
B
R

IC
S

R
S

-97-18
R

.P
ollack:H

ow
to

B
elieve

a
M

achine-C
hecked

P
roof

BRICS
Basic Research in Computer Science

How to Believe a Machine-Checked Proof

Robert Pollack

BRICS Report Series RS-97-18

ISSN 0909-0878 July 1997



Copyright c 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk

ftp://ftp.brics.dk

This document in subdirectoryRS/97/18/



How to Believe a Machine-Checked Proof1Robert PollackBRICS, 2 Computer Science Dept., Aarhus UniversityDK-8000 Aarhus C, Denmark1 IntroductionSuppose I say \Here is a machine-checked proof of Fermat's last theorem (FLT)".How can you use my putative machine-checked proof as evidence for belief inFLT? I start from the position that you must have some personal experience ofunderstanding to attain belief, and to have this experience you must engage yourintuition and other mental processes which are impossible to formalise.By machine-checked proof I mean a formal derivation in some given formalsystem; I am talking about derivability, not about truth. Further, I want totalk about actually believing an actual formal proof, not about formal proofsin principle; to be interesting, any approach to this problem must be feasible.You might try to read my proof, just as you would a proof in a journal; how-ever, with the current state of the art, this proof will surely be too long for youto have con�dence that you have understood it. This paper presents a tech-nological approach for reducing the problem of believing a formal proof to thesame psychological and philosophical issues as believing a conventional proof ina mathematics journal. The approach is not entirely successful philosophicallyas there seems to be a fundamental di�erence between machine checked math-ematics, which depends on empirical knowledge about the physical world, andinformal mathematics, which needs no such knowledge (see section 3.2.2).In the rest of this introduction I outline the approach and mention relatedwork. In following sections I discuss what we expect from a proof, add details tothe approach, pointing out problems that arise, and concentrate on what I believeis the primary technical problem: expressiveness and feasibility for checking offormal systems and representations of mathematical notions.1.1 Outline of the approachThe problem is how to believe FLT when given only a putative proof formalised ina given logic. Assume it is a logic that you believe is consistent, and appropriatefor FLT. The \thing" I give you is some computer �les. There may be questionsabout the physical and abstract representations of the �les (how to physically1A version of this paper appears in Sambin and Smith (editors) Twenty Five Years ofConstructive Type Theory, Oxford University Press.2Basic Research in Computer Science, Centre of the Danish National Research Foundation.The author also thanks Edinburgh University and Chalmers University.1



2 R. Pollackread them and how to parse them as a proof), and correctness of the hardwareand software to do these things; ignore them until section 3.1.My approach is to separate the problem into two subproblems: � decidingwhether the putative formal proof is really a derivation in the given formal system(a formal question), and � deciding if what it proves really has the informalmeaning claimed for it (an informal question).Is it a theorem? Is the putative proof really a derivation in the given formalsystem? This is a formal question; it can be answered by a machine. Thedi�culty is how can you believe the machine's answer; i.e. do you trust the theproof-checking program, the compiler it was processed by, the operating systemsupporting it, the hardware, etc. This is usually taken to be the crux of theproblem of believing machine-checked theorems.To address this problem, you can independently check the putative proofusing a simple proof checking program for the given logic, written in some meta-language, e.g. a programming language or a logical framework. In order to believethe putative derivation is correct, you must believe this simple proof checker iscorrect. I have in mind a proof checking program that only checks explicitderivations in the given logic, verifying that each step in the derivation actuallyfollows by a speci�ed rule of the logic; no heuristics, decision procedures, or proofsearch is required for checking, although these techniques may have been used inconstructing the proof in the �rst place. Such a simple proof checking programis a formal object that is much smaller and easier to understand than almostany non-trivial formal proof, so this approach greatly simpli�es the problem3(see section 3.2). I am not suggesting such a simple proof checker be used todiscover or construct formal proofs, only to check proofs constructed with moreuser-friendly tools.Since my goal is to reduce believing a formal proof to the same issues asbelieving a conventional proof, my favored technique for believing the correct-ness of a simple proof checker is to read and understand the program in lightof your knowledge of the logic being checked and the semantics of the meta-language in which the checker is written. We should use available techniques tomake this task as simple as possible; e.g. using LCF style4 (Gordon, Milner andWadsworth 1979) to implement the simple checker, so very few lines of code arecritical for its correctness, or using an executable speci�cation of the logic in alogical framework or generic proof checker. If the logic is simple enough, and themeta-language has a simple enough semantics, then the sum total of what you3Conversely, J Moore once commented that, until Shankar did his NQTHM proof of G�odel'sIncompleteness Theorem, if you wanted to believe everything checked by NQTHM, you woulddo better to read all the proofs than to read the code of NQTHM, as the code was longer thanall the proofs.4LCF style is an architecture for proof checker implementation using a strongly typedprogramming language such as StandardML, such that object logic theorems form a type, andthe construction of theorems is controlled for soundness by the programming language typesystem. Pollack (1995) gives a modern view and some variations.



How to Believe a Machine-Checked Proof6 3are required to read and understand is neither longer nor more di�cult to under-stand than a conventional proof, and belief in the putative derivation is attainedthrough your personal experience of understanding a simple proof checker. Thisapproach di�ers from the conventional one, of reading and understanding theproof yourself, only in being indirect, a kind of cut rule at the meta-level of thereaders' understanding; rather than using personal intuition to believe a proof,you use personal intuition to believe a mechanism to check proofs. If you haveunderstood a simple proof checker, and believe it correctly checks derivations inthe given formal system, then you have reason to believe the correctness of aderivation it accepts.You can also use other techniques to gain con�dence in the proof. You canrecheck it with another proof checker, perhaps one publicly available from alibrary of checkers that are refereed by experts, and that have high con�dencefrom being used to check previous examples. If a few logics become acceptedas appropriate for formalisation, and large bodies of formal mathematics aredeveloped in these few logics, then only a few independently refereed simpleproof checkers are necessary, even though users may prefer many di�erent toolsfor constructing proofs in the �rst place. These techniques are similar to thoseused to gain con�dence in conventional proofs, and seem to be even more reliablein the present approach.What theorem is it? Having believed that my putative proof is actually aderivation in the claimed formal system, you ask \does it prove FLT?" Is themeaning of the formal theorem really what is claimed? This is an informal ques-tion; it cannot be answered by a machine, as one side of the \equivalence" isinformal5. You must bridge this fundamental gap by using your own understand-ing; you will want to consider the formal theorem in light of your understandingof the formal system (the logic) being used, any assumptions used in the proof,and all the de�nitions used in stating the formal theorem. The di�culty is howcan you read the formal proof to decide its meaning for yourself, given the sizeand obscure presentation of formal proofs. This issue is sometimes overlookedin discussions of reliability of formal proof.You don't need to read the entire proof in order to believe the theorem. Giventhat you have reason to believe the putative proof is a correct derivation in thegiven logic (by independent checking), only the outstanding assumptions, theformal statement of the theorem, and the de�nitions used hereditarily in statingthe formal theorem must be read. Although the formal proof, perhaps partiallygenerated by machine, may contain many de�nitions and lemmas, these need notbe read, as we trust that they are all correctly formulated and used as allowedby the logic, since they are checked by our trusted proof checker. You can use5In the (distant?) future all the work of bridging the informal-formal gap may have beendone; i.e. the gap is bridged at some foundational level. When all mathematics is done formally,using accepted formal de�nitions for the basic mathematical notions, then new de�nitions andconjectures will be stated in terms of already formal notions, and no question will arise aboutwhether some string of symbols is really FLT.



4 R. Pollackthe trusted proof checker to print out the parts of the formal proof you need toread. (It is necessary to trust the tool that shows us the assumptions used in theproof, as the formal proof is too big to ascertain for ourselves that these reallyare all the assumptions used.) Then it is up you, using your own understandingof the formal system, to decide if the formal statement means what is informallyclaimed. But this is anyway a subtask of believing a conventional proof; sothis second subproblem of believing a formal proof is no more di�cult than thecorresponding aspect of believing a conventional proof. Having used your ownunderstanding, you can gain con�dence by discussing the problem with otherknowledgeable readers, as in the �rst step of the approach.1.2 Related workThe prototypical paper on this topic is DeMillo, Lipton and Perlis (1979), whereit is argued that \Mathematical proofs increase our con�dence in the truthof mathematical statements only after they have been subjected to the socialmechanisms of the mathematical community", whereas machine-checked proofs\. . . cannot acquire credibility gradually, as a mathematical theorem does; oneeither believes them blindly as a pure act of faith, or not at all." I agree withthe �rst statement, but completely disagree with the second, and present themeans for social mechanisms of the mathematical community to operate on for-mal proofs, namely independent checking.Independent checking is not a new idea. It has been discussed for increasingcon�dence in computer-based enumerative search (Lam 1990) (see section 2.2below). It is considered the standard approach in tasks such as computing manydigits of �. It is mentioned by Cohn (1989). A proposal similar to the presentpaper (\verify the proofs rather than the programs which produce them") ismade, in less detail, by Slaney (1994).There has recently been discussion of the possibility and desirability of pur-suing formal mathematics (Boyer 1994, Harrison 1996). My guess is that tech-nologies of automated proof search will be highly developed because of economicpressure for reliable hardware and software, and these, applied as tactics to proofchecking, will make formal mathematics a practical reality in the foreseeable fu-ture. This paper addresses some points necessary for this program.2 What can we expect from a proof?All belief held by a human being is based on that person's experiences of un-derstanding, and all experiences of understanding derive from perception of evi-dence. In certain areas of discourse, like law and mathematics, there are more orless precise rules about what kind of perceptions should be accepted as evidence.No matter how precise the rules about evidence, it still depends on some opera-tions of human consciousness to apply the rules and experience understanding ornot. Without claiming anything deep about operations of human consciousness,there are some things we can say about human beliefs.



How to Believe a Machine-Checked Proof7 52.1 TruthIf God has mathematics of his own that needs to be done, let him doit himself. Bishop (1967)We have no access to truth in any aspect of human experience, including eitherformal or informal mathematics; predictions about the world might always befalsi�ed by experiment. Even when we formally verify that some hardware orsoftware meets its speci�cation, there is uncertainty about the behavior of thephysical object, since the speci�cation is with respect to some model of thephysical world, and we can never completely model the world.For me this is neither a deep claim nor a serious limitation on our practice ofmathematics. The problem stems from too broad a notion of truth; I will restrictmy comments to proof, suggesting how to approach the question of whetherPeano Arithmetic (or ZF set theory, or the calculus of constructions (CC), . . . )proves FLT for some given de�nitions of \natural number", \addition", etc.2.2 CertaintyAt the moment you �nd an error, your brain may disappear becauseof the Heisenberg uncertainty principle, and be replaced by a newbrain that thinks the proof is correct.L.A. Levin, quoted in (Horgan 1993)Everyone has had the experience of understanding and believing a proof at onetime, and later seeing an error in it. After such an experience, you must acknowl-edge that it might happen again. Therefore the notion of certainty, like that oftruth, is not relevant to human knowledge. This view is not always accepted inconventional mathematics, where practitioners often talk of the certainty of a(correct?) proof. For example Lam (1990), talking about reliability of enumer-ative searches by computer, cautions \Notice that the assertion of correctnessis not absolute, but only nearly certain, which is a special characteristic ofa computer-based result." (Lam's italics, but my bold, to show the con-trast with my belief that no knowledge is absolute.) No useful analysis seemspossible of the probability of error caused by software bugs in big calculations,and I don't think this is what readers of proofs want. What is important is howknowledgeable people working in a �eld attain belief. Lam is commenting onhis own proof that there do not exist any �nite projective planes of order 10,which uses several thousand hours of supercomputer time, running many highlyoptimised (hence complicated) programs for di�erent cases. It is clear that beliefin such an argument is hard to come by, even with independent checking (whichLam suggests), not because it isn't \absolutely certain", but because there is noway for a reader to apply her own intuition to attain belief.As an aside, my approach does raise a possibility that enumerative searchessuch as Lam's proof and the famous Appel and Haken (1977) proof of the fourcolor theorem, which can never be accepted as conventional proofs, might be



6 R. Pollackmade into formal proofs that are believable by the indirect means of independentchecking. For example in type theory we might construct an inhabitant of thefour color theorem (not just a believable argument, but a formal object) byproving that some program (lambda term) correctly tests numbers for certainproperties, proving that if a certain �nite set of numbers have those propertiesthen every map is four-colorable, and executing the program on that �nite set(showing that two lambda terms are convertible by computation).Probabilistic proofs A red herring sometimes arises (DeMillo et al. 1979):since all proof is uncertain, why not abandon deterministic notions of proofin favor of probabilistic proof. Proof systems involving random choices (cointosses) can have much smaller derivations than their deterministic counterparts.While they carry a probability of error, this probability is bounded, and can bereduced to any desired positive number. But the probabilistic nature of suchsystems doesn't mean you are allowed to make mistakes in applying their rules.Further, since \random choices" must be independent of each other, a trace of allthe steps of a probabilistic proof is not convincing at all: if I toss the coin myselfI may believe a probabilistic proof, but if I only see a written trace of the proofthe coin toss outcomes may have been faked to give the desired result. Thusprobabilistic approaches do not support a claim that the appropriate warrantfor proof correctness is direct understanding of the proof; it is the procedurefor probabilistic testing (that asks for occasional random input) that must bebelieved, not the proof itself, and in this indirectness probabilistic proof is similarto my suggestion of indirect checking.2.3 ExplanationExplanation is the purely informal pointing out of what the author of the proofwants the reader to see. This pointing out is a kind of abstraction, and is at leastas useful for a formal proof as for an informal proof. In formal mathematics,explanation has no bearing on the correctness of a putative proof, but may bevery important in the process of constructing a proof, and in the reader's work ofbridging the formal-informal gap to see that the formal theorem expresses whatit informally claims.3 Some details of the approachThis section treats some points that were postponed or suppressed in section 1.1,and concludes with an overview of what has been gained.3.1 Reading the �lesBoth parts of the approach, independent checking and understanding the state-ment of the theorem, require examining the proof �les. Questions arise about� correctness of hardware and software to read the �les as a long ascii string, and� correctness of software to parse this ascii string as a proof, and to pretty-printparts of it so you can read them. The former is the job of the software/hardwareplatform (section 3.2.2). Here I consider parsing and pretty-printing.



How to Believe a Machine-Checked Proof8 7The second part of my approach requires us to read the formula that is de-rived, and verify that it is really FLT. We read a concrete representation of theformula (an ascii string), but the proof checker uses an abstract representation(an abstract syntax tree). If we don't understand the relationship between theserepresentations, then nothing the proof checker says can be believed, no matterhow trustworthy the checker is at the level of abstract representation. (This isoften overlooked in discussing LCF style proof checkers, where correctness of thekernel, implementing abstract proof constructors, is taken to be the only criticalpart of the program.) Consequently the language of our formal system mustbe parseable in a simple and formally explained way. Some proof tools supportcomplex user-extensible syntax, and even unparseable syntax entered using con-trol keys and special editors. This may be helpful to users while constructingproofs and browsing libraries, but to believe such a checker, it must also supportan o�cial syntax that is parseable and printable.3.2 Is it a theorem?How is the putative formal proof of FLT constructed? Users interacting withsome proof tool (Alf, Coq, HOL, Isabelle, LEGO, NQTHM, . . . ), develop a�le that stimulates the tool to print \QED". This proof script is not a formalderivation, but contains instructions to the proof tool to �nd a derivation, i.e. thescript refers to heuristics, decision procedures, tactics, etc., that are particularto that proof tool. These are programs to compute derivations in the o�cialformal system; e.g. derivable rules, or arbitrary searches that may fail (Pollack1995). For example, many proof tools support tautology checking and equalityrewriting tactics.Crucially, there is no need for you to understand any of the tactics or heuris-tics in order to independently check the claimed proof of FLT. In principle suchtactics, when they succeed at their task, check that their results follow by o�cialderivations: this is the de�nition of proof checking. The proof tool can write outthe complete o�cial derivation it constructs from the proof script. Since check-ing a derivation is a simple thing, you should be able to independently checkthis o�cial derivation of FLT using a simple proof checker that you trust. Thequestions to ask are � is it feasible to write out the o�cial derivation and tocheck it, and � how can you trust any proof checker. The former question isaddressed in section 4; here we consider the latter.The hardware/software stack How can you have con�dence in a proof justbecause it was machine checked? There are many layers of hardware and softwareinvolved in checking the proof of FLT. The top layer is a simple proof checkingprogram for some speci�ed formal system, coded in some programming language.The bottom layer is a physical machine. Intermediate layers include compiler,linker, operating system, etc. Bevier, Hunt, Moore and Young (1989) show thatsuch a system can be formalised as a stack of abstract machines. Interfacesin this stack are speci�ed, for example, by programming language semantics,operating system de�nition and hardware de�nition. Each layer implements its



8 R. Pollackspeci�cation in terms of the next layer down, and if each layer is veri�ed then thewhole stack is a veri�ed implementation of the top layer speci�cation in termsof the physical model of the machine at the bottom layer. The work of Bevieret al. (1989) is the limit of current technology, and in current practice, very fewof these layers are formally speci�ed, let alone veri�ed.Every (unveri�ed) computer system has bugs, but we have con�dence in thebehavior of a general purpose computing environment because there are manyusers \testing" the environment over time, allowing a consensus to develop. Fur-ther, lower layers of the stack are largely interchangeable, allowing for indepen-dent checking. For example if I've coded my LCF style proof checker in StandardML (SML), I can compile it using di�erent SML implementations and run it ondi�erent operating system/processor platforms; then a proof can be re-checkedwithout depending on any particular system platform. It is unlikely that a bugin the computing platform causes a proof checker to erroneously accept a proof,and incredible that independent platforms erroneously agree, but a bug in theproof checking program itself may cause an erroneous proof to be accepted whenchecked using independent platforms. Thus in practice we are more interestedin validating the proof checking program than the rest of the computing envi-ronment; we can try to verify it and we can also use independent simple proofcheckers for the same logic that have gained a consensus of trust over time.For these reasons, most people feel that machine checking a proof increases itsreliability even if the system platform is not veri�ed.But my approach calls for more than consensus by random testing; it callsfor consensus among readers who have each attained belief by personal intuitionapplied directly or indirectly. The top layer of the stack, the simple proof checkerprogram itself, can be believed by direct understanding of a small amount ofcode; this is discussed in section 3.2.1. That the rest of the stack is not so easyto believe, even when veri�ed, is discussed in section 3.2.2.3.2.1 How to believe a proof checking programThe top layer of the hardware/software stack is a simple proof checking program.Its speci�cation is a de�nition of the formal system to be checked,9 and its job isto implement this de�nition in terms of the speci�cation of the next layer in thestack, i.e. the programming language in which it is coded. We want to believethat the checking program is correct by understanding an amount of code thatis small compared to the size of a formal proof, but in order to understand anycode at all we must understand the semantics of the programming language itis written in, and we will use non-trivial properties of the semantics to attainbelief in the checker. For example, if the checker is coded in LCF style, we aredepending on strong type correctness properties of the SML de�nition (Milner,Tofte and Harper 1990), not just of particular SML implementations, when we9The questionwhether this de�nitioncaptures our informal understanding of the logic is notabout correctness of the checker, but about bridging the formal-informal gap, and is treatedin step two of my approach.



How to Believe a Machine-Checked Proof11 9claim that no non-theorem can be in the type of theorems. Thus we must use aprogramming language with a simple formal semantics and study the propertiesthat are needed to trust a proof checker in this language. SML is perhaps toocomplicated to do this; e.g. see (Kahrs 1993) and (VanInwegen 1996).The three-level approach. I suggest that the \programming language" forthe checking program be a logical framework, i.e. a formal meta-theory, enablingprecise and concrete presentations of a class of formal systems. I have in mindsuch formalisms as the Edinburgh Logical Framework (ELF) (Harper, Honselland Plotkin 1993), Martin-L�of's framework (Nordstr�om, Petersson and Smith1990), FS0 (Feferman 1988), and Isabelle (Paulson 1994). These frameworksare precisely and concretely speci�ed and are designed for representing formalsystems. The user gives a de�nition of the object logic to be checked (detailsvary), and either the implementation of the framework itself becomes a checker,or we program a checker in the internal language of the framework which isformally proved to be correct w.r.t. the de�nition (Pollack 1994, Barras 1996).The latter of these variations can be seen as an application of LCF style totype systems more expressive than SML (Pollack 1995) and supports LCF styletactics. For technical reasons, classical LCF tactics must be expanded to o�cialproofs (which can be very costly) even when they are meta-theoretically provedto be sound, while the suggestion of Pollack (1995) allows admissible rules astactics that don't have to be computed to o�cial proofs. This is very importantfor feasibility of checking. Considerable progress is being made in the theory andapplication of logical frameworks, e.g. (McDowell and Miller 1997).The question then arises: where will we �nd a believable implementation of alogical framework? We can use classic LCF style, with an SML-like programminglanguage (perhaps simpler than SML). Isabelle (Paulson 1994) is an example ofthis approach: an LCF style implementation of a higher order logic is used asa logical framework; you get a proof checker for your chosen object logic byspecifying it in a high-level logical form. But Isabelle is not a perfect realizationof my proposal for two reasons. � Higher-order uni�cation is part of the safekernel; I suggest a kernel supporting the programming of uni�cation as a tacticin terms of simpler atomic actions. � Due to its style of framework, Isabellesupports derivable rules but not admissible rules of encoded object logics.This three-level approach (programming language, logical framework, objectlogic) places few restrictions on the object logic; some frameworks restrict theinduction principles available for de�ning object logics, but this is not a problemin practice. There is a di�erent proposal in the literature, called reection (Allen,Constable, Howe and Aitken 1990, Harrison 1995), that collapses the frameworkand the object logic in order to provide admissible rules that can safely be usedwithout expansion. However reection distorts the object logic (with an addedreection rule), and is much harder to believe.



10 R. Pollack3.2.2 Believing the hardware/software stack and the philosophical claimIt seems that a computer system (CPU, operating system, compiler, . . . ), istoo complex to believe by direct understanding10. Thus the only possibility isto attempt indirect belief by veri�cation. I think this must fail, but I wantto make clear that I am not criticising veri�cation as such; it clearly improvesthe reliability of computer systems. I am questioning whether veri�cation cansatisfy my goal to reduce believing a formal proof to the same psychological andphilosophical issues as believing a conventional proof. Assume we have a veri�edhardware/software stack whose top layer is a simple proof checking program.The the formal-informal gap at the top of the stack has been mentioned insection 3.2.1, and does not challenge the philosophical goal. I see two otherproblems: � the formal-physical gap at the bottom of the stack, and � believingthe veri�cation of the stack itself.At the bottom of the stack is a formal model of the behavior of physicalhardware, predicted by quantum mechanics and tested by experiment. Belief inmachine checked mathematics must depend on scienti�c theory, i.e. empiricalknowledge about the physical world whose correctness cannot be believed by in-dividual understanding. In order to believe conventional mathematics by directunderstanding we must believe that our own computational platform, our ner-vous system, behaves correctly, e.g. that we identify symbols consistently, andthat our short term memory is correct. But there is no question of belief in con-ventional mathematics depending on empirical knowledge for two reasons: � wedon't (yet) have an empirical theory of cognition, and � the operations we wouldseek to explain by such a theory are subjective, and cannot be invalidated byfailure of such a theory. Thus my philosophical goal is not met for the paradox-ical reason that we demand more justi�cation for indirect belief than for directbelief, since its physical foundation includes non-subjective aspects.The veri�cation of the stack itself is another formal proof that must bebelieved. Since this proof is surely too big to believe directly, we must believe itindirectly by independent checking with a trusted proof checker. But this cannotbe well founded, as the problem we are now addressing is how to trust a proofchecker.12 This problem, too, will prevent meeting my philosophical goal.The philosophical claim Subjective experience depends for its interpreta-tion on abstract correctness assumptions about experience itself. In believinga formal proof indirectly by believing a proof checker, we are shifting this ab-straction to some computational platform outside of our consciousness. This isnot simply giving up; just as we are careful about checking that our experiencesare internally consistent and match with that of other people, so we are carefulabout the computational platform we use, and compare it with other indepen-10A system architecture designed speci�cally for simplicity might overcome this problem.12This might be overcome by using a very simple directly believable computing platform tocheck the veri�cation of a more realistic platform.



How to Believe a Machine-Checked Proof13 11dent platforms. Such a shift of abstraction seems unavoidable if we are ever toaccept as a correct a putative proof that cannot actually be checked by a person.3.3 What theorem is it?You now have a �le that you believe is a derivation in the given formal system. Isthe derived formula really FLT? You must interpret the formula with your ownunderstanding. This is exactly how informalmathematics is done; no matter howbig the formal proof, this process must be tractable, as the formal statement ofFLT is not signi�cantly di�erent than the informal statement.One apparent di�erence is that informally we don't rede�ne the natural num-bers and all their basic operations, and prove the properties of these operationsfor every theorem we want to believe. Conventional mathematics rests on abasis of mathematical knowledge that is previously believed, and formal mathe-matics must proceed in the same way, developing libraries of formal knowledgecovering this mathematical basis. Such libraries should be developed, indepen-dently checked and widely used by a community of mathematicians. Then wecan have con�dence, not only that their theorems are provable, but also thattheir de�nitions mean what they informally claim.3.4 What have we gained, and where has it come from?I have suggested how belief in correctness of a formal proof comes from engagingour own understanding to check it (and recheck it if necessary), and from thesocial process of many knowledgeable readers independently checking it. Theonly way this di�ers from informal mathematics is the extra indirectness in ourchecking, where we allow a machine to do the mechanical steps of pattern match-ing, substitution, etc. This extra indirectness is not a trivial matter: due to itwe allow more things as proofs, e.g. derivations that are too big, or too combi-natorially complicated, to be checked by a person, as mentioned in section 2.2.An advantage hinted at above is that proofs in the same logic can be sharedby di�erent proof checkers for that logic if a standard syntax can be found (ormechanical translations believed), because the o�cial proofs don't depend onthe tactics that are particular to individual proof tools. In current practice thisidea is a can of worms, and the phrase \in the same logic" causes experts in the�eld to roll on the oor with laughter. However, alternative suggestions such asusing cryptographic means to certify that a theorem has been checked by someproof tool (Grundy 1996) break the primary abstraction: the only way a proofchecker can accept a theorem as proved is to actually check a proof of it.It is necessary to restrict the notion of \proof checking program" to programsthat actually check derivations in some given formal system, and to restrictthe acceptable formal systems by criteria of feasibility of communicating andchecking o�cial derivations (section 4).The eschewing of absoluteness is crucial to my argument. This is obvious,since absolute correctness cannot be attained by any means at all. However,some criticism of formalisation seems based on the subtext that formal proof is



12 R. Pollacknot good enough since it cannot guarantee correctness. Formal proof can attainhigher con�dence than conventional proof, and can do so for more arguments.4 About feasible formalisationWhile correctness of derivations is de�ned ideally in conventional logic (e.g. thesize of a derivation has no bearing on its correctness14 ), we are only interestedin actually checked derivations.4.1 Presentations of formal systemsFor the purpose of formal mathematics, we are sensitive to properties of a formalsystem such as how large or complicated it is, for two distinct reasons: � we mustunderstand a logic in order to believe a theorem it proves, � its derivations mustbe feasible to check. Thus it is the presentation of a formal system that interestsus, not just the consequence relation it de�nes.How to believe a formal system. We are interested in believing mathemat-ical statements from formal proofs, so we must be able to read and understandthe formal system we are checking; this is an essential part of bridging the gapbetween a formal property and our informal belief. From this perspective, var-ious presentations of �rst order logic (FOL) are suitable formal systems: thereare few rules, they are organized around useful principles (introduction, elimina-tion), and it is widely studied and accepted. On the other hand, the Nuprl logic(Constable et al. 1986) is less satisfactory in this regard, as it has many rulesand some complicated side conditions.15By metamathematical study of a complex formal system, we may see how it isrelated to some simpler or better known system. For example in 1987 I struggledwith ELF (with 3 classes of terms, 5 judgements and 17 rules) until I realized ittranslates into a subsystem of CC (with one class of terms, 2 judgements and 8rules). One theme of this paper is using computers as a tool to bridge the gapbetween a large formal object and our informal understanding of it; since formalsystems can themselves be studied mathematically in simpler meta-systems (e.g.logical frameworks), we can apply the same technique to gain understanding ofa formal system that is otherwise too large or complicated by formally provingsome of its properties. Of course there are limitations to this approach, andsystem presentations that are too complicated (e.g. Nuprl or the SML de�nition)may not be considered formal at all.Formal systems that are feasible to check. The second reason we careabout intensional properties of a formal system is that we want to actuallycheck derivations of non-trivial statements, so the size of derivations, and moregenerally the feasibility of checking derivations is important. In section 4.2 I14But both Hilbert and Wittgenstein require a proof be surveyable, or \given as such to ourperceptual intuition", i.e. a feasible object.15I count 108 rules in (Constable et al. 1986). There are several pages of informal mathe-matical text describing side conditions.



How to Believe a Machine-Checked Proof17 13discuss styles of proof for feasible checking. Here I am interested in the formalsystem itself, and �nding alternative presentations deriving the same judgementswith better intensional properties: smaller derivations, or ones that are easierto check. More generally, we can look for a di�erent formal system (di�erentlanguage, deriving di�erent judgements) that allows us to more feasibly checkthe original system in some indirect way. Two things can make a formal systemcomputationally expensive to check: the derivations can be big and the sideconditions (non-recursive premises) can be expensive to check.As an example of big derivations, the Gentzen cut-free system for FOL iscompletely infeasible. It is well known that adding the cut rule does not changethe derivable judgements and allows much smaller derivations; the system withcut is a better presentation (for formal mathematics) of the same consequencerelation. Section 3.2.1 discusses how a simple proof checker can support meta-theoretic extensibility by adding admissible rules (such as cut) to a logic.Another way to reduce the size of derivations is to eliminate duplicate sub-derivations. In a derivation tree, subderivations may have repeated occurrencesat di�erent places in the tree. By using a linear presentation of derivations, whereeach line names the previous lines it depends on, only one occurrence of eachsubderivation is required; the indirectness of naming lines allows sharing.16 Ex-tending a formal system with de�nitions allows a similar kind of sharing. In thecases just mentioned, we depend on ad-hoc identi�cation of common substruc-tures by the user, but some formal systems duplicate work in such a uniform waythat we can give an alternative presentation that shares some common substruc-tures by construction. Martin-L�of (1971) gives an algorithm for type synthesisthat transforms o�cial derivations to avoid duplication of context validity check-ing. This idea is used by Huet (1989) in the Constructive Engine, and abstractlyexplained and proved by Pollack (1994).The other computational expense in checking a formal system is the sideconditions. For example in CC the rule of type conversion has convertibility oftwo well-typed terms as a side condition. This is decidable, but certainly notfeasible in general, so neither is proof checking. For the purpose of independentchecking we can trade derivation size for computation of side conditions. Forexample if I have constructed some proof in CC, I can annotate the proof withthe conversion paths found by my proof checker, which must be feasible if Idid actually check the proof. (However, the size of the annotations may beprohibitive; we must work to �nd good annotations.) To independently re-checkthe proof, your checker need only follow the annotations (checking that they arelegal), not discover a conversion path for itself. In this way, independent checkingdoesn't depend on heuristics for feasibility any more than for proof discovery.Annotation of judgements can allow smaller derivations: with annotation, afull derivation of a judgement may be mechanically constructed from the judge-16This interesting way of viewing linear derivations was pointed out to me by Harold Sim-mons. Automath used naming of expressions, lines, and contexts to avoid duplication.



14 R. Pollackment itself so full derivations don't have to be constructed or communicated.This idea underlies the use of decidable type checking as a tool for proof check-ing; the proof terms are annotations that can be expanded into full derivations.Equivalently, we can think of omitting parts of o�cial derivations that can bemechanically reconstructed; e.g. in CC, terms are essentially derivations withinstances of the conversion rule and variable lookup elided. There is a tradeo�:the more information we elide from derivations (making them smaller, so eas-ier to communicate) the more has to be mechanically reconstructed (so makingthem more di�cult to check).4.2 Feasible formal proofsIn the preceeding section I discussed choosing formal systems that are suitablefor actual checking. This section discusses how to make formal proofs, andmore generally, whole bodies of formal mathematics, suitable for actual check-ing. In programming it is well known that there are feasible functions withinfeasible implementations; e.g. the natural recursive de�nition of the �bonaccifunction is exponential in its input, while an alternative de�nition is linear. Anal-ogously, even a well-behaved formal system will have proofs that are infeasiblebecause of proof style. For example, if ack is the Ackermann function, trying toprove ack(100)� ack(100) = 0 by computing ack(100) is hopeless, while proving8n:n� n = 0 is trivial, and gives a trivial proof of the goal.Representation In proof, just as in programming, unsuitable representationof the objects of discourse is a cause of infeasibility. This is especially so becausewe are used to representations from conventional mathematics, which were neverintended to be used in actual formalisation. When formalising a mathematicalnotion we make choices about representation, but there is no reason to believethere is a single \best" representation that leads to natural statements and shortproofs. We can make several de�nitions for a concept, prove something abouttheir relationship, and move between them as convenient; this is done implicitlyin informal presentation. Also note that our choice of representations is con-strained by our underlying formal system (e.g. FS0 cannot express generalizedinduction, while Martin-L�of's framework can), and this may be a reason forchoosing one framework over another.An example is the use of unary vs. base representation for natural numbers.We probably want to use unary representation as the o�cial de�nition of thenaturals, and base representation for actual computation, e.g. the computationalcontent extracted from constructive proofs. In order to do this, elementaryschool arithmetic must be formalised, i.e. the correctness of various algorithmsfor arithmetic operations on base representation numbers.An often mentioned example of a notion that is hard to reason about formallyis binding, and there are many representations of � terms in the literature,including naive variable names (with or without a total ordering on variables),de Bruijn indexes, higher order abstract syntax (Pfenning and Elliott 1988), anaxiomatic approach (Gordon and Melham 1996), and an approach using distinct



How to Believe a Machine-Checked Proof18 15classes of free and bound names (Coquand 1991, McKinna and Pollack 1993).These representations are not all \isomorphic", e.g. some distinguish between �-equivalent terms, some do not. They have di�erent theorems, e.g. a presentationof type theory using free and bound names (McKinna and Pollack 1993) hasa thinning lemma which is close to the informal statement, while one usingde Bruijn indexes (Barras 1996) requires explicit variable lifting.By formalising the relationship between various representations, theoremscan be stated and proved in natural forms, and used in di�erent forms whenneeded. It may not be obvious what the o�cial formalisation of some conceptshould be (e.g. are de Bruijn terms the \real meaning" of � terms, or just aconvenient representation), but formal mathematics doesn't have to split hope-lessly over such questions. As long as your favorite de�nition can be shown tobe appropriately related to other de�nitions in the formal literature, you can useexisting results.Even what I have said about new and di�erent representations for mathe-matical notions is too restricted. We can look for entirely new ways to do mathe-matics that are especially suited for formalisation. An example of this is the useof formal topological models that has recently received interest in the type the-ory community. Following the ideas of Sambin (1995), Persson (1996) describesthe formalisation of a completeness theorem for intuitionistic �rst-order logicusing formal topological models. Coquand (1995) proposes a program of proof-theoretic analysis of non e�ective arguments using formal topological models.Such problems seemed impossible to formalise until this approach was devel-oped.4.3 The business of formal mathematicsMany people who pursue formalmathematics are seeking the beauty of completeconcreteness, which contributes to their own appreciation of the material beingformalised, while to many outside the �eld formalisation is \just �lling in thedetails" of conventional mathematics. But \just" might be infeasible unlessserious thought is given to representation of both the logic of formalisation andthe mathematics being formalised. This can be viewed as an annoying hassle, oras the business of formal mathematics. The latter view leads us to be interestedin areas of feasibility and expressiveness of formal systems and the power offormal systems to represent algorithms (Cardone 1995, Colson 1991, Fredholm1995), and to seriously study formal representations of mathematical notions.BibliographyAllen, Constable, Howe and Aitken (1990). The semantics of reected proof,LICS Proceedings, IEEE.Appel, K. and Haken, W. (1977). Every planar map is four-colorable, IllinoisJournal of Mathematics xxi(84): 429{567.Barras, B. (1996). Coq en Coq, Rapport de Recherche 3026, INRIA.



16 R. PollackBevier, W., Hunt, W., Moore, J. and Young, W. (1989). An approach to systemsveri�cation, Journal of Automated Reasoning 5(4): 411{428.Bishop, E. (1967). Foundations of Constructive Analysis, McGraw-Hill, NewYork.Boyer, R. S. (1994). A mechanically proof-checked encyclopedia of mathematics:Should we build one? can we?, in A. Bundy (ed.), CADE-12: 12th Inter-national Conference on Automated Deduction, Nancy, France, June/July1994, number 814 in LNAI, Springer-Verlag.Cardone, F. (1995). Strict �nitism and feasibility, in D. Leivant (ed.), Logicand Computational Complexity. Proceedings, 1994, number 960 in LNCS,Springer-Verlag.Cohn, A. (1989). The notion of proof in hardware veri�cation, Journal of Auto-mated Reasoning 5(2): 127{140.Colson, L. (1991). Repr�sentation Intentionnelle d'Algorithmes dans les Syst�emsFonctionnels: Une �tude de Cas, PhD thesis, University of Paris 7.Constable et al. (1986). Implementing Mathematics with the Nuprl Proof Devel-opment System, Prentice{Hall, Englewood Cli�s, NJ.Coquand, T. (1991). An algorithm for testing conversion in type theory, inG.Huet and G. D. Plotkin (eds), Logical Frameworks, Cambridge UniversityPress.Coquand, T. (1995). Formal topology and constructive type theory, Talk atTwenty Five Years of Constructive Type Theory, Venice.DeMillo, R., Lipton, R. and Perlis, A. (1979). Social processes and proofs oftheorems and programs, Communications of the ACM 22: 271{280.Feferman, S. (1988). Finitary inductively presented logics, Logic Colloquium '88,Padova, North-Holland.Fredholm, D. (1995). Intensional aspects of function de�nitions, TheoreticalComputer Science 152: 1{66.Gordon, A. and Melham, T. (1996). Five axioms of alpha conversion, in J. VonWright, J. Grundy and J. Harrison (eds), Ninth international Conferenceon Theorem Proving in Higher Order Logics TPHOL, Turku, Finland, Vol.1125 of LNCS, Springer-Verlag, pp. 173{190.Gordon, M., Milner, R. and Wadsworth, C. (1979). Edinburgh LCF: A Mecha-nized Logic of Computation, Vol. 78 of LNCS, Springer-Verlag.Grundy, J. (1996). Trustworthy storage and exchange of theorems, Technicalreport, Turku Centre for Computer Science (TUCS), Lemmink�aisenkatu 14A, FIN-20520 Turku, Finland.Harper, R., Honsell, F. and Plotkin, G. (1993). A framework for de�ning logics,Journal of the ACM 40(1): 143{184. Preliminary version in LICS'87.Harrison, J. (1995). Metatheory and reection in theorem proving: A surveyand critique, Technical Report CRC-053, SRI Cambridge, UK.



How to Believe a Machine-Checked Proof19 17Harrison, J. (1996). Formalized mathematics, Technical report, Turku Centrefor Computer Science (TUCS), Lemmink�aisenkatu 14 A, FIN-20520 Turku,Finland.Horgan, J. (1993). The death of proof, Scienti�c American pp. 74{82.Huet, G. (1989). The constructive engine, in R. Narasimhan (ed.), A Perspectivein Theoretical Computer Science, World Scienti�c Publishing. Commemo-rative Volume for Gift Siromoney.Kahrs, S. (1993). Mistakes and ambiguities in the de�nition of Standard ML,Technical Report ECS-LFCS-93-257, University of Edinburgh. A later ad-dendum extends this report.Lam, C. (1990). How reliable is a computer-based proof?, The MathematicalIntelligencer 12(1): 8{12.Martin-L�of, P. (1971). A theory of types, Technical Report 71-3, University ofStockholm.McDowell, R. and Miller, D. (1997). A logic for reasoning with higher-orderabstract syntax, Proceedings of LICS'97, IEEE.McKinna, J. and Pollack, R. (1993). Pure Type Systems formalized, inM.Bezemand J.F.Groote (eds), Proceedings of the International Conference on TypedLambda Calculi and Applications, TLCA'93, Utrecht, number 664 in LNCS,Springer-Verlag, pp. 289{305.Milner, R., Tofte, M. and Harper, R. (1990). The De�nition of Standard ML,MIT Press.Nordstr�om, B., Petersson, K. and Smith, J. (1990). Programming in Martin-L�of's Type Theory. An Introduction, Oxford University Press.Paulson, L. C. (1994). Isabelle: A Generic Theorem Prover, number 828 inLNCS, Springer.Persson, H. (1996). Constructive Completeness of Intuitionistic Predicate Logic:A Formalisation in Type Theory, Chalmers University of Technology andUniversity of G�oteborg, Sweden. Licentiate Thesis.Pfenning, F. and Elliott, C. (1988). Higher-order abstract syntax, Proceedingsof the ACM SIGPLAN '88 Symposium on Language Design and Implemen-tation, Atlanta, Georgia, pp. 199{208.Pollack, R. (1994). The Theory of LEGO: A Proof Checker for the ExtendedCalculus of Constructions, PhD thesis, University of Edinburgh.Pollack, R. (1995). On extensibility of proof checkers, in Dybjer, Nordstromand Smith (eds), Types for Proofs and Programs: International Work-shop TYPES'94, B�astad, June 1994, Selected Papers, LNCS 996, Springer-Verlag, pp. 140{161.Sambin, G. (1995). Pretopologies and completeness proofs, Journal of SymbolicLogic 60: 861{878.Slaney, J. (1994). The crisis in �nite mathematics: Automated reasoning as cause



18 R. Pollackand cure, in A. Bundy (ed.), CADE-12: 12th International Conferenceon Automated Deduction, Nancy, France, June/July 1994, number 814 inLNAI, Springer-Verlag.VanInwegen, M. (1996). The Machine-Assisted Proof of Programming LanguageProperties, PhD thesis, University of Pennsylvania.



Recent BRICS Report Series Publications

RS-97-18 Robert Pollack.How to Believe a Machine-Checked Proof. July
1997. 18 pp. To appear as a chapter in the bookTwenty Five
Years of Constructive Type Theory, eds. Smith and Sambin, Ox-
ford University Press.

RS-97-17 Peter Bro Miltersen.Error Correcting Codes, Perfect Hashing
Circuits, and Deterministic Dynamic Dictionaries. June 1997.
10 pp.

RS-97-16 Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez
Petrank, and Gábor Tardos. Linear Hashing. June 1997. 22 pp.
A preliminary version appeared with the title Is Linear Hash-
ing Good? in The Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 465–474.

RS-97-15 Pierre-Louis Curien, Gordon Plotkin, and Glynn Winskel.
Bistructures, Bidomains and Linear Logic. June 1997. 41 pp.

RS-97-14 Arne Andersson, Peter Bro Miltersen, Søren Riis, and
Mikkel Thorup. Dictionaries onAC0 RAMs: Query Time�(qlogn= log logn) is Necessary and Sufficient. June 1997.
18 pp. Appears in37th Annual Symposium on Foundations of
Computer Science, FOCS ’96 Proceedings, pages 441–450.

RS-97-13 Jørgen H. Andersen and Kim G. Larsen.Compositional Safety
Logics. June 1997. 16 pp.

RS-97-12 Andrej Brodnik, Peter Bro Miltersen, and J. Ian Munro.
Trans-Dichotomous Algorithms without Multiplication — some
Upper and Lower Bounds. May 1997. 19 pp. Appears in Dehne,
Rau-Chaulin, Sack and Tamassio, editors,Algorithms and Data
Structures: 5th International Workshop, WADS ’97 Proceed-
ings, LNCS 1272, 1997, pages 426–439.

RS-97-11 K̄arlis Čerāns, Jens Chr. Godskesen, and Kim G. Larsen.
Timed Modal Specification — Theory and Tools. April 1997.
32 pp.

RS-97-10 Thomas Troels Hildebrandt and Vladimiro Sassone.Transition
Systems with Independence and Multi-Arcs. April 1997. 20 pp.
Appears in Peled, Pratt and Holzmann, editors, DIMACS
Workshop on Partial Order Methods in Verification, POMIV ’96,
pages 273–288.


