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8 Preimage Resistane 249 Conluding Remarks 24AbstratWe desribe a parallel design priniple for hash funtions. Given a seure hash funtionh : f0; 1gn ! f0; 1gm with n � 2m, and a binary tree of 2t proessors we show how to onstruta seure hash funtion h� whih an hash messages of lengths less than 2n�m and a seurehash funtion h1 whih an hash messages of arbitrary length. The number of parallel roundsrequired to hash a message of length L is b L2t + t+ 2. Further, our algorithm is inrementallyparallelizable in the following sense : given a digest produed using a binary tree of 2t proessors,we show that the same digest an also be produed using a binary tree of 2t0 (0 � t0 � t)proessors.Keywords : ryptographi hash funtion, Merkle-DamÆgard onstrution, parallel algorithm, ol-lision resistane, preimage resistane, seond preimage resistane, zero preimage resistane.1 IntrodutionHash funtions are extensively used in ryptographi protools. One of the main uses of hashfuntions is in digital signature protools, where the message digest produed by the hash funtionis signed. Due to the entral importane of hash funtions in ryptography, there has been a lot ofwork in this area. See [7℄ for a survey.For a hash funtion h : f0; 1gn ! f0; 1gm to be used in ryptographi protools, it must satisfyertain well known neessary properties. In a reent paper [8℄, Stinson provides a omprehensivedisussion of these properties and also relations among them. The important properties that aryptographi hash funtion must satisfy are the following.(a) Preimage Resistane : Finding a preimage of a given message digest must be omputa-tionally infeasible. In other words, given z 2 f0; 1gm it should be omputationally infeasibleto �nd x 2 f0; 1gn suh that h(x) = z.(b) Seond Preimage Resistane : Finding a seond preimage of a digest given one preimageof the same digest must be omputationally infeasible. In other words, given x 2 f0; 1gn andz 2 f0; 1gm suh that h(x) = z, it should be omputationally infeasible to �nd y 2 f0; 1gnsuh that x 6= y and h(y) = z.() Collision Resistane : Finding a ollision must be omputationally infeasible. In otherwords, it should be omputationally infeasible to �nd x; y 2 f0; 1gn suh that x 6= y buth(x) = h(y).It is lear that if it is possible to �nd seond preimage, then it is possible to �nd ollisions.Hene it is usually suÆient to study ollision resistane. However, as pointed out in [8℄, there isno satisfatory redution from ollision resistane to preimage resistane or vie versa. Hene thegoal of a pratial hash funtion should be to ahieve both preimage and ollision resistane.It is possible to onstrut hash funtions where one an prove that �nding ollisions is equivalentto solving ertain known hard problems (see for example [2℄). However, from a pratial point ofview suh hash funtions are unaeptably slow. Hene pratial hash funtions are onstruted2



from simple arithmeti/logial operations so that they are very fast. The trade-o� is that for suhhash funtions it is not possible to relate the diÆulty of �nding ollisions to known hard problems.Researh in design of hash funtions have evolved ertain priniples for designing \seure" andpratial hash funtions. One of the important papers in this area is by DamÆgard [3℄. An importantpoint made in [3℄ is that it is easier to design a \seure" hash funtion with a short �xed domainthan a hash funtion with a very large (or in�nite) domain. However, for a hash funtion to beuseful it must be possible to hash arbitrary long messages. Hene one must look for tehniquesthat an extend the domain of a hash funtion while preserving the relevant seurity properties.An important onstrution for seurely extending the domain of a seure hash funtion has beendesribed by Merkle [4℄ and DamÆgard [3℄. The onstrution is alled the Merkle-DamÆgard (MD)onstrution. The MD onstrution is a sequential onstrution and provides a basi guideline fordesigning pratial hash funtions.In this paper we develop an alternative design priniple for seurely extending the domain of aseure hash funtion. Our design priniple is based on a binary tree of proessors and allows forparallelism in the omputation of the hash funtion. We show that given a seure hash funtionh : f0; 1gn ! f0; 1gm with n � 2m and a binary tree of 2t proessors, it is possible to onstruta seure hash funtion h� whih an hash messages on lengths less than 2n�m and a seure hashfuntion h1 whih an hash arbitrary length messages. Sine we require n � 2m and pratialhash funtions have m � 128, the funtion h� is adequate for any oneivable appliation and theonstrution of h1 is of theoretial interest only. The number of parallel rounds to ompute thedigest of a message of length L is b L2t + t+ 2.Our design priniple allows for inremental parallelism in the following sense. If a messagedigest an be produed using a binary tree of 2t proessors, then the same message digest an beprodued using a binary tree of 2t0 proessors for 0 � t0 � t with a proportional loss in speed ofomputation. In the extreme ase of t0 = 0 this means that using a single proessor it is possible toprodue a digest whih has been produed using a binary tree of 2t proessors for any t � 0. Westress that this is an extremely important point for pratial appliation of our design priniple. Ina multi-user setting where di�erent users have di�erent resoure apabilities, it is important thata digest produed by one user an be produed by any other user irrespetive of the amount ofresoures available to him.Related Work : The onept of tree hashing has appeared before in the literature. Damgard [3℄showed that for a message of length n, it is possible to ompute the digest in O(logn) steps usingO(n) proessors. Note that the number of proessors is proportional to the length of the message.Hene the result yields an impratial algorithm. Tree hashing has also been onsidered in relationto universal one-way hash funtions [6, 1℄. However, these papers also assume a model where thenumber of proessors grows with the length of the message.Our model improves upon the previous work on tree hashing in the following two ways.1. In our model the number of proessors is �xed while the length of the message an be verylong.2. A digest whih an be produed by a binary tree with a ertain number of proessors analso be produed by a binary tree with lesser number of proessors and in the extreme aseby a single proessor.
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2 Basis2.1 Hash FuntionsOur desription of hash funtions losely parallels that of Stinson [8℄. An (n;m) hash funtion his a funtion h : f0; 1gn ! f0; 1gm. Throughout this paper we require that n � 2m. Consider thefollowing problem as de�ned in [8℄.Problem : Collision Col(n;m)Instane : An (n;m) hash funtion h.Find : x; x0 2 f0; 1gn suh that x 6= x0 and h(x) = h(x0).By an (�; p) (randomized) algorithm for Collision we mean an algorithm whih invokes the hashfuntion h at most p times and solves Collision with probability of suess at least �.The hash funtion h has a �nite domain. We would like to extend it to an in�nite domain.Our �rst step in doing this is the following. Given h and a positive integer L � 1, we onstrut ahash funtion hL : f0; 1gL ! f0; 1gm. The next step, in general, is to onstrut a hash funtionh1 : [L�1f0; 1gL ! f0; 1gm. However, instead of doing this, we �rst onstrut a hash funtionh� : [NL=1f0; 1gL ! f0; 1gm, where N = 2n�m � 1. Sine we assume n � 2m, we have n�m � m.Pratial message digests are at least 128 bits long meaning that m = 128. Hene our onstrutionof h� an handle any message with length less than 2128. This is suÆient for any oneivableappliation. The onstrution of h1 presents ertain tehnial diÆulties. We overome thesediÆulties and desribe the onstrution of h1 in Setion 7.We would like to relate the diÆulty of �nding ollisions for hL; h� and h1 to that of �nding aollision for h. Thus we onsider the following problems.Problem : Fixed length ollision FLC(n;m;L)Instane : An (n;m) hash funtion h and an integer L � n.Find : x; x0 2 f0; 1gL suh that x 6= x0 and hL(x) = hL(x0).Problem : Variable length ollision V LC(n;m;L)Instane : An (n;m) hash funtion h and an integer L with n � L � 2n�m.Find : x; x0 2 [Li=nf0; 1gi suh that x 6= x0 and h�(x) = h�(x0).Problem : Arbitrary length ollision ALC(n;m;L)Instane : An (n;m) hash funtion h and an integer L � n.Find : x; x0 2 [Li=nf0; 1gi suh that x 6= x0 and h1(x) = h1(x0).By an (�; p; L) (randomized) algorithm A for Fixed length ollision we will mean an algorithm thatrequires at most p invoations of the funtion h and solves Fixed length ollision with probability ofsuess at least �. The algorithm A will be given an orale for the funtion h and p is the numberof times A queries the orale for h in attempting to �nd a ollision for hL. Similar de�nitions aretrue for Variable length ollision and Arbitrary length ollision.Later we show Turing redutions from Collision to Fixed length ollision, Variable length ollisionand Arbitrary Length Collision. Informally this means that given orale aess to an algorithm forsolving FLC(n;m;L) for hL or V LC(n;m;L) for h� or ALC(n;m;L) for h1 it is possible toonstrut an algorithm to solve Col(n;m) for h. These will show that our onstrutions preservethe intratibility of �nding ollisions. 4



2.2 Proessor TreeOur onstrution is a parallel algorithm requiring more than one proessors. The number of proes-sors is 2t. Let the proessors be P0; : : : ; P2t�1. For i = 0; : : : ; 2t�1� 1, proessor Pi is onneted toproessors P2i and P2i+1 by ars pointing towards it. The proessors P2t�1 ; : : : ; P2t�1 are the leafproessors and the proessors P0; : : : ; P2t�1�1 are the internal proessors. We all the resulting treethe proessor tree of depth t. For 1 � i � t, there are 2i�1 proessors at level i. Further, proessorP0 is onsidered to be at level 0.Eah of the proessors gets an input whih is a binary string. The ation of the proessor is toapply the hash funtion h on the input if the length of the input is n; otherwise, it simply returnsthe input - Pi(y) = ( h(y) if jyj = n;y otherwise. (1)For 0 � i � 2t� 1, we have two sets of bu�ers ui and zi. We will identify these bu�ers with thebinary strings they ontain. The bu�ers are used by the proessors in the following way. There isa formatting proessor PF whih reads the message x, breaks it into proper length substrings, andwrites to the bu�ers ui. For 0 � i � 2t�1 � 1, the input bu�ers of Pi are z2i; z2i+1 and ui and theinput to Pi is formed by onatenating the ontents of these bu�ers. For 2t�1 � i � 2t � 1, theinput bu�er of Pi is ui. The output bu�er of Pi is zi for 0 � i � 2t � 1.Our parallel algorithm goes through several parallel rounds. The ontents of the bu�ers ui andzi are updated in eah round. To avoid read/write onits we will assume the following sequeneof operations in eah parallel round.1. The formatting proessor PF writes into the bu�ers ui, for 0 � i � 2t � 1.2. Eah proessor Pi reads its respetive input bu�ers.3. Eah proessor Pi performs the omputation in (1).4. Eah proessor Pi writes into its output bu�er zi.Steps (2) to (4) are performed by the proessors P0; : : : ; P2t�1 in parallel after Step (1) is ompletedby proessor PF .2.3 Parameters and NotationHere we introdue some notation and de�ne ertain parameters whih are going to be used through-out the paper. In the onstrution of hL we will not always use the proessor tree upto depth T .We will denote by t the depth of the proessor tree used. When the proessor tree is used uptodepth t, the number of proessors used is 2t. Next we desribe several parameters with respet tot - the useful depth of the proessor tree.Start-up length: 2tn.Flushing length: (2t�1 + 2t�2 + � � � + 21 + 20)(n� 2m) = (2t � 1)(n� 2m).Start-up + ushing length: Æ(t) = 2tn+ (2t � 1)(n� 2m) = 2t(2n� 2m)� (n� 2m).Steady-state length: �(t) = 2t�1n+ 2t�1(n� 2m) = 2t�1(2n� 2m).Message: a binary string x of length L � n.Parameters qt, bt and rt: 5



De�nition 1 1. If L > Æ(t), then qt and rt are de�ned by the following equation: L � Æ(t) =qt�(t) + rt, where rt is the unique integer from the set f1; : : : ; �(t)g. De�ne bt = d r2n�2me.2. If L = Æ(t), then qt = bt = rt = 0.Note that 0 � bt � 2t�1. We will denote the empty string by <> and the length of a binary stringy by jyj.3 Parallel Hashing AlgorithmWe �rst desribe a parallel hashing algorithm whih is the basi building blok used for the on-strution of hash funtions. The main algorithm uses other algorithms as subroutines whih aredesribed later. Before presenting the atual algorithm we present the basi idea behind the algo-rithm.Let x be a message of length L and T be the binary tree of proessors of depth t as desribedin Setion 2.2. There are also two sets of 2t bu�ers z0; : : : ; z2t�1 and u0; : : : ; u2t�1. Eah of thebu�ers zi an store m-bit strings. For 0 � i � 2t�1 � 1, the bu�er ui stores either an (n� 2m)-bitstring or the empty string and for 2t�1 � i � 2t � 1, the bu�er ui stores either an n-bit string orthe empty string. Eah bu�er zi stores the output of proessor Pi. The bu�ers ui are obtained aspre�xes from the message x.The algorithm onsists of some parallel rounds where in eah parallel round all the 2t proessorsoperate in parallel. Further, in eah of the parallel rounds the message x is shortened by removinga pre� from it. This pre�x is divided into substrings and opied to the bu�ers ui.Intially all the bu�ers zi are empty. Thus the �rst step of the algorithm is to initialise thezi's whih is done in the following manner. Eah proessor Pi is given an n-bit string ui as input.Proessor Pi hashes ui to produe the digest zi. This step is alled Start-Up.The algorithm then enters the Steady-State. In the Steady-State, proessors P0; : : : ; P2t�1�1gets an (n� 2m)-bit input ui. Also Pi reads the bu�ers z2i and z2i+1. Proessor Pi then forms aninput of length n by onatenating z2i; z2i+1 and ui. This n-bit string is hashed to obtain the newvalue of the bu�er zi. The proessors P2t�1 ; : : : ; P2t�1 eah get an n-bit input whih is hashed toobtain the new values of the bu�ers z2t�1 ; : : : ; z2t�1. The Steady-State lasts for a ertain numberof rounds whih we determine later. It is lear that after a ertain stage it will not be possible toprovide inputs to all the proessors.After the Steady-State ends we have a single round alled the End-Game. This round startsthe mopping up operation. In this round only some of the leaf level proessors get n-bit strings asinput while all other proessors get the empty string as input. In this round eah of the internalproessors still get an (n� 2m)-bit input.After the End-Game, there are (t � 1) rounds whih ush the proessor tree. The ushingproeeds in a bottom-up fashion. In the ith stage of the ushing operation all proessors at level� s� i + 1 get empty strings as inputs. Some of the proessors at level s� i get an (n� 2m)-bitstring as input. The rest of the proessors at level s�i get the empty string as input. All proessorsat levels � s� i� 1 get an (n� 2m)-bit string as input. This stage is alled the Flusing stage.At the end of the Flushing stage, z0 and z1 are m-bit strings while all other bu�ers are emptystrings. Further, the remaining part of x is an (n� 2m)-bit string. Proessor P0 applies the hashfuntion to the n-bit string z0jjz1jjx to obtain the �nal message digest.We now present the formal desription of the algorithm.6



Parallel Hashing Algorithm (PHA(x,t))Inputs:(1) message x of length L � Æ(t).(2) t (� T ) is the depth upto whih the proessor tree must be used.Output: message digest hL(x) of length m.De�ne: q = qt, r = rt and b = bt.1. if L > Æ(t), then2. x := xjj0b(2n�2m)�r(ensures that the length of the message beomes Æ(t) + q�(t) + b(2n� 2m).)3. endif.4. Initialise bu�ers zi and ui to empty strings, 0 � i � 2t � 1.5. Do FormatStartUp.6. Do ParallelProess.7. for i = 1; 2; : : : ; q do8. Do FormatSteadyState.9. Do ParallelProess.10. endfor11. Do FormatEndGame.12. Do ParallelProess.13. for s = t� 1; t� 2; : : : 2; 1 do14. Do FormatFlushing(s).15. Do ParallelProess.16. endfor17. z0 = P0(z0jjz1jjx).18. return z0.19. end algorithm PHAWe now desribe the di�erent subroutines used by PHA. We assume that the message x isglobally manipulated by the di�erent formatting algorithms and the input t of PHA is available toall the subroutines. Further, we assume that the parameter b is available to the subroutines FEGand FF.ParallelProess (PP)Ation: Read bu�ers ui and zi, and update bu�ers zi, 0 � i � 2t � 1.1. for i = 0; : : : ; 2t � 1 do in parallel2. zi := Pi(z2ijjz2i+1jjui) if 0 � i � 2t�1 � 1.3. zi := Pi(ui) if 2t�1 � i � 2t � 1.4. endfor5. end algorithm PP3.1 Formatting AlgorithmsThere are four formatting subroutines whih are invoked by PHA. Eah of the formatting sub-routines modi�es the message x by removing pre�xes whih are written to the bu�ers ui for0 � i � 2t � 1. The message x is available as either an array or a �le. We assume that themessage is read sequentially bit by bit. The formatting algorithms opy a pre�x of the message7



into a bu�er and suitably advane the �le (or array) pointer. All the formatting subroutines areexeuted on the formatting proessor PF .FormatStartUp (FSU)Ation: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.1. for i = 0; : : : ; 2t � 1 do2. Write x = vjjy, where jvj = n.3. ui := v.4. x := y.5. endfor6. end algorithm FSUFormatSteadyState (FSS)Ation: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.1. for i = 0; : : : ; 2t�1 � 1 do2. Write x = vjjy, where jvj = n� 2m.3. ui := v.4. x := y.5. endfor6. for i = 2t�1; : : : ; 2t � 1 do7. Write x = vjjy, where jvj = n.8. ui := v.9. x := y.10. endfor11. end algorithm FSSFormatEndGame (FEG)Ation: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.1. for i = 0; 1; 2; : : : ; 2t�1 � 1 do2. Write x = vjjy where jvj = n� 2m.3. ui := v.4. x := y.5. endfor6. for i = 2t�1; 2t�1 + 1; : : : ; 2t�1 + b� 1 do7. Write x = vjjy where jvj = n.8. ui := v.9. x := y.10. endfor11. for i = 2t�1 + b; 2t�1 + b+ 1; : : : ; 2t � 1 do12. ui :=<>.13. endfor14. end algorithm (FEG)FormatFlushing(s) (FF(s))Input: Integer s.Ation: For 0 � i � 2t � 1, write a pre�x of message x to bu�er ui and update the message x.8



1. k = b b+2t�s�1�12t�s :2. for i = 0; 1; 2; : : : ; 2s�1 + k � 1 do3. Write x = vjjy where jvj = n� 2m.4. ui := v.4. x := y.5. endfor6. for i = 2s�1 + k; 2s�1 + k + 1; : : : ; 2t � 1,7. Write ui :=<>.8. endfor9. end algorithm FFRemark : 1. The assignments x := y is an assignment of the relevant �le or array pointer andan be done in onstant time.2. If n = 2m, then ui =<> for 0 � i � 2t�1 � 1. This signi�antly simpli�es the formattingalgorithms. Thus if one is allowed to hoose the parameters n and m, then it is best to hoose nto be equal to 2m.3.2 Simulating TreesOne potential problem in the use of PHA to generate a message digest is the fat that the veri�ermight not have aess to a binary tree of proessors or he might have aess to a binary tree ofa lesser height. In suh a situation, it will not be possible to verify the message digest. We showhow this problem an be solved by allowing a smaller tree of proessors to simulate a larger tree ofproessors. A more detailed disussion of this issue is given in Setion 4.3.Let t; t0 be two non-negative integers with t > t0. Let T (resp. T 0) be a tree of depth t (resp. t0)onsisting of 2t (resp. 2t0) proessors P0; : : : ; P2t�1 (resp. P 00; : : : ; P 02t0�1) onneted in the mannerdesribed in Setion 2.2. Let y = PHA(t; x) be produed by the proessor tree T . We desribe analgorithm SimPar(t; t0; x) whih also produes y using the proessor tree T 0.SimPar(t; t0; x)Input:(1) message x of length L � Æ(t).(2) t is the depth of the original proessor tree.(3) t0 is the depth of the available proessor tree.Output: message digest hL(x) = PHA(t; x) of length m.The algorithm is idential to PHA(t; x) with the following hanges.1. Change Lines 6,9 and 12 to \Do SPP(t; t0)".2. Change Line 15 to \Do SPP(s; t0)".end algorithm SimParThe subroutine SPP() perform the task of simulating the proessor tree T using the tree T 0.For the �rst q + 2 rounds the entire tree T needs to be simulated. However, for the next t � 1rounds we need to simulate T only upto depth s. We de�ne the subroutine SPP() to do these twotasks.Algorithm SPP(s; t0) 9



1. for i = 0 to 2t0�1 do in parallel2. use proessor P 0i to exeute the task of proessor Pi.3. endfor4. if s � t0 then stop.5. for j1 = 0 to s� t0 � 1 do6. for j2 = 0 to 2j1 � 1 do7. i1 = 2t0+j1 + j2(2t0)8. for i = 0 to 2t0 � 1 do in parallel9. use proessor P 0i to exeute the task of proessor Pi1+i.10. endfor11. endfor12. endfor13. end Algorithm SSP1.Proposition 2 The number of parallel rounds required by SPP(s; t0) is equal to one if s � t0 andis equal to 2s�t0 if s > t0.Proof. If s � t0, then the result is obvious. If s > t0, then the number of rounds required is1 + (1 + 2 + 22 + : : : + 2s�t0�1) = 2s�t0 .Remark : If there is only one proessor (i.e., T 0 onsists only of P 00), then the number of roundsrequired by SPP(s; 0) is 2s.4 Parallel Hash Funtion De�nitionsThe base hash funtion is h : f0; 1gn ! f0; 1gm, with n � 2m. If x is a binary string with jxj < n,then we apply the hash funtion h to the string xjj0n�jxj to get the message digest. Thus e�etivelyh is a map from [ni=1f0; 1gi to f0; 1gm. The desription of hL and h� is desribed below.4.1 De�nition of hLLet L � 1 be a positive integer and assume that a binary tree of 2T proessors is available. ThenhL is de�ned as follows.hjxj(x) = 8>>><>>>: PHA(T; x) if jxj � Æ(T );PHA(t; x) if 0 < t < T and Æ(t) � jxj < Æ(t+ 1);PHA(0; x) if Æ(0) < jxj < Æ(1)h(x) if 1 � jxj � n = Æ(0): (2)When t < T we are not utilizing all the available proessors. We now show that not utilizingall the proessors leads to at most one extra round when t = T � 1. We �rst note the followingresult. Reall the de�nition of qt from De�nition 1.Lemma 3 If Æ(t) � L < Æ(t+ 1), then 0 � qt � 1.Proof. We use the following two fats, whih are easy to verify.1. Æ(t+ 1) = 2Æ(t) + n� 2m. 10



2. 2�(t) = Æ(t) + n� 2m.Sine Æ(t) � L < Æ(t + 1), we have 0 � jL�Æ(t)�(t) k < jÆ(t+1)�Æ(t)�(t) k. Using the above two fats we get0 � �L� Æ(t)�(t) � < 2:From the de�nition of qt this shows that 0 � qt � 1.The proessor tree has T levels plus an additional level ontaining only P0. Thus if any proessorat the leaf level is used, then at least T + 1 rounds will be required to obtain a message digest.On the other hand using the proessor tree upto level t requires t+ qt + 2 rounds (see Theorem 5below). Thus not utilizing all the proessors require extra parallel rounds only if t+ qt+2 > T +1.By hoie of t and Lemma 3, we have qt = 1. Thus extra parallel round is required when t > T � 2.Sine t � T � 1, we get that t = T � 1. Further, in this ase only one extra round will be required.4.2 De�nition of h�Given h : [ni=1f0; 1gi ! f0; 1gm and a positive integer L � 1, Equation (2) de�nes the funtionhL : f0; 1gL ! f0; 1gm. We now extend this to h� : [NL=1f0; 1gL ! f0; 1gm, where N = 2n�m � 1.For 0 � i � 2s�1, let bins(i) be the s-bit binary expansion of i. We treat bins(i) as a binary stringof length s. Then h�(x) is de�ned as follows.h�(x) = h �(binn�m(jxj))jj(hjxj(x))� : (3)In other words, we �rst apply hL(x) (where jxj = L) on x to obtain an m-bit message digest w.Let v = binn�m(jxj). Then v is a bit string of length n�m. We apply h to the string vjjw to getthe �nal message digest.Remark : 1. We do not atually require the length of the message to be< 2n�m. The onstrutionan easily be modi�ed to suit strings having length < 2 for some onstant . Sine we are assumingn � 2m and m � 128 for pratial hash funtions, hoosing  = n�m is onvenient and suÆientfor pratial purposes.2. In Setion 7, we present the onstrution for arbitrary length strings.4.3 Speifying ParallelismWe onsider the following problem. Suppose a set of users agree to hoose h�() as a hash funtionstandard. The message digest produed on a message learly depends on the depth of the binarytree used to generate the message digest. Suppose a user generates the digest using a binary treeof depth t. Then any other user who needs to regenerate the digest has to have aess to a binaryof depth t or should be able to simulate the binary tree of depth t. It is quite possible that the userhas aess to only one proessor. In this ase also the user should be able to generate the messagedigest. This an be ensured in any one of the following two ways.(1) The depth T of the proessor tree is �xed and is part of the hash funtion spei�ation. Thenany user who needs to generate y =PHA(T; x) and has aess to a proessor tree of depth t, witht < T uses SimPar(T; t; x) to generate y. If t � T , then the user an run PHA(T; x) by not usingproessors at level greater than T . 11



(2) The depth of the proessor tree is not part of the hash funtion spei�ation. In this ase theatual depth of the proessor tree is output with the message digest, i.e. the output on input xis (t;PHA(t; x)). Any other user who wishes to regenerate the digest and has aess to a tree ofdepth t0 runs SimPar(t; t0; x) if t < t0 or runs PHA(t; x) if t � t0.Depending on the situation in hand any one of the above two strategies may be adopted. Wewould like to highlight another aspet of Strategy 2. Suppose User 1 has only a single proessorand wishes to ompute the digest on a message x. User 1 also knows that the digest will bereomputed by User 2 who has aess to a proessor tree of 2t (t > 0) proessors. User 1 theninvokes SimPar(t; 0; x) to ompute y =PHA(t; x). Thus User 2 an diretly use his proessor treeof 2t proessors to invoke PHA(t; x) and reompute y. In this manner the total time required toompute both the digests is minimized.Fundamentally our design priniple follows the simple basi rule : Users with more resouresan speed up omputation of the digest, without a�eting the eÆieny of users with lesser resouresto ompute the same digest.5 Corretness and Complexity of PHAHere we onsider the orretness and omplexity of omputing hL. In Setion 6.1 we will providethe seurity redution of Col(n;m) to FLC(n;m;L). By orretness of hL we mean that every bitof the message is hashed and algorithm PHA outputs an m-bit message digest.The following result shows that the maximum amount of padding added to a message dependsonly on the parameters n and m. In partiular, the maximum amount of padding is indepedent ofthe number of proessors and the length of the message.Proposition 4 The maximum amount of padding added to any message is less than 2n� 2m.Proof. The only plae where padding (if any) is done is at line 2 of algorithm PHA. The amountof padding is b(2n� 2m)� r. Sine b = l r2n�2mm < r2n�2m +1, we have b(2n� 2m)� r < 2n� 2m.Remark : Using a naive padding sheme will result in the padding length being proportional to2t(2n � 2m). This will result in many zeros being appended to the message whih is learly anundesirable feature. Further, it is not diÆult to verify that the use of a naive padding sheme doesnot redue the number of parallel rounds required and neither does it make the parallel hashingalgorithm any simpler. Thus we disourage the use of a naive padding sheme.Algorithm PHA exeutes the following sequene of parallel rounds.1. Lines 5-6 of PHA exeute one parallel round.2. Lines 7-10 of PHA exeute q parallel rounds.3. Lines 11-12 of PHA exeute one parallel round.4. Lines 13-16 of PHA exeute t� 1 parallel rounds.5. We onsider Line 17 of PHA to be a speial parallel round.From this we get the following result. 12



Theorem 5 Algorithm PHA(t; x) exeutes q + t + 2 parallel rounds. Consequently, AlgorithmSimPar(t; t0; x) exeutes (q + 3)2t�t0 + t parallel rounds.Eah of the �rst (q+ t+1) parallel rounds in PHA(t; x) onsist of a formatting phase and a hashingphase. In the formatting phase, the formatting proessor PF runs a formatting subroutine and inthe hashing phase the proessors Pi (0 � i � 2t � 1) are operated in parallel. Denote by zi;j thestate of the bu�er zi at the end of round j, 0 � i � 2t � 1, 1 � j � q + t + 2. Clearly, the stateof the bu�er zi at the start of round j (2 � j � q + t+ 2) is zi;j�1. Further, let ui;j be the stringwritten to bu�er ui in round j by the proessor PF . For 0 � i � 2t�1 � 1, the input to proessorPi in round j is z2i;j�1jjz2i+1;j�1jjui;j. For 2t�1 � i � 2t � 1, the input to proessor Pi in round jis the string ui;j.The following lemma and orollary are required to prove Proposition 8.Lemma 6 For any nonnegative integer b, Pi�1 jb+2i�12i k = b.Proof. We prove this result by mathematial indution on b. Clearly the result holds for b = 0.Indution Hypothesis: For b a nonnegative integer, assume that Pi�1 j b+2i�1�12i k = b� 1.It an be shown that �mn � = 8>><>>: jm�1n k+ 1 when njm;jm�1n k otherwise:In addition, 2ij(b+ 2i�1) if and only if b = 2i�1 where  is an odd integer. Combining these fatswith the indution hypothesis, we get thatXi�1 $b+ 2i�12i % = 1 +Xi�1 $b+ 2i�1 � 12i % = b:Thus, by mathematial indution, we onlude that the result holds for all nonnegative integers b.Corollary 7 For t a given positive integer and b an integer in the range 0 � b � 2t�1, let ks =b b+2t�s�1�12t�s  as de�ned in algorithm PHA. Then Pt�1s=1 ks =Ps�1 ks = b� 1.Proposition 8 Let x be a message of length L = Æ(t)+q�(t)+b(2n�2m), where q is a nonnegativeinteger and b is an integer in the range 0 � b � 2t�1. The formatting algorithms present every bitof message x to exatly one of the proessors Pi; furthermore, the substring x presented to proessorP0 in step 17 of PHA is the empty string <> when jxj = Æ(t) and is an (n� 2m)-bit string whenjxj > Æ(t). The formatting algorithms require(a) jxj � (n� 2m) + (t� 1)2t � 2b+ 2 steps when jxj > Æ(t) or(b) jxj+ (t� 1)2t + 1 steps when jxj = Æ(t).Proof.Eah formatting algorithm de�nes ui =<> or else de�nes ui to be a pre�x of x; namely,x = vjjyui = v 13



x = yIn step 17, the substring x itself is presented to proessor P0. Hene, every bit of message x ispresented to exatly one proessor Pi, as laimed. We now determine the length of the substring xpresented to proessor P0 in step 17.Formatting algorithm FSU provides a pre�x of length n to eah proessor Pi. This aounts for2tn bits of x. Algorithm FSS provides an (n � 2m)-bit pre�x to proessor Pi, 0 � i < 2t�1, andan n-bit pre�x to proessor Pi, 2t�1 � i < 2t. This aounts for 2t�1(2n � 2m) = �(t) bits of x.Sine FSS is invoked q times, this aounts for q�(t) bits of x. Formatting algorithm FEG provideseah internal proessor Pi, 0 � i < 2t�1, with an (n � 2m)-bit pre�x of x, eah leaf proessor Pi,2t�1 � i � 2t�1 + b� 1, with an n-bit pre�x of x, and all the other leaf proessors with an emptystring. This aounts for 2t�1(n � 2m) + bn bits of x. For s = t � 1; t � 2; : : : ; 2; 1, formattingalgorithm FF(s) presents eah proessor Pi, 0 � i < 2s�1 + ks � 1, where ks = b b+2t�s�1�12t�s ,with an (n � 2m)-bit pre�x of x and all the other proessors Pi with ui =<>. This aounts to(2s�1 + ks)(n� 2m) bits of x. The total number of bits presented to the proessors Pi, 0 � i < 2t,is 2tn+ q�(t) + bn+ 2t�1(n� 2m) + 1Xs=t�1(2s�1 + ks)(n� 2m)= 2tn+ q�(t) + bn+ 1Xs=t 2s�1(n� 2m) + 1Xs=t�1 ks(n� 2m)= 2tn+ q�(t) + bn+ (2t � 1)(n� 2m) + (b� 1)(n� 2m) (sine 1Xs=t�1 ks = b� 1)= Æ(t) + q�(t) + b(2n� 2m)� (n� 2m):Hene, the substring x presented to proessor P0 in step 17 of PHA is of length (n�2m) as laimed.In the speial ase when x is of length L = Æ(t), b = q = 0. This in turn implies that ks = 0 fors = t� 1; t� 2; : : : ; 2; 1. Hene, the total number of bits presented to the proessors Pi is just Æ(t),and the substring x presented to proessor P0 in step 17 of PHA is the empty string.Formatting algorithm FEG de�nes ui =<> for 2t�1 + b � i < 2t, and, for 1 � s < t, FF(s)de�nes ui =<> for 2s�1 + ks � i < 2t. The number of assignments of the form ui =<> is2t�1 � b+ 1Xs=t�1(2t � 2s�1 � ks) = 2t�1 � b+ (t� 1)2t � 1Xs=t�1 2s�1 � 1Xs=t�1 ks= 2t�1 + (t� 1)2t � (2t�1 � 1)� 2b+ 1 = (t� 1)2t � 2b+ 2:In the speial ase when x has length L = Æ(t), there are (t � 1)2t + 1 assignments of the formui =<>.Eah step of the formatting algorithms onsist of moving the leading bit of string x to somebu�er ui, or else assigning ui =<>. Therefore, the formatting algorithms require(a) Æ(t) + q�(t) + b(2n� 2m)� (n� 2m) + (t� 1)2t � 2b+ 2 steps when L > Æ(t) or(b) Æ(t) + (t� 1)2t + 1 steps when L = Æ(t).This establishes the result.We require the following lemma in the proof of Theorem 10.14



Lemma 9 For any integers b and t, b � 0 and t � 1, de�ne ks = b b+2t�s�1�12t�s  for 1 � s < t andls = b b+2t�s�12t�s  for 1 � s � t. Then(a) ks � ls � ks + 1;(b) 2ks � ls+1 � 2ls; and() ls = ks + 1) 2ls = ls+1 + 1:Proof.Clearly, ks = �b� 12t�s + 12� � �b� 12t�s + 1� = ls � �b� 12t�s + 32� = ks + 1:For any nonnegative real number x, 2bx+ 12 � b2x+ 1 � 2bx+ 1. Setting x = (b� 1)=2t�s, weget 2ks � ls+1 � 2ls:Now let x = b�12t�s = I + f where I is an integer and 0 � f < 1. Thenls = bx+ 1 = bI + f + 1 = I + 1:If ls = ks + 1, thenI + 1 = ls = ks + 1 = bx+ 1=2 + 1 = bI + f + 1=2 + 1 = I + 1 + bf + 1=2:Hene bf + 1=2 = 0 whih means 0 � f < 1=2. Thenls+1 = b2x+ 1 = b2I + 2f + 1 = 2I + 1 = 2ls � 1:Observe that in round q+2, the formatting algorithm FEG de�nes ui;q+2 =<> i� 2t�1+b � i �2t. Furthermore, in round j, q+2 < j < q+ t+2, formatting algorithm FF (s) de�nes ui;j =<> i�2s�1+ks � i < 2t where s = q+ t+2�j. In Theorem 10, we show that for q+2 � j � q+ t+2, wehave zi;j =<> i� 2s�1+ l� s � i < 2t where s = q+ t+2� j and ls = jb+2t�s�12t�s k. The orretnessof algorithm PHA depends on showing that, for q + 2 < j < q + t+ 2, we have ui;j =<> i� either2t�1 � i < 2t or z2i+1;j�1 =<>. This means thatzi;j = 8><>: z2i;j�1 whenever ui;j =<>= z2i+1;j�1;h(z2i;j�1jjz2i+1;j�1jjui;j) whenever uij 6=<>6= z2i+1;j�1;<> whenever 2t�1 � i < 2t:In round q + 2, the formatting subroutine FEG is invoked. This subroutine de�nes the stringsu2t�1;q+2; : : : ; u2t�1+b�1;q+2 to be non empty and u2t�1+b; : : : ; u2t�1;q+2 to be empty strings. As aresult in rounds q+2+ l (1 � l � t� 1) only some of the bu�ers ui;q+2+l are non empty. If ui;q+2+lis de�ned then proessor Pi will get an n-bit input and invoke the hash funtion on this input.Thus in this ase zi;q+2+l will be an m-bit string. Further, it may happen that z2i;q+l+1 is an m-bitstring but z2i+1;q+l+1 is not an m-bit string. In this ase, ui;q+2+l must be empty and proessor Pigets the m-bit string z2i;q+l+1 as input whih it opies to output, i.e., zi;q+2+l = z2i;q+l+1. Thusthere are two things to onsider.1. The maximum value of i suh that ui;q+2+l is non empty.15



2. The maximum value of i suh that zi;q+2+l is non empty.Let s = t�l. Then the maximum value of i suh that (1) happens is 2s�1+ks�1 and the maximumvalue of i suh that (2) happens is 2s�1 + ls � 1. These two fats are ruial to the orretness ofPHA and are proved as part of Theorem 10 below.Remark : We would like to point out the onnetion of the values ks and ls respetively to theinorder suessor and predeessor of the proessor Pi. In round q+ 2+ l = q+2+ t� s, proessorPi outputs an m-bit output if and only if the inorder predeessor (whih is at the leaf level) of Pireeived an n-bit input in round q+2. Further, in round q+2+l = q+2+t�s, proessor Pi invokesthe hash funtion (equivalently ui;q+2+l is de�ned) if the inorder suessor (again at the leaf level)of Pi reeived an n-bit input in round q + 2. These onsiderations also provide the expressions forks and ls.Theorem 10 (Corretness of PHA) Given any message x with jxj � Æ(t), algorithm PHA(x; t)applies hash funtion h to every bit of x and produes an m-bit message digest.Proof. Let y = z0;q+t+1jjz1;q+t+1jju0;q+t+2. Then, the output of algorithm PHA is, by de�nition,z0;q+t+2 = ( h(y) if jyj = n;y otherwise:Therefore, we must show that if jyj 6= n, then jyj = m.In round 1, proessor PF writes n-bit strings to eah of the bu�ers ui, i.e., jui;1j = n for0 � i � 2t � 1. Hene jzi;1j = m for 0 � i � 2t � 1. Further, it is easy to verify that for2 � j � q + 1, we have jzi;j j = m for 0 � i � 2t � 1 andjui;jj = ( n� 2m if 0 � i � 2t�1 � 1;n if 2t�1 � i � 2t � 1:For q+2 � j � q+t+1, let s = q+t+2�j. Then t � s � 1 orresponding to q+2 � j � q+t+1.De�ne ls = j b+2t�s�12t�s k. We now use mathematial indution to show that for these values of j ands, jzi;j j = ( m for 0 � i � 2s�1 + ls � 1;0 for 2s�1 + ls � i < 2t:Basis Case. For j = q + 2, s = t and ls = b; furthermore, jzi;q+1j = m for 0 � i < 2t. In roundq + 2, proessor PF exeutes FEG, and hene,jui;q+2j = 8><>: n� 2m for 0 � i � 2t�1 � 1;n for 2t�1 � i � 2t�1 + b� 1;0 for 2t�1 + b � i < 2t:Therefore, jzi;q+2j = ( m for 0 � i � 2t�1 + b� 1;0 for 2t�1 + b � i < 2t:Indution Hypothesis: Let j � 1 be any integer in the range q + 2 � j � 1 � q + t, and lets+ 1 = q + t+ 2� (j � 1). Assume that in round j � 1,jzi;j�1j = ( m for 0 � i � 2s + ls+1 � 1;0 for 2s + ls+1 � i < 2t:16



Now onsider round j. Then s = q + t+ 2� j.Case 1: 0 � i � 2s�1 + ks � 1.Then algorithm FF(s) de�nes ui;j to be a nonempty (n� 2m)-bit string. Furthermore,2i+ 1 � 2s + 2ks � 1 � 2s + ls+1 � 1 by Lemma 9:By our Indution Hypothesis, jz2i;j�1j = jz2i+1;j�1j = m. Hene, jz2i;j�1jjz2i+1;j�1jjui;j j = n. Thisimplies jzi;j j = m.Case 2: 2s�1 + ks � i � 2s�1 + ls � 1.This ase is vauous whenever ls = ks. When ls = ks + 1, then 2s�1 + ks = i = 2s�1 + ls � 1 andjui;j j = 0 from the de�nition of algorithm FF(s). Then2i = 2s + 2ls � 2 = 2s + ls+1 � 1 (sine 2ls = ls+1 + 1 when ls = ks + 1):Therefore, jz2i;j�1j = m by our Indution Hypothesis. Sine 2i + 1 = 2s + ls+1, our IndutionHypothesis implies jz2i+1;j�1j = 0. Therefore, jz2i;j�1jjz2i+1;j�1jjui;jj = m and zi;j = z2i;j�1, anonempty m-bit string.Case 3: 2s�1 + ls � i < 2t.Sine 2s�1 + ks � 2s�1 + ls � i, jui;jj = 0. In addition, 2i � 2s + 2ls � 2s + ls+1. Therefore,jz2i;j�1j = jz2i+1;j�1j = 0. Hene, jz2i;j�1jjz2i+1;j�1jjui;j j = 0 and zi;j =<>.Thus we have shown thatjzi;j j = ( m for 0 � i � 2s�1 + ls � 1;0 for 2s�1 + ls � i < 2t:By mathematial indution, this holds for all j in the range q+2 � j � q+t+1 and s = q+t+2�j.From the above argument, we see that, for 1 � j � q + t + 1, jui;jj = n � 2m if and only ifjz2i;j�1j = jz2i+1;j�1j = m. In this ase, zi;j = h(z2i;j�1jjz2i+1;j�1jjui;j). As well, it is immediatethat whenever a formatting algorithm de�nes jui;jj = n, then zi;j = h(ui;j). Thus the hash funtionh proesses eah of the pre�xes ui;j .When message x has length L > Æ(t), then b > 0. From the above result, we see that jz0;q+t+1j =jz1;q+t+1j = m. From Proposition 8, we know that the substring x presented to proessor P0 instep 17 of PHA is of length n� 2m. Therefore, z0;q+t+2 = h(z0;q+t+1jjz1;q+t+1jjx), an m-bit string,as required.When message x has length L = Æ(t), then b = 0. From the above result, we see that jz0;q+t+1j =m and jz1;q+t+1j = 0. From Proposition 8, we know that the substring x presented to proessor P0in step 17 of PHA is of length 0. Therefore, z0;q+t+2 = z0;q+t+1, an m-bit string, as required.We now turn to omputing the number of invoations of h made by PHA(x; t). Let  (L) bethe number of invoations of h made by PHA(x; t) on a message of length L. The parameters qtand bt depend on the length L of the message. We write qt(L) and bt(L) to denote the dependeneof the parameters qt and bt on length L. We now have the following result.Proposition 11  (L) = (qt(L) + 2)2t + 2bt(L)� 1.Proof. We �rst note that q = qt = qt(L) and b = bt = bt(L). In eah of the �rst qt(L) + 1 roundsh is invoked 2t times. In round qt(L) + 2, the number of invoations of h is 2t�1+ bt(L). In roundsqt(L)+ 3 to qt(L) + t+1, the total number of invoations of h is Pt�1s=1(2s�1+ ks). Lastly, in roundqt(L) + t+2, there is one invoation of h. Using Corollary 7, we have Pt�1s=1 ks = b� 1. Adding theabove number of invoations we get the �nal result.17



We now ompare the number of invoations of h by PHA to that made by the MD algorithm.The maximum amount of padding required by PHA is 2(n�m)� 1 and that required by the MDalgorithm is n�m� 1. We ompare the number of invoations of h on message lengths whih donot require padding by PHA. It turns out that these message lengths also do not require paddingby the MD algorithm.Let the length of the message be L = Æ(t) + qt(L)�(t) + bt(L)(2n � 2m). Then PHA makes (L) = (qt(L) + 2)2t + 2bt(L)� 1 invoations of h.Here we use the desription of the MD algorithm given in [5℄. For the MD algorithm the �rstinvoation uses n bits and eah of the subsequent invoations uses n � m bits. Hene the totalnumber of invoations of h is1 + L� nn�m = 1 + 2t(2n� 2m) + q2t�1(2n� 2m) + b(2n� 2m)� (n� 2m)� nn�m =  (L):Thus we get the following result.Theorem 12 The number  (L) of invoations of h made by PHA(x; t) on a message x of lengthL = Æ(t) + qt(L)�(t) + bt(L)(2n� 2m) is equal to the number of invoations of h made by the MDalgorithm on a message of the same length L.The time taken by the MD algorithm is proportional to the number of invoations of h whereasthe time required by PHA is proportional to the number of parallel rounds whih is qt(L) + t+ 2.Further, both PHA and the MD algorithm must format the message. Hene if we ignore the timerequired to format the message, then PHA is faster by a fator of (L)q + t+ 2 :For moderately large q, the inrease in speed is almost linear in the number of proessors.6 Seurity Redutions for hL and h�In this setion we show that �nding ollisions for hL and h� is diÆult provided �nding ollisionsfor h is diÆult.6.1 Collision Resistane of hLIn this setion we provide a Turing redution of Col(n;m) to FLC(n;m;L). This will show thatif it is omputationally diÆult to �nd ollisions for h, then it is also omputationally diÆult to�nd ollisions for hL.Theorem 13 Let h be an (n;m) hash funtion and for L � n let hL be the funtion de�ned byalgorithm PHA. If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hash funtion hL,then there is an (�; p+ 2 (L)) algorithm B to solve Col(n;m) for the hash funtion h.Proof. The algorithm B does the following. It �rst runs A to obtain 2 strings x and x0 suh thatx 6= x0, jxj = jx0j = L, and with probability at least �, hL(x) = hL(x0). Then B runs PHA on bothx and x0 and stores all the intermediate states of the bu�ers zi and ui. Let zij and z0ij be the states18



of bu�er zi at the end of round j orresponding to the messages x and x0 respetively. Similarly,let uij and u0ij be the strings written to bu�er ui in round j orresponding to the messages x andx0 respetively.We now proeed by reverse indution on j to show that if x 6= x0 and hL(x) = hL(x0), then wean �nd a ollision for hash funtion h by applying algorithm PHA to x and x0. To allow us to startthe proof with round q+ t+1, we must extend our de�nition of uij and u0ij to round j = q+ t+2.De�ne u0;q+t+2 and u00;q+t+2 to be the substrings x and x0, respetively, provided to proessor P0in Step 17 of algorithm PHA. De�ne ui;q+t+2 =<>= u0i;q+t+2 for 0 < i < 2t.Indution Basis Step : j = q + t+ 2.We show that, either there is a ollision for h in round q + t+ 2, or elsezi;q+t+1 = z0i;q+t+1 and ui;q+t+2 = u0i;q+t+2 for 0 � i < 2t:Case 1: b = 0. In this ase, u0;q+t+2 =<>= u00;q+t+2 by Proposition 7. Hene, ui;q+t+2 = u0i;q+t+2for all i, 0 � i < 2t. By Theorem 9, zi;q+t+1 =<>= z0i;q+t+1 for all i, 0 < i < 2t. Furthermore,z0;q+t+1 = z0;q+t+2 = hL(x) = hL(x0) = z00;q+t+2 = z00;q+t+1. This ompletes the proof of Case 1.Case 2: b > 0. In this ase, u0;q+t+2 = x 6=<>6= x0 = u00;q+t+2 by Proposition 7. By Theorem9, zi;q+t+1 =<>= z0i;q+t+1 for all i, 1 < i < 2t and z0;q+t+1; z1;q+t+1; z00;q+t+1; z01;q+t+1 are allnonempty m-bit strings. Hene,h(z0;q+t+1jjz1;q+t+1jju0;q+t+2)= z0;q+t+2 = hL(x) = hL(x0) = z00;q+t+2= h(z00;q+t+1jjz01;q+t+1jju00;q+t+2):Now, if (z0;q+t+1jjz1;q+t+1jju0;q+t+2) 6= (z00;q+t+1jjz01;q+t+1jju00;q+t+2), then we have a ollision forhash funtion h; otherwise, z0;q+t+1 = z00;q+t+1; z1;q+t+1 = z01;q+t+1 and u0;q+t+2 = u00;q+t+2. Thisompletes the proof of Case 2, and also the proof of the Indution Basis Step.Indution Hypothesis: For q + t+ 1 � j � 2, assumezi;j = z0i;j and ui;j+1 = u0i;j+1 for 0 � i < 2t:In the proof of Theorem 9 we show that, for 0 � i < 2t�1,zi;j = ( h(z2i;j�1jjz2i+1;j�1jjui;j) whenever z2i+1;j�1 6=<>6= ui;j;z2i;j�1 whenever z2i+1;j�1 =<>= ui;j;and, for 2t�1 � i < 2t, zi;j = ( h(ui;j) whenever ui;j 6=<>;<> whenever ui;j =<> :The orresponding statements hold for the z0i;j's and the u0i;j's. Beause messages x and x0 are ofthe same length L, zi;j =<> if and only if z0i;j =<> and ui;j =<> if and only if u0i;j =<>. Wenow onsider eah of these 4 ases individually.For 0 � i < 2t�1 and z2i+1;j�1 6=<>6= ui;j, we have thath(z2i;j�1jjz2i+1;j�1jjui;j) = zi;j= z0i;j (by the Indution Hypothesis)= h(z02i;j�1jjz02i+1;j�1jju0i;j):19



If (z2i;j�1jjz2i+1;j�1jjui;j) 6= (z02i;j�1jjz02i+1;j�1jju0i;j), then we have a ollision for hash funtion h;otherwise, z2i;j�1 = z02i;j�1; z2i+1;j�1 = z02i+1;j�1; and ui;j = u0i;j:For 0 � i < 2t�1 and z2i+1;j�1 =<>= ui;j, we have thatz2i;j�1 = zi;j= z0i;j (by the Indution Hypothesis)= z02i;j�1:For 2t�1 � i < 2t and ui;j 6=<>, we have thath(ui;j) = zi;j= z0i;j (by the Indution Hypothesis)= h(u0i;j):If ui;j 6= u0i;j, then we have a ollision for hash funtion h; otherwise, ui;j = u0i;j:For 2t�1 � i < 2t and ui;j =<>, we have that ui;j =<>= u0i;j:Combining these 4 ases, we get that, either there is a ollision for hash funtion h in round j,or else zi;j�1 = z0i;j�1 and ui;j = u0i;j for 0 � i < 2t:By mathematial indution, it follows that, either there is a ollision for hash funtion h insome round j = q + t+ 2; q + t+ 1; : : : ; 3; 2, or elsezi;j�1 = z0i;j�1 and ui;j = u0i;j for 0 � i < 2t and 2 � j � q + t+ 2:In round 1, ui;1 is a nonempty n-bit string for 0 � i < 2t. If there is no ollision for h in roundsq + t+ 2; q + t+ 1; : : : ; 3; 2, then h(ui;1) = zi;1 = z0i;1 = h(u0i;1):If ui;1 6= u0i;1 for some i, then there is a ollision for hash funtion h in round 1; otherwise, ui;1 = u0i;1for 0 � i < 2t.Thus we obtain that if there is no ollision in any invoation of h by PHA on messages x andx0, then ui;j = u0i;j for 0 � i < 2t and 1 � j � q + t+ 2. The padded messages x and x0 are equalto the onatenations of the ui;j's and the u0i;j's, respetively, for 0 � i < 2t and 1 � j � q + t+ 2.Hene, if there is no ollision in any invoation of h by PHA on the messages x and x0, then x = x0.But algorithm A ensures that with probability at least �, we have messages x and x0 suh thatjxj = jx0j = L, x 6= x0, and hL(x) = hL(x0). Hene, with probability at least �, we obtain a ollisionfor h.The number of invoations of h by algorithm B is equal to the number of invoations of h byA plus the number of invoations of h by PHA on x and x0. Thus the total number of invoationsof h by algorithm B is p+ 2 (L).6.2 Collision Resistane of h�The seurity of h� is easily derived from the seurity of hL. The details are given below.20



Theorem 14 Let h be an (n;m) hash funtion and h� be the funtion de�ned by Equation 3. Ifthere is an (�; p; L) algorithm A to solve V LC(n;m;L) for the hash funtion h�, then there is an(�; p+ 2 + 2 (L)) algorithm B to solve Col(n;m) for the hash funtion h.Proof. The algorithm B does the following. It �rst runs A to obtain two messages x and x0. Thenwith probability at least �, we have h�(x) = h�(x0) and x 6= x0. Algorithm B then runs h� on bothx and x0 to obtain h�(x) = y and h�(x0) = y0 storing all the intermediate values that are generated.Let w = hjxj(x), w0 = hjx0j(x0), v = binn�m(jxj) and v0 = binn�m(jx0j). There are two ases.Case 1 : jxj 6= jx0j. In this ase v 6= v0 and hene vjjw 6= v0jjw0. However, h(vjjw) = y = y0 =h(v0jjw0) with probability at least �. Thus in this ase we an �nd a ollision for h with probabilityat least �.Case 2 : jxj = jx0j = L. In this ase v = v0. If w 6= w0, then we have a ollision for h. Ifw = w0 then we have a ollision for hL. We an now argue as in the proof of Theorem 13 that withprobability at least � we obtain a ollision for h.The omputation of h� requires 1 +  (L) invoations of the hash funtion h. This shows thatthe number of invoations of h made by B is at most p+ 2 + 2 (L).7 Constrution of h1In this setion we desribe the onstrution and the seurity redution for the funtion h1 :[L�nf0; 1gL ! f0; 1gm. De�ne Æ1(t) = Æ(t) � 1 and �1(t) = �(t) � 1. As in De�nition 1, forL � Æ1(t), we de�ne the parameters q; r and b as follows.De�nition 15 1. If L > Æ1(t), then q and r are de�ned by the following equation: L� Æ1(t) =q�1(t) + r, where r is the unique integer from the set f1; : : : ; �1(t)g. De�ne b = d r2n�2me.2. If L = Æ1(t), then q = b = r = 0.Algorithm PHA omputes the funtion hL. We �rst de�ne a modi�ation of PHA. More speif-ially, we de�ne the modi�ations required in the formatting subroutines. We will all the resultingalgorithm the modi�ed PHA algorithm.Modi�ation to FSU: Replae Step 1 of FSU by the following sequene of operations:Write x = vjjy where jvj = n� 1.u0 = vjj0, x = y.for i = 1; 2; : : : ; 2t � 1 doModi�ation to FSS: Replae Step 1 of FSS by the following sequene of operations:Write x = vjjy where jvj = n� 2m� 1.u0 = vjj1, x = y.for i = 1; 2; : : : ; 2t � 1 doInformally, during start up we are providing P0 with an input whose last bit is 0 and duringsteady state we are providing P0 with an input whose last bit is 1.Let the funtion omputed by modi�ed PHA be gL : f0; 1gL ! f0; 1gm. We now desribe theonstrution of the funtion h1.The parameter b is at most 2t�1 and an be represented in binary by a t-bit string. Note thatthe length of the binary representation of b depends only on t and is independent of the message21



length L. We denote the t-bit binary representation of b by bin(b). Let �(t) = dlog(Æ1(t) + 1)e. Lettbin(L) be a binary string of length �(t), suh that tbin(L) is the �(t)-bit binary representation ofL if L < Æ1(t), else tbin(L) is the �(t)-bit binary representation of Æ1(t).The output of the funtion h1 is de�ned by the following algorithm.Algorithm ArbLengthinput : message x of length L.output : m-bit message digest h1(x).1. If L < Æ1(t), then �nd the unique t1 suh that Æ1(t1) � L < Æ1(t1 + 1). Then perform Step 2with t replaed by t1.2. If L � Æ1(t), then apply modi�ed PHA to x to obtain an m-bit message digest w = gL(x).3. Let w1 = hm+t(wjjbin(b)).4. Let w2 = hm+�(t)(w1jjtbin(L)).5. output w2.Remark : It is reasonable to assume that both t; tbin(L) � n � m. Then we ould let bin(b)and tbin(L) be (n � m)-bit strings. In this situtation, Steps 3 and 4 above an be replaed byw1 = h(wjjbin(b)) and w2 = h(w1jjtbin(L)) respetively.We now turn to the seurity redution for h1. First we note the fat that the seurity of gL ispreserved in a manner similar to that of hL.Theorem 16 Let h be an (n;m) hash funtion and for L � n let gL be the funtion de�ned by themodi�ed algorithm PHA. If there is an (�; p; L) algorithm A to solve FLC(n;m;L) for the hashfuntion gL, then there is an (�; p + 2 1(L)) algorithm B to solve Col(n;m) for the hash funtionh, where  1(L) is the number of invoations of h made by gL.Theorem 17 Let h be an (n;m) hash funtion and for L � n let h1 be the funtion de�nedby algorithm ArbLength. If there is an (�; p; L) algorithm A to solve ALC(n;m;L) for the hashfuntion h1, then there is an (�; p+ 2 2(L)) algorithm B to solve Col(n;m) for the hash funtionh, where  2(L) =  1(L) +  (t+m) +  (�(t) +m) is the number of invoations of h made by h1.Proof. Algorithm B runs algorithm A to obtain two strings x and x0 suh that with probabilityat least � we have h1(x) = h1(x0) and x 6= x0. Let L = jxj and L0 = jx0j. Further, we will denotethe parameters for the message x by unprimed symbols and the parameters for the message x0 byprimed symbols. First assume that L = L0. Then tbin(L) = tbin(L0) and bin(b) = bin(b0). We annow use Theorem 13 to obtain a ollision for h with probability at least �. Thus for the rest of theproof we will assume L 6= L0. There are two ases to onsider.Case 1 : At least one of L or L0 is less that Æ1(t). In this ase tbin(L) 6= tbin(L0). We havehm+�(t)(w1jjtbin(L)) = w2= w02= hm+�(t)(w01jjtbin(L0)):We an argue as in Theorem 13 that either we obtain a ollision for h or w1jjtbin(L) = w01jjtbin(L0)whih in turn implies tbin(L) = tbin(L0). Sine we know tbin(L) 6= tbin(L0), it follows that wemust obtain a ollision for h. 22



Case 2 : Both L;L0 � Æ1(t). In this ase we have tbin(L) = tbin(L0). If w1 6= w01, then the inputsto h�(t)+m in Step 4 of ArbLength are di�erent for x and x0. This will again provide a ollision forh. So suppose w1 = w01. There are two subases to onsider.Subase 2a : b 6= b0: In this ase bin(b) 6= bin(b0). We havehm+t(wjjtbin(L)) = w1 = w01 = hm+t(w0jjtbin(L0)):Again the inputs to hm+t are di�erent and hene we have a ollision for hm+t. As before, this willneessarily provide a ollision for h.Subase 2b : b = b0: In this ase bin(b) = bin(b0). If w 6= w0, then this will provide a ollision forh. So assume that w = w0.So we are in the situation where gL(x) = w = w0 = gL0(x0), b = b0 and L 6= L0. We havethe (padded) message lengths in the following forms: L = Æ1(t) + q�1(t) + b(2n � 2m) and L0 =Æ1(t) + q0�1(t) + b0(2n � 2m). Sine b = b0 and L 6= L0 we have q 6= q0. Assume without loss ofgenerality q0 < q.The last t+ 1 rounds of both PHA and modi�ed PHA are the same. Suppose that none of theinvoations of h in the last t + 1 rounds of modi�ed PHA provides a ollision for h. Now usingthe fat that b = b0 we an use a bakward indution on the round number (as in the proof ofTheorem 13) to obtain zi;q+1 = z0i;q0+1 for all 0 � i � 2t � 1. Continuing the bakward indutionwe obtain zi;q�q0+1 = z0i;1 for all 0 � i � 2t � 1. We now look at the output of proessor P0. Letp = q � q0. We have z0;p+1 = P0(z0;pjjz1;pjju0;p+1);z00;1 = P0(u00;1):The string u0;p+1 is obtained from FSS and the string u00;1 is obtained from FSU. By the modi�a-tions made to these algorithms to get modi�ed PHA, we know that u0;p+1 = vjj1 and u00;1 = v0jj0for some strings v and v0 of lengths n�1 and n�2m�1 respetively. Hene z0;pjjz1;pjju0;p+1 6= u00;1.But z0;p+1 = z00;1 and so we obtainP0(z0;pjjz1;pjju0;p+1) = h(z0;pjjz1;pjju0;p+1) = z0;p+1 = z00;1 = h(u00;1) = P0(u00;1):This is a ollision for h.We next onsider the amount of padding required by algorithm ArbLength. This is determinedby the padding introdued by algorithm modi�ed PHA.Theorem 18 Algorithm modi�ed PHA pads any message by at least q+1 bits where q is as de�nedin De�ntion 15.Proof. The modi�ation to FSU introdues one bit of padding and the modi�ation to FSSintrodues one bit of padding per round. Sine FSS is exeuted q times a total of q bits of paddingis introdued by FSS.From De�nition 15 we have�L� Æ1(t)�1(t) � � q + 1 � 1 + �L� Æ1(t)�1(t) � :Sine t; n;m are onstants for a partiular implementation of modi�ed PHA, the amount of paddingis linear in the length of the message. We note that the Merkle-Damgard onstrution also uses an23



amount of padding whih is linear in the length of the message (see [9℄). Moreover, the onstant ofproportionality is lesser for our onstrution. However, it is undesirable to have a padding shemewhih grows with the length of the message. The amount of padding required in the onstrutionof h� is at most 2(n�m)�1 and hene is independent of the message length. Further, the funtionh� an take as input any message of pratial length. Thus algorithm ArbLength and the funtionh1 are mainly of theoretial interest.8 Preimage ResistaneWe have formally onsidered only one property of hash funtions - namely intratibility of �ndingollisions. There are other neessary properties that a hash funtion must satisfy. These arePreimage and Seond Preimage (see [8℄). We are required to show that our onstrutions preservethe intratibility of these problems. In fat, these properties are indeed preserved and the proofsare easy. We informally desribe the redution for Preimage.Informally the preimage problem for a hash funtion h is the following. The adversary is givena message digest y and has to obtain a message x suh that h(x) = y. Suppose that there is a(probabilisti) algorithm A to solve the preimage problem for any of our extensions hL; h� or h1.For the sake of onreteness we only onsider hL, the others being similar. We argue that A anbe used to obtain an algorithm B whih will solve the preimage for h with the same probability ofsuess. Given y, algorithm B will �rst run A to obtain a preimage x for hL. Then B runs PHAand outputs w = z0;q+t+1jjz1;q+t+1jjuq+t+2 if b > 0 or w = z0;q+tjjz1;q+tjjuq+t+1 if b = 0. It is noweasy to see that w is a preimage for h (with the probability of suess being at least that of A).9 Conluding RemarksWe have onsidered the proessors to be organised as a binary tree. In fat, the same tehniquearries over to k-ary trees, with the ondition that n � km. More speed up an be ahieved bymoving from binary to k-ary proessor trees. However, the formatting proessor will progressivelybeome more ompliated and will o�set the advantage in speed up. Hene we have not exploredthis option further.To summarize our ontribution, in this paper, we have presented an inrementally parallelizabledesign priniple for ryptographi hash funtions. We believe that our design priniple will providethe basi struture for designing future pratial hash funtions. In a future ommuniation, wewill desribe parallel modi�ations of MD5, RIPEMD-160 and SHA-2 hash funtions. Our plan isto keep the \ore" operations of these hash funtions intat but build the iterative part based onthe design priniple developed in this paper.Aknowledgement : We wish to thank Professor Bart Preneel for helpful omments on anearlier draft of the paper.Referenes[1℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs pratial.Proeedings of CRYPTO 1997, pp 470-484.24
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