �1 � �2 � �(R2s)� �(R2s+1). Exatly one of the treesR2s and R2s+1 ontain the speial proessor. Suppose R2s ontains the speial proessor (the otherase is similar). Then the string y2 equals �()1 � �()(R2s) � k and y4 equals �()2 � �()(R2s+1).Hene y2 � y4 = �()1 � �()2 � �()(R2s) � �()(R2s+1) � k = �()(S) � k = k, sine by assumption�(S) = 0m (and hene �()(S) = 0K). Thus Ps outputs 1m.12



Case 2 : ((2s; s) 2 A and (2s + 1; s) 62 A) Let � be the mask for the ar (2s; s). In thisase �(S) = � � �(R2s). Clearly in this ase R2s must ontain the speial proessor. Heney2 = �() � �()(R2s)� k = �()(S)� k = k, sine by assumption �(S) = 0m.Case 3 : ((2s; s) 62 A and (2s; s) 2 A) This ase is similar to Case 2 and hene the details areomitted.Thus we have proved Hp(x) = Hp(x0) and hene we are able to obtain ollisions for Hp. There-fore fHpgp2P is not a UOWHF even though fhkgk2K is a UOWHF. Hene  is not a properassignment. This ontradits the hypothesis.We use Lemma 6 to obtain a lower bound on jM j, the number of masks that must be requiredfor a proper assignment  to exist.Let M = f�1; : : : ; �rg be a set of masks and  t : At ! M be an assignment (not neessarilyproper). Let S be a subtree of Tt. For � 2 M , de�ne num (S; �) to be the number of timesthe mask � ours in the tree S under the assignment  . De�ne ve (S) = (num (S; �1) mod2; : : : ; num (S; �r) mod 2). We will use the notation ve(S) when the assignment  is lear fromthe ontext.Proposition 7 Let  t : At !M be an assignment and S a subtree of Tt. Then �(S) = 0m if andonly if ve (S) = (0; : : : ; 0). Consequently, if  is proper, then for any subtree S with at least onear, we have ve (S) 6= (0; : : : ; 0).For any two subtrees S = (V;A) and S0 = (V 0; A0) of Tt de�ne S�S0 to be the forest induedby the set V�V 0. Also we all a subtree of Tt to be nontrivial if it ontains at least one ar.De�nition 8 Let F be a family of subtrees of Tt suh that for any two distint S1; S2 2 F , wehave S1�S2 to be a nontrivial subtree of Tt. We will all F to be a onneted family.Lemma 9 Suppose Algorithm 1 uses M to be the set of masks on the tree Tt = (Vt; At) with aproper assignment  t : At !M . Let F be a onneted family of subtrees of Tt. Then the followinghold.1. For any S 2 F , we have ve (S) 6= (0; : : : ; 0).2. For any two distint S1; S2 2 F , we have ve (S1) 6= ve (S2).Proof. The �rst point is immediate from Proposition 7. We prove the seond point. Supposethere are two distint S1; S2 suh that ve(S1) = ve(S2). It is easy to see that ve(S1�S2) =ve(S1) � ve(S2) = (0; : : : ; 0). Hene from Proposition 7, we have �(S1�S2) = 0m. Sine theassignment  is proper and S1�S2 is a subtree of Tt ontaining at least one ar, we obtain aontradition to Lemma 6.A diret onsequene of Lemma 9 is the following result.Lemma 10 Let Æ be the maximum ardinality of a onneted family F of subtrees of Tt = (Vt; At).Then for any proper assignment  t : Tt ! M , we must have Æ � 2jM j � 1 (or equivalently,jM j � dlog2(a+ 1)e).Lemma 10 redues the problem of �nding lower bound on jM j to a ombinatorial question aboutthe full binary tree Tt. 13



Theorem 11 Suppose Algorithm 1 uses the full binary tree Tt = (Vt; At), a set of masks M and aproper assignment  t : At !M . Then jM j � 2 for t = 2 and jM j � t+ 1 for t � 3.Proof. We provide a reursive onstrution of a onneted family Ft.F2 = fS1; S2; S3g, where S1 onsists of the single ar (2; 1), S2 onsists of the single ar (3; 1)and S3 = T2. Clearly, F2 is a onneted family.For t > 2, the onstrution of Ft is the following. Let S1 and S2 be the full binary trees rootedat nodes 2 and 3. Then S1 and S2 are isomorphi opies of Tt�1. Let G1 and G2 be the isomorphiopies of Ft�1 orresponding to the trees S1 and S2 respetively. Let G01 be the family obtainedfrom G1 by adding the ar (2; 1) to eah subtree in G1. Similarly let G02 be the family obtained fromG2 by adding the ar (3; 1) to eah tree in G2. De�ne Ft = G01[G02[fS1; S2g. Then it is not diÆultto verify that Ft is a onneted family.Let Nt = jFtj. By the onstrution above we have N2 = 3 and for t � 3, N2 = 2Nt�1+2. HeneNt = 5:2t�2 � 2 � 2t for t � 3. Hene by Lemma 10 we have jM j � 2 for t = 2 and jM j � t+ 1 fort � 3.We have already shown that t+ blog(t� 1) masks are suÆient for a proper assignment  t toexist. Combined with Theorem 11 we get the following result.Corollary 12 The key length expansion made by Algorithm ITC is the minimum possible for2 � t � 4 and is at most m bits more than the optimal for 5 � t � 8.We note that the Shoup onstrution requires t masks and it has been proved by Mironov [4℄that one annot use less number of masks. For the binary tree algorithm, Theorem 11 shows that atleast (t+1) masks are required. Thus in moving from sequential to parallel algorithm, the trade-o�is going to be an inrease by one in the number of masks required.6 ConlusionIn this paper we have onsidered the problem of extending the domain of a UOWHF using a binarytree algorithm. As shown in [1℄ this requires an expansion in the length of the key to the hashfuntion. Our algorithm makes a key length expansion of 2m bits for t = 2; m(t + 1) bits for3 � t � 6 and m(t+ blog2(t� 1)) for t � 7 using a binary tree of t levels and a base hash funtionhk : f0; 1gn ! f0; 1gm. The previous algorithm in [1℄ required a key length expansion of 2m(t� 1)with the same parameters. Hene the key length expansion in our algorithm is signi�antly lesser.We prove that any proper extension of a UOWHF fhkgk2K, with hk : f0; 1gn ! f0; 1gm usinga binary tree of t levels (and 2t � 1 proessors) must make a key length expansion of 2m bits fort = 2 and at least m(t+1) bits for t � 3. This shows that with respet to key expansion our binarytree based algorithm is optimal for 2 � t � 6 and is nearly optimal for t = 7; 8. For t � 7, it isan open problem to try and lose the gap between the lower bound (t + 1) and the upper bound(t+ blog2(t� 1)) on the minimum number of masks required for a proper extension of a UOWHF.Referenes[1℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs pratial.Proeedings of CRYPTO 1997, pp 470-484.14
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