
Measures for Traing Convergene of IterativeDeoding AlgorithmsM. T�uhlery, S. ten Brinkz, and J. Hagenaueryy Institute for Comm. Engineering, Munih University of Tehnology, Arisstr. 21, D-80290 Munih, Germany,email: fmiha,hagg�lnt.ei.tum.dez Bell Laboratories, Luent Tehnologies, 101 Crawfords Corner Road, Holmdel, NJ 07733, USA,email: stenbrink�bell-labs.omAbstrat|We study the onvergene behavior of turbo de-oding, turbo equalization, and turbo bit-interleaved odedmodulation in a uni�ed framework, whih is to regard allthree priniples as instanes of iterative deoding of two se-rially onatenated odes. There is a olletion of measuresin the reent literature, whih trae the onvergene of iter-ative deoding algorithms based on a single parameter. Thisparameter is assumed to ompletely desribe the behaviorof the soft-in soft-out deoders being part of the iterativealgorithm. The measures observe di�erent parameters andwere originally applied to di�erent types of deoders. Inthis paper, we show how six of those measures are relatedto eah other and we ompare their onvergene preditionapability for the deoding priniples mentioned above. Weobserved that two measures predit the onvergene verywell for all regarded deoding priniples and others su�erfrom systemati predition errors independent of the de-oding priniple. I. IntrodutionToday, there exist error orretion odes (ECCs) fordata transmission over standard hannels, e.g., the additivewhite Gaussian noise (AWGN) hannel, yielding a deod-ing performane lose to theoretial limits. Among thoseis the family of the onatenated odes, whose potentialwas soon disovered [1℄, but eÆient deoding was onsid-ered prohibitively omplex. Berrou et al. showed in 1993that a onatenated ode an be deoded almost optimallywith low omputational burden using iterative deoding [2℄.This �nding spawned a huge amount of researh on these\turbo odes" (as a referene, see e.g. [3℄). The deod-ing priniple was applied later to other data transmissionsystems, whih an be regarded as a onatenation of twoor more \enoders" proessing the data to be transmitted,e.g., oded data transmission over an inter-symbol interfer-ene (ISI) hannel [4℄, [5℄, [6℄, bit{interleaved oded modu-lation (BiCM) [7℄, trellis oded modulation (TCM) [8℄, [9℄,or oded ode-division multiple-aess (CDMA) [10℄, [11℄.The reeiver of one of the �rst three systems is said toperform turbo equalization, turbo TCM, or turbo BiCM,respetively.A large body of researh has been undertaken to pro-vide tools for hoosing design parameters for turbo odesand suitable odes have been found, e.g., in [12℄, [13℄, [14℄.A long time open problem was to understand the onver-gene behavior of the iterative deoding algorithm. A ma-jor question was to explain the regions in signal-to-noiseratio (SNR), where performane improvement over the it-

erations ours quikly or not at all. These regions are sep-arated by a transition alled \waterfall". In [15℄, [16℄, theturbo deoder was modeled as a high-dimensional nonlin-ear dynami system. By haraterizing the �xed points ofthe system, the mentioned SNR regions ould be explainedand determined. Another approah was to investigate theprobability density funtions (PDFs) of the ommuniatedinformation between the deoders. Based on the evolu-tion of these PDFs, thresholds on the onvergene of theiterative deoding algorithm for low density parity hek(LDPC) odes have been obtained [17℄. A simpli�ed ap-proah assumes that the onsidered PDFs are from a singleparameter Gaussian family, an idea, whih has been ap-plied to study quite suessfully the deoding performaneof LDPC odes [18℄, turbo odes [19℄, [14℄, [20℄, turbo BiCM[7℄, and turbo equalization [6℄. A similar analysis tool basedon the observation of a single parameter was used in [11℄,[21℄.It turns out that these analyses on deoding onvergeneare based on the same assumptions but they extrat dif-ferent parameters of the onsidered PDFs. This leads todi�erent results and to di�erent ranges of the harts de-piting the parameter evolution. A drawbak of all existingsolutions is that the transmitted data is required to derivethe parameter evolution harts. Thus, the analysis mustbe o�ine. However, it an be useful to obtain these hartsonline in a reeiver, e.g., to selet a suitable equalizationalgorithm in turbo equalization depending on the qualityof the feedbak information as demonstrated in [6℄. In thispaper, we ompare algorithms prediting the deoding on-vergene of iterative algorithms in an idential parameterrange, whih simpli�es the omparison. We introdue anapproah, whih does not require the transmitted data.The paper is organized as follows. In Setion II, we de�nethree data transmission systems used for the omparison.In Setion III, we introdue six measures for preditingthe deoding onvergene, whose onvergene preditionapability is investigated in Setion IV. From the resultsobtained there we draw some onlusions in Setion V.II. A generalized serially onatenated systemFigure 1 depits three serially onatenated systems on-sisting of two omponent odes separated by an interleaver,whih all transmit data over an AWGN hannel. The on-atenation of two enoders for a onvolutional ECC, one



Encoder

nL

Decodernc
nL II

 leaver
Deinter− Decoder

leaver
Inter−

nL I

n
n

z
LEncoderdata

xn yn

wn Inter−
leaver

estimate
   data

(   )c

I

x(   )

I II

x(   )

II

Channel

(   )c

Transmitter Receiver

on�guration en-/deoder I (outer ode) en-/deoder II (inner ode)turbo ode ECC en-/deoder ECC en-/deoderturbo equalization ECC en-/deoder ISI hannel/detetorturbo BiCM ECC en-/deoder mapper/demapperFig. 1. A generalized serially onatenated system.enoder for a onvolutional ECC and an ISI hannel, orone enoder for a onvolutional ECC and a signal mapperis onsidered and the reeiver performs iterative deoding,iterative equalization and deoding, or iterative demappingand deoding, respetively. We refer to these systems asturbo ode system, turbo equalization system, and turboBiCM system.For all systems, the (binary) data is enoded blokwisewith the (binary) onvolutional \outer" enoder I to NIode bits n2B, B=f0; 1g, n=1; 2; :::; NI. The interleaverpermutes these bits to xn, n=1; :::; NI. The deinterleaverreverses the interleaver permutation.For the turbo ode system, the xn are enoded with the(binary) onvolutional \inner" enoder II to NII ode sym-bols yn2 ~B, ~B=f+1;�1g, n=1; 2; :::; NII, whih are trans-mitted over an AWGN hannel. The PDF of the noisesamples wn is given by fw(w)=�0;�2w (w),��;�2(w) = e�(w��)2=(2�2)=p2��2; w; � 2 R; �2 2 R+ ;i.e., the noise variane is �2w. Reeived is zn=yn+wn.For the turbo equalization system, the xn are mapped tothe signal alphabet ~B and transmitted over an ISI hannelwith impulse response h[n℄ = PM�1k=0 hkÆ[n � k℄, hk 2 R,assumed to be known to the reeiver. Reeived are thesymbols zn=(PM�1k=0 hkxn�k)+wn. For turbo equalizationusing higher order signal onstellations see e.g. [22℄.For the turbo BiCM system, the xn are mapped to sym-bols yn 2 C from a Q-ary signal alphabet. Reeived iszn=yn+wn, wn2C , where the real and the imaginary partof wn are distributed with �0;�2w (w).In the reeiver, we assume that symbol-based maximuma-posteriori probability (MAP) deoding algorithms, e.g.the \BCJR" algorithm [23℄, are used. The deoder IIproesses the reeived symbols zn and outputs the log-likelihood ratio (LLR)LII(xn) = ln P (xn=0 j z1; z2; � � � ; zNII)P (xn=1 j z1; z2; � � � ; zNII) � ln P (xn=0)P (xn=1) ;whih is the a-posteriori LLR minus the a-priori LLRL(xn) = ln (P (xn = 0)=P (xn = 1)). We refer to [2℄, [3℄,[24℄ for turbo odes, [4℄, [5℄, [6℄ for turbo equalization, and[7℄ for turbo BiCM for more information on how to obtain

or approximate LII(xn). After deinterleaving, LII(xn) isonsidered a-priori LLR L(n) = ln (P (n =0)=P (n=1))for the deoder I, whih outputsLI(n) = ln P (n=0 j L(1); � � � ; L(NI))P (n=1 j L(1); � � � ; L(NI)) � ln P (n=0)P (n=1) ;and estimates of the transmitted data. The LLR LI(n) isoften alled extrinsi information in the literature [3℄. Ap-plying the turbo priniple, the LLRs LI(n) are interleavedand regarded as a-priori LLR L(xn) for deoder I. Afteran initial deoding step, where L(xn)=0, for all xn, is as-sumed, the reeiver iterates between deoder I and II untila termination riterion stops the iterative proess.III. Measures of the transfer harateristisA. De�nitionThe two deoders an be modeled as devies mapping asequene of LLRs Lin to a new sequene of LLRs Lout,where deoder I maps L(n) to LI(n) and deoder IImaps L(xn) to LII(xn). The sequene of random variables(r.v.'s) Lin is assumed to be independent and identiallydistributed (i.i.d.) aording to a single parameter PDFfin(ljX = ~x) onditioned on the value ~x2 ~B of the r.v. Xrepresenting n (deoder I) or xn (deoder II), respetively:fin(l jX=~x) = �2~xin;4in(l); (1)where we use the following orrespondene between the al-phabets B and ~B:~n=(+1; n=0;�1; n=1; ~xn=(+1; xn=0;�1; xn=1:We denote fin(ljX = ~x) briey as fin(l j ~x). The statistis�in = E(LinjX=+1) (mean) and �2in = V ar(LinjX =+1)(variane) of Lin reveal that in is hosen to be the \signal-to-noise ratio" (SNR)�2in=�2in = (2in)2=(4in) = in (2)of the LLRs Lin. The PDF fin(l j ~x) is motivated by thefat that the LLRL(zjy) = ln (p(zjy=+1)=p(zjy=�1)) = 2=�2w � z (3)



omputed from the output z of an AWGN hannel withnoise variane �2w and input y 2 ~B has a distribution oftype (1). The SNR of L(zjy) is equal to 1=�2w.The ruial observation is that the PDF fout(ljX = ~x),denoted as fout(lj~x), of the output LLRs Lout is reason-ably well approximated by a PDF of type (1) for a seondparameter out. Sine an output LLR is input LLR to thefollowing deoder, the PDF of the LLRs ommuniated be-tween the deoders retains to be of type (1) and, thus, theiterative proess is ompletely desribed by the evolution ofthe parameter out. Another assumption is that the inputLLRs L(xn) and L(n) are i.i.d. samples of the r.v. Lin,whih is plausible in the reeiver for large interleaver bloklengths, at least for several iterations. With these �ndingsit is possible to desribe both deoders with transfer fun-tions mapping a single real-valued input to a single real-valued output parameter. These funtions are obtained bygenerating a-priori LLRs L(xn) or L(n), respetively, a-ording to the PDF fin(lj~x) for some in and presentingthem to eah deoder separately. After deoding, the PDFfout(lj~x) is estimated using a suÆient number of outputLLRs LI(n) or LII(xn) onditioned on n or xn, respe-tively. We do not attempt an analysis of fout(lj~x) or evenout, whih is rather hallenging and furthermore di�erentfor eah system introdued here due to the di�erent systemomponents involved.There are several measures to extrating and displayinginformation from fout(lj~x) in the literature [20℄, [19℄, [14℄,[25℄, [11℄, whih are di�erently related to out. Six measuresare presented in the following.M1: In [20℄, the average mean�out =X~x2 ~BP (X=~x) � Z 1�1 ~x � l � fout(lj~x) d lfrom the two output PDFs fout(lj~x) is omputed, whih isthe average of the mean of the output LLRs onditionedon n or xn, respetively. Assuming that the n or xnare equally likely 0 or 1 yields that P (X =+1) = P (X =�1)=1=2. Estimating fout(lj~x) usingNI LLRs LI(n) fromdeoder I yields that�out � 1NIXNIn=1~n � LI(n): (4)Similarly, using NII LLRs LII(xn) from deoder II, �outis approximated by 1NIIPNIIn=1~xnLII(xn). Sine fout(lj~x) isassumed to be of type (1), the variane at the output isa funtion of �out and need not be omputed. Thus, theoutput SNR out is given byout = �2out=(2�out) = �out=2;whih follows from (2).M2: In [14℄, the average variane�2out = 12 X~x2 ~B Z 1�1 ~x � (l2 � �2out) � fout(lj~x) d l;

i.e., the variane of the output LLRs, is omputed as aderivation of the measure M1. Estimating fout(ljx) using,e.g., NI LLRs LI(n) from deoder I yields that�2out � 1NIXNIn=1LI(n)2 � �2out;where �out is omputed as in (4). Sine fout(lj~x) is assumedto be of type (1), the output SNR out is given byout = (�2out=2)2=�2out = �2out=4;i.e., the mean whih follows from (2) is used instead of �outto ompute out.M3: In [19℄, the error probabilityPb = 12 X~x2 ~B Z 0�1 ~x � fout(lj~x) d lof a wrong deision sign(LI(n)) 6=~n or sign(LI(xn)) 6=~xn,respetively, is omputed. Estimating fout(lj~x) using, e.g.,NI LLRs LI(n) yields thatPb � 1NIXNIn=11=2 � (1� ~n � sign(LI(n))) :From (1) and (2) follows that Pb=Q(�in=�in)=Q(pin),where Q(x)=R1x �0;1(l) d l, and that the output SNR outis given by out = Q�1(Pb)2:M4: In [14℄, the mutual informationI(X ;Lout) = 12 X~x2 ~B Z 1�1 fout(lj~x) �log2 2 fout(lj~x)fout(lj+1)+fout(lj �1) d l; (5)between the r.v. X and Lout is omputed without imposingassumption (1) on fout(lj~x). The integral above is evalu-ated by numerial integration using a histogram of, e.g.,NI LLRs LI(n), to estimate fout(lj~x).M5: In [25℄, the �delity�out = 12 X~x2 ~B Z 1�1 ~x � tanh(l=2) � fout(lj~x) d l;is omputed. Estimating fout(lj~x) using, e.g., NI LLRsLI(n) from deoder I yields that�out � 1NIXNIn=1~n � tanh(LI(n)=2)): (6)This measure is omputed from the orrelation between asymbol ~n or ~xn and its soft estimate EL(~n) or EL(~xn),respetively, given the output LLR LI(n) or LII(xn). Forexample, the soft estimate EL(~n) of ~n is given byEL(~n) =X~2 ~B ~ � P (~n=~jLI(n))= eLI(n)1+eLI(n) � 11+eLI(n) = tanh(LI(n)=2)



and the measure �out is the expetation E(~n �EL(~n)) withrespet to LLRs LI(n) distributed with fout(lj~x). The �-delity measure is similar to the measure used in [11℄, [21℄,where the variane V ar(~n�EL(~n)) is observed. A neg-ative �out results if the number of wrong deisions, e.g.,sign(LI(n)) 6= ~n, outweighs the number of orret dei-sions. This orresponds to a error probability Pb largerthan 1=2. The �delity �out is thus restrited to the range[0; 1℄, where �out = 0 orresponds to a maximally unreli-able estimate (LI(n) = 0) and �out = 1 to a maximallyreliable estimate (jLI(n)j ! 1). We note that negative�out might our if it is approximated using (6), whih isdue to numerial inauraies or an insuÆient amount ofdata.M6: The measures M1-M5 are based on the onditionalPDFs fout(lj~x), whih requires the knowledge of n or xn,respetively. This disquali�es their appliation in a re-eiver. However, using onvergene predition ould beadvantageous, e.g., to selet suitable deoding algorithmsdepending on the urrent state of the iterative proess [6℄.Assuming that the n and xn are equally likely 0 or 1, anapproah using the PDF fout(l)=(fout(lj+1)+fout(lj�1))=2would not require these symbols. We introdue a measureM6 related to M2, whih omputes the seond moment�out = Z 1�1 l2 � fout(l) d lof fout(l) to obtain the parameter out. Estimating fout(l)using, e.g., NI LLRs LI(n) yields that�out � 1NIXNIn=1LI(n)2:Sine fout(lj~x) is assumed to be of type (1), the outputLLRs an be thought of being generated from the outputof an AWGN hannel with noise variane 1=out using theequivalene (3). An approah to estimate this varianefrom a sequene of LLRs without requiring the transmit-ted (binary) data is available in [26℄, where the estimatewas used in a stopping riterion for the iterative proess.The estimation formula (2+2p1+�out)=�out is used here toestimate the inverse of this variane, the output SNR out:out = �out=(2 + 2p1 + �out) = (p1 + �out�1)=2:B. ImplementationRepeating the measurements explained above for severalinput SNRs in 2 R+ yields a transfer funtion in ! out,out 2 R+ , (M1-M3, M6), in ! I(X ;Lout), I(X ;Lout)2[0; 1℄, (M4) or in ! �out, �out 2 [0; 1℄, (M5) for eah de-oder. To study the onvergene behavior based on thetrajetory of the iterative algorithm, i.e., the sequene ofthe onsidered parameter observed after eah deoding task(two per iteration), transfer funtions with idential do-main and range are required, sine the output parameterof one deoder beomes the input parameter for the follow-ing deoder. This is solved for measure M4 by de�ning themutual information I(X ;Lin)=G(in) between the r.v. X

and Lin distributed with fin(lj~x), whih is a funtion ofin only:G1(in) = 12 X~x2 ~B Z 1�1 �2~xin;4in(l) �log2 2�2~xin;4in(l)�2in;4in(l)+��2in;4in(l) d l;Using G1(in), a transfer funtion from I(X ;Lin)2 [0; 1℄ toI(X ;Lout) 2 [0; 1℄ is de�ned, where in =G�11 (I(X ;Lin)).For measure M5, an input �delity �in =G2(in), the or-relation of estimates obtained from LLRs distributed withfin(lj~x) with its assoiated symbol, is de�ned:G2(in)= 12 X~x2 ~B Z 1�1 ~x � tanh(l=2) � �2~xin;4in(l) d l:Using G2(in), a transfer funtion from �in2 [0; 1℄ to �out2[0; 1℄ is de�ned, where in=G�12 (�in).In order to ompare the six measures, an idential do-main and range is desired. Rather than R+ for the mea-sures M1-M3 and M6, we propose to use the interval [0; 1℄,sine here we are able to observe the state of onver-gene where the deoders deode error-free orrespondingto out!1 (M1-M3, M6) and �out= I(X ;Lout)=1 (M4,M5). For the measures M1-M3 and M6 we thus de�ne atransfer funtion from G1(in) 2 [0; 1℄ to G1(out) 2 [0; 1℄using the mapping G1(�).In the sequel, we will speify two transfer funtions �out=Tk(�in), k2fI; IIg, with input �in2 [0; 1℄ and output �out2[0; 1℄ for deoder I (k = I) and II (k = II) to predit theonvergene of iterative algorithms. The transfer funtionTk(�in) is obtained by in = G�1(�in), in ! out, and�out = G�11 (out) using the measures M1-M3 and M6, byin = G�11 (�in), in ! I(X ;Lout), and �out = I(X ;Lout)using measure M4, and by in=G�12 (�in), in ! �out, and�out=�out using measure M5.IV. Comparison of onvergene preditionsWe omputed TI(�in) and TII(�in) for the three onate-nated systems introdued in Setion II. All systems use arate R=1=2, memory 4 outer onvolutional ode (enoderI) with the generator G(D)=[1+D+D4 1+D2+D3+D4℄.The interleaver permutation was obtained randomly.The turbo ode system uses a rate 1, memory 1, reursiveinner onvolutional ode (enoder II) with the generator1=(1+D). The interleaver size is NI=NII =200000. Theyn 2 ~B are transmitted over an AWGN hannel at 1:4 dBEb=N0 given by Es=(2R�2w)=1=�2w.For the turbo equalization system, the xn mapped to ~Bare transmitted over a length 5 ISI hannel with impulseresponse h[n℄ = 0:227 Æ[n℄ + 0:46 Æ[n�1℄ + 0:688 Æ[n�2℄ +0:46 Æ[n�3℄+0:227 Æ[n�4℄ at 5 dB Eb=N0 de�ned by 1=�2w.The interleaver size is NI=NII=65536.For the turbo BiCM system, the xn are mapped to sym-bols yn from the 8-ASK alphabet f�7;�5;�3; :::;+5;+7gusing an anti-Gray mapping, i.e., the 8 amplitude levels



orrespond to f000; 111; 001; 110; 010; 101; 011; 100g Theinterleaver size is NI = 3NII = 200004. The yn are trans-mitted over an AWGN hannel at 8:5 dB Eb=N0 de�ned by2=8�(12+32+52+72)=(2R�2w)=21=�2w.The transfer funtion TI(�in) of the outer ode was ob-tained by deoding 107 a-priori LLRs L(n) per in andomputing �out from the output LLRs LI(n). The transferfuntion TII(�in) of the inner ode was obtained by enod-ing and transmitting 107 symbols xn per in. The reeivedzn and 107 a-priori LLRs L(xn) were deoded to speify�out using the output LLRs LII(xn). The n and xn wereequally likely 0 and 1.To obtain system trajetories of the real systems,�out(j; k) was omputed from the output LLRs LI(n)(k=I) or LII(xn) (k=II), respetively, available during theiterative proess after the jth, j=0; 1; :::, iteration. For allmeasures exept M6 the transmitted symbols are requiredto ompute �out(j; k) for the system trajetory, whih isthe sequene f�out(0; II); �out(0; I); �out(1; II); �out(1; I); :::g.Sine LII(xn) is input to deoder I and LI(n) is input todeoder II (next iteration), we have �in(j; I) = �out(j; II)and �in(j+1; II)=�out(j; I). Initially, no information aboutthe transmitted symbols is available, i.e., �in(0; II) = 0for all measures. A measure is aurate when the realtransfer harateristi �in(j; k) ! �out(j; k), k 2 fI; IIg, iswell predited by the transfer funtion Tk(�in(j; k)), i.e.�out(j; k)�Tk(�in(j; k)) is small for all j.Figures 2, 3, 4, show the transfer funtions Tk(�in),k2fI; IIg, and the system trajetory for the turbo ode, theturbo equalization, and the turbo BiCM system. The mu-tual information measure M4 and the �delity measure M5are most aurate in all systems followed by the error ratemeasure M3. The latter tends to be too pessimisti, sinethe system trajetory is outside the predited range. Con-vergene to low BERs (�in(j; k) approahing 1) might stillbe possible even though the transfer funtions predit thatno suh trajetory exists. The measures M1, M2, and M6are least aurate and tend to be too optimisti, sine thesystem trajetory is inside the predited range. We thinkthat this inauray originates from the Gaussian assump-tion (1), whih is applied at the input and the output ofa SISO deoder. Indeed, the onvergene predition is byfar least aurate for the MAP equalizer in Figure 3 andthe demapper in Figure 4, whih both violate (1). Still,these measures provide useful results for turbo odes andfor turbo equalization using linear equalizers [6℄, where (1)approximately holds.We note that all measures apply (1) at the input of theSISO deoder but only the measures M1-M3 and M6 at theoutput. Given the aurate results for the measures M4and M5, it seems that a SISO deoder, one exited withLLRs orresponding to some I(X ;Lin) or �in, outputs thesame I(X ;Lout) or �out, respetively, regardless (to someextent) of the atual distribution of Lin. This was observedfor measure M4 in [14℄. This view also explains the lessaurate predition performane of the measures M1, M2,and M6, where we �rst fore the distribution of the outputLLRs to be of type (1) and map the parameter out of this

distribution to the mutual information G�11 (out).Another aspet for omparison is the omputational bur-den to ompute the measures. The measures M1, M2, andM6 are obtained easily but they might su�er from lippedLLRs, e.g., in �xed-point arithmeti. The measures M3,M4, and M5 are robust regarding lipping, sine outputLLRs with small magnitude have the strongest inueneon the result of the measurement. The measure M5 showsa good trade-o� between auray and omputational bur-den. The measure M4 provides additional insight asideonvergene predition, e.g., about the ahievable informa-tion rates using a partiular system [27℄. The measure M6is the only one, whih an be applied in a reeiver.V. ConlusionsThe omparison shows that all introdued measures helpto understand the behavior of iterative algorithms and helpto selet system parameters to optimize the overall perfor-mane despite the apparent assumptions. The aid of a vi-sualized iterative proess to its understanding and the stillahieved auray led to their appearane in the literature.We showed that two measures are fairly aurate for a se-ries of di�erent deoding algorithms, the �delity measureand the mutual information measure, with the latter onerepresenting a ommon quantity in ommuniation theory.Referenes[1℄ G. Forney, Conatenated Codes. Cambridge, MA, U.S.A.: MITPress, 1966.[2℄ C. Berrou, A. Glavieux, and P. Thitimajshima, \Near Shannonlimit error-orreting oding and deoding: turbo odes," inPro. IEEE Intern. Conf. on Comm., Geneva, May 1993.[3℄ J. Hagenauer, E. O�er, and L. Papke, \Iterative deoding of bi-nary blok and onvolutional odes," IEEE Trans. on Informa-tion Theory, pp. 429{445, Marh 1996.[4℄ C. Douillard et al., \Iterative orretion of intersymbol inter-ferene: turbo equalization," European Trans. on Teleomm.,vol. 6, pp. 507{511, Sep-Ot 1995.[5℄ G. Bauh and V. Franz, \A omparison of soft-in/soft-outalgorithms for `turbo detetion'," in Pro. Intern. Conf. onTeleomm., pp. 259{263, June 1998.[6℄ M. T�uhler, R. Koetter, and A. Singer, \Turbo equalization:priniples and new results," submitted to IEEE Trans. onComm., August 2000.[7℄ S. ten Brink, J. Speidel, and R. Yan, \Iterative demapping anddeoding for multilevel modulation," Pro. IEEE GlobeomConf., pp. 579{584, Nov 1998.[8℄ S. Benedetto et al., \Serial onatenated trellis oded modula-tion with iterative deoding: design and performane," in Pro.IEEE Global Teleomm. Conf., Nov 1997.[9℄ D. Divsalar, S. Dolinar, and F. Pollara, \Serial turbo trellisoded modulation with rate-1 inner ode," in Pro. Intern.Symp. on Information Theory, p. 194, 2000.[10℄ X. Wang and H. Poor, \Iterative (turbo) soft interferene anel-lation and deoding for oded CDMA," IEEE Trans. on Comm.,vol. 47, no. 7, pp. 1046{1061, 1999.[11℄ P. Alexander, A. Grant, and M. Reed, \Iterative detetion andode-division multiple-aess with error ontrol oding," Euro-pean Trans. on Teleomm., vol. 9, pp. 419{425, Sep-Ot 1998.[12℄ D. Divsalar and F. Pollara, \On the design of turbo odes," TDAProgress Report, vol. 42, pp. 99{121, Nov 1995.[13℄ S. Benedetto, R. Garello, and G. Mondorsi, \A searh for goodonvolutional odes to be used in the onstrution of turboodes," IEEE Trans. on Comm., vol. 46, pp. 1101{1105, Sep1998.[14℄ S. ten Brink, \Convergene behaviour of iteratively deoded par-allel onatenated odes," IEEE Trans. on Comm., vol. 49, Ot2001.
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Fig. 3. Measures for traing deoding onvergene of iterative equalization and deoding (turbo equalization).[21℄ M. Reed and C. Shlegel, \An iterative reeiver for the partialresponse hannel," in Pro. Intern. Symp. on Information The-ory, p. 63, Aug 1998.[22℄ M. T�uhler and J. Hagenauer, \Linear time and frequeny do-main turbo equalization," in Pro. 53rd IEEE Vehiular Teh-nology Conf., Rhodes, Greee, pp. 1449{1453, May 2001.[23℄ L.R. Bahl et al., \Optimal deoding of linear odes for minimiz-ing symbol error rate," IEEE Trans. on Information Theory,vol. 20, pp. 284{287, Marh 1974.
[24℄ S. ten Brink, \Code harateristi mathing for iterative deod-ing of serially onatenated odes," Annals of Teleommunia-tions, vol. 56, pp. 394{408, April 2001.[25℄ K. Narayanan, \E�et of preoding on the onvergene of turboequalization for partial response hannels," IEEE Journal onSel. Areas in Comm., vol. 19, pp. 686{698, April 2001.[26℄ P. Robertson, \Illuminating the struture of ode and deoderof parallel onatenated resursive systemati (turbo) odes," inPro. IEEE Globeom Conf., pp. 1298{1303, De 1994.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input decoder II / output decoder I

ou
tp

ut
 d

ec
od

er
 II

 / 
in

pu
t d

ec
od

er
 I

Measure 1: SNR γ
out

=µ
out

/2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input decoder II / output decoder I

ou
tp

ut
 d

ec
od

er
 II

 / 
in

pu
t d

ec
od

er
 I

Measure 2: SNR γ
out

=σ
out
2 /4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input decoder II / output decoder I

ou
tp

ut
 d

ec
od

er
 II

 / 
in

pu
t d

ec
od

er
 I

Measure 3: SNR γ
out

=Q−1(P
b
)2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input decoder II / output decoder I

ou
tp

ut
 d

ec
od

er
 II

 / 
in

pu
t d

ec
od

er
 I

Measure 4: mutual information I(X;L
out

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input decoder II / output decoder I

ou
tp

ut
 d

ec
od

er
 II

 / 
in

pu
t d

ec
od

er
 I

Measure 5: fidelity φ
out

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input decoder II / output decoder I

ou
tp

ut
 d

ec
od

er
 II

 / 
in

pu
t d

ec
od

er
 I

Measure 6: SNR γ
out

=1/2((1+η
out

)1/2−1)

T
I
(θ

in
) (outer code)

T
II
(θ

in
)  (inner code)

system trajectory
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