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.inAbstra
tWe present a binary tree based parallel algorithm for extending the domain of a UOWHF.The key length expansion is 2m bits for t = 2; m(t+1) bits for 3 � t � 6 andm�(t+blog2(t�1)
)bits for t � 7, where m is the length of the message digest and t � 2 is the height of the binarytree. The previously best known binary tree algorithm required a key length expansion ofm� 2(t � 1) bits. We also obtain the lower bound that any binary tree based algorithm mustmake a key length expansion of 2m bits if t = 2 and a key length expansion of m � (t + 1)bits for t � 3. Hen
e for 2 � t � 6 our algorithm makes optimal key length expansion and forpra
ti
al sized pro
essor trees the key length expansion is 
lose to the lower bound.Keywords : UOWHF, hash fun
tion, binary tree.1 Introdu
tionDigital signature s
hemes are important 
onstituents of modern 
ryptography. Customarily digitalsignatures are built out of trapdoor one-way fun
tions. However, Naor and Yung [5℄ have shownthat it is possible to build se
ure digital signature s
hemes from 1-1 one-way fun
tions. This
onstru
tion is important sin
e a one-way fun
tion is a weaker primitive than a trapdoor one-wayfun
tion. A key 
omponent of the Naor-Yung 
onstru
tion is universal one-way hash fun
tion(UOWHF), whi
h was also introdu
ed in [5℄.A UOWHF is a keyed family of fun
tions and is a weaker primitive than the usual 
ollisionresistant fun
tion. For a usual 
ollision resistant hash fun
tion (CRHF), the adversary has to �nda 
ollision for the �xed hash fun
tion. On the other hand, in 
ase of UOWHF the adversary hasto 
ommit to an input and then the fun
tion for whi
h the adversary has to �nd a 
ollision isspe
i�ed. The adversary wins if he 
an su

essfully �nd a 
ollision for the spe
i�ed fun
tion. Sin
ethe adversary has to 
ommit to the input before the fun
tion is spe
i�ed, the adversary's taskis more diÆ
ult than in the 
ase of CRHF and hen
e a UOWHF is a weaker primitive. In fa
t,Simon [8℄ has shown that there is an ora
le relative to whi
h UOWHFs exist but not CRHFs.There is another important pra
ti
al reason for preferring UOWHFs to CRHFs. As mentionedin [1℄, the birthday atta
k does not apply to UOWHFs. Hen
e the size of the message digest 
anbe signi�
antly shorter.From the above dis
ussion it follows that it is important to look for eÆ
ient 
onstru
tions ofUOWHFs. However, like most basi
 
ryptographi
 primitives (say symmetri
 
iphers) it is virtually1



impossible to 
onstru
t a keyed family of hash fun
tions and prove it to be a UOWHF. In viewof this, the approa
h suggested by Bellare and Rogaway [1℄ is to key one of the standard hashfun
tions like SHA-1 or RIPEMD-160 and assume it to be a UOWHF. It seems more reasonable tomake this assumption when the input is a short �xed length string rather than in the 
ase wherethe input 
an be arbitrarily long strings.This brings us to the problem of extending the domain of UOWHF in a se
ure manner. ForCRHF a te
hnique for doing this has been des
ribed by Merkle [3℄ and Damg�ard [2℄. However,in [1℄ it has been shown that this 
onstru
tion fails for UOWHFs. A 
onsequen
e of this result isthat any extension of the domain of a UOWHF entails an in
rease in the size of the key to the hashfun
tion. It has been shown in [1℄ that by signing (k; hk(x)) (k is the key, x is the message and hkis the hash fun
tion) it is possible to build a se
ure signature s
heme. Thus minimizing the size ofk is of great pra
ti
al signi�
an
e. In other words, it is important to look for 
onstru
tions whi
hextend the domain of a UOWHF and for whi
h the resulting in
rease in key length is the minimumpossible.A sequential 
onstru
tion for extending UOWHF based on the Merkle-Damg�ard 
onstru
ionwas obtained by Shoup [7℄. The s
heme requires a key length expansion of t�m, where m is thesize of the message digest and 2t � 1 is the number of times the hash fun
tion hk is invoked. (TheShoup 
onstru
tion works even if the number of invo
ations of hk is not of the form 2t � 1.) In alater work, Mironov [4℄ proved the key length expansion to be optimal for the Shoup 
onstru
tion.For pra
ti
al purposes, it is of interest to 
onsider parallel hashing s
hemes. Binary tree basedhash algorithm will provide speed-up by a fa
tor of 2tt over the sequential algorithm to hash amessage of length 2t(n �m) � (n � 2m) using a binary tree of height t (see Proposition 2). Thisspeed-up 
an provide substantial savings in time for hashing long messages espe
ially in situationswhere su
h 
omputations have to be performed repeatedly.A tree based 
onstru
tion for se
urely extending the domain of UOWHF was des
ribed in [1℄.For binary trees the 
onstru
tion required a key length expansion of m� 2(t� 1), for a binary treeof 2t � 1 pro
essors (and hen
e 2t � 1 invo
ations of hk).In this work, we 
onsider binary tree based algorithm for extending the domain of a UOWHF.We show that the 
onstru
tion in [1℄ is not optimal and present a binary tree based parallel s
hemefor extending the domain of a UOWHF. The key length expansion is 2m bits for t = 2; m(t + 1)bits for 3 � t � 6 and m � (t + blog2(t � 1)
) bits for t � 7. This is a signi�
ant improvementover the s
heme in [1℄. The improvement is a
hieved by using the Shoup 
onstru
tion along 
ertainpaths in the binary tree. We use the proof te
hnique used in [4℄ to show the 
orre
tness of our
onstru
tion.We obtain a lower bound on the amount of key expansion required by any binary tree basedalgorithm for extending the domain of a UOWHF. We show that the key length must in
rease byat least 2m bits if t = 2 and by at least m� (t+1) bits if t � 3. Hen
e for 2 � t � 6 our algorithmmakes optimal key length expansion. Further, for t = 7; 8, the key length expansion made by ouralgorithm is m bits more than the lower bound and hen
e is nearly optimal. Note that pra
ti
alpro
essor trees will usually have t � 8.A 
onsequen
e of our lower bound result is that the key length expansion made by any binarytree based algorithm must be m bits more than the key length expansion made by the Shoup
onstru
tion, whi
h is a sequential algorithm. This suggests that there will be a trade-o� of at leastm bits in key length expansion for a
hieving speed-up through parallelism.For binary tree based algorithms with t � 7, there is a gap between the lower bound (m�(t+1))and what has been a
hieved (m� (t+ blog2(t� 1)
)). It is an open problem to try and 
lose this2



gap.2 PreliminariesLet fhkgk2K be a keyed family of hash fun
tions, where ea
h hk : f0; 1gn ! f0; 1gm. In this paperwe require n � 2m. Consider the following adversarial game.1. Adversary 
hooses an x 2 f0; 1gn.2. Adversary is given a k whi
h is 
hosen uniformly at random from K.3. Adversary has to �nd x0 su
h that x 6= x0 and hk(x) = hk(x0).We say that fhkgk2K is a universal one way hash family (UOWHF) if the adversary has a negligibleprobability of su

ess with respe
t to any probabilisti
 polynomial time strategy. A strategy A forthe adversary runs in two stages. In the �rst stage Aguess, the adversary �nds the x to whi
h hehas to 
ommit in Step 1. It also produ
es some auxiliary state information s. In the se
ond stageA�nd(x; k; s), the adversary either �nds a x0 whi
h provides a 
ollision for hk or it reports failure.Both Aguess and A�nd(x; k; s) are probabilisti
 algorithms. The su

ess probability of the strategyis measured over the random 
hoi
es made by Aguess and A�nd(x; k; s) and the random 
hoi
e of kin step 2 of the game. We say that A is an (�; a)-strategy if the su

ess probability of A is at least� and it invokes the hash fun
tion hk at most a times. In this 
ase we say that the adversary hasan (�; a)-strategy for fhkgk2K. Note that we do not in
lude time as an expli
it parameter thoughit would be easy to do so.In this paper we are interested in extending the domain of a UOWHF. Thus given a UOWHFfhkgk2K, with hk : f0; 1gn ! f0; 1gm and a positive integer L � n, we would like to 
onstru
tanother UOWHF fHpgp2P , with Hp : f0; 1gL ! f0; 1gm. We say that the adversary has an (�; a)-strategy for fHpgp2P if there is a strategy B for the adversary with probability of su

ess at least �and whi
h invokes the hash fun
tion hk at most a times. Note that Hp is built using hk and hen
ewhile studying strategies for Hp we are interested in the number of invo
ations of the hash fun
tionhk. The 
orre
tness of our 
onstru
tion will essentially be a Turing redu
tion. We will show that ifthere is an (�; a)-strategy for fHpgp2P , then there is an (�1; a1)-strategy for fhkgk2K, where a1 isnot mu
h larger than a and �1 is not signi�
antly lesser than �. This will show that if fhkgk2K isa UOWHF, then so is fHpgp2P .The key length for the base hash family fhkgk2K is dlog2 jKje. On the other hand, the keylength for the family fHpgp2P is dlog2 jPje. Thus in
reasing the size of the input from n bits to Lbits results in an in
rease of the key size by an amount dlog2 jPje � dlog2 jKje. From a pra
ti
alpoint of view a major motivation is to minimise this in
rease in the key length.3 Known Constru
tionsWe brie
y dis
uss the 
onstru
tions whi
h have already been proposed.
3



3.1 Sequential Constru
tionThe Merkle-Damg�ard 
onstru
tion is a well known 
onstru
tion for 
ollision resistant hash fun
-tions. However, Bellare and Rogaway [1℄ showed that the 
onstru
tion does not dire
tly work inthe 
ase of UOWHF. In [7℄, Shoup presented a modi�
ation of the MD 
onstru
tion. We brie
ydes
ribe the Shoup 
onstru
tion as presented in [4℄.Let fhkgk2K be the base family, where K = f0; 1gK . Let x be the input to Hp with jxj =r(n�m). We de�ne p = kjjm0jjm1jj : : : jjml�1 where l = 1+blog r
 and mi are m-bit binary strings
alled masks. The in
rease in key length is lm bits. The output of Hp is 
omputed by the followingalgorithm.1. Let x = x1jjx2jj : : : jjxr, where jxij = n�m.2. Let IV be an n-bit initialisation ve
tor.3. De�ne z0 = IV , s0 = z0 �m0.4. For 1 � i � r, de�ne zi = hk(si�1jjxi) and si = zi �m�(i) where �(i) = j if 2j ji and 2j+1 6 ji.5. De�ne zr to be the output of Hp(x).The fun
tion hk is invoked r times and is 
alled the r-round Shoup 
onstru
tion. The 
onstru
tionwas proved to be 
orre
t by Shoup in [7℄. In a later work Mironov [4℄ provided an alternative
orre
tness proof. More importantly, in [4℄ it was shown that the amount of key length expansionis the minimum possible for the 
onstru
tion to be 
orre
t.3.2 Tree Based Constru
tionIn [1℄ Bellare and Rogaway des
ribed a tree based 
onstru
tion for extending UOWHF. We brie
ydes
ribe the 
onstru
tion for binary trees.Consider a full binary tree with t levels numbered 1; : : : ; t. There are 2i�1 nodes at level i.Hen
e the total number of nodes in the tree is 2t � 1. The nodes are numbered 1 to 2t � 1 in theusual fashion (top to bottom and left to right). At ea
h node i there is a pro
essor Pi, whi
h is
apable of 
omputing the base hash fun
tion hk. For the tree based 
onstru
tion we require thatn � 2m. Let x be the input to the hash fun
tion fHpgp2P . Here p = kjj�1jj�1jj : : : jj�t�1jj�t�1,where �i and �j are m-bit strings 
alled masks. The 
omputation of the fun
tion Hp(x) is thefollowing.1. Write x = x1jjx2jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n � 2m and jx2t�1 j = : : : =jx2t�1j = n.2. For 2t�1 � i � 2t � 1, do(a) 
ompute zi = hk(xi).(b) If i is even, 
ompute si = zi � �t�1 and if i is odd, 
ompute si = zi � �t�1.3. For i = 2t�1 � 1 downto 2, do(a) Let j = level(i).(b) Compute zi = hk(s2ijjs2i+1jjxi). 4



(
) If i is even, 
ompute si = zi � �j�1 and if i is odd, 
ompute si = zi � �j�1.4. De�ne hk(s2jjs3jjx1) to be the output of Hp(x).Here level(i) is the level of the tree to whi
h i belongs. Thus level(i) = j if 2j�1 � i � 2j � 1.It is 
lear that all the nodes at the same level 
an work in parallel. We note that in the originalalgorithm in [1℄, the strings x1; : : : ; x2t�1�1 were de�ned to be empty strings.The amount of key expansion is 2(t � 1)m bits for a tree with t levels. Thus 2(t � 1) masksea
h of length m bits are required by the 
onstru
tion. We will 
all the above 
onstru
tion the BR
onstru
tion.4 Improved Tree Based Constru
tionThere are 2t�1 pro
essors P1; : : : ; P2t�1 
onne
ted in a full binary tree of t levels numbered 1; : : : ; twith pro
essors P2i�1 ; : : : ; P2i�1 at level i. The ar
s in the binary tree point towards the parent, i.e.the ar
s are of the form (2i; i) and (2i+ 1; i). Ea
h pro
essor is 
apable of 
omputing the fun
tionhk for any k 2 K, i.e., Pi(k; x) = hk(x), for an n-bit string x. In the rest of the paper we will alwaysassume that t � 2.The input to the fun
tion Hp is x of length 2t�1n + (2t�1 � 1)(n � 2m). The key p for thefun
tion Hp is formed out of the key k for the fun
tion hk plus some additional m-bit strings. For
onvenien
e in des
ribing the algorithm we divide these additional m-bit strings into two disjointsets � = f�1; : : : ; �t�1g and � = f�0; : : : ; �l�1g, where l = 1 + blog2(t� 1)
. The m-bit strings �iand �j will be 
alled masks. Re
all that for integer i, the fun
tion �(i) = j if 2j ji and 2j+1 6 ji.Improved Tree Constru
tion (ITC)1. Let x = x1jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n� 2m and jx2t�1 j = : : : = jx2t�1j = n.Note jxj = 2t(n�m)� (n� 2m).2. For 2t�1 � i � 2t � 1, do in parallel(a) zi = Pi(k; xi) = hk(xi).(b) Set si = zi � �0 if i is even and set si = zi � �1 if i is odd.3. For j = t� 1 downto 2 do� For i = 2j�1 to 2j � 1 do in parallel(a) zi = Pi(k; s2ijjs2i+1jjxi) = hk(s2ijjs2i+1jjxi).(b) Set si = zi � ��(t�j+1) if i is even and set si = zi � �t�j+1 if i is odd.4. De�ne the output of Hp(x) to be hk(s2jjs3jjx1).Remark : Note that in algorithm ITC the pro
essors at one level operate in parallel. Further, whenthe pro
essors at one level are working, the pro
essors at all other levels are idle. Thus pro
essors
an be reused and only 2t�1 pro
essors are a
tually required to implement the algorithm. However,for the sake of 
larity in further analysis, we will assume that 2t � 1 \virtual" pro
essors areavailable.We provide an explanation of the 
onstru
tion. Let P = PirPir�1 : : : Pi1 be a path of pro
essorsof length r from the leaf node Pir to some internal node Pi1 whi
h is obtained by following only5



left links, i.e., level(ir) = t and ij+1 = 2ij for j = 1; : : : ; r � 1. The ar
s (ij+1; ij) in the path areassigned masks a

ording to the Shoup 
onstru
tion. Let S be the set of ar
s f(2i1 + 1; i1); (2i2 +1; i2); : : : ; (2ir�1+1; ir�1)g. The 
onstru
tion also ensures that no two ar
s in S get the same mask.Proposition 1 The following are true for algorithm ITC.1. t parallel rounds are required to 
ompute the output.2. The fun
tion hk is invoked 2t � 1 times.3. The amount of key length expansion (jpj � jkj) is m(t+ blog2(t� 1)
 bits.Proof. (1) Step 2 of ITC is one parallel round. Step 3 requires (t� 2) parallel rounds and Step 4requires one round. Hen
e a total of t rounds are required.(2) There are 2t � 1 pro
essors and ea
h pro
essor invokes the fun
tion hk exa
tly on
e. Hen
e hkis invoked exa
tly 2t � 1 times.(3) The amount of key length expansion is m � j� [ �j. By de�nition j�j = t � 1 and j�j =1 + blog2(t� 1)
. Also � \� = ;.Remark : The amount of expansion in the BR 
onstru
tion is 2(t� 1)m bits. Thus with respe
tto key length expansion ITC is a signi�
ant improvement over the BR 
onstru
tion.Proposition 2 The speed-up of Algorithm ITC over the sequential algorithm in Se
tion 3.1 is bya fa
tor of 2tt .Proof. Algorithm ITC hashes a message of length 2t(n �m) � (n � 2m) into a digest of lengthm using t parallel rounds. The time taken by a single parallel round is proportional to the timerequired by a single invo
ation of the hash fun
tion hk. The sequential 
onstru
tion require 2tinvo
ations of the hash fun
tion hk on a message of length 2t(n � m) � (n � 2m). Hen
e thespeed-up of the binary tree algorithm over the sequential algorithm is by a fa
tor of 2tt .Remark : The speed-up a
hieved by Algorithm ITC is substantial even for moderate values of t.Su
h speed-up will prove to be advantageous for hashing long messages.Theorem 3 (Se
urity Redu
tion for Hp) If there is an (�; a) winning strategy A for fHpgp2P ,then there is an ( �2t�1 ; a+ 2(2t � 1)) winning strategy B for fhkgk2K. Consequently, fHpgp2P is aUOWHF if fhkgk2K is a UOWHF.Proof. We des
ribe the two stages of the strategy B as follows.Bguess : (output (y; s), with jyj = n.)1. Run Aguess to obtain x 2 f0; 1gL and state information s0.2. Choose an i uniformly at random from the set f1; : : : ; 2t � 1g.3. Write x = x1jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n� 2m and jx2t�1 j = : : : = jx2t�1j =n.4. If 2t�1 � i � 2t � 1, set y = xi; u1; u2 to be the empty string and s = (s0; i; u1; u2). Output(y; s) and stop. 6



5. If 1 � i � 2t�1 � 1, then 
hoose two strings u1 and u2 uniformly at random from the setf0; 1gm. Set y = u1jju2jjxi and s = (s0; i; u1; u2). Output (y; s) and stop.At this point the adversary is given a k whi
h is 
hosen uniformly at random from the setK = f0; 1gK . The adversary then runs B�nd whi
h is des
ribed below.B�nd(y; k; s) : (Note s = (s0; i; u1; u2).)1. De�ne the masks �1; : : : ; �t�1; �0; : : : ; �l�1 by exe
uting algorithm MDef(i; u1; u2) (
alledthe mask de�ning algorithm). This de�nes the key p for the fun
tion Hp. Here p =kjj�1jj : : : jj�t�1jj�0jj : : : jj�l�1, where l = blog2(t� 1)
+ 1.2. Run A�nd(x; p; s0) to obtain x0.3. Let v and v0 be the inputs to pro
essor Pi 
orresponding to the strings x and x0 respe
tively.Denote the 
orresponding outputs by zi and z0i. If zi = z0i and v 6= v0, then output v and v0,else output \failure".Note that Step 3 either dete
ts a 
ollision or reports failure. We now lower bound the probabilityof su

ess. But �rst we have to spe
ify the mask de�ning algorithm.The task of the mask de�ning algorithm MDef is to de�ne the masks �1; : : : ; �t�1; �0; : : : ; �l�1(and hen
e p) so that the input to pro
essor Pi is y. Note that the masks are not de�ned untilthe key k is given to the adversary. On
e the key k is spe
i�ed we extend it to p su
h that theextension is \
onsistent" with the input y to Pi to whi
h the adversary has already 
ommitted.Another point that one has to be 
areful about is to ensure that the key p is 
hosen uniformly atrandom from the set P, i.e., the masks �i and �j are 
hosen independently and uniformly to bem-bit strings.The mask de�ning algorithm MDef is given below. The algorithm uses an array A[℄ of length atmost (t�1) whose entries are pairs of the form (j; v) where j is an integer in the range 1 � j � 2t�1and v is an m-bit string.Algorithm MDef(i; u1; u2)(Note : i was 
hosen by Bguess in Step 2. u1 and u2 were 
hosen by Bguess either in Step 4 or inStep 5.)1. If 2t�1 � i � 2t � 1, then randomly de�ne the masks �1; : : : ; �t�1; �0; : : : ; �l�1 and exit.2. Append (2i+ 1; u2) to the array A.3. Let j = t� level(i), j1 = j � 2�(j) and i1 = 2j�j1i.4. Randomly de�ne all unde�ned masks in the set ��(j1+1); : : : ; ��(j�1).5. If j1 = 0, then zi1 = hk(xi1),6. else(a) randomly 
hoose u; v in f0; 1gm.(b) Append (2i1 + 1; v) to the array A.(
) zi1 = hk(ujjvjjxi1).7. For j2 = j1 + 1; : : : ; j � 1 do 7



(a) i2 = 2j�j2i.(b) s2i2 = z2i2 � ��(j2).(
) Randomly 
hoose w in f0; 1gm.(d) Append (2i2 + 1; w) to the array A.(e) zi2 = hk(s2i2 jjwjjxi2).8. ��(j) = z2i � u1.9. If j1 > 0, then u1 = u, u2 = v, j = j1 and go to Step 2.10. Randomly de�ne all as yet unde�ned masks �i, 0 � i � l � 1.11. Sort the array A in des
ending order based on the �rst 
omponent of ea
h entry (j; v).12. For i1 = 1 to t� level(i) do(a) Let (l; u) = A[i1℄.(b) Compute zl to be the output of pro
essor Pl. (This 
an be done, sin
e at this point allmasks used in the subtree rooted at l have already been de�ned.)(
) Let j = t� level(l) + 1.(d) De�ne �j = zl � u.13. Randomly de�ne all as yet unde�ned masks �j , 1 � j � t� 1.Intuitively, algorithm MDef applies the mask re
onstru
tion algorithm for the Shoup 
onstru
tionalong the path Pir ; Pir�1 ; : : : ; Pi1 , where i1 = i, ij = 2j�1i and level(ir) = t. This de�nes themasks ��(t�level(ij )) for 1 � j < r. To do this the algorithm guesses the inputs that the pro
essorsPi1 ; : : : ; Pir�1 obtain from their right des
endants. These inputs along with the proper pro
essornumbers are added to the array A. On
e the de�nition of the � masks are 
omplete, the algorithmbegins the task of de�ning the � masks. The �rst element of the array A is (2ir�1 + 1; u) for somem-bit string u and we are required to de�ne �1. The pro
essor P2ir�1+1 is at the leaf level andapplies hk to x2ir�1+1 to produ
e z2ir�1+1. Now �1 is de�ned to be the XOR of u and z2ir�1+1.Suppose for some 2 � j � r, the masks �1; : : : ; �j�1 has already been de�ned. The 
urrent elementof the array A is (2ir�j+1; u) for somem-bit string u. At this point all masks present in the subtreerooted at pro
essor P2ir�j+1 have already been de�ned. Thus the input to pro
essor P2ir�j+1 isknown. Hen
e pro
essor P2ir�j+1 applies the hash fun
tion hk to its input to obtain the stringz2ir�j+1. The mask �j is now de�ned to be the XOR of u and z2ir�j+1.Noti
e that this pro
edure ensures that the input to pro
essor Pi is the string y to whi
h Bguesshas 
ommitted. We now argue that the masks are 
hosen randomly from the set f0; 1gm. For thiswe note that in MDef ea
h mask is either 
hosen to be a random string or is obtained by XOR witha random string. Hen
e all the masks are random strings from the set f0; 1gm. Also k is a randomstring and hen
e p is a randomly 
hosen key from the set P.Suppose x and x0 
ollides for the fun
tionHp. Then there must be a j in the range 1 � j � 2t�1su
h that pro
essor Pj provides a 
ollision for the fun
tion hk. (Otherwise it is possible to proveby a ba
kward indu
tion that x = x0.) The probability that j = i is 12t�1 . Hen
e if the su

essprobability of A is at least �, then the su

ess probability of B is at least �2t�1 . Also the numberof invo
ations of hk by B is equal to the number of invo
ations of hk by A plus at most 2(2t � 1).This 
ompletes the proof. 8



4.1 Improvement on Algorithm ITC for t = 5; 6Algorithm ITC uses two disjoint sets of masks � and �. For t = 5; 6, we have � = f�1; : : : ; �t�1gand � = f�0; �1; �2g. This results in a total of t + 2 distin
t masks. The next result shows thatt+ 1 masks are suÆ
ient.Theorem 4 For t = 5; 6, it is possible to properly extend a UOWHF fhkgk2K to a UOWHFfHpgp2P using a pro
essor tree of 2t � 1 pro
essors and requiring exa
tly t+ 1 masks.Proof. The algorithm is same as Algorithm ITC with the following small modi�
ation. In Al-gorithm ITC the sets � = f�1; : : : ; �t�1g and � = f�0; �1; �2g are disjoint. We remove thisdisjointness by setting �1 = �2. This results in a total of t+ 1 masks.We have to show that setting �1 = �2 does not a�e
t the 
orre
tness of the 
onstru
tion. Morepre
isely, we have to provide a se
urity redu
tion similar to that of Theorem 3. A 
lose examinationof the proof of Theorem 3 shows that the only part of the proof whi
h will be a�e
ted by setting�1 = �2 is the mask de�ning algorithm. Thus it is suÆ
ient to des
ribe a proper mask de�ningalgorithm. We des
ribe the mask de�ning algorithm for t = 6 whi
h will also 
over the 
ase t = 5.Let the pro
essors in T6 = (V6; A6) be P1; : : : ; P63. Suppose the output of Bguess is (y; s =(s0; i; u1; v1)). If i � 4, then the mask de�ning algorithm of Theorem 3 is suÆ
ient to de�ne allthe masks. This is be
ause of the fa
t that in Algorithm ITC the mask �2 does not o

ur in thesubtree rooted at i and hen
e we are required to de�ne only �1. The problem arises when we haveto de�ne both �1 and �2 using Algorithm MDef. Sin
e in this 
ase �1 = �2, de�ning one will de�nethe other. Thus we have to ensure that this parti
ular mask is not rede�ned.There are three values of i that we have to 
onsider, namely i = 1; 2 and 3. The 
ases 2 and3 are essentially the same and 
orrespond to the 
ase for t = 5. Thus there are only two 
ases to
onsider. We des
ribe the 
ase i = 1, the other 
ase (i = 2; 3) being similar. The following sequen
eof steps properly de�nes all the masks when i = 1.1. Randomly 
hoose two m-bit strings u2 and v2. De�ne �0 = u1 � hk(u2jjv2jjx2).2. Randomly 
hoose two m-bit strings u3 and v3.(a) Set w1 = hk(u3jjv3jjx8).(b) Set w2 = w1 � �0.(
) Randomly 
hoose an m-bit string v4.(d) Set w3 = hk(w2jjv4jjx4).(e) De�ne �2 = u2 � w3.3. (a) Set w4 = �0 � hk(x32).(b) Set w5 = �1 � hk(x33). (Note that �1 = �2 has been de�ned in Step 2(e).)(
) De�ne �1 = u3 � hk(w4jjw5jjx16).4. Compute the output of pro
essor P17 and 
all it w6. De�ne �2 = w6 � v3.5. Compute the output of pro
essor P9 and 
all it w7. De�ne �3 = w7 � v4.6. Compute the output of pro
essor P5 and 
all it w8. De�ne �4 = w8 � v2.7. Compute the output of pro
essor P3 and 
all it w9. De�ne �5 = w9 � v2.9



It is not diÆ
ult to verify that the above algorithm properly de�nes all the masks. Further, ea
hmask is obtained by XOR with a random m-bit string and hen
e the 
on
atenation of all the (t+1)masks is a random bit string of length m(t+ 1). This 
ompletes the proof of the theorem.Remark : It seems diÆ
ult to extend the above te
hnique for t � 7.5 Lower BoundIn this se
tion we obtain a lower bound on the number of masks that must be used for the treebased UOWHF 
onstru
tion to be 
orre
t. The lower bound is obtained from a ne
essary 
onditionwhi
h we prove �rst.Denote by Tt = (Vt; At) the full binary tree with t levels numbered 1; : : : ; t. Here Vt =f1; : : : ; 2t � 1g is the vertex set of Tt and At is the ar
 set of Tt. Re
all that the ar
s pointtowards the parents, i.e. the ar
s are of the form (2i; i) or (2i+ 1; i). We enumerate the ar
 set asAt = fa2; a3; : : : ; a2t�1g, where aj = (j; b(j=2)
). Let M be a set of masks and let  t : At !M bean assignment of the masks to the ar
s. When t is 
lear from the 
ontext we will simply write  instead of  t. The general binary tree based algorithm for 
omputing the message digest is givenbelow.Algorithm 1 : (
omputation of Hp(x))1. Write message x = x1jjx2jj : : : jjx2t�1, where jx1j = : : : = jx2t�1�1j = n � 2m and jx2t�1 j =: : : = jx2t�1j = n.2. For i = 2t�1; : : : ; 2t � 1, do in parallel(a) zi = Pi(k; xi) = hk(xi).(b) si = zi �  (ai).3. For j = t� 1 downto 2 do� For i = 2j�1 to 2j � 1 do in parallel(a) zi = Pi(k; s2ijjs2i+1jjxi) = hk(s2ijjs2i+1jjxi).(b) si = zi �  (ai).4. Output hk(s2jjs3jjx1) as the output of Hp(x).Remark : It is easy to see that Algorithm ITC is a spe
ial 
ase of Algorithm 1 above.De�nition 5 We say that an assignment  t : At ! M is proper if Algorithm 1 ensures thatfHpgp2P is a UOWHF whenever fhkgk2K is a UOWHF.The optimality question that we 
onsider is the following. What is the minimum value of jM jsu
h that there is a proper assignment  t : At ! M? Thus we are interested in obtaining a lowerbound on the number of masks that must be used for the 
onstru
tion to be 
orre
t. Note thatour 
onstru
tion in Se
tion 4 shows that t+ blog2(t� 1)
 masks are suÆ
ient for fHpgp2P to be aUOWHF. Hen
e t+ blog2(t� 1)
 is an upper bound on the minimum value of jM j for whi
h thereis a proper assignment  t.Let S = (V;A) be a subtree of Tt with jAj � 1. The subtree S is not ne
essarily full and inthe degenerate 
ase 
an also be a path. For any binary tree T (not ne
essarily full), we denote by10



L(T ) (resp. I(T )) the set of leaf (resp. internal) nodes of T . For any subtree S = (V;A) of Tt andany assignment  t : At !M , de�ne � t(S) =La2A  t(a), i.e., � t(S) is the XOR of all the masksthat o

ur in the subtree S under the assignment  t. If the assignment  t is 
lear from the 
ontextthen we will use only �(S) instead of � t(S). We will use the notation 0m to denote the all-zerostring of length m.Lemma 6 Let Tt = (Vt; At) be the full binary tree of t levels. Let  t : At ! M be a properassignment of masks. Then for any subtree S = (V;A) of Tt with jAj � 1, we must have � (S) 6= 0m.Proof. We show that if for any nonempty subtree S we have �(S) = 0m, then it is possible to �nd
ollisions for fHpgp2P even if fhkgk2K is a UOWHF. For the proof we must assume that a UOWHFexists, otherwise the result is va
uously true. Let K = f0; 1gK , m = m0 +K and n = 2m+ 3. Letfh0kgk2K be a UOWHF, where h0 : f0; 1gn ! f0; 1gm0 . We de�ne fhkgk2K from fh0kgk2K in thefollowing manner. The fun
tion hk is a map from f0; 1gn to f0; 1gm. Let y be the input to hk. Wewrite y = y1jjy2jjy3jjy4jjy5, where jy1j = jy3j = m0, jy2j = jy4j = K and y5 = 3. Let flag(y; k) be aBoolean valued fun
tion whi
h is true (T) if and only if (y2 � y4 = k) or (y2 = k) or (y4 = k).hk(y1; y2; y3; y4; y5) = h0k(y1; y2; y3; y4; y5)jjk if y5 = 000 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jj0K if y5 = 001 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jjy2 if y5 = 010 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jjy4 if y5 = 011 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jjy2 � y4 if y5 = 100 and flag(y; k) = F= h0k(y1; y2; y3; y4; y5)jj1K if y5 = 101; 110; 111 and flag(y; k) = F= 1m if flag(y; k) = T:We �rst argue that fhkgk2K is a UOWHF if fh0kgk2K is a UOWHF. From the de�nition of hk,it is 
lear that for the �rst six 
ases �nding a 
ollision for hk implies �nding a 
ollision for h0k.The probability that the adversary is able to determine y2 and/or y4 su
h that the last 
ase o

ursbefore he knows k is negligible. Hen
e fhkgk2K is a UOWHF.Suppose S = (V;A) is a subtree of Tt with jAj � 1 and �(S) = 0m. We show that it is possibleto de�ne two strings x 6= x0 su
h that Hp(x) = Hp(x0). The strings x and x0 will be written asx = x1jj : : : jjx2t�1 and x0 = x01jj : : : jjx02t�1, wherejx1j = : : : = jx2t�1�1j = jx01j = : : : = jx02t�1�1j = n� 2m = 3jx2t�1 j = : : : = jx2t�1j = jx02t�1 j = : : : = jx02t�1j = n:Let s be the root node of S with j = level(s). Let S1 = (V 0; A0) be the full binary tree oft � j + 1 levels rooted at s. Then S is a subtree of S1 and S1 is a subtree of Tt. In fa
t, if s = 1,then S1 = Tt. The 
onstru
tions of the strings x and x0 are des
ribed next.1. Set xi = x0i for all i 2 (f1; : : : ; 2t � 1g n V 0) [ (I(S1) n I(S)).2. Set xi = 02m+3 and x0i = 12m+3 for all i 2 L(S1) n L(S).3. If (L(S) \ L(S1) = ;) then(a) Let L(S) = fi1; : : : ; irg.(b) Set xi1 = 000 = x0i1 .(
) Set xi = 001 = x0i for ea
h i 2 L(S) n fi1g.11



4. If (L(S) \ L(S1) = fi1; : : : ; irg 6= ;) then(a) Set xi1 = 02m+3, x0i1 = 12m000.(b) Set xi = 02m+21 = x0i, for ea
h i 2 fi2; : : : ; irg.5. For ea
h i 2 I(S)(a) If (2i; i); (2i + 1; i) 2 A, then xi = 100 = x0i.(b) If (2i; i) 2 A and (2i+ 1; i) 62 A, then xi = 010 = x0i.(
) If (2i; i) 62 A and (2i+ 1; i) 2 A, then xi = 011 = x0i.We �rst note that by 
onstru
tion x 6= x0. To see this note that if L(S1) n L(S) 6= ;, then Step 2ensures x 6= x0 else Step 4(a) ensures x 6= x0.We 
laim that Hp(x) = Hp(x0). Our 
laim 
onsists of two parts.1. The output of pro
essor Ps is 1m for both x and x0.2. For any pro
essor Pi with i 2 f1; : : : ; 2t�1gnV 0, the output of Pi on both x and x0 are equal.From Step 1 in the 
onstru
tion of x and x0 we know that xi = x0i for ea
h i 2 f1; : : : ; 2t � 1g n V 0.Thus if the �rst point is true then the se
ond point is also true. We now turn to the proof of the�rst point.Let zi = zi;1 : : : zi;m be the output of pro
essor Pi where ea
h zi;j 2 f0; 1g. We will 
all the bitszi;m0+1; : : : ; zi;m0+K the 
riti
al bits of zi and the positions m0+1; : : : ;m0+K the 
riti
al positions.For an m-bit string z we will denote by z(
) the substring of z present in the 
riti
al positions ofz. The idea of the proof is for pro
essor Ps to \see" the key k in its input and output the string1m. Exa
tly one pro
essor in L(S) writes k in the 
riti
al positions of its output. We will 
all thispro
essor the spe
ial pro
essor. All other pro
essors in L(S) write 0K in the 
riti
al positions oftheir outputs. Thus the key is masked exa
tly on
e and for all the other leaf pro
essors Pi, themask itself is provided as part of the input to the parent P2i.Ea
h pro
essor Pi in I(S) behaves in the following fashion.1. If (2i; i) 2 A and (2i+ 1; i) 62 A, then y2 is 
opied to the 
riti
al positions of the output.2. If (2i; i) 62 A and (2i+ 1; i) 2 A, then y4 is 
opied to the 
riti
al positions of the output.3. If both (2i; i); (2i + 1; i) 2 A, then y2 � y4 is 
opied to the 
riti
al positions of the output.Let Ri be the subtree of S rooted at pro
essor Pi. The above pro
edure ensures that for anypro
essor j 2 I(S), if Rj 
ontains the spe
ial pro
essor, then Rj `sees' �(Rj) � k in its input elseit `sees' only �(Rj) in its input.Let (y1; y2; y3; y4; y5) be the input to pro
essor Ps whi
h is the root of the subtree S. Now thereare three 
ases.Case 1 : ((2s; s) 2 A and (2s + 1; s) 2 A) Let �1 and �2 be the masks for the ar
s (2s; s) and(2s+ 1; s) respe
tively. In this 
ase �(S) = �1 � �2 � �(R2s)� �(R2s+1). Exa
tly one of the treesR2s and R2s+1 
ontain the spe
ial pro
essor. Suppose R2s 
ontains the spe
ial pro
essor (the other
ase is similar). Then the string y2 equals �(
)1 � �(
)(R2s) � k and y4 equals �(
)2 � �(
)(R2s+1).Hen
e y2 � y4 = �(
)1 � �(
)2 � �(
)(R2s) � �(
)(R2s+1) � k = �(
)(S) � k = k, sin
e by assumption�(S) = 0m (and hen
e �(
)(S) = 0K). Thus Ps outputs 1m.12



Case 2 : ((2s; s) 2 A and (2s + 1; s) 62 A) Let � be the mask for the ar
 (2s; s). In this
ase �(S) = � � �(R2s). Clearly in this 
ase R2s must 
ontain the spe
ial pro
essor. Hen
ey2 = �(
) � �(
)(R2s)� k = �(
)(S)� k = k, sin
e by assumption �(S) = 0m.Case 3 : ((2s; s) 62 A and (2s; s) 2 A) This 
ase is similar to Case 2 and hen
e the details areomitted.Thus we have proved Hp(x) = Hp(x0) and hen
e we are able to obtain 
ollisions for Hp. There-fore fHpgp2P is not a UOWHF even though fhkgk2K is a UOWHF. Hen
e  is not a properassignment. This 
ontradi
ts the hypothesis.We use Lemma 6 to obtain a lower bound on jM j, the number of masks that must be requiredfor a proper assignment  to exist.Let M = f�1; : : : ; �rg be a set of masks and  t : At ! M be an assignment (not ne
essarilyproper). Let S be a subtree of Tt. For � 2 M , de�ne num (S; �) to be the number of timesthe mask � o

urs in the tree S under the assignment  . De�ne ve
 (S) = (num (S; �1) mod2; : : : ; num (S; �r) mod 2). We will use the notation ve
(S) when the assignment  is 
lear fromthe 
ontext.Proposition 7 Let  t : At !M be an assignment and S a subtree of Tt. Then �(S) = 0m if andonly if ve
 (S) = (0; : : : ; 0). Consequently, if  is proper, then for any subtree S with at least onear
, we have ve
 (S) 6= (0; : : : ; 0).For any two subtrees S = (V;A) and S0 = (V 0; A0) of Tt de�ne S�S0 to be the forest indu
edby the set V�V 0. Also we 
all a subtree of Tt to be nontrivial if it 
ontains at least one ar
.De�nition 8 Let F be a family of subtrees of Tt su
h that for any two distin
t S1; S2 2 F , wehave S1�S2 to be a nontrivial subtree of Tt. We will 
all F to be a 
onne
ted family.Lemma 9 Suppose Algorithm 1 uses M to be the set of masks on the tree Tt = (Vt; At) with aproper assignment  t : At !M . Let F be a 
onne
ted family of subtrees of Tt. Then the followinghold.1. For any S 2 F , we have ve
 (S) 6= (0; : : : ; 0).2. For any two distin
t S1; S2 2 F , we have ve
 (S1) 6= ve
 (S2).Proof. The �rst point is immediate from Proposition 7. We prove the se
ond point. Supposethere are two distin
t S1; S2 su
h that ve
(S1) = ve
(S2). It is easy to see that ve
(S1�S2) =ve
(S1) � ve
(S2) = (0; : : : ; 0). Hen
e from Proposition 7, we have �(S1�S2) = 0m. Sin
e theassignment  is proper and S1�S2 is a subtree of Tt 
ontaining at least one ar
, we obtain a
ontradi
tion to Lemma 6.A dire
t 
onsequen
e of Lemma 9 is the following result.Lemma 10 Let Æ be the maximum 
ardinality of a 
onne
ted family F of subtrees of Tt = (Vt; At).Then for any proper assignment  t : Tt ! M , we must have Æ � 2jM j � 1 (or equivalently,jM j � dlog2(a+ 1)e).Lemma 10 redu
es the problem of �nding lower bound on jM j to a 
ombinatorial question aboutthe full binary tree Tt. 13



Theorem 11 Suppose Algorithm 1 uses the full binary tree Tt = (Vt; At), a set of masks M and aproper assignment  t : At !M . Then jM j � 2 for t = 2 and jM j � t+ 1 for t � 3.Proof. We provide a re
ursive 
onstru
tion of a 
onne
ted family Ft.F2 = fS1; S2; S3g, where S1 
onsists of the single ar
 (2; 1), S2 
onsists of the single ar
 (3; 1)and S3 = T2. Clearly, F2 is a 
onne
ted family.For t > 2, the 
onstru
tion of Ft is the following. Let S1 and S2 be the full binary trees rootedat nodes 2 and 3. Then S1 and S2 are isomorphi
 
opies of Tt�1. Let G1 and G2 be the isomorphi

opies of Ft�1 
orresponding to the trees S1 and S2 respe
tively. Let G01 be the family obtainedfrom G1 by adding the ar
 (2; 1) to ea
h subtree in G1. Similarly let G02 be the family obtained fromG2 by adding the ar
 (3; 1) to ea
h tree in G2. De�ne Ft = G01[G02[fS1; S2g. Then it is not diÆ
ultto verify that Ft is a 
onne
ted family.Let Nt = jFtj. By the 
onstru
tion above we have N2 = 3 and for t � 3, N2 = 2Nt�1+2. Hen
eNt = 5:2t�2 � 2 � 2t for t � 3. Hen
e by Lemma 10 we have jM j � 2 for t = 2 and jM j � t+ 1 fort � 3.We have already shown that t+ blog(t� 1)
 masks are suÆ
ient for a proper assignment  t toexist. Combined with Theorem 11 we get the following result.Corollary 12 The key length expansion made by Algorithm ITC is the minimum possible for2 � t � 4 and is at most m bits more than the optimal for 5 � t � 8.We note that the Shoup 
onstru
tion requires t masks and it has been proved by Mironov [4℄that one 
annot use less number of masks. For the binary tree algorithm, Theorem 11 shows that atleast (t+1) masks are required. Thus in moving from sequential to parallel algorithm, the trade-o�is going to be an in
rease by one in the number of masks required.6 Con
lusionIn this paper we have 
onsidered the problem of extending the domain of a UOWHF using a binarytree algorithm. As shown in [1℄ this requires an expansion in the length of the key to the hashfun
tion. Our algorithm makes a key length expansion of 2m bits for t = 2; m(t + 1) bits for3 � t � 6 and m(t+ blog2(t� 1)
) for t � 7 using a binary tree of t levels and a base hash fun
tionhk : f0; 1gn ! f0; 1gm. The previous algorithm in [1℄ required a key length expansion of 2m(t� 1)with the same parameters. Hen
e the key length expansion in our algorithm is signi�
antly lesser.We prove that any proper extension of a UOWHF fhkgk2K, with hk : f0; 1gn ! f0; 1gm usinga binary tree of t levels (and 2t � 1 pro
essors) must make a key length expansion of 2m bits fort = 2 and at least m(t+1) bits for t � 3. This shows that with respe
t to key expansion our binarytree based algorithm is optimal for 2 � t � 6 and is nearly optimal for t = 7; 8. For t � 7, it isan open problem to try and 
lose the gap between the lower bound (t + 1) and the upper bound(t+ blog2(t� 1)
) on the minimum number of masks required for a proper extension of a UOWHF.Referen
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