
A Parallelizable Design Prin
iple for Cryptographi
 Hash Fun
tions�Palash SarkaryCryptology Resear
h CentreApplied Statisti
s UnitIndian Statisti
al Institute203, B.T. RoadKolkata 700108West Bengal, Indiae-mail: palash�isi
al.a
.in
Paul J. S
hellenbergCentre for Applied Cryptographi
 Resear
hDepartment of Combinatori
s and OptimizationUniversity of Waterloo200 University Avenue WestWaterloo, OntarioCanada N2L 3G1pjs
hell�math.uwaterloo.
a

Contents1 Introdu
tion 22 Basi
s 42.1 Hash Fun
tions . 42.2 Pro
essor Tree . 52.3 Parameters and Notation . 53 Parallel Hashing Algorithm 63.1 Formatting Algorithms . 73.2 Simulating Trees . 94 Parallel Hash Fun
tion De�nitions 104.1 De�nition of hL . 104.2 De�nition of h� . 114.3 Spe
ifying Parallelism . 115 Corre
tness and Complexity of PHA 126 Se
urity Redu
tions for hL and h� 186.1 Collision Resistan
e of hL . 186.2 Collision Resistan
e of h� . 207 Constru
tion of h1 21�An earlier abridged version of the paper appeared in the Pro
eedings of Indo
rypt 2001, LNCS 2247, pages 40-49.yPart of the work was done while the author was visiting the Centre for Applied Cryptographi
 Resear
h, Universityof Waterloo. 1

8 Preimage Resistan
e 249 Con
luding Remarks 24Abstra
tWe des
ribe a parallel design prin
iple for hash fun
tions. Given a se
ure hash fun
tionh : f0; 1gn ! f0; 1gm with n � 2m, and a binary tree of 2t pro
essors we show how to
onstru
ta se
ure hash fun
tion h� whi
h
an hash messages of lengths less than 2n�m and a se
urehash fun
tion h1 whi
h
an hash messages of arbitrary length. The number of parallel roundsrequired to hash a message of length L is b L2t
+ t+ 2. Further, our algorithm is in
rementallyparallelizable in the following sense : given a digest produ
ed using a binary tree of 2t pro
essors,we show that the same digest
an also be produ
ed using a binary tree of 2t0 (0 � t0 � t)pro
essors.Keywords :
ryptographi
 hash fun
tion, Merkle-DamÆgard
onstru
tion, parallel algorithm,
ol-lision resistan
e, preimage resistan
e, se
ond preimage resistan
e, zero preimage resistan
e.1 Introdu
tionHash fun
tions are extensively used in
ryptographi
 proto
ols. One of the main uses of hashfun
tions is in digital signature proto
ols, where the message digest produ
ed by the hash fun
tionis signed. Due to the
entral importan
e of hash fun
tions in
ryptography, there has been a lot ofwork in this area. See [7℄ for a survey.For a hash fun
tion h : f0; 1gn ! f0; 1gm to be used in
ryptographi
 proto
ols, it must satisfy
ertain well known ne
essary properties. In a re
ent paper [8℄, Stinson provides a
omprehensivedis
ussion of these properties and also relations among them. The important properties that a
ryptographi
 hash fun
tion must satisfy are the following.(a) Preimage Resistan
e : Finding a preimage of a given message digest must be
omputa-tionally infeasible. In other words, given z 2 f0; 1gm it should be
omputationally infeasibleto �nd x 2 f0; 1gn su
h that h(x) = z.(b) Se
ond Preimage Resistan
e : Finding a se
ond preimage of a digest given one preimageof the same digest must be
omputationally infeasible. In other words, given x 2 f0; 1gn andz 2 f0; 1gm su
h that h(x) = z, it should be
omputationally infeasible to �nd y 2 f0; 1gnsu
h that x 6= y and h(y) = z.(
) Collision Resistan
e : Finding a
ollision must be
omputationally infeasible. In otherwords, it should be
omputationally infeasible to �nd x; y 2 f0; 1gn su
h that x 6= y buth(x) = h(y).It is
lear that if it is possible to �nd se
ond preimage, then it is possible to �nd
ollisions.Hen
e it is usually suÆ
ient to study
ollision resistan
e. However, as pointed out in [8℄, there isno satisfa
tory redu
tion from
ollision resistan
e to preimage resistan
e or vi
e versa. Hen
e thegoal of a pra
ti
al hash fun
tion should be to a
hieve both preimage and
ollision resistan
e.It is possible to
onstru
t hash fun
tions where one
an prove that �nding
ollisions is equivalentto solving
ertain known hard problems (see for example [2℄). However, from a pra
ti
al point ofview su
h hash fun
tions are una

eptably slow. Hen
e pra
ti
al hash fun
tions are
onstru
ted2

from simple arithmeti
/logi
al operations so that they are very fast. The trade-o� is that for su
hhash fun
tions it is not possible to relate the diÆ
ulty of �nding
ollisions to known hard problems.Resear
h in design of hash fun
tions have evolved
ertain prin
iples for designing \se
ure" andpra
ti
al hash fun
tions. One of the important papers in this area is by DamÆgard [3℄. An importantpoint made in [3℄ is that it is easier to design a \se
ure" hash fun
tion with a short �xed domainthan a hash fun
tion with a very large (or in�nite) domain. However, for a hash fun
tion to beuseful it must be possible to hash arbitrary long messages. Hen
e one must look for te
hniquesthat
an extend the domain of a hash fun
tion while preserving the relevant se
urity properties.An important
onstru
tion for se
urely extending the domain of a se
ure hash fun
tion has beendes
ribed by Merkle [4℄ and DamÆgard [3℄. The
onstru
tion is
alled the Merkle-DamÆgard (MD)
onstru
tion. The MD
onstru
tion is a sequential
onstru
tion and provides a basi
 guideline fordesigning pra
ti
al hash fun
tions.In this paper we develop an alternative design prin
iple for se
urely extending the domain of ase
ure hash fun
tion. Our design prin
iple is based on a binary tree of pro
essors and allows forparallelism in the
omputation of the hash fun
tion. We show that given a se
ure hash fun
tionh : f0; 1gn ! f0; 1gm with n � 2m and a binary tree of 2t pro
essors, it is possible to
onstru
ta se
ure hash fun
tion h� whi
h
an hash messages on lengths less than 2n�m and a se
ure hashfun
tion h1 whi
h
an hash arbitrary length messages. Sin
e we require n � 2m and pra
ti
alhash fun
tions have m � 128, the fun
tion h� is adequate for any
on
eivable appli
ation and the
onstru
tion of h1 is of theoreti
al interest only. The number of parallel rounds to
ompute thedigest of a message of length L is b L2t
+ t+ 2.Our design prin
iple allows for in
remental parallelism in the following sense. If a messagedigest
an be produ
ed using a binary tree of 2t pro
essors, then the same message digest
an beprodu
ed using a binary tree of 2t0 pro
essors for 0 � t0 � t with a proportional loss in speed of
omputation. In the extreme
ase of t0 = 0 this means that using a single pro
essor it is possible toprodu
e a digest whi
h has been produ
ed using a binary tree of 2t pro
essors for any t � 0. Westress that this is an extremely important point for pra
ti
al appli
ation of our design prin
iple. Ina multi-user setting where di�erent users have di�erent resour
e
apabilities, it is important thata digest produ
ed by one user
an be produ
ed by any other user irrespe
tive of the amount ofresour
es available to him.Related Work : The
on
ept of tree hashing has appeared before in the literature. Damgard [3℄showed that for a message of length n, it is possible to
ompute the digest in O(logn) steps usingO(n) pro
essors. Note that the number of pro
essors is proportional to the length of the message.Hen
e the result yields an impra
ti
al algorithm. Tree hashing has also been
onsidered in relationto universal one-way hash fun
tions [6, 1℄. However, these papers also assume a model where thenumber of pro
essors grows with the length of the message.Our model improves upon the previous work on tree hashing in the following two ways.1. In our model the number of pro
essors is �xed while the length of the message
an be verylong.2. A digest whi
h
an be produ
ed by a binary tree with a
ertain number of pro
essors
analso be produ
ed by a binary tree with lesser number of pro
essors and in the extreme
aseby a single pro
essor.
3

2 Basi
s2.1 Hash Fun
tionsOur des
ription of hash fun
tions
losely parallels that of Stinson [8℄. An (n;m) hash fun
tion his a fun
tion h : f0; 1gn ! f0; 1gm. Throughout this paper we require that n � 2m. Consider thefollowing problem as de�ned in [8℄.Problem : Collision Col(n;m)Instan
e : An (n;m) hash fun
tion h.Find : x; x0 2 f0; 1gn su
h that x 6= x0 and h(x) = h(x0).By an (�; p) (randomized) algorithm for Collision we mean an algorithm whi
h invokes the hashfun
tion h at most p times and solves Collision with probability of su

ess at least �.The hash fun
tion h has a �nite domain. We would like to extend it to an in�nite domain.Our �rst step in doing this is the following. Given h and a positive integer L � 1, we
onstru
t ahash fun
tion hL : f0; 1gL ! f0; 1gm. The next step, in general, is to
onstru
t a hash fun
tionh1 : [L�1f0; 1gL ! f0; 1gm. However, instead of doing this, we �rst
onstru
t a hash fun
tionh� : [NL=1f0; 1gL ! f0; 1gm, where N = 2n�m � 1. Sin
e we assume n � 2m, we have n�m � m.Pra
ti
al message digests are at least 128 bits long meaning that m = 128. Hen
e our
onstru
tionof h�
an handle any message with length less than 2128. This is suÆ
ient for any
on
eivableappli
ation. The
onstru
tion of h1 presents
ertain te
hni
al diÆ
ulties. We over
ome thesediÆ
ulties and des
ribe the
onstru
tion of h1 in Se
tion 7.We would like to relate the diÆ
ulty of �nding
ollisions for hL; h� and h1 to that of �nding a
ollision for h. Thus we
onsider the following problems.Problem : Fixed length
ollision FLC(n;m;L)Instan
e : An (n;m) hash fun
tion h and an integer L � n.Find : x; x0 2 f0; 1gL su
h that x 6= x0 and hL(x) = hL(x0).Problem : Variable length
ollision V LC(n;m;L)Instan
e : An (n;m) hash fun
tion h and an integer L with n � L � 2n�m.Find : x; x0 2 [Li=nf0; 1gi su
h that x 6= x0 and h�(x) = h�(x0).Problem : Arbitrary length
ollision ALC(n;m;L)Instan
e : An (n;m) hash fun
tion h and an integer L � n.Find : x; x0 2 [Li=nf0; 1gi su
h that x 6= x0 and h1(x) = h1(x0).By an (�; p; L) (randomized) algorithm A for Fixed length
ollision we will mean an algorithm thatrequires at most p invo
ations of the fun
tion h and solves Fixed length
ollision with probability ofsu

ess at least �. The algorithm A will be given an ora
le for the fun
tion h and p is the numberof times A queries the ora
le for h in attempting to �nd a
ollision for hL. Similar de�nitions aretrue for Variable length
ollision and Arbitrary length
ollision.Later we show Turing redu
tions from Collision to Fixed length
ollision, Variable length
ollisionand Arbitrary Length Collision. Informally this means that given ora
le a

ess to an algorithm forsolving FLC(n;m;L) for hL or V LC(n;m;L) for h� or ALC(n;m;L) for h1 it is possible to
onstru
t an algorithm to solve Col(n;m) for h. These will show that our
onstru
tions preservethe intra
tibility of �nding
ollisions. 4

2.2 Pro
essor TreeOur
onstru
tion is a parallel algorithm requiring more than one pro
essors. The number of pro
es-sors is 2t. Let the pro
essors be P0; : : : ; P2t�1. For i = 0; : : : ; 2t�1� 1, pro
essor Pi is
onne
ted topro
essors P2i and P2i+1 by ar
s pointing towards it. The pro
essors P2t�1 ; : : : ; P2t�1 are the leafpro
essors and the pro
essors P0; : : : ; P2t�1�1 are the internal pro
essors. We
all the resulting treethe pro
essor tree of depth t. For 1 � i � t, there are 2i�1 pro
essors at level i. Further, pro
essorP0 is
onsidered to be at level 0.Ea
h of the pro
essors gets an input whi
h is a binary string. The a
tion of the pro
essor is toapply the hash fun
tion h on the input if the length of the input is n; otherwise, it simply returnsthe input - Pi(y) = (h(y) if jyj = n;y otherwise. (1)For 0 � i � 2t� 1, we have two sets of bu�ers ui and zi. We will identify these bu�ers with thebinary strings they
ontain. The bu�ers are used by the pro
essors in the following way. There isa formatting pro
essor PF whi
h reads the message x, breaks it into proper length substrings, andwrites to the bu�ers ui. For 0 � i � 2t�1 � 1, the input bu�ers of Pi are z2i; z2i+1 and ui and theinput to Pi is formed by
on
atenating the
ontents of these bu�ers. For 2t�1 � i � 2t � 1, theinput bu�er of Pi is ui. The output bu�er of Pi is zi for 0 � i � 2t � 1.Our parallel algorithm goes through several parallel rounds. The
ontents of the bu�ers ui andzi are updated in ea
h round. To avoid read/write
on
i
ts we will assume the following sequen
eof operations in ea
h parallel round.1. The formatting pro
essor PF writes into the bu�ers ui, for 0 � i � 2t � 1.2. Ea
h pro
essor Pi reads its respe
tive input bu�ers.3. Ea
h pro
essor Pi performs the
omputation in (1).4. Ea
h pro
essor Pi writes into its output bu�er zi.Steps (2) to (4) are performed by the pro
essors P0; : : : ; P2t�1 in parallel after Step (1) is
ompletedby pro
essor PF .2.3 Parameters and NotationHere we introdu
e some notation and de�ne
ertain parameters whi
h are going to be used through-out the paper. In the
onstru
tion of hL we will not always use the pro
essor tree upto depth T .We will denote by t the depth of the pro
essor tree used. When the pro
essor tree is used uptodepth t, the number of pro
essors used is 2t. Next we des
ribe several parameters with respe
t tot - the useful depth of the pro
essor tree.Start-up length: 2tn.Flushing length: (2t�1 + 2t�2 + � � � + 21 + 20)(n� 2m) = (2t � 1)(n� 2m).Start-up +
ushing length: Æ(t) = 2tn+ (2t � 1)(n� 2m) = 2t(2n� 2m)� (n� 2m).Steady-state length: �(t) = 2t�1n+ 2t�1(n� 2m) = 2t�1(2n� 2m).Message: a binary string x of length L � n.Parameters qt, bt and rt: 5

De�nition 1 1. If L > Æ(t), then qt and rt are de�ned by the following equation: L � Æ(t) =qt�(t) + rt, where rt is the unique integer from the set f1; : : : ; �(t)g. De�ne bt = d r2n�2me.2. If L = Æ(t), then qt = bt = rt = 0.Note that 0 � bt � 2t�1. We will denote the empty string by <> and the length of a binary stringy by jyj.3 Parallel Hashing AlgorithmWe �rst des
ribe a parallel hashing algorithm whi
h is the basi
 building blo
k used for the
on-stru
tion of hash fun
tions. The main algorithm uses other algorithms as subroutines whi
h aredes
ribed later. Before presenting the a
tual algorithm we present the basi
 idea behind the algo-rithm.Let x be a message of length L and T be the binary tree of pro
essors of depth t as des
ribedin Se
tion 2.2. There are also two sets of 2t bu�ers z0; : : : ; z2t�1 and u0; : : : ; u2t�1. Ea
h of thebu�ers zi
an store m-bit strings. For 0 � i � 2t�1 � 1, the bu�er ui stores either an (n� 2m)-bitstring or the empty string and for 2t�1 � i � 2t � 1, the bu�er ui stores either an n-bit string orthe empty string. Ea
h bu�er zi stores the output of pro
essor Pi. The bu�ers ui are obtained aspre�xes from the message x.The algorithm
onsists of some parallel rounds where in ea
h parallel round all the 2t pro
essorsoperate in parallel. Further, in ea
h of the parallel rounds the message x is shortened by removinga pre�
 from it. This pre�x is divided into substrings and
opied to the bu�ers ui.Intially all the bu�ers zi are empty. Thus the �rst step of the algorithm is to initialise thezi's whi
h is done in the following manner. Ea
h pro
essor Pi is given an n-bit string ui as input.Pro
essor Pi hashes ui to produ
e the digest zi. This step is
alled Start-Up.The algorithm then enters the Steady-State. In the Steady-State, pro
essors P0; : : : ; P2t�1�1gets an (n� 2m)-bit input ui. Also Pi reads the bu�ers z2i and z2i+1. Pro
essor Pi then forms aninput of length n by
on
atenating z2i; z2i+1 and ui. This n-bit string is hashed to obtain the newvalue of the bu�er zi. The pro
essors P2t�1 ; : : : ; P2t�1 ea
h get an n-bit input whi
h is hashed toobtain the new values of the bu�ers z2t�1 ; : : : ; z2t�1. The Steady-State lasts for a
ertain numberof rounds whi
h we determine later. It is
lear that after a
ertain stage it will not be possible toprovide inputs to all the pro
essors.After the Steady-State ends we have a single round
alled the End-Game. This round startsthe mopping up operation. In this round only some of the leaf level pro
essors get n-bit strings asinput while all other pro
essors get the empty string as input. In this round ea
h of the internalpro
essors still get an (n� 2m)-bit input.After the End-Game, there are (t � 1) rounds whi
h
ush the pro
essor tree. The
ushingpro
eeds in a bottom-up fashion. In the ith stage of the
ushing operation all pro
essors at level� s� i + 1 get empty strings as inputs. Some of the pro
essors at level s� i get an (n� 2m)-bitstring as input. The rest of the pro
essors at level s�i get the empty string as input. All pro
essorsat levels � s� i� 1 get an (n� 2m)-bit string as input. This stage is
alled the Flusing stage.At the end of the Flushing stage, z0 and z1 are m-bit strings while all other bu�ers are emptystrings. Further, the remaining part of x is an (n� 2m)-bit string. Pro
essor P0 applies the hashfun
tion to the n-bit string z0jjz1jjx to obtain the �nal message digest.We now present the formal des
ription of the algorithm.6

Parallel Hashing Algorithm (PHA(x,t))Inputs:(1) message x of length L � Æ(t).(2) t (� T) is the depth upto whi
h the pro
essor tree must be used.Output: message digest hL(x) of length m.De�ne: q = qt, r = rt and b = bt.1. if L > Æ(t), then2. x := xjj0b(2n�2m)�r(ensures that the length of the message be
omes Æ(t) + q�(t) + b(2n� 2m).)3. endif.4. Initialise bu�ers zi and ui to empty strings, 0 � i � 2t � 1.5. Do FormatStartUp.6. Do ParallelPro
ess.7. for i = 1; 2; : : : ; q do8. Do FormatSteadyState.9. Do ParallelPro
ess.10. endfor11. Do FormatEndGame.12. Do ParallelPro
ess.13. for s = t� 1; t� 2; : : : 2; 1 do14. Do FormatFlushing(s).15. Do ParallelPro
ess.16. endfor17. z0 = P0(z0jjz1jjx).18. return z0.19. end algorithm PHAWe now des
ribe the di�erent subroutines used by PHA. We assume that the message x isglobally manipulated by the di�erent formatting algorithms and the input t of PHA is available toall the subroutines. Further, we assume that the parameter b is available to the subroutines FEGand FF.ParallelPro
ess (PP)A
tion: Read bu�ers ui and zi, and update bu�ers zi, 0 � i � 2t � 1.1. for i = 0; : : : ; 2t � 1 do in parallel2. zi := Pi(z2ijjz2i+1jjui) if 0 � i � 2t�1 � 1.3. zi := Pi(ui) if 2t�1 � i � 2t � 1.4. endfor5. end algorithm PP3.1 Formatting AlgorithmsThere are four formatting subroutines whi
h are invoked by PHA. Ea
h of the formatting sub-routines modi�es the message x by removing pre�xes whi
h are written to the bu�ers ui for0 � i � 2t � 1. The message x is available as either an array or a �le. We assume that themessage is read sequentially bit by bit. The formatting algorithms
opy a pre�x of the message7

into a bu�er and suitably advan
e the �le (or array) pointer. All the formatting subroutines areexe
uted on the formatting pro
essor PF .FormatStartUp (FSU)A
tion: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.1. for i = 0; : : : ; 2t � 1 do2. Write x = vjjy, where jvj = n.3. ui := v.4. x := y.5. endfor6. end algorithm FSUFormatSteadyState (FSS)A
tion: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.1. for i = 0; : : : ; 2t�1 � 1 do2. Write x = vjjy, where jvj = n� 2m.3. ui := v.4. x := y.5. endfor6. for i = 2t�1; : : : ; 2t � 1 do7. Write x = vjjy, where jvj = n.8. ui := v.9. x := y.10. endfor11. end algorithm FSSFormatEndGame (FEG)A
tion: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.1. for i = 0; 1; 2; : : : ; 2t�1 � 1 do2. Write x = vjjy where jvj = n� 2m.3. ui := v.4. x := y.5. endfor6. for i = 2t�1; 2t�1 + 1; : : : ; 2t�1 + b� 1 do7. Write x = vjjy where jvj = n.8. ui := v.9. x := y.10. endfor11. for i = 2t�1 + b; 2t�1 + b+ 1; : : : ; 2t � 1 do12. ui :=<>.13. endfor14. end algorithm (FEG)FormatFlushing(s) (FF(s))Input: Integer s.A
tion: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.8

1. k = b b+2t�s�1�12t�s
:2. for i = 0; 1; 2; : : : ; 2s�1 + k � 1 do3. Write x = vjjy where jvj = n� 2m.4. ui := v.4. x := y.5. endfor6. for i = 2s�1 + k; 2s�1 + k + 1; : : : ; 2t � 1,7. Write ui :=<>.8. endfor9. end algorithm FFRemark : 1. The assignments x := y is an assignment of the relevant �le or array pointer and
an be done in
onstant time.2. If n = 2m, then ui =<> for 0 � i � 2t�1 � 1. This signi�
antly simpli�es the formattingalgorithms. Thus if one is allowed to
hoose the parameters n and m, then it is best to
hoose nto be equal to 2m.3.2 Simulating TreesOne potential problem in the use of PHA to generate a message digest is the fa
t that the veri�ermight not have a

ess to a binary tree of pro
essors or he might have a

ess to a binary tree ofa lesser height. In su
h a situation, it will not be possible to verify the message digest. We showhow this problem
an be solved by allowing a smaller tree of pro
essors to simulate a larger tree ofpro
essors. A more detailed dis
ussion of this issue is given in Se
tion 4.3.Let t; t0 be two non-negative integers with t > t0. Let T (resp. T 0) be a tree of depth t (resp. t0)
onsisting of 2t (resp. 2t0) pro
essors P0; : : : ; P2t�1 (resp. P 00; : : : ; P 02t0�1)
onne
ted in the mannerdes
ribed in Se
tion 2.2. Let y = PHA(t; x) be produ
ed by the pro
essor tree T . We des
ribe analgorithm SimPar(t; t0; x) whi
h also produ
es y using the pro
essor tree T 0.SimPar(t; t0; x)Input:(1) message x of length L � Æ(t).(2) t is the depth of the original pro
essor tree.(3) t0 is the depth of the available pro
essor tree.Output: message digest hL(x) = PHA(t; x) of length m.The algorithm is identi
al to PHA(t; x) with the following
hanges.1. Change Lines 6,9 and 12 to \Do SPP(t; t0)".2. Change Line 15 to \Do SPP(s; t0)".end algorithm SimParThe subroutine SPP() perform the task of simulating the pro
essor tree T using the tree T 0.For the �rst q + 2 rounds the entire tree T needs to be simulated. However, for the next t � 1rounds we need to simulate T only upto depth s. We de�ne the subroutine SPP() to do these twotasks.Algorithm SPP(s; t0) 9

1. for i = 0 to 2t0�1 do in parallel2. use pro
essor P 0i to exe
ute the task of pro
essor Pi.3. endfor4. if s � t0 then stop.5. for j1 = 0 to s� t0 � 1 do6. for j2 = 0 to 2j1 � 1 do7. i1 = 2t0+j1 + j2(2t0)8. for i = 0 to 2t0 � 1 do in parallel9. use pro
essor P 0i to exe
ute the task of pro
essor Pi1+i.10. endfor11. endfor12. endfor13. end Algorithm SSP1.Proposition 2 The number of parallel rounds required by SPP(s; t0) is equal to one if s � t0 andis equal to 2s�t0 if s > t0.Proof. If s � t0, then the result is obvious. If s > t0, then the number of rounds required is1 + (1 + 2 + 22 + : : : + 2s�t0�1) = 2s�t0 .Remark : If there is only one pro
essor (i.e., T 0
onsists only of P 00), then the number of roundsrequired by SPP(s; 0) is 2s.4 Parallel Hash Fun
tion De�nitionsThe base hash fun
tion is h : f0; 1gn ! f0; 1gm, with n � 2m. If x is a binary string with jxj < n,then we apply the hash fun
tion h to the string xjj0n�jxj to get the message digest. Thus e�e
tivelyh is a map from [ni=1f0; 1gi to f0; 1gm. The des
ription of hL and h� is des
ribed below.4.1 De�nition of hLLet L � 1 be a positive integer and assume that a binary tree of 2T pro
essors is available. ThenhL is de�ned as follows.hjxj(x) = 8>>><>>>: PHA(T; x) if jxj � Æ(T);PHA(t; x) if 0 < t < T and Æ(t) � jxj < Æ(t+ 1);PHA(0; x) if Æ(0) < jxj < Æ(1)h(x) if 1 � jxj � n = Æ(0): (2)When t < T we are not utilizing all the available pro
essors. We now show that not utilizingall the pro
essors leads to at most one extra round when t = T � 1. We �rst note the followingresult. Re
all the de�nition of qt from De�nition 1.Lemma 3 If Æ(t) � L < Æ(t+ 1), then 0 � qt � 1.Proof. We use the following two fa
ts, whi
h are easy to verify.1. Æ(t+ 1) = 2Æ(t) + n� 2m. 10

2. 2�(t) = Æ(t) + n� 2m.Sin
e Æ(t) � L < Æ(t + 1), we have 0 � jL�Æ(t)�(t) k < jÆ(t+1)�Æ(t)�(t) k. Using the above two fa
ts we get0 � �L� Æ(t)�(t) � < 2:From the de�nition of qt this shows that 0 � qt � 1.The pro
essor tree has T levels plus an additional level
ontaining only P0. Thus if any pro
essorat the leaf level is used, then at least T + 1 rounds will be required to obtain a message digest.On the other hand using the pro
essor tree upto level t requires t+ qt + 2 rounds (see Theorem 5below). Thus not utilizing all the pro
essors require extra parallel rounds only if t+ qt+2 > T +1.By
hoi
e of t and Lemma 3, we have qt = 1. Thus extra parallel round is required when t > T � 2.Sin
e t � T � 1, we get that t = T � 1. Further, in this
ase only one extra round will be required.4.2 De�nition of h�Given h : [ni=1f0; 1gi ! f0; 1gm and a positive integer L � 1, Equation (2) de�nes the fun
tionhL : f0; 1gL ! f0; 1gm. We now extend this to h� : [NL=1f0; 1gL ! f0; 1gm, where N = 2n�m � 1.For 0 � i � 2s�1, let bins(i) be the s-bit binary expansion of i. We treat bins(i) as a binary stringof length s. Then h�(x) is de�ned as follows.h�(x) = h �(binn�m(jxj))jj(hjxj(x))� : (3)In other words, we �rst apply hL(x) (where jxj = L) on x to obtain an m-bit message digest w.Let v = binn�m(jxj). Then v is a bit string of length n�m. We apply h to the string vjjw to getthe �nal message digest.Remark : 1. We do not a
tually require the length of the message to be< 2n�m. The
onstru
tion
an easily be modi�ed to suit strings having length < 2
 for some
onstant
. Sin
e we are assumingn � 2m and m � 128 for pra
ti
al hash fun
tions,
hoosing
 = n�m is
onvenient and suÆ
ientfor pra
ti
al purposes.2. In Se
tion 7, we present the
onstru
tion for arbitrary length strings.4.3 Spe
ifying ParallelismWe
onsider the following problem. Suppose a set of users agree to
hoose h�() as a hash fun
tionstandard. The message digest produ
ed on a message
learly depends on the depth of the binarytree used to generate the message digest. Suppose a user generates the digest using a binary treeof depth t. Then any other user who needs to regenerate the digest has to have a

ess to a binaryof depth t or should be able to simulate the binary tree of depth t. It is quite possible that the userhas a

ess to only one pro
essor. In this
ase also the user should be able to generate the messagedigest. This
an be ensured in any one of the following two ways.(1) The depth T of the pro
essor tree is �xed and is part of the hash fun
tion spe
i�
ation. Thenany user who needs to generate y =PHA(T; x) and has a

ess to a pro
essor tree of depth t, witht < T uses SimPar(T; t; x) to generate y. If t � T , then the user
an run PHA(T; x) by not usingpro
essors at level greater than T . 11

(2) The depth of the pro
essor tree is not part of the hash fun
tion spe
i�
ation. In this
ase thea
tual depth of the pro
essor tree is output with the message digest, i.e. the output on input xis (t;PHA(t; x)). Any other user who wishes to regenerate the digest and has a

ess to a tree ofdepth t0 runs SimPar(t; t0; x) if t < t0 or runs PHA(t; x) if t � t0.Depending on the situation in hand any one of the above two strategies may be adopted. Wewould like to highlight another aspe
t of Strategy 2. Suppose User 1 has only a single pro
essorand wishes to
ompute the digest on a message x. User 1 also knows that the digest will bere
omputed by User 2 who has a

ess to a pro
essor tree of 2t (t > 0) pro
essors. User 1 theninvokes SimPar(t; 0; x) to
ompute y =PHA(t; x). Thus User 2
an dire
tly use his pro
essor treeof 2t pro
essors to invoke PHA(t; x) and re
ompute y. In this manner the total time required to
ompute both the digests is minimized.Fundamentally our design prin
iple follows the simple basi
 rule : Users with more resour
es
an speed up
omputation of the digest, without a�e
ting the eÆ
ien
y of users with lesser resour
esto
ompute the same digest.5 Corre
tness and Complexity of PHAHere we
onsider the
orre
tness and
omplexity of
omputing hL. In Se
tion 6.1 we will providethe se
urity redu
tion of Col(n;m) to FLC(n;m;L). By
orre
tness of hL we mean that every bitof the message is hashed and algorithm PHA outputs an m-bit message digest.The following result shows that the maximum amount of padding added to a message dependsonly on the parameters n and m. In parti
ular, the maximum amount of padding is indepedent ofthe number of pro
essors and the length of the message.Proposition 4 The maximum amount of padding added to any message is less than 2n� 2m.Proof. The only pla
e where padding (if any) is done is at line 2 of algorithm PHA. The amountof padding is b(2n� 2m)� r. Sin
e b = l r2n�2mm < r2n�2m +1, we have b(2n� 2m)� r < 2n� 2m.Remark : Using a naive padding s
heme will result in the padding length being proportional to2t(2n � 2m). This will result in many zeros being appended to the message whi
h is
learly anundesirable feature. Further, it is not diÆ
ult to verify that the use of a naive padding s
heme doesnot redu
e the number of parallel rounds required and neither does it make the parallel hashingalgorithm any simpler. Thus we dis
ourage the use of a naive padding s
heme.Algorithm PHA exe
utes the following sequen
e of parallel rounds.1. Lines 5-6 of PHA exe
ute one parallel round.2. Lines 7-10 of PHA exe
ute q parallel rounds.3. Lines 11-12 of PHA exe
ute one parallel round.4. Lines 13-16 of PHA exe
ute t� 1 parallel rounds.5. We
onsider Line 17 of PHA to be a spe
ial parallel round.From this we get the following result. 12

Theorem 5 Algorithm PHA(t; x) exe
utes q + t + 2 parallel rounds. Consequently, AlgorithmSimPar(t; t0; x) exe
utes (q + 3)2t�t0 + t parallel rounds.Ea
h of the �rst (q+ t+1) parallel rounds in PHA(t; x)
onsist of a formatting phase and a hashingphase. In the formatting phase, the formatting pro
essor PF runs a formatting subroutine and inthe hashing phase the pro
essors Pi (0 � i � 2t � 1) are operated in parallel. Denote by zi;j thestate of the bu�er zi at the end of round j, 0 � i � 2t � 1, 1 � j � q + t + 2. Clearly, the stateof the bu�er zi at the start of round j (2 � j � q + t+ 2) is zi;j�1. Further, let ui;j be the stringwritten to bu�er ui in round j by the pro
essor PF . For 0 � i � 2t�1 � 1, the input to pro
essorPi in round j is z2i;j�1jjz2i+1;j�1jjui;j. For 2t�1 � i � 2t � 1, the input to pro
essor Pi in round jis the string ui;j.The following lemma and
orollary are required to prove Proposition 8.Lemma 6 For any nonnegative integer b, Pi�1 jb+2i�12i k = b.Proof. We prove this result by mathemati
al indu
tion on b. Clearly the result holds for b = 0.Indu
tion Hypothesis: For b a nonnegative integer, assume that Pi�1 j b+2i�1�12i k = b� 1.It
an be shown that �mn � = 8>><>>: jm�1n k+ 1 when njm;jm�1n k otherwise:In addition, 2ij(b+ 2i�1) if and only if b = 2i�1
 where
 is an odd integer. Combining these fa
tswith the indu
tion hypothesis, we get thatXi�1 $b+ 2i�12i % = 1 +Xi�1 $b+ 2i�1 � 12i % = b:Thus, by mathemati
al indu
tion, we
on
lude that the result holds for all nonnegative integers b.Corollary 7 For t a given positive integer and b an integer in the range 0 � b � 2t�1, let ks =b b+2t�s�1�12t�s
 as de�ned in algorithm PHA. Then Pt�1s=1 ks =Ps�1 ks = b� 1.Proposition 8 Let x be a message of length L = Æ(t)+q�(t)+b(2n�2m), where q is a nonnegativeinteger and b is an integer in the range 0 � b � 2t�1. The formatting algorithms present every bitof message x to exa
tly one of the pro
essors Pi; furthermore, the substring x presented to pro
essorP0 in step 17 of PHA is the empty string <> when jxj = Æ(t) and is an (n� 2m)-bit string whenjxj > Æ(t). The formatting algorithms require(a) jxj � (n� 2m) + (t� 1)2t � 2b+ 2 steps when jxj > Æ(t) or(b) jxj+ (t� 1)2t + 1 steps when jxj = Æ(t).Proof.Ea
h formatting algorithm de�nes ui =<> or else de�nes ui to be a pre�x of x; namely,x = vjjyui = v 13

x = yIn step 17, the substring x itself is presented to pro
essor P0. Hen
e, every bit of message x ispresented to exa
tly one pro
essor Pi, as
laimed. We now determine the length of the substring xpresented to pro
essor P0 in step 17.Formatting algorithm FSU provides a pre�x of length n to ea
h pro
essor Pi. This a

ounts for2tn bits of x. Algorithm FSS provides an (n � 2m)-bit pre�x to pro
essor Pi, 0 � i < 2t�1, andan n-bit pre�x to pro
essor Pi, 2t�1 � i < 2t. This a

ounts for 2t�1(2n � 2m) = �(t) bits of x.Sin
e FSS is invoked q times, this a

ounts for q�(t) bits of x. Formatting algorithm FEG providesea
h internal pro
essor Pi, 0 � i < 2t�1, with an (n � 2m)-bit pre�x of x, ea
h leaf pro
essor Pi,2t�1 � i � 2t�1 + b� 1, with an n-bit pre�x of x, and all the other leaf pro
essors with an emptystring. This a

ounts for 2t�1(n � 2m) + bn bits of x. For s = t � 1; t � 2; : : : ; 2; 1, formattingalgorithm FF(s) presents ea
h pro
essor Pi, 0 � i < 2s�1 + ks � 1, where ks = b b+2t�s�1�12t�s
,with an (n � 2m)-bit pre�x of x and all the other pro
essors Pi with ui =<>. This a

ounts to(2s�1 + ks)(n� 2m) bits of x. The total number of bits presented to the pro
essors Pi, 0 � i < 2t,is 2tn+ q�(t) + bn+ 2t�1(n� 2m) + 1Xs=t�1(2s�1 + ks)(n� 2m)= 2tn+ q�(t) + bn+ 1Xs=t 2s�1(n� 2m) + 1Xs=t�1 ks(n� 2m)= 2tn+ q�(t) + bn+ (2t � 1)(n� 2m) + (b� 1)(n� 2m) (sin
e 1Xs=t�1 ks = b� 1)= Æ(t) + q�(t) + b(2n� 2m)� (n� 2m):Hen
e, the substring x presented to pro
essor P0 in step 17 of PHA is of length (n�2m) as
laimed.In the spe
ial
ase when x is of length L = Æ(t), b = q = 0. This in turn implies that ks = 0 fors = t� 1; t� 2; : : : ; 2; 1. Hen
e, the total number of bits presented to the pro
essors Pi is just Æ(t),and the substring x presented to pro
essor P0 in step 17 of PHA is the empty string.Formatting algorithm FEG de�nes ui =<> for 2t�1 + b � i < 2t, and, for 1 � s < t, FF(s)de�nes ui =<> for 2s�1 + ks � i < 2t. The number of assignments of the form ui =<> is2t�1 � b+ 1Xs=t�1(2t � 2s�1 � ks) = 2t�1 � b+ (t� 1)2t � 1Xs=t�1 2s�1 � 1Xs=t�1 ks= 2t�1 + (t� 1)2t � (2t�1 � 1)� 2b+ 1 = (t� 1)2t � 2b+ 2:In the spe
ial
ase when x has length L = Æ(t), there are (t � 1)2t + 1 assignments of the formui =<>.Ea
h step of the formatting algorithms
onsist of moving the leading bit of string x to somebu�er ui, or else assigning ui =<>. Therefore, the formatting algorithms require(a) Æ(t) + q�(t) + b(2n� 2m)� (n� 2m) + (t� 1)2t � 2b+ 2 steps when L > Æ(t) or(b) Æ(t) + (t� 1)2t + 1 steps when L = Æ(t).This establishes the result.We require the following lemma in the proof of Theorem 10.14

Lemma 9 For any integers b and t, b � 0 and t � 1, de�ne ks = b b+2t�s�1�12t�s
 for 1 � s < t andls = b b+2t�s�12t�s
 for 1 � s � t. Then(a) ks � ls � ks + 1;(b) 2ks � ls+1 � 2ls; and(
) ls = ks + 1) 2ls = ls+1 + 1:Proof.Clearly, ks = �b� 12t�s + 12� � �b� 12t�s + 1� = ls � �b� 12t�s + 32� = ks + 1:For any nonnegative real number x, 2bx+ 12
 � b2x+ 1
 � 2bx+ 1
. Setting x = (b� 1)=2t�s, weget 2ks � ls+1 � 2ls:Now let x = b�12t�s = I + f where I is an integer and 0 � f < 1. Thenls = bx+ 1
 = bI + f + 1
 = I + 1:If ls = ks + 1, thenI + 1 = ls = ks + 1 = bx+ 1=2
 + 1 = bI + f + 1=2
 + 1 = I + 1 + bf + 1=2
:Hen
e bf + 1=2
 = 0 whi
h means 0 � f < 1=2. Thenls+1 = b2x+ 1
 = b2I + 2f + 1
 = 2I + 1 = 2ls � 1:Observe that in round q+2, the formatting algorithm FEG de�nes ui;q+2 =<> i� 2t�1+b � i �2t. Furthermore, in round j, q+2 < j < q+ t+2, formatting algorithm FF (s) de�nes ui;j =<> i�2s�1+ks � i < 2t where s = q+ t+2�j. In Theorem 10, we show that for q+2 � j � q+ t+2, wehave zi;j =<> i� 2s�1+ l� s � i < 2t where s = q+ t+2� j and ls = jb+2t�s�12t�s k. The
orre
tnessof algorithm PHA depends on showing that, for q + 2 < j < q + t+ 2, we have ui;j =<> i� either2t�1 � i < 2t or z2i+1;j�1 =<>. This means thatzi;j = 8><>: z2i;j�1 whenever ui;j =<>= z2i+1;j�1;h(z2i;j�1jjz2i+1;j�1jjui;j) whenever uij 6=<>6= z2i+1;j�1;<> whenever 2t�1 � i < 2t:In round q + 2, the formatting subroutine FEG is invoked. This subroutine de�nes the stringsu2t�1;q+2; : : : ; u2t�1+b�1;q+2 to be non empty and u2t�1+b; : : : ; u2t�1;q+2 to be empty strings. As aresult in rounds q+2+ l (1 � l � t� 1) only some of the bu�ers ui;q+2+l are non empty. If ui;q+2+lis de�ned then pro
essor Pi will get an n-bit input and invoke the hash fun
tion on this input.Thus in this
ase zi;q+2+l will be an m-bit string. Further, it may happen that z2i;q+l+1 is an m-bitstring but z2i+1;q+l+1 is not an m-bit string. In this
ase, ui;q+2+l must be empty and pro
essor Pigets the m-bit string z2i;q+l+1 as input whi
h it
opies to output, i.e., zi;q+2+l = z2i;q+l+1. Thusthere are two things to
onsider.1. The maximum value of i su
h that ui;q+2+l is non empty.15

2. The maximum value of i su
h that zi;q+2+l is non empty.Let s = t�l. Then the maximum value of i su
h that (1) happens is 2s�1+ks�1 and the maximumvalue of i su
h that (2) happens is 2s�1 + ls � 1. These two fa
ts are
ru
ial to the
orre
tness ofPHA and are proved as part of Theorem 10 below.Remark : We would like to point out the
onne
tion of the values ks and ls respe
tively to theinorder su

essor and prede
essor of the pro
essor Pi. In round q+ 2+ l = q+2+ t� s, pro
essorPi outputs an m-bit output if and only if the inorder prede
essor (whi
h is at the leaf level) of Pire
eived an n-bit input in round q+2. Further, in round q+2+l = q+2+t�s, pro
essor Pi invokesthe hash fun
tion (equivalently ui;q+2+l is de�ned) if the inorder su

essor (again at the leaf level)of Pi re
eived an n-bit input in round q + 2. These
onsiderations also provide the expressions forks and ls.Theorem 10 (Corre
tness of PHA) Given any message x with jxj � Æ(t), algorithm PHA(x; t)applies hash fun
tion h to every bit of x and produ
es an m-bit message digest.Proof. Let y = z0;q+t+1jjz1;q+t+1jju0;q+t+2. Then, the output of algorithm PHA is, by de�nition,z0;q+t+2 = (h(y) if jyj = n;y otherwise:Therefore, we must show that if jyj 6= n, then jyj = m.In round 1, pro
essor PF writes n-bit strings to ea
h of the bu�ers ui, i.e., jui;1j = n for0 � i � 2t � 1. Hen
e jzi;1j = m for 0 � i � 2t � 1. Further, it is easy to verify that for2 � j � q + 1, we have jzi;j j = m for 0 � i � 2t � 1 andjui;jj = (n� 2m if 0 � i � 2t�1 � 1;n if 2t�1 � i � 2t � 1:For q+2 � j � q+t+1, let s = q+t+2�j. Then t � s � 1
orresponding to q+2 � j � q+t+1.De�ne ls = j b+2t�s�12t�s k. We now use mathemati
al indu
tion to show that for these values of j ands, jzi;j j = (m for 0 � i � 2s�1 + ls � 1;0 for 2s�1 + ls � i < 2t:Basis Case. For j = q + 2, s = t and ls = b; furthermore, jzi;q+1j = m for 0 � i < 2t. In roundq + 2, pro
essor PF exe
utes FEG, and hen
e,jui;q+2j = 8><>: n� 2m for 0 � i � 2t�1 � 1;n for 2t�1 � i � 2t�1 + b� 1;0 for 2t�1 + b � i < 2t:Therefore, jzi;q+2j = (m for 0 � i � 2t�1 + b� 1;0 for 2t�1 + b � i < 2t:Indu
tion Hypothesis: Let j � 1 be any integer in the range q + 2 � j � 1 � q + t, and lets+ 1 = q + t+ 2� (j � 1). Assume that in round j � 1,jzi;j�1j = (m for 0 � i � 2s + ls+1 � 1;0 for 2s + ls+1 � i < 2t:16

Now
onsider round j. Then s = q + t+ 2� j.Case 1: 0 � i � 2s�1 + ks � 1.Then algorithm FF(s) de�nes ui;j to be a nonempty (n� 2m)-bit string. Furthermore,2i+ 1 � 2s + 2ks � 1 � 2s + ls+1 � 1 by Lemma 9:By our Indu
tion Hypothesis, jz2i;j�1j = jz2i+1;j�1j = m. Hen
e, jz2i;j�1jjz2i+1;j�1jjui;j j = n. Thisimplies jzi;j j = m.Case 2: 2s�1 + ks � i � 2s�1 + ls � 1.This
ase is va
uous whenever ls = ks. When ls = ks + 1, then 2s�1 + ks = i = 2s�1 + ls � 1 andjui;j j = 0 from the de�nition of algorithm FF(s). Then2i = 2s + 2ls � 2 = 2s + ls+1 � 1 (sin
e 2ls = ls+1 + 1 when ls = ks + 1):Therefore, jz2i;j�1j = m by our Indu
tion Hypothesis. Sin
e 2i + 1 = 2s + ls+1, our Indu
tionHypothesis implies jz2i+1;j�1j = 0. Therefore, jz2i;j�1jjz2i+1;j�1jjui;jj = m and zi;j = z2i;j�1, anonempty m-bit string.Case 3: 2s�1 + ls � i < 2t.Sin
e 2s�1 + ks � 2s�1 + ls � i, jui;jj = 0. In addition, 2i � 2s + 2ls � 2s + ls+1. Therefore,jz2i;j�1j = jz2i+1;j�1j = 0. Hen
e, jz2i;j�1jjz2i+1;j�1jjui;j j = 0 and zi;j =<>.Thus we have shown thatjzi;j j = (m for 0 � i � 2s�1 + ls � 1;0 for 2s�1 + ls � i < 2t:By mathemati
al indu
tion, this holds for all j in the range q+2 � j � q+t+1 and s = q+t+2�j.From the above argument, we see that, for 1 � j � q + t + 1, jui;jj = n � 2m if and only ifjz2i;j�1j = jz2i+1;j�1j = m. In this
ase, zi;j = h(z2i;j�1jjz2i+1;j�1jjui;j). As well, it is immediatethat whenever a formatting algorithm de�nes jui;jj = n, then zi;j = h(ui;j). Thus the hash fun
tionh pro
esses ea
h of the pre�xes ui;j .When message x has length L > Æ(t), then b > 0. From the above result, we see that jz0;q+t+1j =jz1;q+t+1j = m. From Proposition 8, we know that the substring x presented to pro
essor P0 instep 17 of PHA is of length n� 2m. Therefore, z0;q+t+2 = h(z0;q+t+1jjz1;q+t+1jjx), an m-bit string,as required.When message x has length L = Æ(t), then b = 0. From the above result, we see that jz0;q+t+1j =m and jz1;q+t+1j = 0. From Proposition 8, we know that the substring x presented to pro
essor P0in step 17 of PHA is of length 0. Therefore, z0;q+t+2 = z0;q+t+1, an m-bit string, as required.We now turn to
omputing the number of invo
ations of h made by PHA(x; t). Let (L) bethe number of invo
ations of h made by PHA(x; t) on a message of length L. The parameters qtand bt depend on the length L of the message. We write qt(L) and bt(L) to denote the dependen
eof the parameters qt and bt on length L. We now have the following result.Proposition 11 (L) = (qt(L) + 2)2t + 2bt(L)� 1.Proof. We �rst note that q = qt = qt(L) and b = bt = bt(L). In ea
h of the �rst qt(L) + 1 roundsh is invoked 2t times. In round qt(L) + 2, the number of invo
ations of h is 2t�1+ bt(L). In roundsqt(L)+ 3 to qt(L) + t+1, the total number of invo
ations of h is Pt�1s=1(2s�1+ ks). Lastly, in roundqt(L) + t+2, there is one invo
ation of h. Using Corollary 7, we have Pt�1s=1 ks = b� 1. Adding theabove number of invo
ations we get the �nal result.17

We now
ompare the number of invo
ations of h by PHA to that made by the MD algorithm.The maximum amount of padding required by PHA is 2(n�m)� 1 and that required by the MDalgorithm is n�m� 1. We
ompare the number of invo
ations of h on message lengths whi
h donot require padding by PHA. It turns out that these message lengths also do not require paddingby the MD algorithm.Let the length of the message be L = Æ(t) + qt(L)�(t) + bt(L)(2n � 2m). Then PHA makes (L) = (qt(L) + 2)2t + 2bt(L)� 1 invo
ations of h.Here we use the des
ription of the MD algorithm given in [5℄. For the MD algorithm the �rstinvo
ation uses n bits and ea
h of the subsequent invo
ations uses n � m bits. Hen
e the totalnumber of invo
ations of h is1 + L� nn�m = 1 + 2t(2n� 2m) + q2t�1(2n� 2m) + b(2n� 2m)� (n� 2m)� nn�m = (L):Thus we get the following result.Theorem 12 The number (L) of invo
ations of h made by PHA(x; t) on a message x of lengthL = Æ(t) + qt(L)�(t) + bt(L)(2n� 2m) is equal to the number of invo
ations of h made by the MDalgorithm on a message of the same length L.The time taken by the MD algorithm is proportional to the number of invo
ations of h whereasthe time required by PHA is proportional to the number of parallel rounds whi
h is qt(L) + t+ 2.Further, both PHA and the MD algorithm must format the message. Hen
e if we ignore the timerequired to format the message, then PHA is faster by a fa
tor of (L)q + t+ 2 :For moderately large q, the in
rease in speed is almost linear in the number of pro
essors.6 Se
urity Redu
tions for hL and h�In this se
tion we show that �nding
ollisions for hL and h� is diÆ
ult provided �nding
ollisionsfor h is diÆ
ult.6.1 Collision Resistan
e of hLIn this se
tion we provide a Turing redu
tion of Col(n;m) to FLC(n;m;L). This will show thatif it is
omputationally diÆ
ult to �nd
ollisions for h, then it is also
omputationally diÆ
ult to�nd
ollisions for hL.Theorem 13 Let h be an (n;m) hash fun
tion and for L � n let hL be the fun
tion de�ned byalgorithm PHA. If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hash fun
tion hL,then there is an (�; p+ 2 (L)) algorithm B to solve Col(n;m) for the hash fun
tion h.Proof. The algorithm B does the following. It �rst runs A to obtain 2 strings x and x0 su
h thatx 6= x0, jxj = jx0j = L, and with probability at least �, hL(x) = hL(x0). Then B runs PHA on bothx and x0 and stores all the intermediate states of the bu�ers zi and ui. Let zij and z0ij be the states18

of bu�er zi at the end of round j
orresponding to the messages x and x0 respe
tively. Similarly,let uij and u0ij be the strings written to bu�er ui in round j
orresponding to the messages x andx0 respe
tively.We now pro
eed by reverse indu
tion on j to show that if x 6= x0 and hL(x) = hL(x0), then we
an �nd a
ollision for hash fun
tion h by applying algorithm PHA to x and x0. To allow us to startthe proof with round q+ t+1, we must extend our de�nition of uij and u0ij to round j = q+ t+2.De�ne u0;q+t+2 and u00;q+t+2 to be the substrings x and x0, respe
tively, provided to pro
essor P0in Step 17 of algorithm PHA. De�ne ui;q+t+2 =<>= u0i;q+t+2 for 0 < i < 2t.Indu
tion Basis Step : j = q + t+ 2.We show that, either there is a
ollision for h in round q + t+ 2, or elsezi;q+t+1 = z0i;q+t+1 and ui;q+t+2 = u0i;q+t+2 for 0 � i < 2t:Case 1: b = 0. In this
ase, u0;q+t+2 =<>= u00;q+t+2 by Proposition 7. Hen
e, ui;q+t+2 = u0i;q+t+2for all i, 0 � i < 2t. By Theorem 9, zi;q+t+1 =<>= z0i;q+t+1 for all i, 0 < i < 2t. Furthermore,z0;q+t+1 = z0;q+t+2 = hL(x) = hL(x0) = z00;q+t+2 = z00;q+t+1. This
ompletes the proof of Case 1.Case 2: b > 0. In this
ase, u0;q+t+2 = x 6=<>6= x0 = u00;q+t+2 by Proposition 7. By Theorem9, zi;q+t+1 =<>= z0i;q+t+1 for all i, 1 < i < 2t and z0;q+t+1; z1;q+t+1; z00;q+t+1; z01;q+t+1 are allnonempty m-bit strings. Hen
e,h(z0;q+t+1jjz1;q+t+1jju0;q+t+2)= z0;q+t+2 = hL(x) = hL(x0) = z00;q+t+2= h(z00;q+t+1jjz01;q+t+1jju00;q+t+2):Now, if (z0;q+t+1jjz1;q+t+1jju0;q+t+2) 6= (z00;q+t+1jjz01;q+t+1jju00;q+t+2), then we have a
ollision forhash fun
tion h; otherwise, z0;q+t+1 = z00;q+t+1; z1;q+t+1 = z01;q+t+1 and u0;q+t+2 = u00;q+t+2. This
ompletes the proof of Case 2, and also the proof of the Indu
tion Basis Step.Indu
tion Hypothesis: For q + t+ 1 � j � 2, assumezi;j = z0i;j and ui;j+1 = u0i;j+1 for 0 � i < 2t:In the proof of Theorem 9 we show that, for 0 � i < 2t�1,zi;j = (h(z2i;j�1jjz2i+1;j�1jjui;j) whenever z2i+1;j�1 6=<>6= ui;j;z2i;j�1 whenever z2i+1;j�1 =<>= ui;j;and, for 2t�1 � i < 2t, zi;j = (h(ui;j) whenever ui;j 6=<>;<> whenever ui;j =<> :The
orresponding statements hold for the z0i;j's and the u0i;j's. Be
ause messages x and x0 are ofthe same length L, zi;j =<> if and only if z0i;j =<> and ui;j =<> if and only if u0i;j =<>. Wenow
onsider ea
h of these 4
ases individually.For 0 � i < 2t�1 and z2i+1;j�1 6=<>6= ui;j, we have thath(z2i;j�1jjz2i+1;j�1jjui;j) = zi;j= z0i;j (by the Indu
tion Hypothesis)= h(z02i;j�1jjz02i+1;j�1jju0i;j):19

If (z2i;j�1jjz2i+1;j�1jjui;j) 6= (z02i;j�1jjz02i+1;j�1jju0i;j), then we have a
ollision for hash fun
tion h;otherwise, z2i;j�1 = z02i;j�1; z2i+1;j�1 = z02i+1;j�1; and ui;j = u0i;j:For 0 � i < 2t�1 and z2i+1;j�1 =<>= ui;j, we have thatz2i;j�1 = zi;j= z0i;j (by the Indu
tion Hypothesis)= z02i;j�1:For 2t�1 � i < 2t and ui;j 6=<>, we have thath(ui;j) = zi;j= z0i;j (by the Indu
tion Hypothesis)= h(u0i;j):If ui;j 6= u0i;j, then we have a
ollision for hash fun
tion h; otherwise, ui;j = u0i;j:For 2t�1 � i < 2t and ui;j =<>, we have that ui;j =<>= u0i;j:Combining these 4
ases, we get that, either there is a
ollision for hash fun
tion h in round j,or else zi;j�1 = z0i;j�1 and ui;j = u0i;j for 0 � i < 2t:By mathemati
al indu
tion, it follows that, either there is a
ollision for hash fun
tion h insome round j = q + t+ 2; q + t+ 1; : : : ; 3; 2, or elsezi;j�1 = z0i;j�1 and ui;j = u0i;j for 0 � i < 2t and 2 � j � q + t+ 2:In round 1, ui;1 is a nonempty n-bit string for 0 � i < 2t. If there is no
ollision for h in roundsq + t+ 2; q + t+ 1; : : : ; 3; 2, then h(ui;1) = zi;1 = z0i;1 = h(u0i;1):If ui;1 6= u0i;1 for some i, then there is a
ollision for hash fun
tion h in round 1; otherwise, ui;1 = u0i;1for 0 � i < 2t.Thus we obtain that if there is no
ollision in any invo
ation of h by PHA on messages x andx0, then ui;j = u0i;j for 0 � i < 2t and 1 � j � q + t+ 2. The padded messages x and x0 are equalto the
on
atenations of the ui;j's and the u0i;j's, respe
tively, for 0 � i < 2t and 1 � j � q + t+ 2.Hen
e, if there is no
ollision in any invo
ation of h by PHA on the messages x and x0, then x = x0.But algorithm A ensures that with probability at least �, we have messages x and x0 su
h thatjxj = jx0j = L, x 6= x0, and hL(x) = hL(x0). Hen
e, with probability at least �, we obtain a
ollisionfor h.The number of invo
ations of h by algorithm B is equal to the number of invo
ations of h byA plus the number of invo
ations of h by PHA on x and x0. Thus the total number of invo
ationsof h by algorithm B is p+ 2 (L).6.2 Collision Resistan
e of h�The se
urity of h� is easily derived from the se
urity of hL. The details are given below.20

Theorem 14 Let h be an (n;m) hash fun
tion and h� be the fun
tion de�ned by Equation 3. Ifthere is an (�; p; L) algorithm A to solve V LC(n;m;L) for the hash fun
tion h�, then there is an(�; p+ 2 + 2 (L)) algorithm B to solve Col(n;m) for the hash fun
tion h.Proof. The algorithm B does the following. It �rst runs A to obtain two messages x and x0. Thenwith probability at least �, we have h�(x) = h�(x0) and x 6= x0. Algorithm B then runs h� on bothx and x0 to obtain h�(x) = y and h�(x0) = y0 storing all the intermediate values that are generated.Let w = hjxj(x), w0 = hjx0j(x0), v = binn�m(jxj) and v0 = binn�m(jx0j). There are two
ases.Case 1 : jxj 6= jx0j. In this
ase v 6= v0 and hen
e vjjw 6= v0jjw0. However, h(vjjw) = y = y0 =h(v0jjw0) with probability at least �. Thus in this
ase we
an �nd a
ollision for h with probabilityat least �.Case 2 : jxj = jx0j = L. In this
ase v = v0. If w 6= w0, then we have a
ollision for h. Ifw = w0 then we have a
ollision for hL. We
an now argue as in the proof of Theorem 13 that withprobability at least � we obtain a
ollision for h.The
omputation of h� requires 1 + (L) invo
ations of the hash fun
tion h. This shows thatthe number of invo
ations of h made by B is at most p+ 2 + 2 (L).7 Constru
tion of h1In this se
tion we des
ribe the
onstru
tion and the se
urity redu
tion for the fun
tion h1 :[L�nf0; 1gL ! f0; 1gm. De�ne Æ1(t) = Æ(t) � 1 and �1(t) = �(t) � 1. As in De�nition 1, forL � Æ1(t), we de�ne the parameters q; r and b as follows.De�nition 15 1. If L > Æ1(t), then q and r are de�ned by the following equation: L� Æ1(t) =q�1(t) + r, where r is the unique integer from the set f1; : : : ; �1(t)g. De�ne b = d r2n�2me.2. If L = Æ1(t), then q = b = r = 0.Algorithm PHA
omputes the fun
tion hL. We �rst de�ne a modi�
ation of PHA. More spe
if-i
ally, we de�ne the modi�
ations required in the formatting subroutines. We will
all the resultingalgorithm the modi�ed PHA algorithm.Modi�
ation to FSU: Repla
e Step 1 of FSU by the following sequen
e of operations:Write x = vjjy where jvj = n� 1.u0 = vjj0, x = y.for i = 1; 2; : : : ; 2t � 1 doModi�
ation to FSS: Repla
e Step 1 of FSS by the following sequen
e of operations:Write x = vjjy where jvj = n� 2m� 1.u0 = vjj1, x = y.for i = 1; 2; : : : ; 2t � 1 doInformally, during start up we are providing P0 with an input whose last bit is 0 and duringsteady state we are providing P0 with an input whose last bit is 1.Let the fun
tion
omputed by modi�ed PHA be gL : f0; 1gL ! f0; 1gm. We now des
ribe the
onstru
tion of the fun
tion h1.The parameter b is at most 2t�1 and
an be represented in binary by a t-bit string. Note thatthe length of the binary representation of b depends only on t and is independent of the message21

length L. We denote the t-bit binary representation of b by bin(b). Let �(t) = dlog(Æ1(t) + 1)e. Lettbin(L) be a binary string of length �(t), su
h that tbin(L) is the �(t)-bit binary representation ofL if L < Æ1(t), else tbin(L) is the �(t)-bit binary representation of Æ1(t).The output of the fun
tion h1 is de�ned by the following algorithm.Algorithm ArbLengthinput : message x of length L.output : m-bit message digest h1(x).1. If L < Æ1(t), then �nd the unique t1 su
h that Æ1(t1) � L < Æ1(t1 + 1). Then perform Step 2with t repla
ed by t1.2. If L � Æ1(t), then apply modi�ed PHA to x to obtain an m-bit message digest w = gL(x).3. Let w1 = hm+t(wjjbin(b)).4. Let w2 = hm+�(t)(w1jjtbin(L)).5. output w2.Remark : It is reasonable to assume that both t; tbin(L) � n � m. Then we
ould let bin(b)and tbin(L) be (n � m)-bit strings. In this situtation, Steps 3 and 4 above
an be repla
ed byw1 = h(wjjbin(b)) and w2 = h(w1jjtbin(L)) respe
tively.We now turn to the se
urity redu
tion for h1. First we note the fa
t that the se
urity of gL ispreserved in a manner similar to that of hL.Theorem 16 Let h be an (n;m) hash fun
tion and for L � n let gL be the fun
tion de�ned by themodi�ed algorithm PHA. If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hashfun
tion gL, then there is an (�; p + 2 1(L)) algorithm B to solve Col(n;m) for the hash fun
tionh, where 1(L) is the number of invo
ations of h made by gL.Theorem 17 Let h be an (n;m) hash fun
tion and for L � n let h1 be the fun
tion de�nedby algorithm ArbLength. If there is an (�; p; L) algorithm A to solve ALC(n;m;L) for the hashfun
tion h1, then there is an (�; p+ 2 2(L)) algorithm B to solve Col(n;m) for the hash fun
tionh, where 2(L) = 1(L) + (t+m) + (�(t) +m) is the number of invo
ations of h made by h1.Proof. Algorithm B runs algorithm A to obtain two strings x and x0 su
h that with probabilityat least � we have h1(x) = h1(x0) and x 6= x0. Let L = jxj and L0 = jx0j. Further, we will denotethe parameters for the message x by unprimed symbols and the parameters for the message x0 byprimed symbols. First assume that L = L0. Then tbin(L) = tbin(L0) and bin(b) = bin(b0). We
annow use Theorem 13 to obtain a
ollision for h with probability at least �. Thus for the rest of theproof we will assume L 6= L0. There are two
ases to
onsider.Case 1 : At least one of L or L0 is less that Æ1(t). In this
ase tbin(L) 6= tbin(L0). We havehm+�(t)(w1jjtbin(L)) = w2= w02= hm+�(t)(w01jjtbin(L0)):We
an argue as in Theorem 13 that either we obtain a
ollision for h or w1jjtbin(L) = w01jjtbin(L0)whi
h in turn implies tbin(L) = tbin(L0). Sin
e we know tbin(L) 6= tbin(L0), it follows that wemust obtain a
ollision for h. 22

Case 2 : Both L;L0 � Æ1(t). In this
ase we have tbin(L) = tbin(L0). If w1 6= w01, then the inputsto h�(t)+m in Step 4 of ArbLength are di�erent for x and x0. This will again provide a
ollision forh. So suppose w1 = w01. There are two sub
ases to
onsider.Sub
ase 2a : b 6= b0: In this
ase bin(b) 6= bin(b0). We havehm+t(wjjtbin(L)) = w1 = w01 = hm+t(w0jjtbin(L0)):Again the inputs to hm+t are di�erent and hen
e we have a
ollision for hm+t. As before, this willne
essarily provide a
ollision for h.Sub
ase 2b : b = b0: In this
ase bin(b) = bin(b0). If w 6= w0, then this will provide a
ollision forh. So assume that w = w0.So we are in the situation where gL(x) = w = w0 = gL0(x0), b = b0 and L 6= L0. We havethe (padded) message lengths in the following forms: L = Æ1(t) + q�1(t) + b(2n � 2m) and L0 =Æ1(t) + q0�1(t) + b0(2n � 2m). Sin
e b = b0 and L 6= L0 we have q 6= q0. Assume without loss ofgenerality q0 < q.The last t+ 1 rounds of both PHA and modi�ed PHA are the same. Suppose that none of theinvo
ations of h in the last t + 1 rounds of modi�ed PHA provides a
ollision for h. Now usingthe fa
t that b = b0 we
an use a ba
kward indu
tion on the round number (as in the proof ofTheorem 13) to obtain zi;q+1 = z0i;q0+1 for all 0 � i � 2t � 1. Continuing the ba
kward indu
tionwe obtain zi;q�q0+1 = z0i;1 for all 0 � i � 2t � 1. We now look at the output of pro
essor P0. Letp = q � q0. We have z0;p+1 = P0(z0;pjjz1;pjju0;p+1);z00;1 = P0(u00;1):The string u0;p+1 is obtained from FSS and the string u00;1 is obtained from FSU. By the modi�
a-tions made to these algorithms to get modi�ed PHA, we know that u0;p+1 = vjj1 and u00;1 = v0jj0for some strings v and v0 of lengths n�1 and n�2m�1 respe
tively. Hen
e z0;pjjz1;pjju0;p+1 6= u00;1.But z0;p+1 = z00;1 and so we obtainP0(z0;pjjz1;pjju0;p+1) = h(z0;pjjz1;pjju0;p+1) = z0;p+1 = z00;1 = h(u00;1) = P0(u00;1):This is a
ollision for h.We next
onsider the amount of padding required by algorithm ArbLength. This is determinedby the padding introdu
ed by algorithm modi�ed PHA.Theorem 18 Algorithm modi�ed PHA pads any message by at least q+1 bits where q is as de�nedin De�ntion 15.Proof. The modi�
ation to FSU introdu
es one bit of padding and the modi�
ation to FSSintrodu
es one bit of padding per round. Sin
e FSS is exe
uted q times a total of q bits of paddingis introdu
ed by FSS.From De�nition 15 we have�L� Æ1(t)�1(t) � � q + 1 � 1 + �L� Æ1(t)�1(t) � :Sin
e t; n;m are
onstants for a parti
ular implementation of modi�ed PHA, the amount of paddingis linear in the length of the message. We note that the Merkle-Damgard
onstru
tion also uses an23

amount of padding whi
h is linear in the length of the message (see [9℄). Moreover, the
onstant ofproportionality is lesser for our
onstru
tion. However, it is undesirable to have a padding s
hemewhi
h grows with the length of the message. The amount of padding required in the
onstru
tionof h� is at most 2(n�m)�1 and hen
e is independent of the message length. Further, the fun
tionh�
an take as input any message of pra
ti
al length. Thus algorithm ArbLength and the fun
tionh1 are mainly of theoreti
al interest.8 Preimage Resistan
eWe have formally
onsidered only one property of hash fun
tions - namely intra
tibility of �nding
ollisions. There are other ne
essary properties that a hash fun
tion must satisfy. These arePreimage and Se
ond Preimage (see [8℄). We are required to show that our
onstru
tions preservethe intra
tibility of these problems. In fa
t, these properties are indeed preserved and the proofsare easy. We informally des
ribe the redu
tion for Preimage.Informally the preimage problem for a hash fun
tion h is the following. The adversary is givena message digest y and has to obtain a message x su
h that h(x) = y. Suppose that there is a(probabilisti
) algorithm A to solve the preimage problem for any of our extensions hL; h� or h1.For the sake of
on
reteness we only
onsider hL, the others being similar. We argue that A
anbe used to obtain an algorithm B whi
h will solve the preimage for h with the same probability ofsu

ess. Given y, algorithm B will �rst run A to obtain a preimage x for hL. Then B runs PHAand outputs w = z0;q+t+1jjz1;q+t+1jjuq+t+2 if b > 0 or w = z0;q+tjjz1;q+tjjuq+t+1 if b = 0. It is noweasy to see that w is a preimage for h (with the probability of su

ess being at least that of A).9 Con
luding RemarksWe have
onsidered the pro
essors to be organised as a binary tree. In fa
t, the same te
hnique
arries over to k-ary trees, with the
ondition that n � km. More speed up
an be a
hieved bymoving from binary to k-ary pro
essor trees. However, the formatting pro
essor will progressivelybe
ome more
ompli
ated and will o�set the advantage in speed up. Hen
e we have not exploredthis option further.To summarize our
ontribution, in this paper, we have presented an in
rementally parallelizabledesign prin
iple for
ryptographi
 hash fun
tions. We believe that our design prin
iple will providethe basi
 stru
ture for designing future pra
ti
al hash fun
tions. In a future
ommuni
ation, wewill des
ribe parallel modi�
ations of MD5, RIPEMD-160 and SHA-2 hash fun
tions. Our plan isto keep the \
ore" operations of these hash fun
tions inta
t but build the iterative part based onthe design prin
iple developed in this paper.A
knowledgement : We wish to thank Professor Bart Preneel for helpful
omments on anearlier draft of the paper.Referen
es[1℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs pra
ti
al.Pro
eedings of CRYPTO 1997, pp 470-484.24

[2℄ D. Chaum, E. van Heijst and B. P�tzmann. Cryptographi
ally strong undeniable signatures,un
onditionally se
ure for the signer. Le
ture Notes in Computer S
ien
e, 576 (1992), 470-484,(Advan
es in Cryptology - CRYPTO'91).[3℄ I. B. DamÆgard. A design prin
iple for hash fun
tions. Le
ture Notes in Computer S
ien
e, 435(1990), 416-427 (Advan
es in Cryptology - CRYPTO'89).[4℄ R. C. Merkle. One way hash fun
tions and DES. Le
ture Notes in Computer S
ien
e, 435(1990), 428-226 (Advan
es in Cryptology - CRYPTO'89).[5℄ I. Mironov. Hash fun
tions: from Merkle-DamÆgard to Shoup. Le
ture Notes in ComputerS
ien
e, 2045 (2001), 166-181 (Advan
es in Cryptology - EUROCRYPT'01).[6℄ M. Naor and M. Yung. Universal one-way hash fun
tions and their
ryptographi
 apli
ations.Pro
eedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.[7℄ B. Preneel. The state of
ryptographi
 hash fun
tions. Le
ture Notes in Computer S
ien
e,1561 (1999), 158-182 (Le
tures on Data Se
urity: Modern Cryptology in Theory and Pra
ti
e).[8℄ D. R. Stinson. Some observations on the theory of
ryptographi
 hash fun
tions. IACR preprintserver, http://eprint.ia
r.org/2001/020/.[9℄ D. R. Stinson. Cryptography: Theory and Pra
ti
e, CRC Press, 1995.[10℄ M. N. Wegman and J. L. Carter. New Hash Fun
tions and Their Use in Authenti
ation andSet Equality. Journal of Computer and System S
ien
es, 22(3): 265-279 (1981)

25

