
B
R

IC
S

R
S

-98-28
R

.P
agh:

Low
R

edundancy
in

D
ictionaries

w
ithO(1)

W
orstC

ase
Lookup

T
im

e

BRICS
Basic Research in Computer Science

Low Redundancy in Dictionaries withO(1) Worst Case Lookup Time

Rasmus Pagh

BRICS Report Series RS-98-28

ISSN 0909-0878 November 1998

Copyright c
 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectoryRS/98/28/

Low redundan
y in di
tionaries with O(1) worst
aselookup timeRasmus PaghNovember 1998Abstra
tA stati
 di
tionary is a data stru
ture for storing subsets of a �nite universe U ,so that membership queries
an be answered eÆ
iently. We study this problem in aunit
ost RAM model with word size
(log jU j), and show that for n-element subsets,
onstant worst
ase query time
an be obtained using B +O(log log jU j) + o(n) bits ofstorage, where B = dlog2 �jU jn �e is the minimum number of bits needed to represent allsu
h subsets. The solution for dense subsets uses B + O(jU j log log jU jlog jU j) bits of storage,and supports
onstant time rank queries. In a dynami
 setting, allowing insertions anddeletions, our te
hniques give an O(B) bit spa
e usage.1 Introdu
tionConsider the problem of storing a subset S of a �nite set U , su
h that membership queries,\u 2 S?",
an be answered in worst-
ase
onstant time on a unit
ost RAM. Sin
e we areinterested only in membership queries, we assume that U = f0; : : : ;m� 1g. We restri
t theattention to the
ase where elements of U
an be represented within O(1) ma
hine words.In parti
ular it is assumed that the usual RAM operations (in
luding multipli
ation) onnumbers of size mO(1)
an be done in
onstant time.Our goal will be to solve this data stru
ture problem using little memory, measured in
onse
utive bits1. We express the
omplexity in terms of m = jU j and n = jSj, and often
onsider the asymptoti
s when n is a fun
tion of m. Sin
e the queries
an distinguish anytwo subsets of U , we need at least �mn� di�erent memory
on�gurations, that is, at leastB = dlog �mn�e bits (log is base 2 throughout this paper). Using Stirling's approximation tothe fa
torial fun
tion, one
an get B = n log mn + (m � n) log mm�n � O(log n(m�n)m), see [3℄.For n = o(m) the dominant term is n log mn , sin
e (m� n) log mm�n = �(n).Previous workThe (stati
) di
tionary is a very fundamental data stru
ture, and it has been heavily stud-ied. We will fo
us on the development in spa
e
onsumption for worst
ase
onstant time1A part of the last word may be unused, and the query algorithm must work regardless of the
ontentsof this part 1

lookup s
hemes. A bit ve
tor is the simplest possible solution to the problem, but the spa
e
omplexity of m bits is poor
ompared to B unless n t m=2. During the 70's, s
hemeswere suggested whi
h obtain a spa
e
omplexity of O(n) words, that is O(n logm) bits, forrestri
ted
ases (e.g. \dense" or very sparse sets). It was not until the early 80's that Fred-man, Koml�os and Szemer�edi [6℄ found a hashing s
heme using O(n) words in the general
ase. A re�ned solution in their paper uses B + O(n log n + log logm) bits. Brodnik andMunro [3℄
onstru
t a stati
 di
tionary using O(B) bits for any m and n. In the journalversion of this paper [2℄, they a
hieveB+O(Blog log logm) bits, and raise the question whether amore powerful model of
omputation is needed to further tighten the gap to the informationtheoreti
 minimum.Yao [11℄ showed that in a restri
ted model, where words in the data stru
ture must
ontain elements of S, the number of words ne
essary for o(log n) time lookup
annot bebounded by a fun
tion of n. Fi
h and Miltersen [5℄ showed that on a RAM with standardunit
ost arithmeti
 operations but without division and bit operations, o(log n) time lookuprequires
(m=n�) words of memory for any � > 0. In [8℄ a RAM with bit operations butwithout multipli
ation is
onsidered, and a lower bound of m�, for some � > 0, is shownwhen n = mo(1). No lower bound better than the trivial B bits seems to be known withoutrestri
tions on the data stru
ture or the query algorithm.As for dynami
 di
tionaries, an O(n) word solution giving
onstant time lookup and
onstant expe
ted amortized time for deletions and insertions is given in [4℄. The spa
eusage is improved in [3℄, where a solution using O(B) bits (with the same time bounds) issket
hed.This paperThe result of Brodnik and Munro is strengthened, bringing the additional term of the spa
e
omplexity, whi
h we shall
all the redundan
y, down to o(n) + O(log logm) bits. In par-ti
ular, for n = !(log logm) this means a vanishing number of redundant bits per elementstored. The exa
t order of the bound,
ompared with lower bounds on the redundan
y ofthe solution in [2℄, is given in the table below.Range Brodnik/Munro This papern < m log logmlogm n log logm nq log lognlogn + log logmm log logmlogm � n < m(log logmlogm)2=3 n log logm npn=m < n 3q log lognlognn � m(log logmlogm)2=3 min(n log logm; m(log logm)O(log log logm)) m log logmlogm < n 3q log lognlognWe also show how to asso
iate information from some domain to ea
h element of S (solvingthe partial fun
tion problem), with the same redundan
y as above, ex
ept for the last
ase(the \dense" range).The main observation is that one
an save spa
e by \
ompressing" the hash table partof data stru
tures based on (perfe
t) hashing, storing in ea
h
ell not the element itself, butonly a quotient | information that distinguishes it from the part of U that hashes to this
ell. This te
hnique, referred to as quotienting, is des
ribed in se
tion 3, together with the2

main
onstru
tion.For dense subsets another te
hnique is used, building upon the ideas of range redu
tionand a \table of small ranges" (both used in [2℄). This di
tionary supports rank queries, afa
t whi
h will be used in the
onstru
tion for the non-dense
ase. This is treated in se
tion2. The �rst part of se
tion 3 des
ribes a B + O(n + log logm) bit s
heme whi
h does notdepend on se
tion 2, and
an be read independently.Se
tion 4 des
ribes a dynami
 di
tionary (insertions and deletions supported in expe
tedamortized
onstant time), whi
h uses O(B) bits.2 Dense subsetsIn this se
tion we des
ribe a data stru
ture for storing sets, whi
h is spa
e eÆ
ient for densesubsets (say, n =
(m log logm= logm)). The data stru
ture will support queries on theranks of elements (where the rank of u is de�ned as rank(u) = jfv 2 Sjv � ugj). Using rankqueries, it is possible to do membership queries; therefore we will
all the data stru
turepresented a stati
 rank di
tionary.We split the universe into blo
ks Ui of size b (b < logm to be determined). Without lossof generality, assume m = b �s for some s 2 N| otherwise pad U with at most b�1 dummyelements, in
reasing the �nal spa
e
onsumption with O(b) bits. Let Ui = fb�i : : : b�(i+1)�1gdenote the ith blo
k. Blo
ks are grouped into
lusters of
 blo
ks ea
h.The idea will be to \expli
itly" store the rank of the �rst element of ea
h blo
k, andstore a
ompressed representation of the blo
k itself. Extra
tion of rank information fromthis
ompressed form is done by table lookup. The ranks are stored using a 2-level stru
ture(also used by Tarjan and Yao in [10℄): The \A" level holds the rank of the �rst element inea
h
luster, and the \B" level holds the o�set in rank for ea
h blo
k within the
lusters,see Figure 1. Pointers to the
ompressed blo
ks are stored in the same way.
c blocks

B

s blocks

.

. A

. . . .b bitsUFigure 1: Splitting of U and stru
ture of A and B tablesLet ptr(i) denote a pointer to the
ompressed representation of blo
k i and let bx
y =bx=y
 � y be the largest number less than x whi
h is a multiple of y. The representation
onsists of the following:� Table Ar (dlogme bits/element), where Ar[i℄ = rank(b �
 � i), i = 0 : : : ds=
e � 1.3

� Table Br (dlog(
 logm)e bits/element), where Br[i℄ = rank(b � i) � rank(b � bi

), i =0 : : : s� 1.� Table Ap (dlogme+ 1 bits/element), where Ap[i℄ = ptr(
 � i), i = 0 : : : ds=
e � 1.� Table Bp (dlog(
 logm)e+1 bits/element), where Bp[i℄ = ptr(i)�ptr(bi

), i = 0 : : : s�1.� A bit string C
ontaining the ordered
ompressed representations of blo
ks. The rep-resentation of blo
k i is the number x = jS \Uij, dlog logme bits, followed by dlog �bx�ebits representing S \ Ui.� Table D (dlog logme bits/element), where D[x; y; z℄ is the rank of the zth element ofthe set with x elements and
ompressed representation the �rst bits of y (if any su
hset exists, otherwise unde�ned), x; z = 0 : : : b, y = f0; 1gb. Elements are numbered1 : : : b, the 0th element has rank 0 by de�nition.A query for the rank of u
an now be pro
essed as follows (C[a : : : b℄ denotes the bit stringstarting with C[a℄ and ending with C[b� 1℄):1. Cal
ulate the blo
k i = bu=b
, and
luster j = bi=

.2. Determine the rank of v = i � b as rank(v) = Ar[j℄ +Br[i℄.3. Determine the lo
ation of the
ompressed blo
k as ptr(i) = Ap[j℄ +Bp[i℄.4. Set x = C[ptr(i) : : :ptr(i)+dlog(
 logm)e℄ and y = C[ptr(i)+dlog(
 logm)e : : :ptr(i)+dlog(
 logm)e+ b℄.5. return rank(u) = rank(v) +D[x; y; u� v℄.The
orre
tness of the returned result should be immediate.AnalysisIt remains to be seen that the asserted spa
e bounds on the table elements hold. Clearlythe elements of tables Ar and Ap
an be represented with dlogme and dlogme + 1 bits,respe
tively (the latter be
ause C has length less than 2m). Br holds non-negative integersbounded by the largest possible di�eren
e in rank within a span of

onse
utive blo
ks, thatis, the elements are in the range 0 : : : b �
, so
ertainly dlog(
 logm)e bits is suÆ
ient. Sim-ilarly, Bp holds non-negative integers bounded by the largest possible di�eren
e in positionbetween the
ompressed representations within a span of

onse
utive blo
ks. And sin
ethe
ompressed representation of a blo
k o

upies less than 2b bits, we are done.Now, for the analysis of the representation size, we need the following lemma from [3℄ onthe total size of the
ompressed blo
ks:Lemma 1 Let xi = jS \ Uij and Bi = dlog � bxi�e. Then Ps�1i=0 Bi < B + s.4

Proof. We have Ps�1i=0 Bi <Ps�1i=0 log � bxi� + s � B + s. The latter inequality follows fromthe fa
t that Qs�1i=0 � bxi� is the number of sets having xi elements in blo
k i, whi
h is a subsetof all n-subsets in U . 2Summing up the representation sizes (leaving out O(logm) bits for various pointers) wehave:� O(m logmb
) bits in ea
h of Ar and Ap.� m log(
 logm)b +O(m=b) bits in ea
h of Br and Bp.� m log logmb +O(m=b) bits within C for representing set sizes� Less than B + dm=be bits in C for representing sets (by Lemma 1).� 2bbdlog be bits for D.Setting b =
 = � logm, for some 0 < � < 1 we get the following:Theorem 2 A stati
 rank di
tionary with worst
ase
onstant query time,
an be representedusing B +O(m log logmlogm) bits.By letting � vary by at most a fa
tor of 2, b and

an be set to a power of 2, makingmultipli
ation and division a matter of shifting. Navigating the 3-dimensional array D
analso be made easy by extending ea
h side of the \
ube" to have length a power of two. Thereader is invited to verify that this means the above result holds, even if the query algorithm
an use only AC0 instru
tions.Constru
tionWe now sket
h how to
onstru
t the stati
 rank di
tionary in O(n + m log logmlog2m) time. Forword length �(logm) this is proportional to the time needed to read the input and writethe representation, and thus optimal.The
onstru
tion algorithm will assume that the elements of S are given as a sorted list,u1 < � � � < un. This merely fa
tors out the problem of sorting: Starting with an unorderedlist of elements of S and the
orresponding rank di
tionary, one
an trivially sort in lineartime.First
onsider tables Ar and Br. They may easily be �lled out while running throughu1 : : : un. However, in the
ase of Br it is ineÆ
ient to �ll in
onse
utive identi
al elementsone at a time. Using a small table of pre
omputed words
ontaining repetitions of element-size patterns, and appropriate shift and masking operations, one
an �ll any part of a wordwith a repeating element pattern. Thus the
ost of �lling out Br
an be brought down tothe number of words in the representation of Br plus the number of
hanges in the o�set, n.For C we use a 2b-element table T ,
ontaining for any possible blo
k the
ompressedrepresentation and its length. Constru
ting C is then merely a matter of using ea
h blo
kas an index into the table. As positions of
ompressed representations get known, Ap andBp are �lled out similarly to Ar and Br. 5

The table T may be
onstru
ted in several ways. A simple one is to
ompute ea
helement in turn as a sum of at most b binomial
oeÆ
ients (from a pre
omputed table). Thisapproa
h takes time O(b2b) whi
h is o(m log logmlog2 m).D is
onstru
ted by running through T , for ea
h T [i℄ �lling in the �elds in D
on
erningthe blo
k
oded by i. Again, a small pre
omputed table is used, this time for
ounting bits.The
ost of all this is proportional to the number of entries in D, whi
h is again o(m log logmlog2 m).We
an now state the following:Theorem 3 The stati
 rank di
tionary of Theorem 2
an be
onstru
ted from a sorted listof elements in S, in time O(n + m log logmlog2m).3 Non-dense subsetsThis se
tion presents a stati
 di
tionary, whi
h is spa
e eÆ
ient unless the set S is dense (inwhi
h
ase the di
tionary of the previous se
tion is used). As mentioned in the overview, the
ompa
t representation a
hieved stems from the observation that ea
h bu
ket j of a hashtable may be resolved with respe
t to the part of the universe hashing to bu
ket j, whi
hwe denote by Aj.We phrase this in terms of inje
tive fun
tions on the Aj. Consider the lookup pro
edureof a di
tionary using a perfe
t hash fun
tion h, and a table T:pro
 lookup(x)return (T[h(x)℄=x);endIf q is a fun
tion whi
h is 1-1 on ea
h Aj (we
all this a quotient fun
tion), and we letT'[i℄:=q(T[i℄), then the following program is equivalent:pro
 lookup'(x)return (T'[h(x)℄=q(x));endThus, given a des
ription of q, it suÆ
es to use the hash table T'. The gain is that q mayhave a range signi�
antly smaller than U (ideally q would enumerate the elements hashingto ea
h bu
ket), and thus fewer bits are needed to store the elements of T'.We still need to argue that q need not be too expensive in terms of memory usageor evaluation time. The FKS perfe
t hashing s
heme [6℄ has a quotient fun
tion whi
h isevaluable in
onstant time, and
osts no extra spa
e in that its parameters k, p and a arepart of the data stru
ture already:qk;p : u 7! (u div p) � dp=ae + (k � u mod p) div aIntuitively, this fun
tion gives the information that is thrown away by the modulo ap-pli
ations of the s
heme's top level hash fun
tion (so in fa
t it is 1-1 even on the elementshashing to ea
h bu
ket in the top level hash table). Sin
e p = O(m), the range of thefun
tion is O(m=n), so log mn +O(1) bits suÆ
e for ea
h hash table element.6

Example This example assumes familiarity with the FKS s
heme [6℄ (and is in fa
tthe example in that paper subje
ted to quotienting). We look at U = f1; : : : ; 30g, S =f2; 4; 5; 15; 18; 30g, and
hoose p = 31, k = 2. The elements have the following quotientvalues: u 2 4 5 15 18 30qk;p(u) 0 1 1 5 0 4The quotient values take the pla
e of elements in the data stru
ture. The
orrespondingelements of S are written in quotes.
|W |

2
k’ k’ k’k’ |W | |W ||W |

0 2 3 4 5 61

2

10 11 12 13 14 15 16 22 23 2417 18 19 20 21987

4 5 6

7 10 16 22

1 2 1 2 3 1 1

"18" "15""30"

01 501 1 4

"4" "5" "2"

kFigure 2: FKS s
heme with quotienting2 S
hmidt and Siegel [9℄ show how to simulate the FKS hashing s
heme in a \minimal"version (i.e. the hash table has size n), using O(n + log logm) bits of storage for the hashfun
tion (still with
onstant lookup time).One
an thus get a spa
e usage of n log mn + O(n) bits for the hash table elements, andO(n + log logm) for the hash fun
tion, that is:Proposition 4 The stati
 di
tionary problem with worst
ase
onstant lookup time
an besolved using B +O(n + log logm) bits of storage.Together with the di
tionary of the previous se
tion, this gives our �rst improvement of theresult in [2℄. As a
orollary, we get a partial answer to an open problem stated in [5℄:Corollary 5 When n = !(log logm= log log logm), the stati
 di
tionary problem with worst
ase
onstant lookup time
an be solved using n words of storage (word size logm).Proof. The di
tionary of Proposition 4 uses n logm � n log n +�(n + log logm) bits. Byassumption n log n = !(log logm), so this is less than n logm bits for n > N , where N issome suÆ
iently large
onstant. For n � N we
an simply list the elements of S. 27

Re�nementTo a
hieve a redundan
y sub-linear in n, we
annot use the hash fun
tions of [9℄, sin
ethe representation is
(n) bit redundant (and it is far from
lear, whether a
onstant timeevaluable minimal, perfe
t hash fun
tion
an have o(n) bit redundan
y). Also, it must betaken
are of that o(1) bit is wasted in ea
h hash table
ell, i.e. nearly all bit patterns in all
ells must be possible independently.To use less spa
e for storing the hash fun
tion, we will not require it to be perfe
t, butonly to be perfe
t on some suÆ
iently large subset of S (whi
h we handle �rst). The rest ofS may then be handled by a di
tionary that wastes more bits per element.We use a hash fun
tion family from [6℄: For any prime p and positive integers k, a, de�nethe fun
tion hk;p : u 7! (k � u mod p) mod aThe family is indexed by k; p | parameter a is regarded as \�xed" sin
e it will dependonly on m and n. Parameter p, where p > a, will be
hosen later. The
orrespondingquotient fun
tion family is qk;p de�ned earlier. We prove that qk;p is indeed appropriate:Lemma 6 Let Aj(k; p) = fu 2 U j hk;p(u) = jg be the subset of U hashing to j. For any j,qk;p is 1-1 on Aj(k; p). Furthermore, qk;p[U ℄ � f0; : : : ; r � 1g, where r = dm=pe � dp=ae.Proof. Let u1; u2 2 Aj(k; p) be su
h that qk;p(u1) = qk;p(u2), in parti
ular u1 div p =u2 div p and (k � u1 mod p) div a = (k � u2 mod p) div a. By the latter equation and theassumption on u1; u2, we have k � u1 mod p = k � u2 mod p, so sin
e p is prime and k 6= 0,u1 mod p = u2 mod p. Sin
e also u1 div p = u2 div p it must be the
ase that u1 = u2.The bound on the range of qk;p is straightforward. 2We shall make use of the following result from [6℄, whi
h states that that one
an get an\almost 1-1 on S" hash fun
tion hk;p by hashing to a super-linear size table:Lemma 7 If the map u 7! u mod p is 1-1 on S, there exists k su
h that hk;p is 1-1 on aset S1 � S, where jS1j � (1�O(na))jSj.Without loss of generality, we will assume S1 to be maximal, i.e. hk;p[S1℄ = hk;p[S℄.The idea will be to build two di
tionaries: One for S1 of Lemma 7, and one for S2 = SnS1.Lookup may then be a

omplished by querying both di
tionaries.The di
tionary for S1
onsists of the fun
tion hk;p of Lemma 7, together with an a-element\virtual" hash table (a < n log n to be determined). The virtual table
ontains n1 = jS1j non-empty
ells; to map these positions into n1
onse
utive memory lo
ations, we need a partialfun
tion de�ned on hk;p[S℄ and mapping these elements bije
tively to f1; : : : ; n1g. The stati
rank di
tionary of se
tion 2 is used for this (two rank queries are used in order to determineif a position is used). Figure 3 shows an overview of the
onstru
tion. By Theorem 2 therank di
tionary uses nearly minimal memory: n1 log an1 +(a�n1) log aa�n1 +O(a log lognlogn) bits.The �rst term is n1 log an + O(n2=a). The se
ond term is less than n1ln 2 ; we show somethingslightly stronger:Lemma 8 The following estimate holds: (m� n) log mm�n = nln 2 ��(n2=m).8

h rank

u

Virtual table

Real table

h(u) rank(h(u))

1{1, .. , n }

{0, .. , a-1}

U

Figure 3: Overview of the di
tionary for S1Proof. We
an assume n = o(m). The Taylor series ln(1 � x) = �Pi>0 xi=i showsln(1 � 1=x) = �1=x � 1=2x2 � O(x�3). Writing (m � n) log mm�n = n�mln 2 ln(1 � n=m) andplugging in the above with x = m=n gives the result. 2It is interesting to note that hk;p and the rank di
tionary
onstitute a perfe
t hash fun
tionfor S1, but use more spa
e2 than the O(n + log logm) bits suÆ
ient the represent su
h afun
tion. However, as we shall see, the rank di
tionary en
odes just enough information onS to justify this extra use of spa
e.We next show that the memory used for the hash table elements in the S1 di
tionary,n1dlog re bits,
an be made
lose to n1 log mn :Lemma 9 There exists a prime p = O(n2 lnm) su
h that for any A � 3p with A =O(n log n), there is a value of a, with A=3 � a � A, and:1. The map u 7! u mod p is 1-1 on S.2. n1dlog re = n1 log ma +O(na=m+ n12=21)Proof. The memory used for storing ea
h table element is dlog re. This
an be made
loseto log r:Claim 10 For any x; y 2 R+ and z 2 N, with x=z � 3, there exists z0 2 fz +1; : : : ; 3zg, su
h that dlogdx=z0e+ ye � log(x=z0) + y +O(z=x + 1=z).Proof. Sin
e x=z � 3, it follows that logdxz e + y and logd x3z e + y, have di�erentinteger parts. So there exists z0, z < z0 � 3z, su
h that dlogd xz0 e + ye � logd xz0�1e+y.A simple
al
ulation gives logd xz0�1e+y = log xz0�1+y+O(z=x) = log xz0 +log z0z0�1+y +O(z=x) = log xz0 + y +O(z=x + 1=z), and the
on
lusion follows. 2Sin
e log r = logdp=ae + logdm=pe and p=A > 3, the
laim gives (for any p) an a su
h thatdlog re = log r +O(a=p + 1=a).2When a = !(n), whi
h will be the
ase 9

Parameter p is
hosen su
h that u 7! u mod p is 1-1 on S, su
h that it is not too big (itneeds to be stored) and su
h that r is not mu
h larger than m=a.Claim 11 In both of the following ranges, there exists a prime p, su
h that u 7! umod p is 1-1 on S:1. n2 lnm � p � 3n2 lnm (this will be our
hoi
e when m > n3 lnm)2. m < p < m+m12=21 (this will be our
hoi
e when m � n3 lnm)Proof. The existen
e of a suitable prime between n2 lnm and 3n2 lnm is guar-anteed by the prime number theorem (in fa
t, at least half of the primes in theinterval will work). See [6, Lemma 2℄ for details. By [7℄ the number of primesbetween m and m+m� is
(m�= logm) for any � > 11=20. Take � = 12=21 and letp be su
h a prime; naturally the map is then 1-1. 2For an estimate of log r in terms of m, n and a, we look at the
ases for p in Claim 11:1. log r � log(ma (1 + ap + pm)) = log(m=a) + O(a=p + p=m) = log(m=a) + O(1=n), sin
ea = O(n log n)2. log r = logdp=ae � logdm+m12=21a e � log(ma (1 + am + m�9=21)) = log(m=a) + O(a=m +m�9=21)This, together with Claim 10, gives that the n1 hash table entries use n1 log(m=a)+O(na=m+n12=21) bits. 2We
an now
ompute the total spa
e
onsumption for the S1 di
tionary:� O(log n + log logm) bits for the k, p and a parameters, and for various pointers (thewhole representation has size < n logm bits).� n1 log an + n1ln 2 +O(a log lognlogn + n2=a) bits for the \virtual table" mapping.� n1 log ma +O(nam + n12=21) bits for the hash table
ontents.This adds up to n1 log mn + n1ln 2 +O(n2a + nam + a log lognlogn + log logm) bits.We now look at the spa
e of the di
tionary for S2. First note that sin
e S2 � [j2hk;p [S1℄A(k; j),the rank di
tionary o�ers a
onstant time
omputable map, whi
h is 1-1 on S2, namely�2 : u 7! r � rank(hk;p(u)) � qk;p(u), where the rank is with respe
t to hk;p[S1℄ (i.e. the setstored in the rank di
tionary). A di
tionary for �2[S2℄ is
onstru
ted with respe
t to the uni-verse U2 = �2[U ℄ (a query for u will be \
onverted", in
onstant time, into a query for �2(u)).We then only have to deal with a universe of size jU2j = O(mn=a). The S2 di
tionary maybe built using the di
tionary of Proposition 4, without wasting too many bits: The spa
eusage is n2 log jU2jn2 + n2ln 2 + O(n2 + log logm) = n2 log mn + n2ln 2 + O(n2=a + log logm). Thus,10

the total spa
e usage of our s
heme is n log mn + nln 2 +O(n2a + nam + a log lognlogn + log logm) bits.Using the estimate in Lemma 8 this isB +O(n2a + nam + a log log nlog n + log logm) bitsWe now get the main theorem:Theorem 12 The stati
 di
tionary problem with worst
ase
onstant lookup time
an besolved with storage:1. B +O(nplog log n= log n+ log logm) bits, for n < m log logmlogm .2. B +O(npn=m) bits, for m log logmlogm � n < m(log logmlogm)2=3.3. B +O(m log logmlogm) bits, for n � m(log logmlogm)2=3.Proof. In
ase 1.
hoose a = �(nplog n= log log n). In
ase 2.
hoose a = �(pmn) in theabove
onstru
tion. In
ase 3. we use the di
tionary of the previous se
tion. 2We have not asso
iated any information with the elements of our set. In the non-dense
ase,it is possible to store a partial fun
tion de�ned on S, mapping into a �nite set V , with theexa
t same redundan
y as in Theorem 12 (this time the information theoreti
al minimumis BV = B + n log jV j). The data stru
ture is a simple modi�
ation of the above; the valueof a is
hosen su
h that the information pa
ked in a hash table
ell (quotient and fun
tionvalue)
omes from a domain of size
lose to a power of 2.Theorem 13 The stati
 partial fun
tion problem with worst
ase
onstant lookup time
anbe solved with storage:1. BV +O(nplog log n= log n+ log logm) bits, for n < m log logmlogm .2. BV +O(npn=m) bits, for n � m log logmlogm .For n = �(m) the rank di
tionary gives a o(n) bit redundant solution when jV j is a powerof 2, but it seems hard to avoid wasting
(1) bit for ea
h fun
tion value for general jV j.3.1 Constru
tionWe now sket
h how to
onstru
t the stati
 di
tionary des
ribed above, in expe
ted timeO(n + (log logm)O(1)). The last part of the expression
omes from the time needed to �ndthe prime p of the hash fun
tion, but is so small that it
an be ignored unless m is very large
ompared to n.First note that the hardest part is �nding the parameters p and k of the hash fun
tion,and building the di
tionary for S2: 11

� Parameter a is simple to
ompute a

ording to Claim 10, for example by binary sear
hon the interval in whi
h a is wanted.� Theorem 3 implies that the rank di
tionary for hk;p[S℄ with respe
t to f0; : : : ; a � 1g
an be
onstru
ted in time O(n) (The initial sorting
an be done in linear time usingRadix-sort).� Filling in quotient values in the hash table is
learly possible in
onstant time perelement on
e hk;p, qk;p and the rank di
tionary are available.Parameter p is found by randomly
hoosing numbers from the interval given in Claim 11.Ea
h su
h number
hosen is
he
ked for primality (using a probabilisti

he
k whi
h usesexpe
ted time poly-logarithmi
 in the number
he
ked [1℄, that is, time (log n+log logm)O(1)).When a prime is found, it is
he
ked that the map u 7! u mod p is 1-1 on S (time O(n)using Radix-sort on the fun
tion values). The following sharpening of the statement of Claim11 implies that all of this takes expe
ted time O(n + (log logm)O(1)):Claim 11'1. When
hoosing a random number in fx; : : : ; x+ yg, where x12=21 � y � 2x, it is primewith probability
(1= log x).2. When
hoosing a random prime q 2 fn2 lnm; : : : ; 3n2 lnmg, the map u 7! u mod q is1-1 on S with probability at least 1=2.Proof. Same as Claim 11. 2Parameter k is
hosen at random and
he
ked for the inequality of Lemma 7 (in timeO(n)). For a large enough
onstant in the big-oh of Lemma 7, the expe
ted number ofattempts made before �nding a suitable k is
onstant, and thus the expe
ted time for the
hoi
e is O(n).The di
tionary for S2 (based on [9℄)
an be built in expe
ted time O(jS2j). This is notdes
ribed in [9℄, but the only real
hange
ompared to the expe
ted O(n) time
onstru
tionin the FKS s
heme is how to
hoose se
ond-level hash fun
tions: At all times maintain alinked list of all bu
kets for whi
h no resolving hash fun
tion has been found. In ea
h of log nrounds, a hash fun
tion resolving bu
kets
ontaining at least half the remaining elements ofS2 is found. When randomly sele
ting hash fun
tions, the expe
ted number of unsu

essfulattempts ea
h round is
onstant, and the
ost of an attempt is proportional to the numberof remaining elements. So the expe
ted time for
hoosing all hash fun
tions is linear.Thus we have:Theorem 14 The data stru
ture of Theorem 12
an be
onstru
ted in expe
ted time O(n+(log logm)O(1)). 12

4 Dynami
 versionIn this se
tion we outline how to apply quotienting to building a spa
e eÆ
ient dynami
di
tionary, supporting insertion and deletion of elements. The di
tionary uses O(B) bits,mat
hing the bound a
hieved in [3℄ (more pre
isely, the data stru
ture at all times resideswithin a
ontiguous memory segment of O(B) bits). For simpli
ity, the model will not be aRAM, but a
ell probe model, i.e. we only
ount the number of memory a

esses (the resultin [3℄ holds in a weaker RAM model). In parti
ular, tiny data stru
tures residing withina single word
an trivially be handled. We require that the query and update routines are\memoryless", i.e. know nothing about the set stored when they are started.It has been known for some time how to implement dynami
 di
tionaries using O(n) words[4℄. This is O(n logm) bits, and sin
e B = n log mn +�(n), this is O(B + n log n) bits. Thatis, the result in [4℄ yields:Theorem 15 There exists a dynami
 di
tionary requiring O(B+n log n) bits, whi
h supportsworst-
ase
onstant time lookup and amortized expe
ted
onstant time insertion and deletion.Note that the spa
e
onsumption is O(B) for n = O(m1��), for
onstant � > 0, hen
e we
an
on
entrate on n =
(m1��). (But in fa
t, all we will be using is that a pointer to a bit inthe representation
an be stored in O(log n) bits). On the other hand, as already noti
ed,for very small universes the dynami
 di
tionary problem is eÆ
iently solvable:Lemma 16 In a
ell probe model with word size at least m, the dynami
 di
tionary problemis solvable in spa
e O(B).The approa
h is to use a hash fun
tion to split the universe into parts, and handle ea
h\small universe" by a separate dynami
 di
tionary. The small universes are Ui = h�1k;pfig,i = 0; : : : ; a � 1, where a = �(n= log n). (The number of universes is
hosen su
h thatpointers to all di
tionaries
an be stored in O(n) bits). We denote the
orresponding subsetsby Si = S \ Ui. The quotient fun
tion qk;p is used for inje
tively mapping elements of Uito elements in the range f0; : : : ; O(m=a)g (the di
tionary handling Ui will work on thesevalues).The history of the dynami
 di
tionary pro
eeds in phases. Ea
h phase takes expe
tedO(n) time, and the number of insertions and deletions in a phase starting with a di
tionaryof n elements is n=2. At the beginning of ea
h phase, the entire di
tionary is rebuilt (inexpe
ted O(n) time). Ea
h small di
tionary is given twi
e as mu
h spa
e as it uses. If itruns out of spa
e, it is moved and given twi
e as mu
h spa
e in the upper, unused memoryarea. This guarantees that the total spa
e used at any time is O(1) times the spa
e o

upiedby the di
tionaries.If we handle ea
h universe by a di
tionary of the kind given by Theorem 15, the totalspa
e
onsumption is O(B+Pi jSij log jSij) bits (using Lemma 1). We now investigate whenthis
an be made O(B). Let ~S be the set of all elements whi
h are in the di
tionary duringsome phase, starting with n elements; we have the following:Lemma 17 Let p be a prime su
h that m < p < 2m. Consider the sets ~Si = ~S \ h�1k;pfig.For at least half the
hoi
es of k 2 f1; : : : ; p� 1g we have: Pi j ~Sij log j ~Sij = O(n log log n).13

Proof. By the results in [6℄, for at least half the
hoi
es of k we havePi j ~Sij2 = O(j ~Sj2=a) =O(n log n). This means that the number of ~Si of size more than log n is O(n= log n), so thesesets
ontribute only O(n) to the sum. 2Therefore, with probability at least 1=2 the
hoi
e of hash fun
tion is \good". With proba-bility at most 1=2, the inequality of Lemma 17 fails to hold at some time during the phase.In this
ase a new hash fun
tion is
hosen, and everything is rebuilt. The expe
ted time fora phase is therefore O(n). We have arrived at:Proposition 18 There exists a dynami
 di
tionary requiring O(B + n log log n) bits, whi
hsupports worst-
ase
onstant time lookup and amortized expe
ted
onstant time insertion anddeletion.This is O(B) bits when n = O(m= log�m), for
onstant � > 0.In order to deal with the
ase n =
(m= log�m), ea
h small universe is split intolog n= log log n \tiny universes" using another hash fun
tion. Again, all hash fun
tions andpointers to the di
tionaries of the tiny universes use O(n) bits, sin
e the entire data stru
turefor the small universe has size logO(1) n. Now the size of ea
h tiny universe is m log log n=n,whi
h is log�m log log n and hen
e less than one word. So Lemma 16
an be used to handlethe tiny di
tionaries. The analysis of this is similar to that leading to Proposition 18, butnow on two levels (ea
h small di
tionary has phases, et
.). We do not go into details, butjust stateTheorem 19 There exists a dynami
 di
tionary requiring O(B) bits, whi
h supports worst-
ase
onstant time lookup and amortized expe
ted
onstant time insertion and deletion in a
ell probe model.5 Con
lusionWe have seen that for the stati
 di
tionary problem it is possible to
ome very
lose tothe information theoreti
 minimum, while retaining
onstant lookup time. The importantingredient in the solution is the
on
ept of quotienting. Thus, the existen
e of an eÆ
ientlyevaluable
orresponding quotient fun
tion is a good property of a hash fun
tion. It is also
ru
ial for the solution that the hash fun
tion used hashes U quite evenly to the bu
kets.It would be interesting to determine the exa
t redundan
y ne
essary to allow
onstanttime lookup. In parti
ular, it is remarkable that no lower bound is known, without therestri
tions mentioned in the introdu
tion. A lower bound in a
ell probe model (whereonly the number of memory
ells a

essed is
onsidered) would be interesting. As for upperbounds, a less redundant way of mapping the elements of the virtual table to
onse
utivememory lo
ations would immediately improve the asymptoti
 redundan
y of our s
heme.The idea of �nding a repla
ement for the hk;p hash fun
tion, whi
h
an hash to a smaller\virtual table" or be 1-1 on a larger subset of S will not bring any improvement, be
ause ofa very sharp rise in the memory needed to store a fun
tion whi
h performs better than hk;p.14

Referen
es[1℄ L. Adleman and M. Huang. Re
ognizing primes in random polynomial time. In Alfred Aho,editor, Pro
eedings of the 19th Annual ACM Symposium on Theory of Computing, pages 462{469, New York City, NY, May 1987. ACM Press.[2℄ A. Brodnik and J. I. Munro. Membership in
onstant time and almost minimum spa
e. Toappear in SIAM Journal on Computing.[3℄ A. Brodnik and J. I. Munro. Membership in
onstant time and minimum spa
e. Le
ture Notesin Computer S
ien
e, 855:72{81, 1994.[4℄ Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, HansRohnert, and Robert E. Tarjan. Dynami
 perfe
t hashing: Upper and lower bounds. SIAMJournal on Computing, 23(4):738{761, August 1994.[5℄ Faith Fi
h and Peter Bro Miltersen. Tables should be sorted (on random a

ess ma
hines). InAlgorithms and data stru
tures (Kingston, ON, 1995), pages 482{493. Springer, Berlin, 1995.[6℄ Mi
hael L. Fredman, J�anos Koml�os, and Endre Szemer�edi. Storing a sparse table with O(1)worst
ase a

ess time. J. Asso
. Comput. Ma
h., 31(3):538{544, 1984.[7℄ D. R. Heath-Brown and H. Iwanie
. On the di�eren
e between
onse
utive primes. Invent.Math., 55(1):49{69, 1979.[8℄ Peter Bro Miltersen. Lower bounds for stati
 di
tionaries on RAMs with bit operations but nomultipli
ation. In Automata, languages and programming (Paderborn, 1996), pages 442{453.Springer, Berlin, 1996.[9℄ Jeanette P. S
hmidt and Alan Siegel. The spatial
omplexity of oblivious k-probe hash fun
-tions. SIAM J. Comput., 19(5):775{786, 1990.[10℄ Robert Endre Tarjan and Andrew Chi Chih Yao. Storing a sparse table. Communi
ations ofthe ACM, 22(11):606{611, November 1979.[11℄ Andrew Chi Chih Yao. Should tables be sorted? J. Asso
. Comput. Ma
h., 28(3):615{628,1981.
15

Recent BRICS Report Series Publications

RS-98-28 Rasmus Pagh. Low Redundancy in Dictionaries with O(1)
Worst Case Lookup Time. November 1998. 15 pp.

RS-98-27 Jan Camenisch and Markus Michels. A Group Signature
Scheme Based on an RSA-Variant. November 1998. 18 pp. Pre-
liminary version appeared in Ohta and Pei, editors,Advances
in Cryptology: 4th ASIACRYPT Conference on the Theory and
Applications of Cryptologic Techniques, ASIACRYPT ’98 Pro-
ceedings, LNCS 1514, 1998, pages 160–174.

RS-98-26 Paola Quaglia and David Walker.On Encoding p� inm�. Oc-
tober 1998. 27 pp. Full version of paper to appear inFounda-
tions of Software Technology and Theoretical Computer Science:
18th Conference, FCT&TCS ’98 Proceedings, LNCS, 1998.

RS-98-25 Devdatt P. Dubhashi.Talagrand’s Inequality in Hereditary Set-
tings. October 1998. 22 pp.

RS-98-24 Devdatt P. Dubhashi.Talagrand’s Inequality and Locality in
Distributed Computing. October 1998. 14 pp.

RS-98-23 Devdatt P. Dubhashi.Martingales and Locality in Distributed
Computing. October 1998. 19 pp.

RS-98-22 Gian Luca Cattani, John Power, and Glynn Winskel.A Cate-
gorical Axiomatics for Bisimulation. September 1998. ii+21 pp.
Appears in Sangiorgi and de Simone, editors,Concurrency
Theory: 9th International Conference, CONCUR ’98 Proceed-
ings, LNCS 1466, 1998, pages 581–596.

RS-98-21 John Power, Gian Luca Cattani, and Glynn Winskel.A Rep-
resentation Result for Free Cocompletions. September 1998.
16 pp.

RS-98-20 Søren Riis and Meera Sitharam.Uniformly Generated Submod-
ules of Permutation Modules. September 1998. 35 pp.

RS-98-19 Søren Riis and Meera Sitharam.Generating Hard Tautologies
Using Predicate Logic and the Symmetric Group. September
1998. 13 pp.

RS-98-18 Ulrich Kohlenbach. Things that can and things that can’t be
done in PRA. September 1998. 24 pp.

