A Parallelizable Design Principle for Cryptographic Hash Functions®

Palash Sarkar' Paul J. Schellenberg
Cryptology Research Centre Centre for Applied Cryptographic Research
Applied Statistics Unit Department of Combinatorics and Optimization
Indian Statistical Institute University of Waterloo
203, B.T. Road 200 University Avenue West
Kolkata 700108 Waterloo, Ontario
West Bengal, India Canada N2L 3G1
e-mail: palash@isical.ac.in pjschell@math.uwaterloo.ca
Contents
1 Introduction 2
2 Basics 4
2.1 Hash Functions e e e 4
2.2 Processor Tree e e 5
2.3 Parameters and Notation e 5
3 Parallel Hashing Algorithm 6
3.1 Formatting Algorithms 7
3.2 Simulating Trees e 9
4 Parallel Hash Function Definitions 10
4.1 Definitionof hy, e e e 10
4.2 Definition of h* L e e e e e 11
4.3 Specifying Parallelism L 11
5 Correctness and Complexity of PHA 12
6 Security Reductions for h; and A* 18
6.1 Collision Resistance of Ay, e 18
6.2 Collision Resistance of A*o 20
7 Construction of h* 21

*An earlier abridged version of the paper appeared in the Proceedings of Indocrypt 2001, LNCS 2247, pages 40-49.
tPart of the work was done while the author was visiting the Centre for Applied Cryptographic Research, University
of Waterloo.

8 Preimage Resistance 24
9 Concluding Remarks 24

Abstract

We describe a parallel design principle for hash functions. Given a secure hash function
h:{0,1}" = {0,1}™ with n > 2m, and a binary tree of 2! processors we show how to construct
a secure hash function h* which can hash messages of lengths less than 2"~™ and a secure

hash function h*> which can hash messages of arbitrary length. The number of parallel rounds

required to hash a message of length L is LQL—tJ + t + 2. Further, our algorithm is incrementally

parallelizable in the following sense : given a digest produced using a binary tree of 2! processors,
we show that the same digest can also be produced using a binary tree of 28 (0 < #' <)
processors.

Keywords : cryptographic hash function, Merkle—Daméard construction, parallel algorithm, col-
lision resistance, preimage resistance, second preimage resistance, zero preimage resistance.

1 Introduction

Hash functions are extensively used in cryptographic protocols. One of the main uses of hash
functions is in digital signature protocols, where the message digest produced by the hash function
is signed. Due to the central importance of hash functions in cryptography, there has been a lot of
work in this area. See [7] for a survey.

For a hash function h : {0,1}" — {0,1}"™ to be used in cryptographic protocols, it must satisfy
certain well known necessary properties. In a recent paper [8], Stinson provides a comprehensive
discussion of these properties and also relations among them. The important properties that a
cryptographic hash function must satisfy are the following.

(a) Preimage Resistance : Finding a preimage of a given message digest must be computa-
tionally infeasible. In other words, given z € {0,1}" it should be computationally infeasible
to find z € {0,1}" such that h(z) = z.

(b) Second Preimage Resistance : Finding a second preimage of a digest given one preimage
of the same digest must be computationally infeasible. In other words, given z € {0,1}" and
z € {0,1}™ such that h(z) = z, it should be computationally infeasible to find y € {0,1}"
such that = # y and h(y) = z.

(c) Collision Resistance : Finding a collision must be computationally infeasible. In other
words, it should be computationally infeasible to find z,y € {0,1}" such that z # y but
h(z) = h(y).

It is clear that if it is possible to find second preimage, then it is possible to find collisions.
Hence it is usually sufficient to study collision resistance. However, as pointed out in [8], there is
no satisfactory reduction from collision resistance to preimage resistance or vice versa. Hence the
goal of a practical hash function should be to achieve both preimage and collision resistance.

It is possible to construct hash functions where one can prove that finding collisions is equivalent
to solving certain known hard problems (see for example [2]). However, from a practical point of
view such hash functions are unacceptably slow. Hence practical hash functions are constructed

from simple arithmetic/logical operations so that they are very fast. The trade-off is that for such
hash functions it is not possible to relate the difficulty of finding collisions to known hard problems.

Research in design of hash functions have evolved certain principles for designing “secure” and
practical hash functions. One of the important papers in this area is by Daméard [3]. An important
point made in [3] is that it is easier to design a “secure” hash function with a short fixed domain
than a hash function with a very large (or infinite) domain. However, for a hash function to be
useful it must be possible to hash arbitrary long messages. Hence one must look for techniques
that can extend the domain of a hash function while preserving the relevant security properties.

An important construction for securely extending the domain of a secure hash function has been
described by Merkle [4] and Damgard [3]. The construction is called the Merkle-Damgard (MD)
construction. The MD construction is a sequential construction and provides a basic guideline for
designing practical hash functions.

In this paper we develop an alternative design principle for securely extending the domain of a
secure hash function. Our design principle is based on a binary tree of processors and allows for
parallelism in the computation of the hash function. We show that given a secure hash function
h:{0,1}" — {0,1}™ with n > 2m and a binary tree of 2! processors, it is possible to construct
a secure hash function h* which can hash messages on lengths less than 2"~ and a secure hash
function A% which can hash arbitrary length messages. Since we require n > 2m and practical
hash functions have m > 128, the function h* is adequate for any conceivable application and the
construction of A% is of theoretical interest only. The number of parallel rounds to compute the
digest of a message of length L is L%J +t+2.

Our design principle allows for incremental parallelism in the following sense. If a message
digest can be produced using a binary tree of 2! processors, then the same message digest can be
produced using a binary tree of 2t processors for 0 < ¢’ < t with a proportional loss in speed of
computation. In the extreme case of ' = 0 this means that using a single processor it is possible to
produce a digest which has been produced using a binary tree of 2¢ processors for any ¢ > 0. We
stress that this is an extremely important point for practical application of our design principle. In
a multi-user setting where different users have different resource capabilities, it is important that
a digest produced by one user can be produced by any other user irrespective of the amount of
resources available to him.

Related Work : The concept of tree hashing has appeared before in the literature. Damgard [3]
showed that for a message of length n, it is possible to compute the digest in O(logn) steps using
O(n) processors. Note that the number of processors is proportional to the length of the message.
Hence the result yields an impractical algorithm. Tree hashing has also been considered in relation
to universal one-way hash functions [6, 1]. However, these papers also assume a model where the
number of processors grows with the length of the message.

Our model improves upon the previous work on tree hashing in the following two ways.

1. In our model the number of processors is fixed while the length of the message can be very
long.

2. A digest which can be produced by a binary tree with a certain number of processors can
also be produced by a binary tree with lesser number of processors and in the extreme case
by a single processor.

2 Basics

2.1 Hash Functions

Our description of hash functions closely parallels that of Stinson [8]. An (n,m) hash function h
is a function A : {0,1}" — {0,1}™. Throughout this paper we require that n > 2m. Consider the
following problem as defined in [8].

Problem : Collision Col(n,m)
Instance : An (n,m) hash function h.
Find ¢ z,2' € {0,1}" such that z # 2’ and h(z) = h(z').

By an (€,p) (randomized) algorithm for Collision we mean an algorithm which invokes the hash
function h at most p times and solves Collision with probability of success at least e.

The hash function h has a finite domain. We would like to extend it to an infinite domain.
Our first step in doing this is the following. Given A and a positive integer L > 1, we construct a
hash function Ay : {0,1}* — {0,1}™. The next step, in general, is to construct a hash function
h*® : Ur>1{0,1} — {0,1}™. However, instead of doing this, we first construct a hash function
h*: UN_{0,1}F — {0,1}™, where N = 2"~™ — 1. Since we assume n > 2m, we have n — m > m.
Practical message digests are at least 128 bits long meaning that m = 128. Hence our construction
of h* can handle any message with length less than 2'?8. This is sufficient for any conceivable
application. The construction of A° presents certain technical difficulties. We overcome these
difficulties and describe the construction of A% in Section 7.

We would like to relate the difficulty of finding collisions for Az, h* and A*> to that of finding a
collision for A. Thus we consider the following problems.

Problem : Fixed length collision FLC(n,m, L)
Instance : An (n,m) hash function 4 and an integer L > n.
Find : z,7' €{0,1}F such that z # 2’ and hy(x) = hr(z').

Problem : Variable length collision V.LC(n, m, L)
Instance : An (n,m) hash function h and an integer L with n < L < 2"7™,
Find : x,2' € UL, {0,1}" such that z # 2’ and h*(z) = h*(z').

Problem : Arbitrary length collision ALC(n,m, L)
Instance : An (n,m) hash function h and an integer L > n.
Find : z,7' € UL, {0,1} such that = # z' and h>®(x) = h*>®° ().

By an (e,p, L) (randomized) algorithm A4 for Fixed length collision we will mean an algorithm that
requires at most p invocations of the function h and solves Fixed length collision with probability of
success at least e. The algorithm A will be given an oracle for the function h and p is the number
of times A queries the oracle for h in attempting to find a collision for Az. Similar definitions are
true for Variable length collision and Arbitrary length collision.

Later we show Turing reductions from Collision to Fixed length collision, Variable length collision
and Arbitrary Length Collision. Informally this means that given oracle access to an algorithm for
solving FLC(n,m, L) for h; or VLC(n,m,L) for h* or ALC(n,m,L) for h® it is possible to
construct an algorithm to solve Col(n,m) for h. These will show that our constructions preserve
the intractibility of finding collisions.

2.2 Processor Tree

Our construction is a parallel algorithm requiring more than one processors. The number of proces-

sors is 2'. Let the processors be Py, ..., Py 4. Fori=0,...,2"1 — 1, processor P; is connected to
processors Ps; and Py, by arcs pointing towards it. The processors Pyi-1,..., Pyt_1 are the leaf
processors and the processors Py, ..., Py:—1_1 are the internal processors. We call the resulting tree

the processor tree of depth ¢. For 1 < i < ¢, there are 2/~ processors at level i. Further, processor
P, is considered to be at level 0.

Each of the processors gets an input which is a binary string. The action of the processor is to
apply the hash function h on the input if the length of the input is n; otherwise, it simply returns
the input -

oy =) h(y) iyl =
Pi(y) = { y otherwise. (1)

For 0 <4 < 2! — 1, we have two sets of buffers u; and z;. We will identify these buffers with the
binary strings they contain. The buffers are used by the processors in the following way. There is
a formatting processor Pr which reads the message z, breaks it into proper length substrings, and
writes to the buffers u;. For 0 < i < 2!~! — 1, the input buffers of P; are z9;, 20,1 and u; and the
input to P; is formed by concatenating the contents of these buffers. For 2/~ < 4 < 2! — 1, the
input buffer of P; is u;. The output buffer of P; is z; for 0 < i < 2t — 1.

Our parallel algorithm goes through several parallel rounds. The contents of the buffers u; and
z; are updated in each round. To avoid read/write conflicts we will assume the following sequence
of operations in each parallel round.

1. The formatting processor Pr writes into the buffers u;, for 0 <14 < 2! — 1.
2. Each processor P; reads its respective input buffers.

3. Each processor P; performs the computation in (1).

4. Each processor P; writes into its output buffer z;.

Steps (2) to (4) are performed by the processors Py, ..., Py:_; in parallel after Step (1) is completed
by processor Pr.

2.3 Parameters and Notation

Here we introduce some notation and define certain parameters which are going to be used through-
out the paper. In the construction of h;, we will not always use the processor tree upto depth 7.
We will denote by ¢ the depth of the processor tree used. When the processor tree is used upto
depth ¢, the number of processors used is 2. Next we describe several parameters with respect to
t - the useful depth of the processor tree.

Start-up length: 2n.

Flushing length: (20"1 4202 ... 4 21 4+ 20Y(n — 2m) = (2! — 1)(n — 2m).

Start-up + flushing length: §(¢) = 2'n + (2! — 1)(n — 2m) = 2!(2n — 2m) — (n — 2m).
Steady-state length: A\(t) = 2/ 1n +2!"1(n — 2m) = 21"1(2n — 2m).

Message: a binary string z of length L > n.

Parameters q¢, by and ry:

Definition 1 1. If L > §(t), then g and 7 are defined by the following equation: L — 6(t) =

q\(t) + ¢, where 1y is the unique integer from the set {1,...,A(t)}. Define by = [575—1].

2. If L =46(t), then g =by =1, = 0.

Note that 0 < b; < 271, We will denote the empty string by <> and the length of a binary string
y by lyl.

3 Parallel Hashing Algorithm

We first describe a parallel hashing algorithm which is the basic building block used for the con-
struction of hash functions. The main algorithm uses other algorithms as subroutines which are
described later. Before presenting the actual algorithm we present the basic idea behind the algo-
rithm.

Let = be a message of length L and 7T be the binary tree of processors of depth ¢ as described
in Section 2.2. There are also two sets of 2! buffers z,..., 29— and ug,...,us_1. Each of the
buffers z; can store m-bit strings. For 0 <4 < 20! — 1, the buffer u; stores either an (n — 2m)-bit
string or the empty string and for 2/~ < < 2! — 1, the buffer u; stores either an n-bit string or
the empty string. Each buffer z; stores the output of processor F;. The buffers u; are obtained as
prefixes from the message z.

The algorithm consists of some parallel rounds where in each parallel round all the 2! processors
operate in parallel. Further, in each of the parallel rounds the message z is shortened by removing
a prefic from it. This prefix is divided into substrings and copied to the buffers u;.

Intially all the buffers z; are empty. Thus the first step of the algorithm is to initialise the
z;’s which is done in the following manner. Each processor P; is given an n-bit string u; as input.
Processor P; hashes u; to produce the digest z;. This step is called Start-Up.

The algorithm then enters the Steady-State. In the Steady-State, processors Py,..., Pyt-1_1
gets an (n — 2m)-bit input u;. Also P; reads the buffers zo; and z9;11. Processor P; then forms an
input of length n by concatenating z9;, 20;4+1 and wu;. This n-bit string is hashed to obtain the new
value of the buffer z;. The processors Pyt-1,..., Py_; each get an n-bit input which is hashed to
obtain the new values of the buffers z9t-1,...,29t_;. The Steady-State lasts for a certain number
of rounds which we determine later. It is clear that after a certain stage it will not be possible to
provide inputs to all the processors.

After the Steady-State ends we have a single round called the End-Game. This round starts
the mopping up operation. In this round only some of the leaf level processors get n-bit strings as
input while all other processors get the empty string as input. In this round each of the internal
processors still get an (n — 2m)-bit input.

After the End-Game, there are (¢ — 1) rounds which flush the processor tree. The flushing
proceeds in a bottom-up fashion. In the ith stage of the flushing operation all processors at level
> s — 1+ 1 get empty strings as inputs. Some of the processors at level s — i get an (n — 2m)-bit
string as input. The rest of the processors at level s —i get the empty string as input. All processors
at levels < s —i — 1 get an (n — 2m)-bit string as input. This stage is called the Flusing stage.

At the end of the Flushing stage, zg and z; are m-bit strings while all other buffers are empty
strings. Further, the remaining part of z is an (n — 2m)-bit string. Processor Py applies the hash
function to the n-bit string zp||21||z to obtain the final message digest.

We now present the formal description of the algorithm.

Parallel Hashing Algorithm (PHA (z,t))
Inputs:
(1) message z of length L > §().
(2) t (< T) is the depth upto which the processor tree must be used.
Output: message digest hr(z) of length m.
Define: ¢ = ¢q;, r = r, and b = b,.

1. if L > 6(t), then
2. T = m|‘0b(2nf2m)fr

(ensures that the length of the message becomes §(t) + g\(¢) + b(2n — 2m).)
3. endif.
4. TInitialise buffers z; and u; to empty strings, 0 <7 < 2! — 1.
5. Do FormatStartUp.
6
7
8

Do ParallelProcess.
for 1=1,2,...,q9do
. Do FormatSteadyState.
9. Do ParallelProcess.
10. endfor
11. Do FormatEndGame.
12. Do ParallelProcess.
13. for s=t—1,t—2,...2,1do

14. Do FormatFlushing(s).
15. Do ParallelProcess.
16. endfor

17. zZo — Po(ZgHlex)
18. return zg.
19. end algorithm PHA

We now describe the different subroutines used by PHA. We assume that the message x is
globally manipulated by the different formatting algorithms and the input ¢t of PHA is available to
all the subroutines. Further, we assume that the parameter b is available to the subroutines FEG
and FF.

ParallelProcess (PP)
Action: Read buffers u; and z;, and update buffers z;, 0 <i < 2¢ — 1.

1. for i=0,...,2! — 1 do in parallel

2. 2 = Pi(22:] 20541 |u;) if 0<i <2071 —1.
3. 2 := Pi(u;) if 2071 < g <2t — 1.
4. endfor

5. end algorithm PP

3.1 Formatting Algorithms

There are four formatting subroutines which are invoked by PHA. Each of the formatting sub-
routines modifies the message z by removing prefixes which are written to the buffers wu; for
0 < i < 2" —1. The message x is available as either an array or a file. We assume that the
message is read sequentially bit by bit. The formatting algorithms copy a prefix of the message

into a buffer and suitably advance the file (or array) pointer. All the formatting subroutines are
executed on the formatting processor Pp.

FormatStartUp (FSU)
Action: For 0 < i < 2! — 1, write a prefix of message z to buffer u; and update the message .

endfor
end algorithm FSU

1. for i=0,...,20—1do

2. Write x = v||y, where |v| = n.
3. u; 1= v.

4. T =y.

5.

6.

FormatSteadyState (FSS)
Action: For 0 < i < 2! — 1, write a prefix of message z to buffer u; and update the message .

1. for i=0,...,21 —1do

2. Write = vl|y, where |v| = n — 2m.
3. Uu; 1= v.

4. T =y.

5. endfor

6. for i=2"1...,2"—1do

7. Write z = v||y, where |v| = n.
8. u; = .

9. T i=1.

10. endfor

11. end algorithm FSS

FormatEndGame (FEG)
Action: For 0 < i < 2! — 1, write a prefix of message z to buffer u; and update the message .

1. for i=0,1,2,...,271 —1 do

2. Write x = v||y where |[v| =n — 2m.
3. u; = .

4. T i=y.

5. endfor

6. for i=21 2141, 27 4+ p—1do
7. Write z = v||y where |v| = n.

8. Uu; ‘= .

9. T i=1y.

10. endfor

11. for i=2"14b2"1 4+ p4+1,...,2t =1 do
12. U =<>.

13. endfor

14. end algorithm (FEG)

FormatFlushing(s) (FF(s))
Input: Integer s.
Action: For 0 <4 < 2! — 1, write a prefix of message = to buffer u; and update the message .

1 k=21

for i=0,1,2,...,2" '+ k —1do
Write = v||y where |[v| =n — 2m.
uj 1= .
T i=y.

endfor

for =24 k257 k41,20 - 1,
Write u; :=<>.

endfor

end algorithm FF

© 00N O W

Remark : 1. The assignments z := y is an assignment of the relevant file or array pointer and
can be done in constant time.

2. If n = 2m, then u; =<> for 0 < i < 2! — 1. This significantly simplifies the formatting
algorithms. Thus if one is allowed to choose the parameters n and m, then it is best to choose n
to be equal to 2m.

3.2 Simulating Trees

One potential problem in the use of PHA to generate a message digest is the fact that the verifier
might not have access to a binary tree of processors or he might have access to a binary tree of
a lesser height. In such a situation, it will not be possible to verify the message digest. We show
how this problem can be solved by allowing a smaller tree of processors to simulate a larger tree of
processors. A more detailed discussion of this issue is given in Section 4.3.

Let t,t be two non-negative integers with ¢ > ¢'. Let T (resp. 7') be a tree of depth ¢ (resp. t')
consisting of 2 (resp. 2') processors Py, ..., Por_y (vesp. P}, ... ,PQ’t,il) connected in the manner
described in Section 2.2. Let y = PHA(#, z) be produced by the processor tree 7. We describe an
algorithm SimPar(¢,#', z) which also produces y using the processor tree 7.

SimPar(t,t',)
Input:

(1) message z of length L > ().

(2) t is the depth of the original processor tree.

(3) t' is the depth of the available processor tree.

Output: message digest hz(z) = PHA(¢, z) of length m.
The algorithm is identical to PHA (¢, z) with the following changes.

1. Change Lines 6,9 and 12 to “Do SPP(¢,t')”.

2. Change Line 15 to “Do SPP(s,t')”.

end algorithm SimPar

The subroutine SPP() perform the task of simulating the processor tree 7 using the tree 7.
For the first ¢ + 2 rounds the entire tree 7 needs to be simulated. However, for the next ¢ — 1
rounds we need to simulate 7 only upto depth s. We define the subroutine SPP() to do these two
tasks.

Algorithm SPP(s,t')

1. fori=0to2'"!doin parallel

2. use processor P/ to execute the task of processor P;.
3. endfor

4. if s <t then stop.

5. forjy=0tos—t' —1do

6. for jo = 0 to 271 — 1 do

7. i1 = 2V 4 g (21

8. for i = 0 to 2! — 1 do in parallel

9. use processor P/ to execute the task of processor P, ;.
10. endfor

11. endfor

12. endfor

13. end Algorithm SSP1.

Proposition 2 The number of parallel rounds required by SPP(s,t') is equal to one if s < t' and
is equal to 2570 if s > t'.

Proof. If s < #, then the result is obvious. If s > ¢, then the number of rounds required is
T+ (142422 4. 42570 1) =95t =
Remark : If there is only one processor (i.e., 7' consists only of Pj), then the number of rounds
required by SPP(s,0) is 2°.

4 Parallel Hash Function Definitions

The base hash function is 4 : {0,1}" — {0,1}™, with n > 2m. If z is a binary string with |z| < n,
then we apply the hash function A to the string z| |O”*“"3‘ to get the message digest. Thus effectively
h is a map from U ,{0,1}* to {0,1}". The description of hj, and h* is described below.

4.1 Definition of Ay

Let L > 1 be a positive integer and assume that a binary tree of 27 processors is available. Then
hy, is defined as follows.

PHA(T,z) if |z| > §(T);
b B PHA(t,z) if 0<t<T and d(t) <|z| < d(t+1); 5
=@ =\ PHA(0,2) if §(0) < |z < 5(1))
h(z) if 1<|z| <n=240).

When ¢t < T we are not utilizing all the available processors. We now show that not utilizing
all the processors leads to at most one extra round when ¢ = T — 1. We first note the following
result. Recall the definition of ¢; from Definition 1.

Lemma 3 If6(t) < L <§(t+1), then0 < g < 1.
Proof. We use the following two facts, which are easy to verify.

1. 6(t+1) =25(t) +n — 2m.

10

2. 2X\(t) = 6(t) + n — 2m.

Since 0(t) < L < 0(t + 1), we have 0 < {Lﬂs(t)J < {MJ. Using the above two facts we get

(1) 1)
0< {L—ié(t)J < 9.
A(t)
From the definition of ¢; this shows that 0 < ¢; < 1. [|

The processor tree has T levels plus an additional level containing only Py. Thus if any processor
at the leaf level is used, then at least 7' + 1 rounds will be required to obtain a message digest.
On the other hand using the processor tree upto level ¢ requires ¢t + ¢; + 2 rounds (see Theorem 5
below). Thus not utilizing all the processors require extra parallel rounds only if t + ¢, +2 > T + 1.
By choice of t and Lemma 3, we have ¢; = 1. Thus extra parallel round is required when ¢t > T — 2.
Since t < T — 1, we get that t =T — 1. Further, in this case only one extra round will be required.

4.2 Definition of h*

Given h : U"_,{0,1}* — {0,1}™ and a positive integer L > 1, Equation (2) defines the function
hr : {0,1}F — {0,1}™. We now extend this to h* : UN_ {0,1}F — {0,1}™, where N = 2"~™ — 1.
For 0 < < 2% —1, let bins(7) be the s-bit binary expansion of .. We treat bing(i) as a binary string
of length s. Then h*(z) is defined as follows.

B () = b ((binn—m(|2)|| (i) ()) - (3)

In other words, we first apply hr(z) (where || = L) on x to obtain an m-bit message digest w.
Let v = bing—m(|z|). Then v is a bit string of length n — m. We apply h to the string v||w to get
the final message digest.

Remark : 1. We do not actually require the length of the message to be < 2"~™. The construction
can easily be modified to suit strings having length < 2¢ for some constant c. Since we are assuming
n > 2m and m > 128 for practical hash functions, choosing ¢ = n — m is convenient and sufficient
for practical purposes.

2. In Section 7, we present the construction for arbitrary length strings.

4.3 Specifying Parallelism

We consider the following problem. Suppose a set of users agree to choose h*() as a hash function
standard. The message digest produced on a message clearly depends on the depth of the binary
tree used to generate the message digest. Suppose a user generates the digest using a binary tree
of depth ¢. Then any other user who needs to regenerate the digest has to have access to a binary
of depth ¢ or should be able to simulate the binary tree of depth ¢. It is quite possible that the user
has access to only one processor. In this case also the user should be able to generate the message
digest. This can be ensured in any one of the following two ways.

(1) The depth T of the processor tree is fixed and is part of the hash function specification. Then
any user who needs to generate y =PHA (T, z) and has access to a processor tree of depth ¢, with
t < T uses SimPar(T,t,x) to generate y. If ¢ > T, then the user can run PHA(T, z) by not using
processors at level greater than T

11

(2) The depth of the processor tree is not part of the hash function specification. In this case the
actual depth of the processor tree is output with the message digest, i.e. the output on input z
is (¢, PHA(t,z)). Any other user who wishes to regenerate the digest and has access to a tree of
depth ' runs SimPar(t,#',z) if t < t' or runs PHA(t,z) if t > t'.

Depending on the situation in hand any one of the above two strategies may be adopted. We
would like to highlight another aspect of Strategy 2. Suppose User 1 has only a single processor
and wishes to compute the digest on a message x. User 1 also knows that the digest will be
recomputed by User 2 who has access to a processor tree of 2! (¢ > 0) processors. User 1 then
invokes SimPar(¢,0,z) to compute y =PHA(¢,). Thus User 2 can directly use his processor tree
of 2! processors to invoke PHA(¢,z) and recompute y. In this manner the total time required to
compute both the digests is minimized.

Fundamentally our design principle follows the simple basic rule : Users with more resources
can speed up computation of the digest, without affecting the efficiency of users with lesser resources
to compute the same digest.

5 Correctness and Complexity of PHA

Here we consider the correctness and complexity of computing hy. In Section 6.1 we will provide
the security reduction of Col(n,m) to FLC(n,m,L). By correctness of hj, we mean that every bit
of the message is hashed and algorithm PHA outputs an m-bit message digest.

The following result shows that the maximum amount of padding added to a message depends
only on the parameters n and m. In particular, the maximum amount of padding is indepedent of
the number of processors and the length of the message.

Proposition 4 The mazimum amount of padding added to any message is less than 2n — 2m.

Proof. The only place where padding (if any) is done is at line 2 of algorithm PHA. The amount

of padding is b(2n — 2m) —r. Since b = {angm-‘ < gyt + 1, we have b(2n — 2m) —r < 2n — 2m.
|

Remark : Using a naive padding scheme will result in the padding length being proportional to
2t(2n — 2m). This will result in many zeros being appended to the message which is clearly an
undesirable feature. Further, it is not difficult to verify that the use of a naive padding scheme does
not reduce the number of parallel rounds required and neither does it make the parallel hashing
algorithm any simpler. Thus we discourage the use of a naive padding scheme.

Algorithm PHA executes the following sequence of parallel rounds.

1. Lines 5-6 of PHA execute one parallel round.

2. Lines 7-10 of PHA execute ¢ parallel rounds.

3. Lines 11-12 of PHA execute one parallel round.
4. Lines 13-16 of PHA execute ¢t — 1 parallel rounds.

5. We consider Line 17 of PHA to be a special parallel round.

From this we get the following result.

12

Theorem 5 Algorithm PHA(t,z) executes q + t + 2 parallel rounds. Consequently, Algorithm
SimPar(t,t',) executes (q + 3)2'~" +t parallel rounds.

Each of the first (¢4t+ 1) parallel rounds in PHA(¢,) consist of a formatting phase and a hashing
phase. In the formatting phase, the formatting processor Pr runs a formatting subroutine and in
the hashing phase the processors P; (0 < i < 2/ — 1) are operated in parallel. Denote by z;,j the
state of the buffer z; at the end of round j, 0 < i <2/ — 1,1 < j < g+ t+ 2. Clearly, the state
of the buffer z; at the start of round j (2 < j < q+1¢+2) is 2 j_1. Further, let u;; be the string
written to buffer u; in round j by the processor Pp. For 0 < i < 2=! — 1, the input to processor
P; in round j is 29 j—1|/22i41,j—1|uij. For 271 <i < 2! — 1, the input to processor P; in round j
is the string u; ;.

The following lemma and corollary are required to prove Proposition 8.

Lemma 6 For any nonnegative integer b, 3 ;> [HSTIJ =b.

Proof. We prove this result by mathematical induction on b. Clearly the result holds for b = 0.

Induction Hypothesis: For b a nonnegative integer, assume that), V’”;#J =b—1.

It can be shown that

V’FIJ +1 when n|m,

=1
" V’ZIJ otherwise.

In addition, 2¢|(b + 2~1) if and only if b = 2/~'¢ where c is an odd integer. Combining these facts
with the induction hypothesis, we get that

R R

13 (2
i>1 2 i>1 2

b+2i-1 -1
+7| s

Thus, by mathematical induction, we conclude that the result holds for all nonnegative integers b.
|

Corollary 7 For t a given positive integer and b an integer in the range 0 < b < 211, let ky =
—s—1

L%fsflj as defined in algorithm PHA. Then 22;11 ks =3 g51 ks =b— 1
Proposition 8 Let x be a message of length L = §(t)+qgA(t) +b(2n—2m), where q is a nonnegative
integer and b is an integer in the range 0 < b < 2=1. The formatting algorithms present every bit
of message to exactly one of the processors P;; furthermore, the substring x presented to processor
Py in step 17 of PHA is the empty string <> when |z| = §(t) and is an (n — 2m)-bit string when
|z| > 0(t). The formatting algorithms require

(a) |z| — (n —2m) + (t — 1)2" — 2b + 2 steps when |z| > §(t) or

(b) |z| 4+ (t — 1)2" + 1 steps when |z| = §(¢).

Proof.

Each formatting algorithm defines u; =<> or else defines u; to be a prefix of x; namely,
z = vlly
U; =0

13

r=y
In step 17, the substring z itself is presented to processor Py. Hence, every bit of message z is
presented to exactly one processor P;, as claimed. We now determine the length of the substring x
presented to processor Py in step 17.

Formatting algorithm FSU provides a prefix of length n to each processor F;. This accounts for
2'n bits of z. Algorithm FSS provides an (n — 2m)-bit prefix to processor P;, 0 < i < 2171, and
an n-bit prefix to processor P;, 20=1 <4 < 2!, This accounts for 2/=1(2n — 2m) = A(¢) bits of z.
Since FSS is invoked ¢ times, this accounts for g\(¢) bits of x. Formatting algorithm FEG provides
each internal processor P;, 0 < i < 2!=!, with an (n — 2m)-bit prefix of z, each leaf processor P;,
20=1 < <271 4 p — 1, with an n-bit prefix of z, and all the other leaf processors with an empty
string. This accounts for 2= (n — 2m) + bn bits of 2. For s = ¢t — 1, — 2,...,2,1, formatting
algorithm FF(s) presents each processor P, 0 < i < 257! + kg — 1, where k, = [%J,
with an (n — 2m)-bit prefix of z and all the other processors P; with u; =<>. This accounts to
(25~ + kg)(n — 2m) bits of 2. The total number of bits presented to the processors P;, 0 < i < 2¢,
is

1
2 + gA(t) 4+ bn + 217 1()+ Z (2571 + k) (n — 2m)
=

] 1

1 1
= 2n 4+ gA\(t) +bn + Z 25"t (n — 2m) + Z ks(n — 2m)
s=t s=t—1
1
= 2n4+g\t) +bn+ (28 = 1)(n —2m) + (b—1)(n — 2m) (since Z ks=b-1)
s=t—1
= 4(t) + g\(t) + b(2n — 2m) — (n — 2m).

Hence, the substring x presented to processor Py in step 17 of PHA is of length (n—2m) as claimed.

In the special case when z is of length L = §(¢), b = ¢ = 0. This in turn implies that ks = 0 for
s=t—1,t—2,...,2,1. Hence, the total number of bits presented to the processors P; is just d(¢),
and the substring = presented to processor P; in step 17 of PHA is the empty string.

Formatting algorithm FEG defines u; =<> for 201 +b < i < 2!, and, for 1 < s < ¢, FF(s)
defines u; =<> for 257! + k, < i < 2t. The number of assignments of the form u; =<> is

1

1 1
T—b+) (2 —k) =2 —b+(t—1)20 = Y 27— >k,

s=t—1 s=t—1 s=t—1
= 2 -2t -2 1) —20+1=(t-1)2" —2b+2.

In the special case when z has length L = 4(¢), there are (+ — 1)2¢ + 1 assignments of the form
Uy =<>.

Each step of the formatting algorithms consist of moving the leading bit of string z to some
buffer u;, or else assigning u; =<>. Therefore, the formatting algorithms require

(a) 0(t) + qA(t) +b(2n — 2m) — (n — 2m) + (t — 1)2" — 2b + 2 steps when L > §(t) or
(b) 6(t) + (t — 1)2" + 1 steps when L = §(¢).
This establishes the result. [

We require the following lemma in the proof of Theorem 10.

14

Lemma 9 For any integers b and t, b > 0 and t > 1, define kg = L%J for 1 < s <t and

Iy = LH;%J for 1 < s <t. Then

(a) ks <ls < ks +1,
(b) 2ks <lgy1 < 2lg, and
(c) ls=ks+1=2l,=141+1.

Proof.
Clearly,

b—1 1 b—1
ks:{F+§JS{2t—s J {2 —Jzkg‘i‘l.

For any nonnegative real number z, 2|z + 4| < |2z 4+ 1| < 2|z +1]. Setting z = (b —1)/2""*,
get
2ks < ls-l—l < 2ls-

Now let z = = I + f where I is an integer and 0 < f < 1. Then

2
ls=lz+1|=|IT+f+1]=T+1.
If Iy = ks + 1, then
I+1=ly=ki+1=|z+1/2]+1=T+f+1/2|+1=T+1+4[f+1/2].
Hence | f +1/2] = 0 which means 0 < f < 1/2. Then
o1 = (2041 = [2I +2f + 1| =21 +1 =2, — 1.

Observe that in round ¢+ 2, the formatting algorithm FEG defines u; 449 =<> iff 21 4p<i <
2'. Furthermore, in round j, ¢+2 < j < g+t+2, formatting algorithm FF(s) defines u; j; =<> iff
25~ 4k, <i < 2! where s = ¢+t +2—7. In Theorem 10, we show that for g +2 < j < ¢+1t+2, we
have z; j =<> iff 2°7 l4l—-s<i<2 wheres=q+t+2—jandl, = V%i b2 -1 1J The correctness
of algorithm PHA depends on showing that, for ¢ +2 < j < ¢ +t + 2, we have u; ; =<> iff either

21 < i <2t or 29i41,j—1 =<>. This means that

29i 51 whenever u; j =<>= 29;41, 1.
zij = h(zug-llzeip-illuig) whenever uy #<>% 29i41,5-1,
<> whenever 271 < < 21,

In round ¢ + 2, the formatting subroutine FEG is invoked. This subroutine defines the strings
Ugt=1 g19,y .., Ugt—14p_1 gyo t0 be non empty and ugi—144, ..., U1 g4o to be empty strings. As a
result in rounds ¢ +2+1 (1 <[< t—1) only some of the buffers u; ;1 94; are non empty. If u; ;494
is defined then processor P; will get an n-bit input and invoke the hash function on this input.
Thus in this case z; 4404 Will be an m-bit string. Further, it may happen that z9; ;141 is an m-bit
string but 29,41 ¢+14+1 is not an m-bit string. In this case, u; g124; must be empty and processor P;
gets the m-bit string zy; 44141 as input which it copies to output, i.e., 2; g404; = 29; g4141. Thus
there are two things to consider.

1. The maximum value of 4 such that u; 4494, is non empty.

15

2. The maximum value of ¢ such that z; ;9. is non empty.

Let s = t—[. Then the maximum value of 5 such that (1) happens is 2° ! + ks —1 and the maximum
value of i such that (2) happens is 2°~! + I, — 1. These two facts are crucial to the correctness of
PHA and are proved as part of Theorem 10 below.

Remark : We would like to point out the connection of the values ks and [s respectively to the
inorder successor and predecessor of the processor P;. In round g+ 2 +1 = ¢+ 2+t — s, processor
P; outputs an m-bit output if and only if the inorder predecessor (which is at the leaf level) of P;
received an n-bit input in round g+ 2. Further, in round ¢+2+1 = g+ 241t — s, processor P; invokes
the hash function (equivalently w; 442, is defined) if the inorder successor (again at the leaf level)
of P; received an m-bit input in round ¢ 4+ 2. These considerations also provide the expressions for
ks and [;.

Theorem 10 (Correctness of PHA) Given any message © with |z| > 6(t), algorithm PHA(z,t)
applies hash function h to every bit of x and produces an m-bit message digest.

Proof. Let y = z04+4+1|21,g+¢+1|%0,g4+¢+2. Then, the output of algorithm PHA is, by definition,

h(y) if |yl =n,

2 = .
0.q+t+2 { y otherwise.

Therefore, we must show that if |y| # n, then |y| = m.

In round 1, processor Pp writes n-bit strings to each of the buffers w;, ie., |u; 1| = n for
0 <4 <2—1. Hence |z1| = m for 0 < i < 2 — 1. Further, it is easy to verify that for

2<j<q+1, wehave |z =mfor 0<i<2"'—1and

n—2m if0<i<21—1;
|ui g =

n if2t-1 <j <2t —1.

For q+2 < j < q+t+1,let s = g+t+2—3. Thent > s > 1 corresponding to ¢g+2 < j < g+t+1.
Define 5 = {%J We now use mathematical induction to show that for these values of j and
s’

m for 0<i<25° 140, —1,
|2i3| =

0 for 257141, <i< 2t

Basis Case. For j = ¢+ 2, s =t and [, = b; furthermore, |2 41| = m for 0 < i < 2'. In round
q + 2, processor Pp executes FEG, and hence,

n—2m for 0<qi<271 -1,
Ujgto] =< n for 271 <i <27l 4 p—1,
0 for 271 +b< i< 2
Therefore,
m for 0<i<2-14bp—1,
Zigta| = { 0 for 214 b<i<2

Induction Hypothesis: Let j — 1 be any integer in the range ¢ +2 < 7 — 1 < ¢ + ¢, and let
s+1=q+t+2—(j—1). Assume that in round j — 1,

| = m for 0<i<25+151—1,
BT 00 for 25 41y << 2,

16

Now consider round j. Then s=¢+t+4+2 — j.
Case 1: 0<i <2571 4k, —1.
Then algorithm FF(s) defines u; ; to be a nonempty (n — 2m)-bit string. Furthermore,

2i+1<2°+2ky—1<2°+1,y1 —1 by Lemma 9.

By our Induction Hypothesis, |22; j—1| = |22i41,j—1] = m. Hence, |29; j—1|/22i41,j—1]|ui ;| = n. This
implies |z; j| = m.

Case 2: 257! 4k, <i <2571 41, — 1.

This case is vacuous whenever Iy = k;. When [, = ks + 1, then 2571 + k, =i =214+, — 1 and
|u; ;| = 0 from the definition of algorithm FF(s). Then

20=2°42l, —2=2°4+14y1 — 1 (since 2y =511 + 1 when Iy = ks + 1).

Therefore, |22; j—1| = m by our Induction Hypothesis. Since 2i + 1 = 2° 4 [,44, our Induction
Hypothesis implies |z9;41j-1| = 0. Therefore, |29 ;_1|22i41,j—1/|ui,;
nonempty m-bit string.

Case 3: 2571 4], <ij < 2t

Since 2°7! + kg < 2571 1y <4, |u; ;| = 0. In addition, 24 > 2% + 25 > 2% + I5;y. Therefore,
=0 and z; =<>.

= m and Zij = Z2i,j-1, &

|22i,j—1] = |22i41,j-1/ = 0. Hence, |22 j 1/|z2i11,5-1]|ui,;
Thus we have shown that

m for 0<i<25"' 41, —1,
23,5 =

0 for 257141, <i< 2t

By mathematical induction, this holds for all j in the range ¢+2 < j < g+t+1and s = g+t+2—7.

From the above argument, we see that, for 1 < j < g+t+ 1, |u;;| = n — 2m if and only if
|32i,j—1‘ = |32i+1,j—1‘ = m. In this case, Zi’j = h(zgi,j_l\|z2i+1,j_1|\ui,j). As well, it is immediate
that whenever a formatting algorithm defines |u; ;| = n, then 2; ; = h(u; ;). Thus the hash function
h processes each of the prefixes u; ;.

When message z has length L > §(¢), then b > 0. From the above result, we see that |zg g1¢y1| =
|21,g+4+1] = m. From Proposition 8, we know that the substring z presented to processor Py in
step 17 of PHA is of length n — 2m. Therefore, 2y 4112 = h(20,g41+11/21,g+1+1]/%), an m-bit string,
as required.

When message z has length L = §(¢), then b = 0. From the above result, we see that |29 g4¢41]| =
m and |21 g4+¢+1| = 0. From Proposition 8, we know that the substring = presented to processor Py
in step 17 of PHA is of length 0. Therefore, 29 44142 = 20,g+¢+1, an m-bit string, as required. []

We now turn to computing the number of invocations of » made by PHA(xz,t). Let ¢(L) be
the number of invocations of h made by PHA(xz,t) on a message of length L. The parameters ¢
and b; depend on the length L of the message. We write ¢;(L) and b;(L) to denote the dependence
of the parameters ¢; and by on length L. We now have the following result.

Proposition 11 ¢(L) = (q;(L) + 2)2! + 2b;(L) — 1.

Proof. We first note that ¢ = ¢ = q;(L) and b = by = by(L). In each of the first ¢;(L) + 1 rounds
h is invoked 2¢ times. In round g;(L) + 2, the number of invocations of h is 2/~ + b;(L). In rounds
qi(L) + 3 to q;(L) +t + 1, the total number of invocations of h is 3./} (25! + k). Lastly, in round
qi(L) +t + 2, there is one invocation of h. Using Corollary 7, we have 22;11 ks = b—1. Adding the
above number of invocations we get the final result. [

17

We now compare the number of invocations of h by PHA to that made by the MD algorithm.
The maximum amount of padding required by PHA is 2(n — m) — 1 and that required by the MD
algorithm is n —m — 1. We compare the number of invocations of h on message lengths which do
not require padding by PHA. Tt turns out that these message lengths also do not require padding
by the MD algorithm.

Let the length of the message be L = §(t) + q:(L)A(t) + b (L)(2n — 2m). Then PHA makes
(L) = (q:(L) + 2)2! + 2b;(L) — 1 invocations of h.

Here we use the description of the MD algorithm given in [5]. For the MD algorithm the first
invocation uses n bits and each of the subsequent invocations uses n — m bits. Hence the total
number of invocations of h is

L-n 14 2t(2n — 2m) + 2! 1(2n — 2m) +b(2n — 2m) — (n — 2m) —n (D).

n—m n—m

1+
Thus we get the following result.

Theorem 12 The number (L) of invocations of h made by PHA(z,t) on a message x of length
L=06(t) +q(L)\(t) + b(L)(2n — 2m) is equal to the number of invocations of h made by the MD
algorithm on a message of the same length L.

The time taken by the MD algorithm is proportional to the number of invocations of h whereas
the time required by PHA is proportional to the number of parallel rounds which is ¢;(L) + ¢ + 2.
Further, both PHA and the MD algorithm must format the message. Hence if we ignore the time
required to format the message, then PHA is faster by a factor of

$(L)
q+t+2

For moderately large ¢, the increase in speed is almost linear in the number of processors.

6 Security Reductions for h; and h*

In this section we show that finding collisions for h; and h* is difficult provided finding collisions
for A is difficult.

6.1 Collision Resistance of hy,

In this section we provide a Turing reduction of Col(n,m) to FLC(n,m,L). This will show that
if it is computationally difficult to find collisions for h, then it is also computationally difficult to
find collisions for Aj,.

Theorem 13 Let h be an (n,m) hash function and for L > n let hy, be the function defined by
algorithm PHA. If there is an (e, p, L) algorithm A to solve FLC(n,m, L) for the hash function hr,
then there is an (e,p + 2¢(L)) algorithm B to solve Col(n,m) for the hash function h.

Proof. The algorithm B does the following. It first runs A to obtain 2 strings z and z’ such that

x # ', |z| = |2'| = L, and with probability at least €, hr,(z) = hr(2'). Then B runs PHA on both
z and z' and stores all the intermediate states of the buffers z; and u;. Let 2j; and z;j be the states

18

of buffer z; at the end of round j corresponding to the messages x and z' respectively. Similarly,
let u;; and u;j be the strings written to buffer u; in round j corresponding to the messages z and
z' respectively.

We now proceed by reverse induction on j to show that if z # =’ and hy(z) = hr(z), then we
can find a collision for hash function A by applying algorithm PHA to z and z’. To allow us to start
the proof with round ¢ + ¢+ 1, we must extend our definition of w;; and u;j toround j = q+ 1+ 2.
Define ug g4¢12 and ug .4, to be the substrings = and z', respectively, provided to processor Py
in Step 17 of algorithm PHA. Define ;g 2 =<>=u} , ;o for 0 <i < 2"

Induction Basis Step : j =q¢+t+ 2.
We show that, either there is a collision for A in round g + ¢ + 2, or else

li i : t
Zig+t+1l = Zigpip1 and Ujgpeyo = Ujgppo for 0<i <20

Case 1: b = 0. In this case, ug g4i42 =<>= uf)’q_l_t_l_g by Proposition 7. Hence, u; 4142 = u;’q+t+2

for all 4, 0 < 4 < 2'. By Theorem 9, 2 gy¢11 =<>= 2,4, for all i, 0 < i < 2'. Furthermore,

20,g41+41 = 20,g4t+2 = hr(z) = hp(2') = z6’q+t+2 = z{)’q+t+1. This completes the proof of Case 1.

Case 2: b > 0. In this case, ug 1119 = T A<># ' = ul by Proposition 7. By Theorem
» U0,q+t+ 0,g+t+2 PY p y

9, Zigyir1 =<>= zé,q+t+1 for all i, 1 < 4 < 2" and 20, g4t41, 21.g+t41s zé,q+t+1’ z’l’qHJrl are all

nonempty m-bit strings. Hence,

h(20,g+t+1]121,+t+1/|U0,g+1+2)
Z0g+t42 = hi () = hp(2) = 20 4112

h(z(l),qutJrl | ‘zll,q+t+1 | ‘U’U,q+t+2)'

. p p p ..
Now, if (20,g+t+1/[21g+e411[t0,04142) # (20910411121, g414111U0,44412), then we have a collision for

. . I ’ ’ .
hash function h; otherwise, 20 g+t+1 = 20 g11415 Z1,g+t41 = 21 g+141 and Yo gi142 = Ug giq49- This
completes the proof of Case 2, and also the proof of the Induction Basis Step.

Induction Hypothesis: For ¢ +%+ 1> j > 2, assume

) .) : t
Zij = Zi5 and Ujj4+1 = Uy 541 for 0 <7< 2%

In the proof of Theorem 9 we show that, for 0 < i < 271,

L= 4 h(zigaallzeicnlluig) whenever i1 i1 #<>7# uiyj,
4 22,51 whenever 22i+1,j—1 =<>= Ujj,

and, for 2071 < i < 2¢,
~_J h(uij) whenever w;; #<>,
Y <> whenever u; ;j =<> .

The corresponding statements hold for the zg:j’s and the ug’j’s. Because messages z and 7z’ are of
the same length L, 2; j =<> if and only if z; ; =<> and u;; =<> if and only if u; ; =<>. We

now consider each of these 4 cases individually.
For 0 < i < 2t=" and 29i41,j—1 #<>7 u; j, we have that

h(zij-1llzaiv-1lluig) = zij
z ; (by the Induction Hypothesis)
h(z’Qi,j—1|‘ZIQi—«—l,j—lHu;,j)-

19

If (22i-1/|22i41,5-1llwij) # (23 j_1/|25i41,j-1lui ;); then we have a collision for hash function h;
otherwise,

' ! y
2251 = 22515 22i+1,5—1 = Z9i41,5-1, and wij; = u; ;.

For 0 < i < 271 and 2941 1 =<>= u, ;, we have that
+1, 5]

Z2iaj71 = ZZ’]
=z, (by the Induction Hypothesis)
= z’Qi,j—l'

For 271 <j < 2! and w; ; #<>, we have that

h(uig) =z
= 2z ; (by the Induction Hypothesis)

If w; j # u;’j, then we have a collision for hash function h; otherwise, u; j = u}
For 2171 < i < 2t and u;,; =<>, we have that u; ; =<>= u;’j.
Combining these 4 cases, we get that, either there is a collision for hash function A in round j,

or else

J°

L. Y R !/ . t
Zij—1=2; ;-1 and w;j=wu,;,; for 0 <4 <2

By mathematical induction, it follows that, either there is a collision for hash function h in
someround j =q+t+2,g+t+1,...,3,2, or else

zijo1 =2 -1 and w;;=u;; for 0<i<?2 and 2<j<qg+t+2.

1,J
In round 1, u; is a nonempty n-bit string for 0 < i < 2°. If there is no collision for h in rounds
g+t+2,9+t+1,...,3,2, then

If u; 1 # wj; for some i, then there is a collision for hash function % in round 1; otherwise, u; 1 = u; ;
for 0 <i < 2%,

Thus we obtain that if there is no collision in any invocation of A by PHA on messages z and
', then u; ; = uj ; for 0 <4 < 2t and 1 < j < g+t + 2. The padded messages z and z’ are equal
to the concatenations of the w; ;’s and the u;’j’s, respectively, for 0 <i <2l and 1 < j<q+t+2.
Hence, if there is no collision in any invocation of h by PHA on the messages = and z’, then z = z’.
But algorithm A ensures that with probability at least €, we have messages z and z’ such that
|z| = |z'| = L, x # 2', and hr,(z) = hy(z'). Hence, with probability at least €, we obtain a collision
for h.

The number of invocations of h by algorithm B is equal to the number of invocations of h by
A plus the number of invocations of h by PHA on z and z’. Thus the total number of invocations
of h by algorithm B is p + 2¢(L). []

6.2 Collision Resistance of h*

The security of h* is easily derived from the security of h;,. The details are given below.

20

Theorem 14 Let h be an (n,m) hash function and h* be the function defined by Equation 3. If
there is an (e,p, L) algorithm A to solve VLC(n,m, L) for the hash function h*, then there is an
(e,p+ 24 2¢(L)) algorithm B to solve Col(n,m) for the hash function h.

Proof. The algorithm B does the following. It first runs A to obtain two messages = and z'. Then
with probability at least €, we have h*(z) = h*(z') and z # z’. Algorithm B then runs h* on both
x and 2’ to obtain h*(z) = y and h*(z') = ¢ storing all the intermediate values that are generated.
Let w = hjy(z), w' = hiy|(2'), v = bing_pm(|z|) and v' = bin, pn(|]2'[). There are two cases.

Case 1 : |z| # |z'|. In this case v # v' and hence v||w # v'||w’. However, h(v||w) =y =y =
h(v'||w") with probability at least e. Thus in this case we can find a collision for A with probability
at least e.

Case 2 : |z| = |2/| = L. In this case v = v'. If w # w', then we have a collision for h. If
w = w' then we have a collision for hy,. We can now argue as in the proof of Theorem 13 that with
probability at least e we obtain a collision for h.

'

The computation of h* requires 1 4 (L) invocations of the hash function h. This shows that
the number of invocations of A made by B is at most p + 2 + 2¢(L). [|

7 Construction of A*®

In this section we describe the construction and the security reduction for the function A* :
Ur>n{0,1}* — {0,1}™. Define &;(t) = §(t) — 1 and X\ (t) = A(t) — 1. As in Definition 1, for
L > 61(t), we define the parameters ¢,r and b as follows.

Definition 15 1. If L > §1(t), then q and r are defined by the following equation: L — §1(t) =
gA1(t) + 7, where r is the unique integer from the set {1,...,A1(t)}. Define b= [5-"5=1.

2n—2m

2. If L =61(t), theng=b=1r=0.

Algorithm PHA computes the function hz,. We first define a modification of PHA. More specif-
ically, we define the modifications required in the formatting subroutines. We will call the resulting
algorithm the modified PHA algorithm.

Modification to FSU: Replace Step 1 of FSU by the following sequence of operations:

Write = v||y where |v]| =n — 1.

uy =0l|[0, z = y.

fori=1,2,...,2' —1do
Modification to FSS: Replace Step 1 of FSS by the following sequence of operations:

Write x = v||ly where |[v| =n —2m — 1.

ug =vl|l, z =y.

fori=1,2,...,2' —1do

Informally, during start up we are providing Py with an input whose last bit is 0 and during
steady state we are providing Py with an input whose last bit is 1.

Let the function computed by modified PHA be gz, : {0,1}* — {0,1}™. We now describe the
construction of the function ~A*>.

The parameter b is at most 2°~! and can be represented in binary by a t-bit string. Note that
the length of the binary representation of b depends only on ¢ and is independent of the message

21

length L. We denote the ¢-bit binary representation of b by bin(b). Let u(t) = [log(d1(t) + 1)]. Let
tbin(L) be a binary string of length u(t), such that thin(L) is the p(¢)-bit binary representation of
L if L < §;(t), else thin(L) is the p(t)-bit binary representation of d; (¢).

The output of the function A is defined by the following algorithm.
Algorithm ArbLength
input : message z of length L.
output : m-bit message digest h*>° ().

1. If L < §1(¢), then find the unique ¢; such that d;(¢1) < L < 61(¢; + 1). Then perform Step 2
with ¢ replaced by t;.

2. If L > 01(t), then apply modified PHA to z to obtain an m-bit message digest w = gr,(z).
3. Let wy = hyypi(w]|bin(b)).

4. Let wg = hp,y) (wr|thin(L)).

5. output ws.

Remark : It is reasonable to assume that both ¢,tbin(L) < n — m. Then we could let bin(b)
and tbin(L) be (n — m)-bit strings. In this situtation, Steps 3 and 4 above can be replaced by
wy = h(w||bin(b)) and wy = h(wy||[thin(L)) respectively.

We now turn to the security reduction for A°°. First we note the fact that the security of gy, is
preserved in a manner similar to that of Aj,.

Theorem 16 Let h be an (n,m) hash function and for L > n let g1, be the function defined by the
modified algorithm PHA. If there is an (e,p, L) algorithm A to solve FLC(n,m,L) for the hash
function gr,, then there is an (e,p + 211(L)) algorithm B to solve Col(n,m) for the hash function
h, where 1 (L) is the number of invocations of h made by gr,.

Theorem 17 Let h be an (n,m) hash function and for L > n let h™ be the function defined
by algorithm ArbLength. If there is an (e,p, L) algorithm A to solve ALC(n,m,L) for the hash
function h™°, then there is an (e,p + 21po(L)) algorithm B to solve Col(n,m) for the hash function
h, where (L) = 1(L) + ¢t +m) + ¢ (u(t) + m) is the number of invocations of h made by h°°.

Proof. Algorithm B runs algorithm A to obtain two strings z and z’ such that with probability
at least € we have h*°(z) = h*®°(2') and z # 2. Let L = |z| and L' = |z'|. Further, we will denote
the parameters for the message by unprimed symbols and the parameters for the message z’ by
primed symbols. First assume that L = L. Then thin(L) = thbin(L') and bin(b) = bin(b'). We can
now use Theorem 13 to obtain a collision for A with probability at least e. Thus for the rest of the
proof we will assume L # L'. There are two cases to consider.

Case 1 : At least one of L or L' is less that d;(¢). In this case thin(L) # tbin(L'). We have
Py (w1[tbin(L)) = wo
= wl2
= g ey (w1 |[tbin(L")).
We can argue as in Theorem 13 that either we obtain a collision for h or w; |[thin(L) = w]||tbin(L')

which in turn implies tbin(L) = tbin(L'). Since we know tbin(L) # thin(L'), it follows that we
must obtain a collision for A.

22

Case 2 : Both L, L' > 6;(¢). In this case we have thin(L) = tbin(L'). If wy # w}, then the inputs
to hy(4)4m in Step 4 of ArbLength are different for z and z'. This will again provide a collision for
h. So suppose wy; = w}. There are two subcases to consider.

Subcase 2a : b # b': In this case bin(b) # bin(b'). We have
Bt (w]|thin(L)) = wy = W) = e (w'|[thin(L")).

Again the inputs to h,, s are different and hence we have a collision for h,,.;. As before, this will
necessarily provide a collision for h.

Subcase 2b : b =10": In this case bin(b) = bin(b'). If w # w', then this will provide a collision for
h. So assume that w = w'.

So we are in the situation where g7 (z) = w = w' = gp/(2'), b = b and L # L'. We have
the (padded) message lengths in the following forms: L = d1(¢) + gA1(¢) + b(2n — 2m) and L' =
01 (t) + ¢ Ai(t) + ' (2n — 2m). Since b = b and L # L' we have ¢ # ¢'. Assume without loss of
generality ¢ < q.

The last ¢t + 1 rounds of both PHA and modified PHA are the same. Suppose that none of the
invocations of h in the last ¢ 4+ 1 rounds of modified PHA provides a collision for h. Now using
the fact that b = b’ we can use a backward induction on the round number (as in the proof of
Theorem 13) to obtain z; 441 = zl{’q,ﬂ for all 0 < i < 2! — 1. Continuing the backward induction
we obtain 2; ;441 = zg’l for all 0 < 4 < 2! — 1. We now look at the output of processor Py. Let
p=q—q. We have

zop+1 = Po(20pll21,pllu0p+1),
26,1 = PO(U6,1)-

The string ug 1 is obtained from FSS and the string ug ; is obtained from FSU. By the modifica-
tions made to these algorithms to get modified PHA, we know that wug 41 = v[|1 and ug, = o'||0
for some strings v and v’ of lengths n —1 and n —2m — 1 respectively. Hence 2q||21p|t0p+1 7 g ;-
But zpp+1 = 26’1 and so we obtain

Po(20,p

21 pl[t0.p11) = h(20,p/|21p|u0p+1) = 20p11 = 201 = B(ugy) = Polug).

This is a collision for h. []

We next consider the amount of padding required by algorithm ArbLength. This is determined
by the padding introduced by algorithm modified PHA.

Theorem 18 Algorithm modified PHA pads any message by at least ¢+ 1 bits where q is as defined
in Defintion 15.

Proof. The modification to FSU introduces one bit of padding and the modification to FSS
introduces one bit of padding per round. Since FSS is executed ¢ times a total of ¢ bits of padding
is introduced by FSS. [|

From Definition 15 we have
{L—w) L—al(t)J
A1(?) () 1

Since t, n, m are constants for a particular implementation of modified PHA, the amount of padding
is linear in the length of the message. We note that the Merkle-Damgard construction also uses an

J§q+1§1+{

23

amount of padding which is linear in the length of the message (see [9]). Moreover, the constant of
proportionality is lesser for our construction. However, it is undesirable to have a padding scheme
which grows with the length of the message. The amount of padding required in the construction
of h* is at most 2(n —m) — 1 and hence is independent of the message length. Further, the function
h* can take as input any message of practical length. Thus algorithm ArbLength and the function
h® are mainly of theoretical interest.

8 Preimage Resistance

We have formally considered only one property of hash functions - namely intractibility of finding
collisions. There are other necessary properties that a hash function must satisfy. These are
Preimage and Second Preimage (see [8]). We are required to show that our constructions preserve
the intractibility of these problems. In fact, these properties are indeed preserved and the proofs
are easy. We informally describe the reduction for Preimage.

Informally the preimage problem for a hash function h is the following. The adversary is given
a message digest y and has to obtain a message = such that hA(z) = y. Suppose that there is a
(probabilistic) algorithm A to solve the preimage problem for any of our extensions Ay, h* or h*.
For the sake of concreteness we only consider hr, the others being similar. We argue that A can
be used to obtain an algorithm B which will solve the preimage for h with the same probability of
success. Given y, algorithm B will first run A to obtain a preimage x for hy. Then B runs PHA
and outputs w = 20 g11+41/|21,g4t41][Ugre12 if b > 0 or w = 20 g44||21,9+¢]|ugtt41 if b= 0. Tt is now
easy to see that w is a preimage for h (with the probability of success being at least that of A).

9 Concluding Remarks

We have considered the processors to be organised as a binary tree. In fact, the same technique
carries over to k-ary trees, with the condition that n > km. More speed up can be achieved by
moving from binary to k-ary processor trees. However, the formatting processor will progressively
become more complicated and will offset the advantage in speed up. Hence we have not explored
this option further.

To summarize our contribution, in this paper, we have presented an incrementally parallelizable
design principle for cryptographic hash functions. We believe that our design principle will provide
the basic structure for designing future practical hash functions. In a future communication, we
will describe parallel modifications of MD5, RIPEMD-160 and SHA-2 hash functions. Our plan is
to keep the “core” operations of these hash functions intact but build the iterative part based on
the design principle developed in this paper.

Acknowledgement : We wish to thank Professor Bart Preneel for helpful comments on an
earlier draft of the paper.

References

[1] M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHF's practical.
Proceedings of CRYPTO 1997, pp 470-484.

24

2]

D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeniable signatures,
unconditionally secure for the signer. Lecture Notes in Computer Science, 576 (1992), 470-484,
(Advances in Cryptology - CRYPTO’91).

I. B. Daméard. A design principle for hash functions. Lecture Notes in Computer Science, 435
(1990), 416-427 (Advances in Cryptology - CRYPTO’89).

R. C. Merkle. One way hash functions and DES. Lecture Notes in Computer Science, 435
(1990), 428-226 (Advances in Cryptology - CRYPTO’89).

I. Mironov. Hash functions: from Merkle—Daméard to Shoup. Lecture Notes in Computer
Science, 2045 (2001), 166-181 (Advances in Cryptology - EUROCRYPT’01).

M. Naor and M. Yung. Universal one-way hash functions and their cryptographic aplications.
Proceedings of the 21st Annual Symposium on Theory of Computing, ACM, 1989, pp. 33-43.

B. Preneel. The state of cryptographic hash functions. Lecture Notes in Computer Science,
1561 (1999), 158-182 (Lectures on Data Security: Modern Cryptology in Theory and Practice).

D. R. Stinson. Some observations on the theory of cryptographic hash functions. IACR preprint
server, http://eprint.iacr.org/2001/020/.

D. R. Stinson. Cryptography: Theory and Practice, CRC Press, 1995.

M. N. Wegman and J. L. Carter. New Hash Functions and Their Use in Authentication and
Set Equality. Journal of Computer and System Sciences, 22(3): 265-279 (1981)

25

