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Abstract
In this paper we describe the Medusa proxy, a tool for explor-
ing user-perceived Web performance. The Medusa proxy is a
non-caching forwarding proxy used in conjunction with a user’s
browser. The two key features that the Medusa proxy provides
are (1) the ability to simultaneously mirror HTTP requests from
the browser to different Web delivery systems and directly com-
pare the results, and (2) the ability to transform requests, e.g., to
transform Akamai URLs back into URLs to the customer’s origin
server.

We show how the Medusa proxy can be used to explore user-
perceived Web performance using two experiments that deter-
mine (1) to what extent using large-scale caching systems like
the NLANR cache hierarchy improve user-perceived latency, and
(2) to what extent content distribution networks like Akamai im-
prove latency compared with using their customer’s origin server.
We found that the NLANR cache hierarchy served 63% of HTTP
requests in our workload at least as fast as the origin servers, re-
sulting in a decrease of average latency of 15%. By transforming
and mirroring Akamai URLs to both Akamai edge servers and
their customer’s origin servers, we find that Akamai edge servers
are able to serve HTTP requests an average of 5.7 times as fast
as their customers. However, because requests to Akamai edge
servers are only 6% of our workload, we find that using Akamai
reduces overall mean latency by only 2% for our workload.

Keywords: User-Perceived Web Performance, Web Proxy, Web
Caching, Content Distribution Networks

1 Introduction
In this paper, we describe the Medusa proxy, a tool for explor-
ing user-perceived Web performance. There has been extensive
work evaluating the macroscopic impact of Web infrastructure
for improving overall Web performance, such as caching systems
(e.g., [2, 6, 7, 9, 16, 17, 19, 21, 25, 30, 32, 34]), prefetching systems
(e.g., [4, 11, 15, 18, 27, 29]), and to a limited extent content dis-
tribution networks (e.g., [20, 22]). Surprisingly, however, there
has been relatively little work characterizing the impact on Web
performance as perceived by the user of various Web delivery
systems. Although we have a relatively good understanding of
how improvements in Web infrastructure impact overall latency,
server load, and network utilization for large groups of users, we
do not have a good understanding of how those improvements
affect individual users at the desktop. In particular, there is no
convenient mechanism by which users can determine the impact
new developments in Web infrastructure, such as caching, con-
tent distribution, or prefetching, have on their Web browsing. For

example, it is not uncommon for users to believe that Web caches
impose noticeable overhead to browsing, or for content distribu-
tion network (CDN) companies such as Akamai [1] to make ag-
gressive claims about improvements in download performance.
Currently, though, there is no convenient way for users to vali-
date those beliefs or claims.

Characterizing user-perceived Web performance is challenging
because of the difficulty of generalizing conclusions about per-
formance results across a wide range of user environments and
network locations. Rather than try to generalize our conclusions
across a diverse group of users, we have developed the Medusa
proxy as a convenient tool with which individual users can ex-
plore their Web performance, and the impact of various Web de-
livery systems on that performance, from their desktop.

The Medusa proxy is a non-caching forwarding proxy used in
conjunction with a user’s browser. The Medusa proxy provides
two key features for experimenting with user-perceived Web per-
formance. The first feature is the ability to simultaneously mirror
HTTP requests from the browser to different Web delivery sys-
tems and directly compare the results. For example, the Medusa
proxy can mirror requests to a proxy cache and to the origin server
to evaluate the effectiveness of the proxy cache on reducing la-
tency. The second feature is the ability to transform HTTP re-
quests. For example, users can install a filter that transforms an
Akamai URL into the URL to the original object on the Aka-
mai customer’s origin server. By transforming and mirroring re-
quests, the Medusa proxy can then simultaneously download the
object from an Akamai edge server and the customer origin server
and evaluate the effectiveness of having Akamai deliver that cus-
tomer’s content to the user.

In this paper we describe the features of the Medusa Web proxy
and its uses for exploring Web performance, such as examining
HTTP request headers, mirroring requests and monitoring perfor-
mance, recording and replaying traces, transforming requests for
privacy or experimentation, validating responses from experimen-
tal delivery systems, and accelerating performance; in this paper,
we focus on user-perceived latency as the primary performance
metric, although the Medusa proxy can be used to explore other
performance metrics such as bandwidth, request rate, etc. We
then use the Medusa proxy to answer the following performance
and optimization questions:

� To what extent do large-scale cache systems like the
NLANR cache hierarchy improve user-perceived latency?

� What is the potential of using the Medusa proxy as a Web
accelerator, returning the fastest-of-n mirrored parallel re-
quests?

� To what extent do content distribution networks like Akamai
improve user-perceived latency over the performance of the
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customer’s origin server?

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 describes the features and im-
plementation of the Medusa proxy. Section 4 describes our ex-
perimental methodology and results for evaluating the NLANR,
Akamai, and Squid Web delivery systems on user-perceived Web
performance, and Section 5 concludes.

2 Related Work

The work most closely related to the Medusa proxy is the Simulta-
neous Proxy Evaluation (SPE) system proposed by Davison [13].
The SPE system has a similar goal in that it proposes to use mir-
roring to compare the performance of Web delivery systems such
as proxy caches from the perspective of clients. However, the
goals of comparing a Web delivery system with the origin servers,
or transforming requests, is not proposed (although it would seem
straightforward to incorporate). SPE was not implemented when
originally proposed, but Davison and Krishnan are currently im-
plementing it as the Rutgers Online Proxy Evaluator (ROPE) [14].

There have been a number of studies investigating Web user
behavior and client performance using passive monitoring. Cunha
et al. collected an early client trace at Boston University by instru-
menting the Mosaic browser used by people in their department,
and derived statistical characteristics of the client workload such
as object size and popularity [12]. Catledge and Pitkow also col-
lected a trace of Mosaic events from users at Georgia Tech, and
used it to study methods of user interaction with the browser as
well as user navigation patterns [8]. Kelly has recently collected
a very large anonymized client trace from WebTV, and has used
it to explore browser cache performance, reference locality, and
document aliasing [23]. All of these studies have used passive
measurement to explore user behavior and client performance,
whereas we use the Medusa proxy to compare the performance
of various Web delivery systems using active measurement.

Krishnamurthy and Wills [26] studied end-to-end Web per-
formance from a collection of client sites distributed around the
world to over 700 popular Web servers. They used active mea-
surements to study the performance tradeoffs of parallel, persis-
tent, and pipelined HTTP connections, as well as the interactions
of those connection schemes with caches and multi-server con-
tent distribution. Their study compared the user-perceived perfor-
mance of various HTTP protocol mechanisms, whereas we com-
pare the user-perceived performance of various Web delivery sys-
tems. They also transformed Akamai URLs to compare data rates
of Akamai edge servers with Akamai customer origin servers, and
characterized the prevalence of Akamai-served content in popular
Web servers. We use the same transformation technique to com-
pare response times between Akamai edge servers and customer
origin servers, and characterize the prevalence of Akamai-served
content in a small user workload.

Rajamony and Elnozahy recently presented a framework for
measuring the user-perceived response time of clients accessing
a particular Web service [31]. With this framework, the Web ser-
vice provider can characterize client response times to the ser-
vice to determine whether service performance needs to be im-
proved. This framework measures user-perceived performance
across all clients from the perspective of a single service, whereas
the Medusa proxy measures user-perceived performance from a

single user to all accessed services through a potential set of Web
delivery systems.

There has been comparatively little work experimentally evalu-
ating the performance of content distribution networks. In one re-
cent study, Johnson et al. compare the performance of two CDNs,
Akamai and Digital Island, in terms of their ability to select the
servers with minimum latency to the client [22]. However, they
do not evaluate the impact of the CDNs on user-perceived latency,
only on the relative performance of server selection within the
CDN.

There are tools that report user Web download performance,
such as Net.Medic [28], but they do not enable users to answer
exploratory questions such as whether a proxy cache is degrad-
ing their performance, or how much added value CDNs are actu-
ally providing to them. Commercial systems such as the Lateral
Line Network from Appliant.com [3] and various services from
Keynote [24] report on the health and performance of customer
Web sites from the perspective of many distributed users. How-
ever, as with the personal Web performance tools, these services
do not compare alternative delivery systems and their impact on
performance.

3 Medusa Proxy

The Medusa proxy is a non-caching forwarding proxy that sup-
ports the Proxy Request form of HTTP requests. Since it was de-
signed to explore user-perceived latency, it is typically configured
as a personal proxy for the Web browser and it executes alongside
the browser on the same machine. It can also serve as a proxy for
multiple clients, but we have yet to explore its use in that way. For
portability, we implemented the Medusa proxy in Java to support
widespread use. Finally, our support for HTTP 1.1 persistent and
pipelined connections is ongoing, and the Medusa proxy currently
only supports HTTP 1.0.

The Medusa proxy has a number of features for exploring user-
perceived Web performance:

Mirroring. The Medusa proxy can be configured to mirror HTTP
requests from multiple incoming sources to multiple destinations.
It can accept incoming connections sequentially to limit interfer-
ence, or multiple simultaneous connections in parallel for perfor-
mance. It can also mirror requests sequentially so that they do not
interfere with each other, or in parallel to further accelerate perfor-
mance. In both cases of parallelism, Medusa uses threads to im-
plement the parallelism; because we expect the Medusa proxy to
be primarily used by a single client, the number of simultaneous
connections and destinations, and hence the number of threads, is
reasonably low.

In the experiments in this paper, we mirror requests from an
individual source (the browser or a trace) to at most two different
destinations at any one time, in sequential mode, to limit interfer-
ence when recording measurements. To further limit interference,
the Medusa proxy could be executed on a machine other than the
one running the browser, or one with multiple processors.

Note that mirroring requests is harmless when the request se-
mantics are idempotent. However, some requests have potentially
serious side effects, such as POST requests for making purchases
at e-commerce sites, that would cause undesirable behavior if re-
peated more than once. The three POST requests in our trace log
information to advertising servers, and so we did not filter them
out. In general, though, we can provide a flag to conditionally



Period Requests Users
March 6 1548 2
March 31–June 1 540 1
June 4–June 8 2655 1

Table 1: Trace periods (all days in 2001).

filter POST requests.

Transformation. The Medusa proxy can install filters to trans-
form HTTP requests as they are forwarded. In this paper we
use this feature to transform Akamaized URLs to the original
URLs that refer to customer origin servers. As an example of
another use of transformation, a filter can be installed that strips
or anonymizes user-specific HTTP header information, such as
embedded user or login names.

Performance measurement. As it mirrors and transforms re-
quests, the Medusa proxy can record performance information,
such as request count and frequency, latency, and bandwidth con-
sumed, in a performance log. In this paper, we focus on request
count and latency.

Tracing and replay. As it receives requests, the Medusa proxy
can record them in a trace for subsequent replay in non-interactive
mirroring and transformation experiments. We replay traces to
experiment with Akamai in Sections 4.3.

Validation. When building new infrastructure, such as a new
proxy cache implementation, it is useful to be able to validate that
the cache is responding with correct data. In conjunction with the
mirroring feature, the Medusa proxy can be used to validate new
implementations of delivery systems by directly comparing the
response from the experimental cache with the response from the
origin server. Comparing responses is not only useful for validat-
ing content data, but also for comparing metadata as well. Com-
paring responses from multiple delivery systems can also be used
to explore the effects of metadata differences, such as the “age
penalty” from caches [10].

In the next section we use many of these features of the Medusa
proxy to explore various aspects of user-perceived Web perfor-
mance.

4 Experimental Results
In this section, we use the Medusa proxy to explore the impact
of using a large cache system (NLANR cache hierarchy), a con-
tent distribution network (Akamai), and a proxy cache (Squid) on
user-perceived download latency.

4.1 Methodology
To generate a workload for our experiments, we used the Medusa
proxy for 8 days of everyday Web browsing as shown in Table 1.
The browsing was relatively bursty, with most activity in the
morning, around lunch, and in the evening. The total workload
consists of 4743 HTTP requests, many of which are to generally
popular Web sites like nytimes.com, espn.go.com, java.sun.com,
etc., and some of which are to more domain-specific sites like
nsf.gov. All requests are to Web servers outside of UCSD. We

chose this workload because it is exactly the workload that we
would like to understand and improve. Since it is impossible
to generalize these results across all users, people can use the
Medusa proxy to determine the extent to which the various Web
delivery systems impact their own user-perceived Web perfor-
mance.

In all experiments, we executed the Medusa proxy on a 700
MHz Pentium III workstation with 256 MB of memory run-
ning Windows NT 4.0. We ran the Medusa proxy using Sun’s
Java 2 Runtime Environment (v1.3.0-C) with the same version
of HotSpot. Because Medusa does not cache data, its memory
requirements are low; it used 11 MB of memory during our ex-
periments.

We used Internet Explorer 5 (IE) as the browser to generate
our workloads. IE executed on the same machine as, and directly
communicated with, the Medusa proxy. For the NLANR experi-
ments in Section 4.2, we collected performance data and recorded
the HTTP requests as we interactively browsed throughout the
day to generate our workload. For the experiment in Sections 4.3,
we replayed the collected traces directly using the Medusa proxy.
The Medusa proxy can replay traces with variable delays between
requests; we used 500 ms for the experiments in this paper as a
tradeoff between reducing server load and being able to complete
replays in a reasonable amount of time.

The Medusa proxy calculates download times from just before
initiating a connection until it closes the connection. These times
include the cost of the DNS lookup and the TCP connection setup
and close. In our Java environment the Java timer has a granu-
larity of 10 ms, limiting the accuracy of very fast downloads of
small objects. Although we would prefer a much more accurate
timer, we use the Java timer for the sake of portability.

4.2 NLANR Cache Hierarchy

In this section, we use the mirroring feature of the Medusa proxy
to explore the extent to which a large-scale caching system, the
NLANR cache hierarchy, improves user-perceived Web perfor-
mance. Our goals are to characterize the effect of using the
NLANR cache hierarchy on user-perceived performance, and to
provide a mechanism by which users can determine whether using
a cache system like the NLANR cache hierarchy improves their
Web browsing performance. Because we use mirroring to explore
cache hierarchy performance, we also determine the potential
of using mirroring as a technique for implementing a (network-
unfriendly) Web accelerator.

The NLANR cache system consists of a hierarchy of interna-
tional Squid Web caches [33]. At the root of the hierarchy is a
mesh of caches primarily located at the U.S. supercomputer cen-
ters. These caches are peers and query each other for cached
content, and serve as parents to other Squid caches distributed
throughout the world. The cache hierarchy reduces network uti-
lization and server load, as well as user-perceived download la-
tency. The cache hierarchy can improve performance when users
request objects that have been previously requested by other users
and cached in the hierarchy. However, the cache hierarchy can de-
grade performance, particularly for requests to objects that miss
in the cache system, because of the overhead of additional hops
between the user and the origin server and the latency for query-
ing peers [32].



All Requests (4743) Mean Median
Origin Server 253 ms 190 ms
NLANR Hierarchy 220 ms 111 ms
Server/NLANR 1.15 1.71

Accelerator 159 ms 100 ms
NLANR/Accelerator 1.38 1.11
Server/Accelerator 1.59 1.90

Table 2: NLANR results summary.

4.2.1 User-perceived latency

To explore the extent to which the NLANR cache hierarchy
impacts user-perceived download latency, we used the Medusa
proxy to mirror all HTTP requests from our Web browsers to both
the NLANR hierarchy and the origin servers. The Medusa proxy
first sends every request to the origin server, waits for the entire
response to be downloaded, then sequentially mirrors the request
to the lj.us.ircache.net cache, and records the download
latency from each destination. The response from the server is
discarded, and the response from the cache is delivered to the
browser. The mirroring is done online during interactive browsing
so that requests to both destinations experience similar network
behavior. The requests are sent sequentially to prevent contention
within the Medusa proxy (the Medusa proxy can also mirror re-
quests in parallel to accelerate browsing, as discussed below, but
we do not use the parallel feature in any of the experiments in this
paper).

Our results are slightly biased towards the NLANR cache hi-
erarchy for a couple of reasons. First, the initial request to the
server presumably preloads the object in the server cache, which
could reduce the miss penalty for the cache hierarchy. An alter-
native approach would have been to randomly choose to send the
initial request to either the cache or the origin server, but we pre-
ferred the known, deterministic algorithm of sending to the cache
first. Second, we have excellent connectivity to the lj.us cache,
which has a 1 ms ping round-trip time from the machine running
the Medusa proxy. Although we do not expect this performance
to be typical, this is what we experience and hence what we ex-
plore.

The top half of Table 2 summarizes our results comparing
the performance of NLANR and the origin servers. The “Ori-
gin Server” row shows the mean and median download latencies
for downloading objects in our workload directly from the origin
servers as determined by the URL in the request. The “NLANR
Hierarchy” row shows the corresponding latencies for download-
ing the objects through the cache hierarchy; the “Server/NLANR”
row shows the speedup NLANR provides relative to the origin
server; and we discuss the remaining rows in Section 4.2.2 be-
low. On average, NLANR noticeably improves download latency:
the mean latency for NLANR is 15% faster than using the origin
server, and the median latency for NLANR is 71% faster.

To display the effect of using the NLANR cache hierarchy on
all requests in our workload, Figure 1 shows the cumulative dis-
tributions of the relative performance of the NLANR cache hier-
archy and the origin server across all requests. The x-axis shows
relative speedup (on a log scale), and the y-axis shows the frac-
tion of requests in the workload. Since the cache hierarchy is
not necessarily faster, we separate the requests into two curves.
The solid “Server Faster” curve shows the speedup of those re-
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Figure 1: Distribution of the relative download latency of
the NLANR cache hierarchy and origin servers. Note the
use of a log scale for the x-axis.

quests where downloading from the origin server was faster, and
the dashed “Cache Faster” curve shows the speedup of those re-
quests where download from the cache hierarchy was faster. For
example, looking at the solid “Server Faster” curve, 31% of all
requests were downloaded faster from the server and were down-
loaded with a speedup of 3 or less than from the cache hierarchy.
Similarly, looking at the dashed “Cache Faster” curve, 52% of
all requests were downloaded faster from the cache hierarchy and
were downloaded with a speedup of 4 or less than from the server.

Although the NLANR cache hierarchy improves mean latency
by 15%, Figure 1 shows that for 63% of the requests the cache
hierarchy returned responses faster or as fast as the origin server;
for 37% of the requests, the origin server was faster; and for 4%
of the requests they had equivalent download latencies (where the
dashed “Cache Faster” curve crosses the y-axis). Both the server
and the cache hierarchy had large speedups relative to the other.
These large speedups were for requests to small files (e.g., small
images) where one system responded quickly (e.g., 10–20 ms) but
the other experienced network delay or server load that caused
significant relative latency (e.g., 100–500 ms).

4.2.2 The Medusa proxy as a Web accelerator

Since the origin server is frequently faster than the cache hierar-
chy, it raises an interesting question of whether mirroring could
be used as a technique to accelerate user-perceived Web perfor-
mance. With the Medusa proxy, we can potentially mirror re-
quests in parallel and return the fastest response to the browser,
whether from the cache or origin server. Since mirroring con-
sumes roughly twice the resources of normal Web browsing, it is
a network-unfriendly technique and we do not condone its use in
this way. However, we were intrigued to see what the potential
was for such a technique.

To estimate the potential benefits of a mirroring accelera-
tor, we selected the fastest response latency for each request
in our workload and calculated the mean and median latencies
across the requests. The results are shown in the bottom half
of table 2. The “Accelerator” row shows the mean and me-
dian latencies of using the Medusa proxy as an accelerator; the



“NLANR/Accelerator” row shows the relative performance of the
accelerator compared with just using the NLANR cache hierar-
chy; and the “Server/Accelerator” row shows the relative per-
formance of the accelerator compared with just using the origin
servers. The results indicate that a mirroring accelerator has po-
tential for improving performance: relative to the cache hierar-
chy, it improves mean latency by 38% and median latency by
11%. Furthermore, based upon median latency, at least half of
the HTTP requests would be downloaded in under 100 ms.

4.2.3 Discussion

From these results, we conclude that using the NLANR cache hi-
erarchy measurably improves the download latency for our work-
load. However, it is not clear what the user-perceived impact of
this improvement is. If a page has only one object, then an aver-
age absolute improvement of 33 ms (NLANR) or 61 ms (acceler-
ator) is below the human threshold for noticing the difference [5].
However, if a page has many embedded objects, then the cache
system has the potential to make a large absolute improvement.
The exact improvement, however, depends upon the number of
objects and the overlap of multiple parallel connections, and re-
mains an open question.

4.3 Akamai Content Distribution Network
In this section, we use transformation to explore the user-
perceived performance of Akamai, a large content distribution
network [1]. Content distribution networks have the potential to
significantly improve user-perceived Web performance because
they bring content closer to users and are able to balance load
across a large number of distributed servers. In contrast, most
content providers have a single server site from which they de-
liver content, and this site is potentially far from many users and
has to scale to handle all user load. In our experiments, we di-
rectly compare the performance of accessing Akamaized objects
from Akamai edge servers with their customer’s origin server, and
estimate the overall impact of having content served from Akamai
on our workload.

To perform our experiment, we transformed all HTTP requests
to the Akamai network in our trace into requests to the Akamai
customer’s origin server (e.g., Krishnamurthy and Wills [26] and
Cohen and Kaplan [10] employ the same technique). Akamai
uses a well-formed scheme to “Akamaize” customer content by
prefixing an Akamai domain name and additional information to
the original URL of the object on the customer’s origin server. For
example, a typical Akamai URL might be structured as follows:

http://a8.g.akamaitech.net/
f/8/621/12h/www.customer.com/...

We can recover the original URL to the customer’s origin
server by removing the Akamai prefix:

http://www.customer.com/...

With both the Akamai URL and the customer server URL, we can
then use the Medusa proxy to mirror requests to both the Akamai
edge servers as well the customer origin servers and compare the
resulting latencies.

As our workload, we used the traces recorded during the
NLANR experiment in Section 4.2 and replayed them through the

Akamai Requests (278) Mean Median
No Akamai (Origin) 141 ms 120 ms
Akamai 24.7 ms 20.0 ms
No Akamai/Akamai 5.7 6.0

All Requests (4743) Mean Median
No Akamai (Origin) 259 ms 190 ms
Akamai 253 ms 190 ms
No Akamai/Akamai 1.02 1.00

Table 3: Akamai results summary.
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Figure 2: Distribution of the relative download latency of
Akamai and customer origin servers.

Medusa proxy, transforming Akamai URLs, mirroring requests,
and recording the download latencies. We used the machine de-
scribed in Section 4.1 to execute the Medusa proxy and replay
the traces. We replayed our traces starting at noon PDT on Mon-
day, June 11, 2001 to capture network congestion and server load,
conditions which emphasize the positioning and distribution of
Akamai edge servers.

To reduce variation, we replayed the traces five times and used
the median download latency across the five runs for each object
as its representative download time. Replaying the trace multi-
ple times biases both the Akamai edge servers and the customer
origin servers towards better performance since the replays warm
their caches. When looking at the overall impact of Akamai, this
makes our results conservative by giving the benefit of doubt to
Akamai. Replaying also reduces the overhead of DNS lookups
for Akamai; however, Akamai URLs in the trace only refer to 19
unique edge servers, so Akamai would significantly benefit from
DNS caching even without multiple replays.

4.3.1 Direct impact

The top half of Table 3 summarizes our results for directly com-
paring the performance of downloading objects from the Akamai
edge servers and the customer origin servers. These results take
into account only those requests that were originally addressed
to the Akamai network (in this case, 278 requests). The “No
Akamai” row shows the mean and median download latencies for
objects downloaded from the customer origin server; the “Aka-



mai” row shows the corresponding download latencies for down-
loading those objects from the Akamai network; the “No Aka-
mai/Akamai” row shows the speedup Akamai provides relative to
the customer server; and we discuss the remaining rows in Sec-
tion 4.3.2 below.

As these results show, both the mean and median latencies for
Akamai are quite low, on the order of 20–25 ms (the sample Aka-
mai edge server we resolved has a ping round-trip time of 7 ms).
Furthermore, Akamai delivers impressive speedups of 5.7 for the
mean download latency and 6 for the median latency.

To display the performance across all Akamai requests, Fig-
ure 2 shows the cumulative distribution of the relative perfor-
mance of Akamai to the customer origin servers for all Akamai
requests. The x-axis shows the speedup for sending the request
to the Akamai network relative to the customer origin server, and
the y-axis shows the fraction of Akamai requests in the workload.
Each point on the curve corresponds to one request, and the re-
quests are sorted in increasing order of speedup. As we can see
from the graph, Akamai always delivers content faster than the
customer origin server and, for nearly 20% of the requests, Aka-
mai is at least 10 times as fast. The very large speedups are from
requests to small images, where network conditions and customer
origin server load add significant relative latency.

In terms of the content that Akamai delivers, the user-perceived
performance of Akamai is excellent for our workload. However,
this performance improvement is only for the portion of our work-
load that is served by Akamai. Since users are more interested in
the performance impact on their overall workload, we explore this
question next.

4.3.2 Overall impact

To estimate the overall performance impact of Akamai on our
workload, we used the workload results from our Web browsing
in Section 4.2 and replaced the fast download latencies of Akamai
requests with the much larger latencies of downloading the same
content from the customer origin servers obtained above. This
replacement corresponds to a workload in which no content is
served from Akamai and all content is served from origin servers.
With the original workload that includes requests to Akamai and
the modified workload that only has requests to origin servers, we
can estimate the overall impact Akamai has on performance.

Our results are shown in the bottom half of Table 3. These
results take into account all requests in the workload. The “No
Akamai” row corresponds to the workload where Akamai request
latencies are replaced with the corresponding latencies for down-
loading from the customer origin server. The “Akamai” row cor-
responds to the original workload that includes requests to the
Akamai network. And the “No Akamai/Akamai” row shows the
relative performance of the two workloads. From the table, we see
that the Akamai workload improves average download latency by
only 2.4% over the workload that does not use Akamai. To put
this result in perspective, recall that using the NLANR cache hi-
erarchy improves average overall download latency for our work-
load by 15%. In other words, for our workload Akamai improves
average user-perceived latency only slightly, and we would have
experienced similar average performance if all of our content was
from origin servers. Note that this result assumes that the ab-
sence of Akamai would not increase network congestion and cus-
tomer origin server load considerably, but we cannot experimen-
tally evaluate the effect of this assumption.

4.3.3 Discussion

The difference between the direct and overall impact of using
Akamai is due to the fact that Akamai only serves 6% of all re-
quests from our workload: 278 Akamai requests out of 4743 total
requests. Although Akamai has excellent relative performance
for the content it serves, it only captures a small fraction of our
overall workload. These results are very much workload depen-
dent, but, for rough comparison, Krishnamurthy and Wills found
that 1.5% of base URLs to the home pages of 711 popular Web
servers had embedded objects served by Akamai [26].

There are a number of conclusions one could make from these
results, depending upon one’s perspective. From Akamai’s per-
spective, these results demonstrate that Akamai serves its con-
tent extremely well compared to their customer’s servers. From
an Akamai customer’s perspective, these results show that Aka-
mai improves the download latency for the content on Akamai’s
servers while offloading requests from the customer’s servers.
However, Web pages are compound documents. Since Akamai
primarily serves images, the remaining content that comes from
the customer’s origin servers remain the bottleneck. Again, ac-
cording to Krishnamurthy and Wills, 31–47% of objects and 56–
67% of bytes on the home pages of a selection of popular Web
servers that use Akamai still come from the customer’s origin
server [26] (Table 7). Finally, from the user’s perspective, Akamai
has impact on those pages that include embedded objects served
by Akamai, but only a minimal impact on the overall workload.

The overall conclusion that we make is that a content deliv-
ery network like Akamai is a very effective system for distribut-
ing content close to the user, and has great potential for making
a significant impact on user-perceived latency. However, until
CDNs like Akamai serve a larger fraction of the overall content
requested in user Web workloads, the full potential that CDNs
have to offer for improving user-perceived latency will remain
unrealized.

5 Conclusion
In this paper, we describe the Medusa proxy, a tool for exploring
user-perceived Web performance. We describe its use to deter-
mine (1) to what extent using large-scale caching systems like the
NLANR cache hierarchy improve user-perceived latency, and (2)
to what extent content distribution networks like Akamai improve
latency compared with using their customer’s origin servers.

For our personal workloads, we found that:

� When using the NLANR caches 63% of HTTP requests are
served at least as fast from the NLANR caches as from the
origin server, decreasing mean latency by 15%. However, in
absolute time, this improvement is only 33 ms on average.

� Using the Medusa proxy as a Web accelerator, mirroring
requests to both the NLANR caching system and the ori-
gin server in parallel and returning the fastest response, can
improve mean latency by 38% compared with using the
NLANR caching system alone.

� Akamai edge servers are able to serve HTTP requests an av-
erage of 5.7 times as fast as their customer’s origin servers.
However, because requests to Akamai edge servers are only
6% of our workload, we find that using Akamai reduces
overall mean latency by only 2%.



Of course, these results depend upon the perspective of our
workloads and our computing and network environment, and the
results are surely different for other users. However, with the
Medusa proxy, users can answer these questions relative to their
own environments to determine the impact of Web delivery sys-
tems on their performance.
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