Construction of UOWHEF: Tree Hashing Revisited

Palash Sarkar
Cryptology Research Centre
Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road
Kolkata 700035, India
e-mail: palash@isical.ac.in

Abstract

We present, a binary tree based parallel algorithm for extending the domain of a UOWHF.
The key length expansion is 2m bits for ¢ = 2; m(t+1) bits for 3 < ¢ < 6 and m X (t+|log,(t—1)|)
bits for ¢ > 7, where m is the length of the message digest and ¢ > 2 is the height of the binary
tree. The previously best known binary tree algorithm required a key length expansion of
m X 2(t — 1) bits. We also obtain the lower bound that any binary tree based algorithm must
make a key length expansion of 2m bits if £ = 2 and a key length expansion of m x (¢t + 1)
bits for ¢ > 3. Hence for 2 < t < 6 our algorithm makes optimal key length expansion and for
practical sized processor trees the key length expansion is close to the lower bound.

Keywords : UOWHF, hash function, binary tree.

1 Introduction

Digital signature schemes are important constituents of modern cryptography. Customarily digital
signatures are built out of trapdoor one-way functions. However, Naor and Yung [5] have shown
that it is possible to build secure digital signature schemes from 1-1 one-way functions. This
construction is important since a one-way function is a weaker primitive than a trapdoor one-way
function. A key component of the Naor-Yung construction is universal one-way hash function
(UOWHF), which was also introduced in [5].

A UOWHEF is a keyed family of functions and is a weaker primitive than the usual collision
resistant function. For a usual collision resistant hash function (CRHF), the adversary has to find
a collision for the fixed hash function. On the other hand, in case of UOWHF the adversary has
to commit to an input and then the function for which the adversary has to find a collision is
specified. The adversary wins if he can successfully find a collision for the specified function. Since
the adversary has to commit to the input before the function is specified, the adversary’s task
is more difficult than in the case of CRHF and hence a UOWHF is a weaker primitive. In fact,
Simon [8] has shown that there is an oracle relative to which UOWHFs exist but not CRHFs.

There is another important practical reason for preferring UOWHFs to CRHFs. As mentioned
in [1], the birthday attack does not apply to UOWHFs. Hence the size of the message digest can
be significantly shorter.

From the above discussion it follows that it is important to look for efficient constructions of
UOWHFSs. However, like most basic cryptographic primitives (say symmetric ciphers) it is virtually

impossible to construct a keyed family of hash functions and prove it to be a UOWHF. In view
of this, the approach suggested by Bellare and Rogaway [1] is to key one of the standard hash
functions like SHA-1 or RIPEMD-160 and assume it to be a UOWHEF. It seems more reasonable to
make this assumption when the input is a short fixed length string rather than in the case where
the input can be arbitrarily long strings.

This brings us to the problem of extending the domain of UOWHF in a secure manner. For
CRHF a technique for doing this has been described by Merkle [3] and Damgard [2]. However,
in [1] it has been shown that this construction fails for UOWHFs. A consequence of this result is
that any extension of the domain of a UOWHEF entails an increase in the size of the key to the hash
function. It has been shown in [1] that by signing (k, hi(z)) (k is the key, x is the message and hy
is the hash function) it is possible to build a secure signature scheme. Thus minimizing the size of
k is of great practical significance. In other words, it is important to look for constructions which
extend the domain of a UOWHF and for which the resulting increase in key length is the minimum
possible.

A sequential construction for extending UOWHF based on the Merkle-Damgard construcion
was obtained by Shoup [7]. The scheme requires a key length expansion of ¢ x m, where m is the
size of the message digest and 2! — 1 is the number of times the hash function hy, is invoked. (The
Shoup construction works even if the number of invocations of Ay is not of the form 2! —1.) In a
later work, Mironov [4] proved the key length expansion to be optimal for the Shoup construction.

For practical purposes, it is of interest to consider parallel hashing schemes. Binary tree based
hash algorithm will provide speed-up by a factor of QTt over the sequential algorithm to hash a
message of length 2!(n — m) — (n — 2m) using a binary tree of height ¢ (see Proposition 2). This
speed-up can provide substantial savings in time for hashing long messages especially in situations
where such computations have to be performed repeatedly.

A tree based construction for securely extending the domain of UOWHF was described in [1].
For binary trees the construction required a key length expansion of m x 2(¢ — 1), for a binary tree
of 2! — 1 processors (and hence 2! — 1 invocations of hy).

In this work, we consider binary tree based algorithm for extending the domain of a UOWHEF.
We show that the construction in [1] is not optimal and present a binary tree based parallel scheme
for extending the domain of a UOWHF. The key length expansion is 2m bits for ¢t = 2; m(¢t + 1)
bits for 3 <t < 6 and m x (¢t + [logy(t — 1)]) bits for ¢ > 7. This is a significant improvement
over the scheme in [1]. The improvement is achieved by using the Shoup construction along certain
paths in the binary tree. We use the proof technique used in [4] to show the correctness of our
construction.

We obtain a lower bound on the amount of key expansion required by any binary tree based
algorithm for extending the domain of a UOWHF. We show that the key length must increase by
at least 2m bits if t = 2 and by at least m x (¢ + 1) bits if ¢ > 3. Hence for 2 < ¢ < 6 our algorithm
makes optimal key length expansion. Further, for ¢ = 7,8, the key length expansion made by our
algorithm is m bits more than the lower bound and hence is nearly optimal. Note that practical
processor trees will usually have ¢t < 8.

A consequence of our lower bound result is that the key length expansion made by any binary
tree based algorithm must be m bits more than the key length expansion made by the Shoup
construction, which is a sequential algorithm. This suggests that there will be a trade-off of at least
m bits in key length expansion for achieving speed-up through parallelism.

For binary tree based algorithms with ¢ > 7, there is a gap between the lower bound (m x (t+1))
and what has been achieved (m x (¢ + |log,(t — 1)])). It is an open problem to try and close this

gap.

2 Preliminaries

Let {hg}rex be a keyed family of hash functions, where each hy : {0,1}" — {0,1}™. In this paper
we require n > 2m. Consider the following adversarial game.

1. Adversary chooses an = € {0,1}".
2. Adversary is given a k which is chosen uniformly at random from K.

3. Adversary has to find ' such that z # z' and hy(z) = hi(2').

We say that {hj }rei is a universal one way hash family (UOWHF) if the adversary has a negligible
probability of success with respect to any probabilistic polynomial time strategy. A strategy A for
the adversary runs in two stages. In the first stage A8"*S, the adversary finds the x to which he
has to commit in Step 1. It also produces some auxiliary state information s. In the second stage
Afind(z & <), the adversary either finds a #' which provides a collision for hy, or it reports failure.
Both A8 and Afind (g, k, s) are probabilistic algorithms. The success probability of the strategy
is measured over the random choices made by 489S and Afi"d(z, k. s) and the random choice of k
in step 2 of the game. We say that A is an (e, a)-strategy if the success probability of A is at least
€ and it invokes the hash function h; at most a times. In this case we say that the adversary has
an (e, a)-strategy for {hi}rex. Note that we do not include time as an explicit parameter though
it would be easy to do so.

In this paper we are interested in extending the domain of a UOWHF. Thus given a UOWHF
{hi}rex, with hg : {0,1}" — {0,1}™ and a positive integer L > n, we would like to construct
another UOWHF {H}},ep, with H, : {0,1}1 — {0,1}™. We say that the adversary has an (e, a)-
strategy for {H,},cp if there is a strategy B for the adversary with probability of success at least €
and which invokes the hash function hj; at most a times. Note that H), is built using h; and hence
while studying strategies for H, we are interested in the number of invocations of the hash function
hi.

The correctness of our construction will essentially be a Turing reduction. We will show that if
there is an (e, a)-strategy for {Hp},cp, then there is an (€1, aq)-strategy for {hj}rex, where a; is

not much larger than a and €; is not significantly lesser than e. This will show that if {hy }rexc is
a UOWHF, then so is {H,},ecp.

The key length for the base hash family {hy}rex is [logy |[K|]. On the other hand, the key
length for the family {H,},cp is [log, |P|]. Thus increasing the size of the input from n bits to L
bits results in an increase of the key size by an amount [log, |P|] — [logy |K|]. From a practical
point of view a major motivation is to minimise this increase in the key length.

3 Known Constructions

We briefly discuss the constructions which have already been proposed.

3.1 Sequential Construction

The Merkle-Damgard construction is a well known construction for collision resistant hash func-
tions. However, Bellare and Rogaway [1] showed that the construction does not directly work in
the case of UOWHEF. In [7], Shoup presented a modification of the MD construction. We briefly
describe the Shoup construction as presented in [4].

Let {hi}rex be the base family, where K = {0,1}X. Let z be the input to H, with |z| =
r(n—m). We define p = k||mq||m1||...||mi—1 where [= 1+ |logr| and m, are m-bit binary strings
called masks. The increase in key length is m bits. The output of H, is computed by the following
algorithm.

1. Let z = z1]||z2]|. .. ||zr, where |z;| = n — m.
2. Let IV be an n-bit initialisation vector.
3. Define 2o = IV, s¢g = zg ® my.
4. For 1 <4 <, define z; = hi(s;—1||z;) and s; = z; ® m,(;) where v(i) = j if 27|i and 29+ /i
5. Define z, to be the output of H,(z).
The function h; is invoked r times and is called the r-round Shoup construction. The construction
was proved to be correct by Shoup in [7]. In a later work Mironov [4] provided an alternative

correctness proof. More importantly, in [4] it was shown that the amount of key length expansion
is the minimum possible for the construction to be correct.

3.2 Tree Based Construction

In [1] Bellare and Rogaway described a tree based construction for extending UOWHF. We briefly
describe the construction for binary trees.

Consider a full binary tree with ¢ levels numbered 1,...,¢. There are 2~! nodes at level i.
Hence the total number of nodes in the tree is 2! — 1. The nodes are numbered 1 to 2¢ — 1 in the
usual fashion (top to bottom and left to right). At each node 7 there is a processor P;, which is
capable of computing the base hash function h;. For the tree based construction we require that
n > 2m. Let z be the input to the hash function {Hp},cp. Here p = k|lau||B1]] ... ||ou—1]|Bi-1.
where a; and ; are m-bit strings called masks. The computation of the function H,(z) is the
following.

1. Write z = =zy||z2||... ||zt 1, where |z1| = ... = |z9t-1_y| = n —2m and |zot-1| = ... =
|[Tot 1| = .

2. For 271 < i <2t -1, do

(a) compute z; = hg(z;).

(b) If 4 is even, compute s; = z; ® ay—1 and if i is odd, compute s; = z; ® ;1.
3. For i = 2= — 1 downto 2, do

(a) Let j = level().

(b) Compute z; = hy(s2;||s2i4+1]|x;)-

(c) If i is even, compute s; = z; ® aj_1 and if 7 is odd, compute s; = z; ® 3;_1.
4. Define hy(s2||s3]|z1) to be the output of Hy(z).

Here level(i) is the level of the tree to which i belongs. Thus level(i) = j if 2771 < i < 2/ — 1.
It is clear that all the nodes at the same level can work in parallel. We note that in the original
algorithm in [1], the strings x1,...,%9t-1_; were defined to be empty strings.

The amount of key expansion is 2(t — 1)m bits for a tree with ¢ levels. Thus 2(¢ — 1) masks
each of length m bits are required by the construction. We will call the above construction the BR
construction.

4 Improved Tree Based Construction

There are 2! —1 processors Py,. .., Py_; connected in a full binary tree of ¢ levels numbered 1, ...t
with processors Pyi-1,..., Pyi_; at level i. The arcs in the binary tree point towards the parent, i.e.
the arcs are of the form (27,7) and (27 4+ 1,4). Each processor is capable of computing the function
hy for any k € K, i.e., P;(k,x) = hg(z), for an n-bit string z. In the rest of the paper we will always
assume that t > 2.

The input to the function H, is x of length 2!=In + (201 — 1)(n — 2m). The key p for the
function H,, is formed out of the key & for the function hj plus some additional m-bit strings. For
convenience in describing the algorithm we divide these additional m-bit strings into two disjoint
sets I' = {a1,...,a4—1} and A = {By,..., 51}, where [= 1+ [logy(t — 1)]. The m-bit strings «;
and 3; will be called masks. Recall that for integer 4, the function v(i) = j if 2/|i and 27+! fi.

Improved Tree Construction (ITC)
1. Let z = z1]|...||zot_q1, where |z1| = ... = |z9t-1_1| = n—2m and |zyi-1| = ... = |z9t _1| = n.
Note |z| = 2'(n — m) — (n — 2m).
2. For 271 <4 < 2! — 1, do in parallel
(a) zi = Pi(k, z;) = hy(z).

(b) Set s; = z; @ [y if i is even and set s; = z; ® «ay if 7 is odd.
3. For j =t —1 downto 2 do

e Fori=2/"1t02/ — 1 do in parallel

(a) 2z = Pi(k, s2ills2iv1l|zi) = hi(s2il|s2i11]|2:).
(b) Set s; = 2z; @ B,—j41) if i is even and set s; = 2z; ® y—j41 if 7 is odd.

4. Define the output of Hy(z) to be hy(s2||s3||z1).

Remark : Note that in algorithm I'TC the processors at one level operate in parallel. Further, when
the processors at one level are working, the processors at all other levels are idle. Thus processors
can be reused and only 2/~ processors are actually required to implement the algorithm. However,
for the sake of clarity in further analysis, we will assume that 2 — 1 “virtual” processors are
available.

We provide an explanation of the construction. Let P = P; P; ... P;, be a path of processors
of length r from the leaf node P; to some internal node P;, which is obtained by following only

left links, i.e., level(i,) =t and i1 = 2i; for j = 1,...,r — 1. The arcs (ij41,7;) in the path are
assigned masks according to the Shoup construction. Let S be the set of arcs {(2i1 + 1,41), (2i9 +
1,49),...,(2i,—1+1,i,—1)}. The construction also ensures that no two arcs in S get the same mask.

Proposition 1 The following are true for algorithm ITC.

1. t parallel rounds are required to compute the output.
2. The function hy, is invoked 2' — 1 times.

3. The amount of key length expansion (|p| — |k|) is m(t + |logy(t — 1)| bits.

Proof. (1) Step 2 of ITC is one parallel round. Step 3 requires (¢ — 2) parallel rounds and Step 4
requires one round. Hence a total of ¢ rounds are required.

(2) There are 2 — 1 processors and each processor invokes the function hy, exactly once. Hence hy
is invoked exactly 2¢ — 1 times.

(3) The amount of key length expansion is m x |I' U A|. By definition |I'| = ¢ — 1 and |A| =
1+ |logs(t —1)]. AlsoTNA = 0. |
Remark : The amount of expansion in the BR construction is 2(¢ — 1)m bits. Thus with respect
to key length expansion ITC is a significant improvement over the BR construction.

Proposition 2 The speed-up of Algorithm ITC over the sequential algorithm in Section 3.1 is by
a factor of %

Proof. Algorithm ITC hashes a message of length 2/(n — m) — (n — 2m) into a digest of length
m using ¢t parallel rounds. The time taken by a single parallel round is proportional to the time
required by a single invocation of the hash function hj. The sequential construction require 2°
invocations of the hash function hj on a message of length 2/(n — m) — (n — 2m). Hence the
speed-up of the binary tree algorithm over the sequential algorithm is by a factor of % [|

Remark : The speed-up achieved by Algorithm ITC is substantial even for moderate values of ¢.
Such speed-up will prove to be advantageous for hashing long messages.

Theorem 3 (Security Reduction for H)) If there is an (e,a) winning strategy A for {Hp}pep,
then there is an (x>, a + 2(28 — 1)) winning strategy B for {hg}rexc. Consequently, {H,}pep is a
UOWHEF if {hy}rex is a UOWHF.

Proof. We describe the two stages of the strategy B as follows.
B&1eSS + (output (y, s), with |y| = n.)

1. Run A" to obtain z € {0,1}* and state information s’.

2. Choose an 7 uniformly at random from the set {1,...,2/ —1}.
3. Write z = 1| ... ||zt _1, where |z1| = ... = [zo—1_| =n —2m and |zoi—1| = ... = |zt _{| =
n.

4. If 2171 <4 < 28 — 1, set y = x;; u1,u to be the empty string and s = (s, 4,1y, us). Output
(y, s) and stop.

5. If 1 < i < 20! — 1, then choose two strings u; and wy uniformly at random from the set
{0,1}™. Set y = uq||uz||z; and s = (8,4, u1,uz). Output (y,s) and stop.

At this point the adversary is given a k which is chosen uniformly at random from the set
K = {0,1}¥. The adversary then runs Bi"d which is described below.

Bind(y k. s) : (Note s = ('), u1,us).)

1. Define the masks ay,...,a;—1,080,...,8,_1 by executing algorithm MDef(i, u;,us) (called
the mask defining algorithm). This defines the key p for the function H,. Here p =
Ellaa|l ... [lee—1l|Boll - - [|Bi=1, where | = |logy(t — 1) + 1.

2. Run AMd(z p. §') to obtain .

3. Let v and v’ be the inputs to processor P; corresponding to the strings z and z’ respectively.
Denote the corresponding outputs by z; and z,. If z; = 2} and v # ¢/, then output v and v/,
else output “failure”.

Note that Step 3 either detects a collision or reports failure. We now lower bound the probability
of success. But first we have to specify the mask defining algorithm.

The task of the mask defining algorithm MDef is to define the masks a1,...,a:-1,B0,---,51-1
(and hence p) so that the input to processor P; is y. Note that the masks are not defined until
the key k is given to the adversary. Once the key k is specified we extend it to p such that the
extension is “consistent” with the input y to FP; to which the adversary has already committed.
Another point that one has to be careful about is to ensure that the key p is chosen uniformly at
random from the set P, i.e., the masks «; and 3; are chosen independently and uniformly to be
m-bit strings.

The mask defining algorithm MDef is given below. The algorithm uses an array A[] of length at
most (t— 1) whose entries are pairs of the form (4, v) where j is an integer in the range 1 < j < 2t -1
and v is an m-bit string.

Algorithm MDef(i, uy,u)
(Note : 7 was chosen by B8 in Step 2. u; and uy were chosen by B8"S either in Step 4 or in
Step 5.)

1. If 2071 < § < 2t — 1, then randomly define the masks a1, ..., a1, Bo, ..., Bi—1 and exit.
2. Append (2i + 1,u9) to the array A.

3. Let j =t — level(i), j1 = j — 2¥09) and 4y = 27914,

4. Randomly define all undefined masks in the set £, 11y;-- -, By(i—1)-

5. If j1 = 0, then z;;, = hg(zy,),

6. else

(a) randomly choose u,v in {0,1}™.
(b) Append (2i; + 1,v) to the array A.
(©) ziy = by (ullv]zi,).

7. Forjo=751+1,...,7—1do

ig = 207925,

(a)

(b) 21y = 22iy @ Bu(y)-

(c) Randomly choose w in {0,1}™.

(d) Append (2i2 + 1, w) to the array A.
(e)

8. /Bu(j) = 29; D Uq.

Ziy = hi (821, ||w]|2,).

9. If 51 > 0, then u; = u, uo = v, 7 = j; and go to Step 2.
10. Randomly define all as yet undefined masks 3;, 0 < ¢ <[—1.
11. Sort the array A in descending order based on the first component of each entry (j,v).
12. For iy =1 to t — level(i) do

(a) Let (I,u) = Aliy].

(b) Compute z; to be the output of processor P;. (This can be done, since at this point all
masks used in the subtree rooted at [have already been defined.)

(c) Let j =t — level(l) + 1.
(d) Define oj = 2 & u.

13. Randomly define all as yet undefined masks «;, 1 <j <¢ — 1.

Intuitively, algorithm MDef applies the mask reconstruction algorithm for the Shoup construction
along the path P, P, _,,..., P, where iy = i, i; = 27" and level(i,) = t. This defines the
masks By(t,level(ij)) for 1 < j < r. To do this the algorithm guesses the inputs that the processors
P ,...,P; _, obtain from their right descendants. These inputs along with the proper processor
numbers are added to the array A. Once the definition of the § masks are complete, the algorithm
begins the task of defining the @ masks. The first element of the array A is (24,1 + 1, u) for some
m-bit string u and we are required to define ;. The processor Py; 41 is at the leaf level and
applies hy to x2; _,4+1 to produce zy; _,+1. Now «; is defined to be the XOR of v and z9;,_,41.
Suppose for some 2 < 5 < r, the masks a1, ..., a;_1 has already been defined. The current element
of the array A is (2i,_;+1,u) for some m-bit string u. At this point all masks present in the subtree
rooted at processor Pgir_j_H have already been defined. Thus the input to processor Pgir_ﬁ_l is
known. Hence processor Py;, .1 applies the hash function hj to its input to obtain the string
2y +1- The mask «; is now defined to be the XOR of u and 220, j+1-

Notice that this procedure ensures that the input to processor P; is the string y to which B85S
has committed. We now argue that the masks are chosen randomly from the set {0, 1}"™. For this
we note that in MDef each mask is either chosen to be a random string or is obtained by XOR with
a random string. Hence all the masks are random strings from the set {0,1}". Also k is a random
string and hence p is a randomly chosen key from the set P.

Suppose z and z' collides for the function H,. Then there must be a j in the range 1 < j < 2¢—1
such that processor P; provides a collision for the function hy. (Otherwise it is possible to prove
by a backward induction that z = z'.) The probability that j = i is ﬁ Hence if the success
probability of A is at least e, then the success probability of B is at least 5z>5. Also the number
of invocations of hj by B is equal to the number of invocations of h; by A plus at most 2(2! — 1).
This completes the proof. [|

4.1 Improvement on Algorithm ITC for ¢t = 5,6

Algorithm ITC uses two disjoint sets of masks I' and A. For ¢t = 5,6, we have I' = {ay, ..., 041}
and A = {fo, 1, 52}. This results in a total of ¢ + 2 distinct masks. The next result shows that
t + 1 masks are sufficient.

Theorem 4 For t = 5,6, it is possible to properly extend a UOWHF {hy}rex to a UOWHF
{H,}pep using a processor tree of 28 — 1 processors and requiring ezactly t + 1 masks.

Proof. The algorithm is same as Algorithm ITC with the following small modification. In Al-
gorithm ITC the sets I' = {ay,...,4—1} and A = {fy, 1,52} are disjoint. We remove this
disjointness by setting cy = B5. This results in a total of ¢ + 1 masks.

We have to show that setting «; = 2 does not affect the correctness of the construction. More
precisely, we have to provide a security reduction similar to that of Theorem 3. A close examination
of the proof of Theorem 3 shows that the only part of the proof which will be affected by setting
a1 = [9 is the mask defining algorithm. Thus it is sufficient to describe a proper mask defining
algorithm. We describe the mask defining algorithm for ¢ = 6 which will also cover the case t = 5.

Let the processors in Ty = (Vg, Ag) be Pp,..., Ps3. Suppose the output of B8 is (y,s =
(s'yi,uy,v1)). If i > 4, then the mask defining algorithm of Theorem 3 is sufficient to define all
the masks. This is because of the fact that in Algorithm ITC the mask 2 does not occur in the
subtree rooted at 7 and hence we are required to define only a;. The problem arises when we have
to define both o and fy using Algorithm MDef. Since in this case oy = 5, defining one will define
the other. Thus we have to ensure that this particular mask is not redefined.

There are three values of ¢+ that we have to consider, namely 4 = 1,2 and 3. The cases 2 and
3 are essentially the same and correspond to the case for ¢ = 5. Thus there are only two cases to
consider. We describe the case i = 1, the other case (i = 2,3) being similar. The following sequence
of steps properly defines all the masks when 7 = 1.

1. Randomly choose two m-bit strings us and ve. Define Sy = uy @ hy(ual||va||z2).
2. Randomly choose two m-bit strings us and vs.

Set wy, = hk(’u,gH’UgHQSg).
Set wo = w1 @ By.

Randomly choose an m-bit string vy4.

Define 5 = us ® ws.

Set wy = Py @ hy(x32).

)
)
)
d) Set w3 = hg(wa||va||z4).
)
)
) Set ws = a1 @ hi(zs3). (Note that oy = 2 has been defined in Step 2(e).)
)

Define 31 = u3 @ hy(w4||ws||z16).

e~

. Compute the output of processor P;7 and call it wg. Define ag = wg P v3.
5. Compute the output of processor Py and call it wy. Define ag = w7 @ vy.
6. Compute the output of processor Ps and call it wg. Define oy = wg @ vo.

7. Compute the output of processor P3 and call it wg. Define a5 = wg @ vo.

It is not difficult to verify that the above algorithm properly defines all the masks. Further, each
mask is obtained by XOR with a random m-bit string and hence the concatenation of all the (¢4 1)
masks is a random bit string of length m(¢ + 1). This completes the proof of the theorem.]

Remark : It seems difficult to extend the above technique for ¢ > 7.

5 Lower Bound

In this section we obtain a lower bound on the number of masks that must be used for the tree
based UOWHF construction to be correct. The lower bound is obtained from a necessary condition
which we prove first.

Denote by T; = (V;, A;) the full binary tree with ¢ levels numbered 1,...,¢t. Here V; =
{1,...,2! — 1} is the vertex set of T} and A; is the arc set of T;. Recall that the arcs point
towards the parents, i.e. the arcs are of the form (2i,47) or (2i + 1,7). We enumerate the arc set as
Ay ={as,a3,... a9}, where a; = (4, [(7/2)]). Let M be a set of masks and let ¢; : A; = M be
an assignment of the masks to the arcs. When ¢ is clear from the context we will simply write 1
instead of 1;. The general binary tree based algorithm for computing the message digest is given
below.

Algorithm 1 : (computation of H,(z))

1. Write message © = x1||za||... ||zt 1, where |z1| = ... = |zg-1_{| = n — 2m and |zgi—1| =
el = ‘.Z'Qt_1| =n.

2. Fori=2"1,...,2" — 1, do in parallel
(a) 2 = Pi(k,z;) = hy(z;).
(b) si =z @ P(a;).
3. For j =t —1 downto 2 do
e Fori=2/"1t02/ —1 do in parallel
(a) zi = Pi(k, s2ills2it1]|mi) = hr(s2ills2it1]|7i)-
(b) si =2 @ p(ai).
4. Output hy(s2||ss|/z1) as the output of H,(z).

Remark : It is easy to see that Algorithm ITC is a special case of Algorithm 1 above.

Definition 5 We say that an assignment 1y : Ay — M 1is proper if Algorithm 1 ensures that
{Hp}pep is a UOWHF whenever {hy}rexc is a UOWHF.

The optimality question that we consider is the following. What is the minimum value of | M|
such that there is a proper assignment i, : Ay — M7 Thus we are interested in obtaining a lower
bound on the number of masks that must be used for the construction to be correct. Note that
our construction in Section 4 shows that ¢ + |[log,(t — 1)] masks are sufficient for {H,},cp to be a
UOWHEF. Hence ¢ + [logy(t — 1)] is an upper bound on the minimum value of | M| for which there
is a proper assignment ;.

Let S = (V, A) be a subtree of T; with |A| > 1. The subtree S is not necessarily full and in
the degenerate case can also be a path. For any binary tree T (not necessarily full), we denote by

10

L(T) (resp. Z(T)) the set of leaf (resp. internal) nodes of T'. For any subtree S = (V, A) of T; and
any assignment ¢, : Ay — M, define oy, (S) = @,c 4 Pi(a), ie., 0y, (S) is the XOR of all the masks
that occur in the subtree S under the assignment ;. If the assignment 1/, is clear from the context
then we will use only o(S) instead of oy, (S). We will use the notation 0™ to denote the all-zero
string of length m.

Lemma 6 Let Ty = (Vi, Ay) be the full binary tree of t levels. Let v, : Ay — M be a proper
assignment of masks. Then for any subtree S = (V, A) of Ty with |A| > 1, we must have o (S) # 0™.

Proof. We show that if for any nonempty subtree S we have o(S) = 0™, then it is possible to find
collisions for { H), },cp even if {hy }rex is a UOWHE. For the proof we must assume that a UOWHF
exists, otherwise the result is vacuously true. Let K = {0, I}K, m=m'+ K and n = 2m + 3. Let
{) }rex be a UOWHF, where b : {0,1}" — {0,1}™. We define {hy}rex from {h} }rex in the
following manner. The function hy is a map from {0, 1}" to {0,1}™. Let y be the input to hy. We

write y = y1[|y2||ysl[yallys, where [y1| = [ys| =m/, |y2| = [y4| = K and y5 = 3. Let flag(y, k) be a
Boolean valued function which is true (T) if and only if (yo ® ys = k) or (y2 = k) or (ys = k).

hi(y1,y2, Y3, 94, y5) = hi (Y1, 92,93, Y4, ys)| |k if y5 = 000 and flag(y,k) = F
= h’k(ylay27y3ay4ay5)”0K if Ys = 001 and flag(yak) =F
= (Y1, y2. Y3, 4. Y5) || Y2 if y5 = 010 and flag(y,k) = F
= R (y1.Y2,Y3, Y4, Y5)||ya if y5 = 011 and flag(y, k) = F
= hi(y1.y2,Y3, Y4, Y5)|ly2 D ya if y5 =100 and flag(y, k) =F
= (Y1, Y2, y3, Y, y5) | [15 if y5 = 101,110,111 and flag(y, k) = F
= 1m if flag(y, k) =T.

We first argue that {h;}rex is a UOWHF if {h} }rex is a UOWHF. From the definition of hy,
it is clear that for the first six cases finding a collision for hj implies finding a collision for hj,.
The probability that the adversary is able to determine y9 and/or y4 such that the last case occurs
before he knows k is negligible. Hence {hj}rexc is a UOWHEF.

Suppose S = (V, A) is a subtree of T; with |[A| > 1 and ¢(S) = 0™. We show that it is possible
to define two strings © # z’ such that H,(z) = Hp(z'). The strings z and 2’ will be written as
z=x||...[|ze_q and 2’ = 24| ... ||z}, |, where

|$1| = ... = |$2t—1_1‘ = |gjll| =...= |$12t—1_1‘ =n—2m =3
‘th—l‘ = . . . = ‘x2t—1| = |xl2t_1‘ =...= ‘5[!’21_1| =n.

Let s be the root node of S with j = level(s). Let S; = (V', A’) be the full binary tree of
t — 7 + 1 levels rooted at s. Then S is a subtree of S; and S; is a subtree of T;. In fact, if s =1,
then S; = T;. The constructions of the strings z and z’ are described next.

1. Set z; =z} foralli € ({1,...,2' =1} \ V') U (Z(S1) \ Z(S)).
2. Set z; = 0?23 and z} = 12™F3 for all i € L(S1) \ L(9).
3. If (L(S) N L(S1) = 0) then

(a) Let £(S) = {i1,...,ir}.
(b) Set z;, =000 = =} .
(c) Set z; = 001 = =z for each i € L(S) \ {i1}.

11

4. TE(L(S) N L(S1) = {ir,...,ir} # 0) then
(a) Set m;, = 02m+3, g = 12000,
(b) Set x; = 0?2™*21 = gl for each i € {ia,...,i,}.

5. For each i € Z(S)

(a) I (24,7), (2 + 1,4) € A, then z; = 100 = .
(b) If (2i,4) € A and (2i + 1,i) ¢ A, then z; = 010 = z..

I3
(c) If (2i,4) ¢ A and (2i + 1,7) € A, then z; = 011 = z.
We first note that by construction z # z’. To see this note that if £(S1) \ L£(S) # 0, then Step 2
ensures = # ' else Step 4(a) ensures = # z’.

We claim that Hy(z) = Hpy(z'). Our claim consists of two parts.

1. The output of processor Py is 1™ for both z and z’.

2. For any processor P; withi € {1,...,2! —1}\ V', the output of P; on both z and z’ are equal.

From Step 1 in the construction of x and z' we know that x; = z} for each i € {1,...,2 =1} \ V".
Thus if the first point is true then the second point is also true. We now turn to the proof of the
first point.

Let z; = 2,1 ... 2;m be the output of processor P; where each z; ; € {0,1}. We will call the bits
Zim!+1s - - - Zim/+ K the critical bits of z; and the positions m'+1,...,m’ + K the critical positions.
For an m-bit string z we will denote by z(¢) the substring of z present in the critical positions of
z. The idea of the proof is for processor Ps to “see” the key k in its input and output the string
1™, Exactly one processor in £(S) writes k in the critical positions of its output. We will call this
processor the special processor. All other processors in £(S) write 0% in the critical positions of
their outputs. Thus the key is masked exactly once and for all the other leaf processors P;, the
mask itself is provided as part of the input to the parent Ps;.

Each processor P; in Z(S) behaves in the following fashion.

1. If (2i,i) € A and (21 4 1,4) ¢ A, then y, is copied to the critical positions of the output.
2. If (2i,1) ¢ A and (2i + 1,7) € A, then y4 is copied to the critical positions of the output.

3. If both (24,4), (2 + 1,4) € A, then ys @ y4 is copied to the critical positions of the output.

Let R; be the subtree of S rooted at processor P;. The above procedure ensures that for any
processor j € Z(S), if R; contains the special processor, then R; ‘sees’ o(R;) @ k in its input else
it ‘sees’ only o(R;) in its input.

Let (y1,v2,Y3, Y4, y5) be the input to processor P; which is the root of the subtree S. Now there
are three cases.

Case 1 : ((2s,s) € A and (2s+1,s) € A) Let puy; and po be the masks for the arcs (2s,s) and
(2s + 1, s) respectively. In this case o(S) = p1 @ po ® o(Ras) ® 0(Ras+1). Exactly one of the trees
Rss and Ry, contain the special processor. Suppose Ry contains the special processor (the other
case is similar). Then the string ys equals ugc) ® 09 (Ry,) @ k and y4 equals ugc) ® 09 (Ras11).
Hence ys ® y4 = ugc) @ ,uéc) <) O'(C)(RQS) @ U(c)(R25+1) ok = U(C)(S) @ k = k, since by assumption
0(S) = 0™ (and hence 0(?)(S) = 0K). Thus P, outputs 1™.

12

Case 2 : ((2s,s) € A and (2s + 1,s) ¢ A) Let u be the mask for the arc (2s,s). In this
case 0(S) = pu @® o(Ras). Clearly in this case Rss must contain the special processor. Hence
y2 = 19 ® 0l (Rys) @ k = 6(9(S) ® k = k, since by assumption o(S) = 0™,

Case 3 : ((2s,8) ¢ A and (2s,8) € A) This case is similar to Case 2 and hence the details are
omitted.

Thus we have proved Hy(z) = H,(z') and hence we are able to obtain collisions for H,. There-
fore {Hp}pep is not a UOWHF even though {h;}rex is a UOWHF. Hence 1 is not a proper
assignment. This contradicts the hypothesis. [|

We use Lemma 6 to obtain a lower bound on |M|, the number of masks that must be required
for a proper assignment 1) to exist.

Let M = {p1,...,ur} be a set of masks and 1, : A, — M be an assignment (not necessarily
proper). Let S be a subtree of T;. For p € M, define numy(S, ;1) to be the number of times
the mask p occurs in the tree S under the assignment . Define vecy (S) = (numy (S, p1) mod
2, ..., numy(S, pur) mod 2). We will use the notation vec(S) when the assignment ¢ is clear from
the context.

Proposition 7 Let 1, : Ay = M be an assignment and S a subtree of Ty. Then o(S) = 0™ if and
only if vecy(S) = (0,...,0). Consequently, if 1 is proper, then for any subtree S with at least one
arc, we have vecy(S) # (0,...,0).

For any two subtrees S = (V, A) and S' = (V', A") of T; define SAS’ to be the forest induced
by the set VAV'. Also we call a subtree of T} to be nontrivial if it contains at least one arc.

Definition 8 Let F be a family of subtrees of Ty such that for any two distinct S1,Sy € F, we
have S1ASy to be a nontrivial subtree of Ty. We will call F to be a connected family.

Lemma 9 Suppose Algorithm 1 uses M to be the set of masks on the tree Ty = (Vi, Ay) with a
proper assignment P : Ay — M. Let F be a connected family of subtrees of Ty. Then the following
hold.

1. For any S € F, we have vecy(S) # (0,...,0).

2. For any two distinct S1,So € F, we have vecy(S1) # vecy(S2).

Proof. The first point is immediate from Proposition 7. We prove the second point. Suppose
there are two distinct Sy, S such that vec(S1) = vec(Ss). It is easy to see that vec(S1ASy) =
vec(S1) @ vec(S2) = (0,...,0). Hence from Proposition 7, we have o(S;AS2) = 0™. Since the
assignment ¢ is proper and S1ASs is a subtree of T} containing at least one arc, we obtain a
contradiction to Lemma 6. [|

A direct consequence of Lemma 9 is the following result.

Lemma 10 Let ¢ be the mazimum cardinality of a connected family F of subtrees of Ty = (Vy, Ay).
Then for any proper assignment v, : T, — M, we must have § < 2/MI — 1 (or equivalently,
|M| > [logy(a +1)1).

Lemma 10 reduces the problem of finding lower bound on |M| to a combinatorial question about
the full binary tree T;.

13

Theorem 11 Suppose Algorithm 1 uses the full binary tree Ty = (Vi, Ay), a set of masks M and a
proper assignment ¢, : Ay — M. Then |M|>2 fort=2 and |[M|>t+1 fort> 3.

Proof. We provide a recursive construction of a connected family F;.

Fa = {51, S92, S35}, where S; consists of the single arc (2,1), Sy consists of the single arc (3,1)
and S3 = Ty. Clearly, F5 is a connected family.

For ¢t > 2, the construction of F; is the following. Let S; and S5 be the full binary trees rooted
at nodes 2 and 3. Then S; and Ss are isomorphic copies of T;_1. Let G; and G be the isomorphic
copies of F;_1 corresponding to the trees S; and Sy respectively. Let G| be the family obtained
from Gy by adding the arc (2, 1) to each subtree in G;. Similarly let G, be the family obtained from
G by adding the arc (3,1) to each tree in Gy. Define Fy = GiUG,LU{S1, S2}. Then it is not difficult
to verify that F; is a connected family.

Let Ny = |F;|. By the construction above we have Ny = 3 and for ¢ > 3, Ny = 2N;_1 + 2. Hence
Ny =5.2172 -2 > 2! for t > 3. Hence by Lemma 10 we have |M| > 2 for t = 2 and |M| >t + 1 for
t> 3. []

We have already shown that ¢+ |log(¢ — 1) | masks are sufficient for a proper assignment 1); to
exist. Combined with Theorem 11 we get the following result.

Corollary 12 The key length expansion made by Algorithm ITC is the minimum possible for
2 <t <4 and is at most m bits more than the optimal for 5 <t < 8.

We note that the Shoup construction requires ¢ masks and it has been proved by Mironov [4]
that one cannot use less number of masks. For the binary tree algorithm, Theorem 11 shows that at
least (¢4 1) masks are required. Thus in moving from sequential to parallel algorithm, the trade-off
is going to be an increase by one in the number of masks required.

6 Conclusion

In this paper we have considered the problem of extending the domain of a UOWHF using a binary
tree algorithm. As shown in [1] this requires an expansion in the length of the key to the hash
function. Our algorithm makes a key length expansion of 2m bits for ¢ = 2; m(¢t + 1) bits for
3 <t<6and m(t+ |logy(t—1)]) for £ > 7 using a binary tree of ¢ levels and a base hash function
hi : {0,1}™ — {0,1}™. The previous algorithm in [1] required a key length expansion of 2m(¢ — 1)
with the same parameters. Hence the key length expansion in our algorithm is significantly lesser.

We prove that any proper extension of a UOWHF {hy }recic, with hy : {0,1}" — {0,1}"™ using
a binary tree of ¢ levels (and 2! — 1 processors) must make a key length expansion of 2m bits for
t = 2 and at least m(t+ 1) bits for ¢ > 3. This shows that with respect to key expansion our binary
tree based algorithm is optimal for 2 < ¢ < 6 and is nearly optimal for t = 7,8. For ¢t > 7, it is
an open problem to try and close the gap between the lower bound (¢ + 1) and the upper bound
(t+ [logo(t—1)]) on the minimum number of masks required for a proper extension of a UOWHF.

References

[1] M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHF's practical.
Proceedings of CRYPTO 1997, pp 470-484.

14

2]

I. B. Damgard. A design principle for hash functions. Lecture Notes in Computer Science, 435
(1990), 416-427 (Advances in Cryptology - CRYPTO’89).

[3] R. C. Merkle. One way hash functions and DES. Lecture Notes in Computer Science, 435
(1990), 428-226 (Advances in Cryptology - CRYPTO’89).

[4] I. Mironov. Hash functions: from Merkle-Damgard to Shoup. Lecture Notes in Computer
Science, 2045 (2001), 166-181 (Advances in Cryptology - EUROCRYPT’01).

[5] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic aplications.
Proceedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.

[6] B. Preneel. The state of cryptographic hash functions. Lecture Notes in Computer Science,
1561 (1999), 158-182 (Lectures on Data Security: Modern Cryptology in Theory and Practice).

[7] V. Shoup. A composition theorem for universal one-way hash functions. Proceedings of Euro-
crypt 2000, pp 445-452, 2000.

[8] D. Simon. Finding collisions on a one-way street: Can secure hash function be based on general
assumptions?, Lecture Notes in Computer Science - EUROCRYPT’98, pp 334-345, 1998.

[9] D. R. Stinson. Some observations on the theory of cryptographic hash functions. TACR preprint
server, http://eprint.iacr.org/2001/020/.

15

