
B
R

IC
S

R
S

-98-28
R

.P
agh:

Low
R

edundancy
in

D
ictionaries

w
ithO(1)

W
orstC

ase
Lookup

T
im

e

BRICS
Basic Research in Computer Science

Low Redundancy in Dictionaries withO(1) Worst Case Lookup Time

Rasmus Pagh

BRICS Report Series RS-98-28

ISSN 0909-0878 November 1998

Copyright c 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectoryRS/98/28/

Low redundany in ditionaries with O(1) worst aselookup timeRasmus PaghNovember 1998AbstratA stati ditionary is a data struture for storing subsets of a �nite universe U ,so that membership queries an be answered eÆiently. We study this problem in aunit ost RAM model with word size
(log jU j), and show that for n-element subsets,onstant worst ase query time an be obtained using B +O(log log jU j) + o(n) bits ofstorage, where B = dlog2 �jU jn �e is the minimum number of bits needed to represent allsuh subsets. The solution for dense subsets uses B + O(jU j log log jU jlog jU j) bits of storage,and supports onstant time rank queries. In a dynami setting, allowing insertions anddeletions, our tehniques give an O(B) bit spae usage.1 IntrodutionConsider the problem of storing a subset S of a �nite set U , suh that membership queries,\u 2 S?", an be answered in worst-ase onstant time on a unit ost RAM. Sine we areinterested only in membership queries, we assume that U = f0; : : : ;m� 1g. We restrit theattention to the ase where elements of U an be represented within O(1) mahine words.In partiular it is assumed that the usual RAM operations (inluding multipliation) onnumbers of size mO(1) an be done in onstant time.Our goal will be to solve this data struture problem using little memory, measured inonseutive bits1. We express the omplexity in terms of m = jU j and n = jSj, and oftenonsider the asymptotis when n is a funtion of m. Sine the queries an distinguish anytwo subsets of U , we need at least �mn� di�erent memory on�gurations, that is, at leastB = dlog �mn�e bits (log is base 2 throughout this paper). Using Stirling's approximation tothe fatorial funtion, one an get B = n log mn + (m � n) log mm�n � O(log n(m�n)m), see [3℄.For n = o(m) the dominant term is n log mn , sine (m� n) log mm�n = �(n).Previous workThe (stati) ditionary is a very fundamental data struture, and it has been heavily stud-ied. We will fous on the development in spae onsumption for worst ase onstant time1A part of the last word may be unused, and the query algorithm must work regardless of the ontentsof this part 1

lookup shemes. A bit vetor is the simplest possible solution to the problem, but the spaeomplexity of m bits is poor ompared to B unless n t m=2. During the 70's, shemeswere suggested whih obtain a spae omplexity of O(n) words, that is O(n logm) bits, forrestrited ases (e.g. \dense" or very sparse sets). It was not until the early 80's that Fred-man, Koml�os and Szemer�edi [6℄ found a hashing sheme using O(n) words in the generalase. A re�ned solution in their paper uses B + O(n log n + log logm) bits. Brodnik andMunro [3℄ onstrut a stati ditionary using O(B) bits for any m and n. In the journalversion of this paper [2℄, they ahieveB+O(Blog log logm) bits, and raise the question whether amore powerful model of omputation is needed to further tighten the gap to the informationtheoreti minimum.Yao [11℄ showed that in a restrited model, where words in the data struture mustontain elements of S, the number of words neessary for o(log n) time lookup annot bebounded by a funtion of n. Fih and Miltersen [5℄ showed that on a RAM with standardunit ost arithmeti operations but without division and bit operations, o(log n) time lookuprequires
(m=n�) words of memory for any � > 0. In [8℄ a RAM with bit operations butwithout multipliation is onsidered, and a lower bound of m�, for some � > 0, is shownwhen n = mo(1). No lower bound better than the trivial B bits seems to be known withoutrestritions on the data struture or the query algorithm.As for dynami ditionaries, an O(n) word solution giving onstant time lookup andonstant expeted amortized time for deletions and insertions is given in [4℄. The spaeusage is improved in [3℄, where a solution using O(B) bits (with the same time bounds) isskethed.This paperThe result of Brodnik and Munro is strengthened, bringing the additional term of the spaeomplexity, whih we shall all the redundany, down to o(n) + O(log logm) bits. In par-tiular, for n = !(log logm) this means a vanishing number of redundant bits per elementstored. The exat order of the bound, ompared with lower bounds on the redundany ofthe solution in [2℄, is given in the table below.Range Brodnik/Munro This papern < m log logmlogm n log logm nq log lognlogn + log logmm log logmlogm � n < m(log logmlogm)2=3 n log logm npn=m < n 3q log lognlognn � m(log logmlogm)2=3 min(n log logm; m(log logm)O(log log logm)) m log logmlogm < n 3q log lognlognWe also show how to assoiate information from some domain to eah element of S (solvingthe partial funtion problem), with the same redundany as above, exept for the last ase(the \dense" range).The main observation is that one an save spae by \ompressing" the hash table partof data strutures based on (perfet) hashing, storing in eah ell not the element itself, butonly a quotient | information that distinguishes it from the part of U that hashes to thisell. This tehnique, referred to as quotienting, is desribed in setion 3, together with the2

main onstrution.For dense subsets another tehnique is used, building upon the ideas of range redutionand a \table of small ranges" (both used in [2℄). This ditionary supports rank queries, afat whih will be used in the onstrution for the non-dense ase. This is treated in setion2. The �rst part of setion 3 desribes a B + O(n + log logm) bit sheme whih does notdepend on setion 2, and an be read independently.Setion 4 desribes a dynami ditionary (insertions and deletions supported in expetedamortized onstant time), whih uses O(B) bits.2 Dense subsetsIn this setion we desribe a data struture for storing sets, whih is spae eÆient for densesubsets (say, n =
(m log logm= logm)). The data struture will support queries on theranks of elements (where the rank of u is de�ned as rank(u) = jfv 2 Sjv � ugj). Using rankqueries, it is possible to do membership queries; therefore we will all the data struturepresented a stati rank ditionary.We split the universe into bloks Ui of size b (b < logm to be determined). Without lossof generality, assume m = b �s for some s 2 N| otherwise pad U with at most b�1 dummyelements, inreasing the �nal spae onsumption with O(b) bits. Let Ui = fb�i : : : b�(i+1)�1gdenote the ith blok. Bloks are grouped into lusters of bloks eah.The idea will be to \expliitly" store the rank of the �rst element of eah blok, andstore a ompressed representation of the blok itself. Extration of rank information fromthis ompressed form is done by table lookup. The ranks are stored using a 2-level struture(also used by Tarjan and Yao in [10℄): The \A" level holds the rank of the �rst element ineah luster, and the \B" level holds the o�set in rank for eah blok within the lusters,see Figure 1. Pointers to the ompressed bloks are stored in the same way.
c blocks

B

s blocks

.

. A

. . . .b bitsUFigure 1: Splitting of U and struture of A and B tablesLet ptr(i) denote a pointer to the ompressed representation of blok i and let bxy =bx=y � y be the largest number less than x whih is a multiple of y. The representationonsists of the following:� Table Ar (dlogme bits/element), where Ar[i℄ = rank(b � � i), i = 0 : : : ds=e � 1.3

� Table Br (dlog(logm)e bits/element), where Br[i℄ = rank(b � i) � rank(b � bi), i =0 : : : s� 1.� Table Ap (dlogme+ 1 bits/element), where Ap[i℄ = ptr(� i), i = 0 : : : ds=e � 1.� Table Bp (dlog(logm)e+1 bits/element), where Bp[i℄ = ptr(i)�ptr(bi), i = 0 : : : s�1.� A bit string C ontaining the ordered ompressed representations of bloks. The rep-resentation of blok i is the number x = jS \Uij, dlog logme bits, followed by dlog �bx�ebits representing S \ Ui.� Table D (dlog logme bits/element), where D[x; y; z℄ is the rank of the zth element ofthe set with x elements and ompressed representation the �rst bits of y (if any suhset exists, otherwise unde�ned), x; z = 0 : : : b, y = f0; 1gb. Elements are numbered1 : : : b, the 0th element has rank 0 by de�nition.A query for the rank of u an now be proessed as follows (C[a : : : b℄ denotes the bit stringstarting with C[a℄ and ending with C[b� 1℄):1. Calulate the blok i = bu=b, and luster j = bi=.2. Determine the rank of v = i � b as rank(v) = Ar[j℄ +Br[i℄.3. Determine the loation of the ompressed blok as ptr(i) = Ap[j℄ +Bp[i℄.4. Set x = C[ptr(i) : : :ptr(i)+dlog(logm)e℄ and y = C[ptr(i)+dlog(logm)e : : :ptr(i)+dlog(logm)e+ b℄.5. return rank(u) = rank(v) +D[x; y; u� v℄.The orretness of the returned result should be immediate.AnalysisIt remains to be seen that the asserted spae bounds on the table elements hold. Clearlythe elements of tables Ar and Ap an be represented with dlogme and dlogme + 1 bits,respetively (the latter beause C has length less than 2m). Br holds non-negative integersbounded by the largest possible di�erene in rank within a span of onseutive bloks, thatis, the elements are in the range 0 : : : b � , so ertainly dlog(logm)e bits is suÆient. Sim-ilarly, Bp holds non-negative integers bounded by the largest possible di�erene in positionbetween the ompressed representations within a span of onseutive bloks. And sinethe ompressed representation of a blok oupies less than 2b bits, we are done.Now, for the analysis of the representation size, we need the following lemma from [3℄ onthe total size of the ompressed bloks:Lemma 1 Let xi = jS \ Uij and Bi = dlog � bxi�e. Then Ps�1i=0 Bi < B + s.4

Proof. We have Ps�1i=0 Bi <Ps�1i=0 log � bxi� + s � B + s. The latter inequality follows fromthe fat that Qs�1i=0 � bxi� is the number of sets having xi elements in blok i, whih is a subsetof all n-subsets in U . 2Summing up the representation sizes (leaving out O(logm) bits for various pointers) wehave:� O(m logmb) bits in eah of Ar and Ap.� m log(logm)b +O(m=b) bits in eah of Br and Bp.� m log logmb +O(m=b) bits within C for representing set sizes� Less than B + dm=be bits in C for representing sets (by Lemma 1).� 2bbdlog be bits for D.Setting b = = � logm, for some 0 < � < 1 we get the following:Theorem 2 A stati rank ditionary with worst ase onstant query time, an be representedusing B +O(m log logmlogm) bits.By letting � vary by at most a fator of 2, b and an be set to a power of 2, makingmultipliation and division a matter of shifting. Navigating the 3-dimensional array D analso be made easy by extending eah side of the \ube" to have length a power of two. Thereader is invited to verify that this means the above result holds, even if the query algorithman use only AC0 instrutions.ConstrutionWe now sketh how to onstrut the stati rank ditionary in O(n + m log logmlog2m) time. Forword length �(logm) this is proportional to the time needed to read the input and writethe representation, and thus optimal.The onstrution algorithm will assume that the elements of S are given as a sorted list,u1 < � � � < un. This merely fators out the problem of sorting: Starting with an unorderedlist of elements of S and the orresponding rank ditionary, one an trivially sort in lineartime.First onsider tables Ar and Br. They may easily be �lled out while running throughu1 : : : un. However, in the ase of Br it is ineÆient to �ll in onseutive idential elementsone at a time. Using a small table of preomputed words ontaining repetitions of element-size patterns, and appropriate shift and masking operations, one an �ll any part of a wordwith a repeating element pattern. Thus the ost of �lling out Br an be brought down tothe number of words in the representation of Br plus the number of hanges in the o�set, n.For C we use a 2b-element table T , ontaining for any possible blok the ompressedrepresentation and its length. Construting C is then merely a matter of using eah blokas an index into the table. As positions of ompressed representations get known, Ap andBp are �lled out similarly to Ar and Br. 5

The table T may be onstruted in several ways. A simple one is to ompute eahelement in turn as a sum of at most b binomial oeÆients (from a preomputed table). Thisapproah takes time O(b2b) whih is o(m log logmlog2 m).D is onstruted by running through T , for eah T [i℄ �lling in the �elds in D onerningthe blok oded by i. Again, a small preomputed table is used, this time for ounting bits.The ost of all this is proportional to the number of entries in D, whih is again o(m log logmlog2 m).We an now state the following:Theorem 3 The stati rank ditionary of Theorem 2 an be onstruted from a sorted listof elements in S, in time O(n + m log logmlog2m).3 Non-dense subsetsThis setion presents a stati ditionary, whih is spae eÆient unless the set S is dense (inwhih ase the ditionary of the previous setion is used). As mentioned in the overview, theompat representation ahieved stems from the observation that eah buket j of a hashtable may be resolved with respet to the part of the universe hashing to buket j, whihwe denote by Aj.We phrase this in terms of injetive funtions on the Aj. Consider the lookup proedureof a ditionary using a perfet hash funtion h, and a table T:pro lookup(x)return (T[h(x)℄=x);endIf q is a funtion whih is 1-1 on eah Aj (we all this a quotient funtion), and we letT'[i℄:=q(T[i℄), then the following program is equivalent:pro lookup'(x)return (T'[h(x)℄=q(x));endThus, given a desription of q, it suÆes to use the hash table T'. The gain is that q mayhave a range signi�antly smaller than U (ideally q would enumerate the elements hashingto eah buket), and thus fewer bits are needed to store the elements of T'.We still need to argue that q need not be too expensive in terms of memory usageor evaluation time. The FKS perfet hashing sheme [6℄ has a quotient funtion whih isevaluable in onstant time, and osts no extra spae in that its parameters k, p and a arepart of the data struture already:qk;p : u 7! (u div p) � dp=ae + (k � u mod p) div aIntuitively, this funtion gives the information that is thrown away by the modulo ap-pliations of the sheme's top level hash funtion (so in fat it is 1-1 even on the elementshashing to eah buket in the top level hash table). Sine p = O(m), the range of thefuntion is O(m=n), so log mn +O(1) bits suÆe for eah hash table element.6

Example This example assumes familiarity with the FKS sheme [6℄ (and is in fatthe example in that paper subjeted to quotienting). We look at U = f1; : : : ; 30g, S =f2; 4; 5; 15; 18; 30g, and hoose p = 31, k = 2. The elements have the following quotientvalues: u 2 4 5 15 18 30qk;p(u) 0 1 1 5 0 4The quotient values take the plae of elements in the data struture. The orrespondingelements of S are written in quotes.
|W |

2
k’ k’ k’k’ |W | |W ||W |

0 2 3 4 5 61

2

10 11 12 13 14 15 16 22 23 2417 18 19 20 21987

4 5 6

7 10 16 22

1 2 1 2 3 1 1

"18" "15""30"

01 501 1 4

"4" "5" "2"

kFigure 2: FKS sheme with quotienting2 Shmidt and Siegel [9℄ show how to simulate the FKS hashing sheme in a \minimal"version (i.e. the hash table has size n), using O(n + log logm) bits of storage for the hashfuntion (still with onstant lookup time).One an thus get a spae usage of n log mn + O(n) bits for the hash table elements, andO(n + log logm) for the hash funtion, that is:Proposition 4 The stati ditionary problem with worst ase onstant lookup time an besolved using B +O(n + log logm) bits of storage.Together with the ditionary of the previous setion, this gives our �rst improvement of theresult in [2℄. As a orollary, we get a partial answer to an open problem stated in [5℄:Corollary 5 When n = !(log logm= log log logm), the stati ditionary problem with worstase onstant lookup time an be solved using n words of storage (word size logm).Proof. The ditionary of Proposition 4 uses n logm � n log n +�(n + log logm) bits. Byassumption n log n = !(log logm), so this is less than n logm bits for n > N , where N issome suÆiently large onstant. For n � N we an simply list the elements of S. 27

Re�nementTo ahieve a redundany sub-linear in n, we annot use the hash funtions of [9℄, sinethe representation is
(n) bit redundant (and it is far from lear, whether a onstant timeevaluable minimal, perfet hash funtion an have o(n) bit redundany). Also, it must betaken are of that o(1) bit is wasted in eah hash table ell, i.e. nearly all bit patterns in allells must be possible independently.To use less spae for storing the hash funtion, we will not require it to be perfet, butonly to be perfet on some suÆiently large subset of S (whih we handle �rst). The rest ofS may then be handled by a ditionary that wastes more bits per element.We use a hash funtion family from [6℄: For any prime p and positive integers k, a, de�nethe funtion hk;p : u 7! (k � u mod p) mod aThe family is indexed by k; p | parameter a is regarded as \�xed" sine it will dependonly on m and n. Parameter p, where p > a, will be hosen later. The orrespondingquotient funtion family is qk;p de�ned earlier. We prove that qk;p is indeed appropriate:Lemma 6 Let Aj(k; p) = fu 2 U j hk;p(u) = jg be the subset of U hashing to j. For any j,qk;p is 1-1 on Aj(k; p). Furthermore, qk;p[U ℄ � f0; : : : ; r � 1g, where r = dm=pe � dp=ae.Proof. Let u1; u2 2 Aj(k; p) be suh that qk;p(u1) = qk;p(u2), in partiular u1 div p =u2 div p and (k � u1 mod p) div a = (k � u2 mod p) div a. By the latter equation and theassumption on u1; u2, we have k � u1 mod p = k � u2 mod p, so sine p is prime and k 6= 0,u1 mod p = u2 mod p. Sine also u1 div p = u2 div p it must be the ase that u1 = u2.The bound on the range of qk;p is straightforward. 2We shall make use of the following result from [6℄, whih states that that one an get an\almost 1-1 on S" hash funtion hk;p by hashing to a super-linear size table:Lemma 7 If the map u 7! u mod p is 1-1 on S, there exists k suh that hk;p is 1-1 on aset S1 � S, where jS1j � (1�O(na))jSj.Without loss of generality, we will assume S1 to be maximal, i.e. hk;p[S1℄ = hk;p[S℄.The idea will be to build two ditionaries: One for S1 of Lemma 7, and one for S2 = SnS1.Lookup may then be aomplished by querying both ditionaries.The ditionary for S1 onsists of the funtion hk;p of Lemma 7, together with an a-element\virtual" hash table (a < n log n to be determined). The virtual table ontains n1 = jS1j non-empty ells; to map these positions into n1 onseutive memory loations, we need a partialfuntion de�ned on hk;p[S℄ and mapping these elements bijetively to f1; : : : ; n1g. The statirank ditionary of setion 2 is used for this (two rank queries are used in order to determineif a position is used). Figure 3 shows an overview of the onstrution. By Theorem 2 therank ditionary uses nearly minimal memory: n1 log an1 +(a�n1) log aa�n1 +O(a log lognlogn) bits.The �rst term is n1 log an + O(n2=a). The seond term is less than n1ln 2 ; we show somethingslightly stronger:Lemma 8 The following estimate holds: (m� n) log mm�n = nln 2 ��(n2=m).8

h rank

u

Virtual table

Real table

h(u) rank(h(u))

1{1, .. , n }

{0, .. , a-1}

U

Figure 3: Overview of the ditionary for S1Proof. We an assume n = o(m). The Taylor series ln(1 � x) = �Pi>0 xi=i showsln(1 � 1=x) = �1=x � 1=2x2 � O(x�3). Writing (m � n) log mm�n = n�mln 2 ln(1 � n=m) andplugging in the above with x = m=n gives the result. 2It is interesting to note that hk;p and the rank ditionary onstitute a perfet hash funtionfor S1, but use more spae2 than the O(n + log logm) bits suÆient the represent suh afuntion. However, as we shall see, the rank ditionary enodes just enough information onS to justify this extra use of spae.We next show that the memory used for the hash table elements in the S1 ditionary,n1dlog re bits, an be made lose to n1 log mn :Lemma 9 There exists a prime p = O(n2 lnm) suh that for any A � 3p with A =O(n log n), there is a value of a, with A=3 � a � A, and:1. The map u 7! u mod p is 1-1 on S.2. n1dlog re = n1 log ma +O(na=m+ n12=21)Proof. The memory used for storing eah table element is dlog re. This an be made loseto log r:Claim 10 For any x; y 2 R+ and z 2 N, with x=z � 3, there exists z0 2 fz +1; : : : ; 3zg, suh that dlogdx=z0e+ ye � log(x=z0) + y +O(z=x + 1=z).Proof. Sine x=z � 3, it follows that logdxz e + y and logd x3z e + y, have di�erentinteger parts. So there exists z0, z < z0 � 3z, suh that dlogd xz0 e + ye � logd xz0�1e+y.A simple alulation gives logd xz0�1e+y = log xz0�1+y+O(z=x) = log xz0 +log z0z0�1+y +O(z=x) = log xz0 + y +O(z=x + 1=z), and the onlusion follows. 2Sine log r = logdp=ae + logdm=pe and p=A > 3, the laim gives (for any p) an a suh thatdlog re = log r +O(a=p + 1=a).2When a = !(n), whih will be the ase 9

Parameter p is hosen suh that u 7! u mod p is 1-1 on S, suh that it is not too big (itneeds to be stored) and suh that r is not muh larger than m=a.Claim 11 In both of the following ranges, there exists a prime p, suh that u 7! umod p is 1-1 on S:1. n2 lnm � p � 3n2 lnm (this will be our hoie when m > n3 lnm)2. m < p < m+m12=21 (this will be our hoie when m � n3 lnm)Proof. The existene of a suitable prime between n2 lnm and 3n2 lnm is guar-anteed by the prime number theorem (in fat, at least half of the primes in theinterval will work). See [6, Lemma 2℄ for details. By [7℄ the number of primesbetween m and m+m� is
(m�= logm) for any � > 11=20. Take � = 12=21 and letp be suh a prime; naturally the map is then 1-1. 2For an estimate of log r in terms of m, n and a, we look at the ases for p in Claim 11:1. log r � log(ma (1 + ap + pm)) = log(m=a) + O(a=p + p=m) = log(m=a) + O(1=n), sinea = O(n log n)2. log r = logdp=ae � logdm+m12=21a e � log(ma (1 + am + m�9=21)) = log(m=a) + O(a=m +m�9=21)This, together with Claim 10, gives that the n1 hash table entries use n1 log(m=a)+O(na=m+n12=21) bits. 2We an now ompute the total spae onsumption for the S1 ditionary:� O(log n + log logm) bits for the k, p and a parameters, and for various pointers (thewhole representation has size < n logm bits).� n1 log an + n1ln 2 +O(a log lognlogn + n2=a) bits for the \virtual table" mapping.� n1 log ma +O(nam + n12=21) bits for the hash table ontents.This adds up to n1 log mn + n1ln 2 +O(n2a + nam + a log lognlogn + log logm) bits.We now look at the spae of the ditionary for S2. First note that sine S2 � [j2hk;p [S1℄A(k; j),the rank ditionary o�ers a onstant time omputable map, whih is 1-1 on S2, namely�2 : u 7! r � rank(hk;p(u)) � qk;p(u), where the rank is with respet to hk;p[S1℄ (i.e. the setstored in the rank ditionary). A ditionary for �2[S2℄ is onstruted with respet to the uni-verse U2 = �2[U ℄ (a query for u will be \onverted", in onstant time, into a query for �2(u)).We then only have to deal with a universe of size jU2j = O(mn=a). The S2 ditionary maybe built using the ditionary of Proposition 4, without wasting too many bits: The spaeusage is n2 log jU2jn2 + n2ln 2 + O(n2 + log logm) = n2 log mn + n2ln 2 + O(n2=a + log logm). Thus,10

the total spae usage of our sheme is n log mn + nln 2 +O(n2a + nam + a log lognlogn + log logm) bits.Using the estimate in Lemma 8 this isB +O(n2a + nam + a log log nlog n + log logm) bitsWe now get the main theorem:Theorem 12 The stati ditionary problem with worst ase onstant lookup time an besolved with storage:1. B +O(nplog log n= log n+ log logm) bits, for n < m log logmlogm .2. B +O(npn=m) bits, for m log logmlogm � n < m(log logmlogm)2=3.3. B +O(m log logmlogm) bits, for n � m(log logmlogm)2=3.Proof. In ase 1. hoose a = �(nplog n= log log n). In ase 2. hoose a = �(pmn) in theabove onstrution. In ase 3. we use the ditionary of the previous setion. 2We have not assoiated any information with the elements of our set. In the non-dense ase,it is possible to store a partial funtion de�ned on S, mapping into a �nite set V , with theexat same redundany as in Theorem 12 (this time the information theoretial minimumis BV = B + n log jV j). The data struture is a simple modi�ation of the above; the valueof a is hosen suh that the information paked in a hash table ell (quotient and funtionvalue) omes from a domain of size lose to a power of 2.Theorem 13 The stati partial funtion problem with worst ase onstant lookup time anbe solved with storage:1. BV +O(nplog log n= log n+ log logm) bits, for n < m log logmlogm .2. BV +O(npn=m) bits, for n � m log logmlogm .For n = �(m) the rank ditionary gives a o(n) bit redundant solution when jV j is a powerof 2, but it seems hard to avoid wasting
(1) bit for eah funtion value for general jV j.3.1 ConstrutionWe now sketh how to onstrut the stati ditionary desribed above, in expeted timeO(n + (log logm)O(1)). The last part of the expression omes from the time needed to �ndthe prime p of the hash funtion, but is so small that it an be ignored unless m is very largeompared to n.First note that the hardest part is �nding the parameters p and k of the hash funtion,and building the ditionary for S2: 11

� Parameter a is simple to ompute aording to Claim 10, for example by binary searhon the interval in whih a is wanted.� Theorem 3 implies that the rank ditionary for hk;p[S℄ with respet to f0; : : : ; a � 1gan be onstruted in time O(n) (The initial sorting an be done in linear time usingRadix-sort).� Filling in quotient values in the hash table is learly possible in onstant time perelement one hk;p, qk;p and the rank ditionary are available.Parameter p is found by randomly hoosing numbers from the interval given in Claim 11.Eah suh number hosen is heked for primality (using a probabilisti hek whih usesexpeted time poly-logarithmi in the number heked [1℄, that is, time (log n+log logm)O(1)).When a prime is found, it is heked that the map u 7! u mod p is 1-1 on S (time O(n)using Radix-sort on the funtion values). The following sharpening of the statement of Claim11 implies that all of this takes expeted time O(n + (log logm)O(1)):Claim 11'1. When hoosing a random number in fx; : : : ; x+ yg, where x12=21 � y � 2x, it is primewith probability
(1= log x).2. When hoosing a random prime q 2 fn2 lnm; : : : ; 3n2 lnmg, the map u 7! u mod q is1-1 on S with probability at least 1=2.Proof. Same as Claim 11. 2Parameter k is hosen at random and heked for the inequality of Lemma 7 (in timeO(n)). For a large enough onstant in the big-oh of Lemma 7, the expeted number ofattempts made before �nding a suitable k is onstant, and thus the expeted time for thehoie is O(n).The ditionary for S2 (based on [9℄) an be built in expeted time O(jS2j). This is notdesribed in [9℄, but the only real hange ompared to the expeted O(n) time onstrutionin the FKS sheme is how to hoose seond-level hash funtions: At all times maintain alinked list of all bukets for whih no resolving hash funtion has been found. In eah of log nrounds, a hash funtion resolving bukets ontaining at least half the remaining elements ofS2 is found. When randomly seleting hash funtions, the expeted number of unsuessfulattempts eah round is onstant, and the ost of an attempt is proportional to the numberof remaining elements. So the expeted time for hoosing all hash funtions is linear.Thus we have:Theorem 14 The data struture of Theorem 12 an be onstruted in expeted time O(n+(log logm)O(1)). 12

4 Dynami versionIn this setion we outline how to apply quotienting to building a spae eÆient dynamiditionary, supporting insertion and deletion of elements. The ditionary uses O(B) bits,mathing the bound ahieved in [3℄ (more preisely, the data struture at all times resideswithin a ontiguous memory segment of O(B) bits). For simpliity, the model will not be aRAM, but a ell probe model, i.e. we only ount the number of memory aesses (the resultin [3℄ holds in a weaker RAM model). In partiular, tiny data strutures residing withina single word an trivially be handled. We require that the query and update routines are\memoryless", i.e. know nothing about the set stored when they are started.It has been known for some time how to implement dynami ditionaries using O(n) words[4℄. This is O(n logm) bits, and sine B = n log mn +�(n), this is O(B + n log n) bits. Thatis, the result in [4℄ yields:Theorem 15 There exists a dynami ditionary requiring O(B+n log n) bits, whih supportsworst-ase onstant time lookup and amortized expeted onstant time insertion and deletion.Note that the spae onsumption is O(B) for n = O(m1��), for onstant � > 0, hene we anonentrate on n =
(m1��). (But in fat, all we will be using is that a pointer to a bit inthe representation an be stored in O(log n) bits). On the other hand, as already notied,for very small universes the dynami ditionary problem is eÆiently solvable:Lemma 16 In a ell probe model with word size at least m, the dynami ditionary problemis solvable in spae O(B).The approah is to use a hash funtion to split the universe into parts, and handle eah\small universe" by a separate dynami ditionary. The small universes are Ui = h�1k;pfig,i = 0; : : : ; a � 1, where a = �(n= log n). (The number of universes is hosen suh thatpointers to all ditionaries an be stored in O(n) bits). We denote the orresponding subsetsby Si = S \ Ui. The quotient funtion qk;p is used for injetively mapping elements of Uito elements in the range f0; : : : ; O(m=a)g (the ditionary handling Ui will work on thesevalues).The history of the dynami ditionary proeeds in phases. Eah phase takes expetedO(n) time, and the number of insertions and deletions in a phase starting with a ditionaryof n elements is n=2. At the beginning of eah phase, the entire ditionary is rebuilt (inexpeted O(n) time). Eah small ditionary is given twie as muh spae as it uses. If itruns out of spae, it is moved and given twie as muh spae in the upper, unused memoryarea. This guarantees that the total spae used at any time is O(1) times the spae oupiedby the ditionaries.If we handle eah universe by a ditionary of the kind given by Theorem 15, the totalspae onsumption is O(B+Pi jSij log jSij) bits (using Lemma 1). We now investigate whenthis an be made O(B). Let ~S be the set of all elements whih are in the ditionary duringsome phase, starting with n elements; we have the following:Lemma 17 Let p be a prime suh that m < p < 2m. Consider the sets ~Si = ~S \ h�1k;pfig.For at least half the hoies of k 2 f1; : : : ; p� 1g we have: Pi j ~Sij log j ~Sij = O(n log log n).13

Proof. By the results in [6℄, for at least half the hoies of k we havePi j ~Sij2 = O(j ~Sj2=a) =O(n log n). This means that the number of ~Si of size more than log n is O(n= log n), so thesesets ontribute only O(n) to the sum. 2Therefore, with probability at least 1=2 the hoie of hash funtion is \good". With proba-bility at most 1=2, the inequality of Lemma 17 fails to hold at some time during the phase.In this ase a new hash funtion is hosen, and everything is rebuilt. The expeted time fora phase is therefore O(n). We have arrived at:Proposition 18 There exists a dynami ditionary requiring O(B + n log log n) bits, whihsupports worst-ase onstant time lookup and amortized expeted onstant time insertion anddeletion.This is O(B) bits when n = O(m= log�m), for onstant � > 0.In order to deal with the ase n =
(m= log�m), eah small universe is split intolog n= log log n \tiny universes" using another hash funtion. Again, all hash funtions andpointers to the ditionaries of the tiny universes use O(n) bits, sine the entire data struturefor the small universe has size logO(1) n. Now the size of eah tiny universe is m log log n=n,whih is log�m log log n and hene less than one word. So Lemma 16 an be used to handlethe tiny ditionaries. The analysis of this is similar to that leading to Proposition 18, butnow on two levels (eah small ditionary has phases, et.). We do not go into details, butjust stateTheorem 19 There exists a dynami ditionary requiring O(B) bits, whih supports worst-ase onstant time lookup and amortized expeted onstant time insertion and deletion in aell probe model.5 ConlusionWe have seen that for the stati ditionary problem it is possible to ome very lose tothe information theoreti minimum, while retaining onstant lookup time. The importantingredient in the solution is the onept of quotienting. Thus, the existene of an eÆientlyevaluable orresponding quotient funtion is a good property of a hash funtion. It is alsoruial for the solution that the hash funtion used hashes U quite evenly to the bukets.It would be interesting to determine the exat redundany neessary to allow onstanttime lookup. In partiular, it is remarkable that no lower bound is known, without therestritions mentioned in the introdution. A lower bound in a ell probe model (whereonly the number of memory ells aessed is onsidered) would be interesting. As for upperbounds, a less redundant way of mapping the elements of the virtual table to onseutivememory loations would immediately improve the asymptoti redundany of our sheme.The idea of �nding a replaement for the hk;p hash funtion, whih an hash to a smaller\virtual table" or be 1-1 on a larger subset of S will not bring any improvement, beause ofa very sharp rise in the memory needed to store a funtion whih performs better than hk;p.14

Referenes[1℄ L. Adleman and M. Huang. Reognizing primes in random polynomial time. In Alfred Aho,editor, Proeedings of the 19th Annual ACM Symposium on Theory of Computing, pages 462{469, New York City, NY, May 1987. ACM Press.[2℄ A. Brodnik and J. I. Munro. Membership in onstant time and almost minimum spae. Toappear in SIAM Journal on Computing.[3℄ A. Brodnik and J. I. Munro. Membership in onstant time and minimum spae. Leture Notesin Computer Siene, 855:72{81, 1994.[4℄ Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, HansRohnert, and Robert E. Tarjan. Dynami perfet hashing: Upper and lower bounds. SIAMJournal on Computing, 23(4):738{761, August 1994.[5℄ Faith Fih and Peter Bro Miltersen. Tables should be sorted (on random aess mahines). InAlgorithms and data strutures (Kingston, ON, 1995), pages 482{493. Springer, Berlin, 1995.[6℄ Mihael L. Fredman, J�anos Koml�os, and Endre Szemer�edi. Storing a sparse table with O(1)worst ase aess time. J. Asso. Comput. Mah., 31(3):538{544, 1984.[7℄ D. R. Heath-Brown and H. Iwanie. On the di�erene between onseutive primes. Invent.Math., 55(1):49{69, 1979.[8℄ Peter Bro Miltersen. Lower bounds for stati ditionaries on RAMs with bit operations but nomultipliation. In Automata, languages and programming (Paderborn, 1996), pages 442{453.Springer, Berlin, 1996.[9℄ Jeanette P. Shmidt and Alan Siegel. The spatial omplexity of oblivious k-probe hash fun-tions. SIAM J. Comput., 19(5):775{786, 1990.[10℄ Robert Endre Tarjan and Andrew Chi Chih Yao. Storing a sparse table. Communiations ofthe ACM, 22(11):606{611, November 1979.[11℄ Andrew Chi Chih Yao. Should tables be sorted? J. Asso. Comput. Mah., 28(3):615{628,1981.
15

Recent BRICS Report Series Publications

RS-98-28 Rasmus Pagh. Low Redundancy in Dictionaries with O(1)
Worst Case Lookup Time. November 1998. 15 pp.

RS-98-27 Jan Camenisch and Markus Michels. A Group Signature
Scheme Based on an RSA-Variant. November 1998. 18 pp. Pre-
liminary version appeared in Ohta and Pei, editors,Advances
in Cryptology: 4th ASIACRYPT Conference on the Theory and
Applications of Cryptologic Techniques, ASIACRYPT ’98 Pro-
ceedings, LNCS 1514, 1998, pages 160–174.

RS-98-26 Paola Quaglia and David Walker.On Encoding p� inm�. Oc-
tober 1998. 27 pp. Full version of paper to appear inFounda-
tions of Software Technology and Theoretical Computer Science:
18th Conference, FCT&TCS ’98 Proceedings, LNCS, 1998.

RS-98-25 Devdatt P. Dubhashi.Talagrand’s Inequality in Hereditary Set-
tings. October 1998. 22 pp.

RS-98-24 Devdatt P. Dubhashi.Talagrand’s Inequality and Locality in
Distributed Computing. October 1998. 14 pp.

RS-98-23 Devdatt P. Dubhashi.Martingales and Locality in Distributed
Computing. October 1998. 19 pp.

RS-98-22 Gian Luca Cattani, John Power, and Glynn Winskel.A Cate-
gorical Axiomatics for Bisimulation. September 1998. ii+21 pp.
Appears in Sangiorgi and de Simone, editors,Concurrency
Theory: 9th International Conference, CONCUR ’98 Proceed-
ings, LNCS 1466, 1998, pages 581–596.

RS-98-21 John Power, Gian Luca Cattani, and Glynn Winskel.A Rep-
resentation Result for Free Cocompletions. September 1998.
16 pp.

RS-98-20 Søren Riis and Meera Sitharam.Uniformly Generated Submod-
ules of Permutation Modules. September 1998. 35 pp.

RS-98-19 Søren Riis and Meera Sitharam.Generating Hard Tautologies
Using Predicate Logic and the Symmetric Group. September
1998. 13 pp.

RS-98-18 Ulrich Kohlenbach. Things that can and things that can’t be
done in PRA. September 1998. 24 pp.

