
Design Automation Conference®

Copyright © 1998 by the Association for Computing Machinery, Inc. Permission to make digital/ hard copies
of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc.,
fax +1 (212) 869-0481, or permissions@acm.org.

1-58113-049-x/98/0006/$5.00 DAC 98 - 06/98 San Francisco, CA, USA

A Methodology for Guided Behavioral-Level Optimization

Lisa Guerra Miodrag Potkonjak Jan Rabaey
Advanced VLSI Architecture Group Computer Science Department EECS Department
Rockwell Semiconductor Systems University of California University of California

Newport Beach, CA Los Angeles, CA Berkeley, CA

Abstract — Optimization at the early stages of design are crucial.
However, due to an overwhelming number of design and optimiza-
tion options, design exploration is often conducted in a qualitative,
ad-hoc manner. This paper presents a methodology and interactive
environment for guiding the exploration process. A prototype tar-
geting behavioral-level optimization for datapath-intensive ASIC
implementations has been developed. The key to the approach is
encapsulated knowledge about the various optimizations and a set
of techniques to automatically extract the “essence” of a design
description. At each stage in the exploration process, the system
suggests and ranks potential optimizations, both in terms of imme-
diate and longer-term impact. It also provides evaluations of the
design and of the likely affects each optimization will have on met-
rics like power and performance. In the new approach, the designer
is responsible for making the actual optimization selections. How-
ever, using the provided guidance, designers can make decisions in
a more informed manner, and therefore can explore the design
solution space more effectively. The effectiveness of the approach
is demonstrated on a number of designs.

1.0 Introduction

Traditionally, concentration has been placed in the development of
point tools and methodologies which address a single task within
the optimization process. For example, in behavioral-level
optimization, in addition to the approaches proposed for
partitioning, template matching, and clock selection, there exist
more than a hundred transformations [Bac94, Par95]. Some
optimizations are restricted to optimization of a specific class of
computation (e.g. only linear computations). Some focus on power
optimization while others target area or throughput. Furthermore,
some concentrate on reduction of just a specific sub-metric; for
example, different power optimization techniques have been
developed for reducing capacitance, for reducing activity, and for
enabling voltage scaling.

Effectiveglobal optimization, or optimization of a global objective
function on current-day complex and heterogeneous applications,
clearly requires the coordinated application of a collection of
techniques. While many of the problems being addressed by the
individual techniques are in themselves computationally
intractable, an added layer of complexity clearly exists in deriving
an entire optimization trajectory. This added complexity is due to
the strong interdependency that exists between techniques.
Exploring different trajectories is crucial, as a large variability in
attainable improvements exists. Exploring all possible sequences

of actions inevitably results in combinatorial explosion, however,
and thus is not a feasible option. Furthermore, static scripts are not
sufficient since their effectiveness is strongly dependent on the
particular design.

This paper proposes a methodology for enabling systematic and
effective global optimization. The approach involves interactively
and quantitatively guiding the designer’s exploration process. At
each stage in the exploration process, the system suggests and
ranks potential optimizations, taking into consideration not only
immediate benefits, but benefits which may be gained by
successive optimizations. It provides evaluations of the design and
of the likely affects each optimization will have on metrics like
power, cost, and performance. Using the guidance environment,
designers maintain a more global view of the exploration space,
can make decisions in a more informed manner, and thus can more
easily and quickly discover effective trajectories of optimizations.

2.0 Preliminaries

Based on the proposed methodology, an environment targeting
behavioral-level design optimization for semi-custom ASIC
implementations has been developed. This section presents the
domain that we have focused on.

Applications are described in either the Silage high-level language
or using restricted C++, then automatically parsed into a flowgraph
representation. The flowgraph consists of nodes representing data
operators or sub-graphs, and edges representing the data, control,
and timing precedences. The flowgraph computation model is
homogeneous synchronous data flow [Lee87]. Hyper behavioral
synthesis [Rab91] tools are used to map the flowgraph to an
architectural netlist implementation. The ASIC architecture model
consists of an unlimited number of parallel, time-multiplexed
execution units. Registers are clustered into register files, which
are tied to the input ports of the execution units.

Before mapping, optimizations are applied to improve the design’s
area, power, or throughput. They can be transformations on the
flowgraph itself, manual re-writes of the input specification, or
library and parameter changes. Optimization examples include
time and for-loop unfolding, algebraic optimizations, pipelining
and retiming, voltage scaling, clock selection, operator chaining,
and hardware module selection. A good overview of the behavioral
synthesis area can be found in [McF90].

3.0 Related Work

Before proceeding, this section outlines related efforts in design
guidance, design planning, and in performing optimization
globally across the boundaries of individual techniques. A design
guidance system, the Clio Design Advice System, was proposed
by Lopez, Jacome, and Director in 1992 [Lop92]. This system
provides design advice consisting of static pieces of qualitative
information about different design options. The advice database
operates as the collective memory of the entire community of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, June 15-19, 1998, San Francisco, CA USA
ISBN 1-58113-049-x/98/06…$5.00

309

designers utilizing the framework. There have also been several
related works in the area of “design planning.” The ADAM Design
Planning System [Kna91], for example, is a knowledge-based
planner that constructs a sequence of design synthesis tasks in
response to a given set of specifications. The ADAM system
concentrates on the design flow of tools (e.g. module selection,
allocation) to synthesize an RTL design. Other related work on
includes the work of [Goo94] on global design methodologies for
heterogeneous ICs and work on flow management [Kle94].

In the area of optimization ordering, there have been a number of
approaches in the CAD and compilers areas. These, however, only
address fixed sets of techniques. The techniques include peephole
optimization [McK65], pre-defined script-based optimization
[Bra84], theory-based ordering [Wol91], generic probabilistic
techniques [Pot94, Cha95], bottleneck identification and
elimination approaches, and approaches using enabling and
disabling transformations, [Whi90, Pot92, Hua93].

The key novelties of this work are 1) a combination ofquantitative
and qualitative design advice is given, 2) design advice that is
specific to the design at hand is given, 3) the designer remains an
integral part of the design process, 4) the approach is extendible to
include new optimizations. While the work of [Gue94] presents
the use of properties for guidance through estimation, in this work,
we present a complete environment for their use in guided
optimization.

4.0 Proposed Methodology and System Overview

4.1 Methodology Overview
Fig. 1 depicts an overall view of the interactive guided
optimization process. The designer enters a design specification,
constraints, and goals; for example, a C++ description of a DCT
algorithm, the required sample rate, and the goal of power
optimization could be specified. The design guidance system
analyzes the specified design and generates design feedback. The
user interprets this information and directs the exploration by
selecting a specific most promising direction from among the
suggestions or by proposing another alternative. Exploration
continues, with control alternating between the system and user.
Note that the system keeps a global view of the design space,
adapting rankings as new information is gained and thus
suggesting backtracking to previous design versions as soon as the
current path loses promise.

During the exploration process, the user is presented with a visual
trace of the exploration (e.g. Fig. 4). This display is essentially a
rooted tree representation of all the optimization sequences that
have been applied so far. The root of the tree is the original design,
the edges represent specific optimizations, and the nodes are the
intermediate design versions. The display also shows all the
optimizations suggested for further exploration and their ranking,
and has links to detailed information for each.

Key advantages of the methodology are that designer expertise can
be integrated into the optimization process, and the designer can
learn from the system. The experienced designer is given the

freedom to synergistically combine the information provided by
the system with his/her intuition, specific design ideas, and
common sense. Instead of following suggestions, (s)he may
modify parameters with which an optimization is invoked, may
select poorly ranked suggestions, or may provide an altogether
new alternative. Alternatively, (s)he can choose to either blindly
follow suggestions or use the system as resource of encapsulated
optimization knowledge.

Furthermore, the approach allows the use of not only the available
automated techniques, but also non-automated ones. The system
can propose a technique which the user can apply manually
through code re-write. Using the accompanying predictions, the
designer evaluates the time investment to potential reward ratio.
The use of non-automated techniques greatly increases
optimization power since it expands the library of techniques the
designer is likely to apply from just the available ones to include
all techniques that have been characterized.

Fig. 2 shows the main components of the design guidance system.
The input to the system is a directive specifying a particular
optimization and design version. The output is the updated design
trace. The system has automated optimizations that it can apply for
the designer. It also has estimators [Rab91, Meh94, Gue94] for
determining the throughput, area, and power of any of the design
versions. Most importantly, it has components for generating
design guidance. The components contributing to this are shown in
Fig. 2 in bold, and will be the primary topic of Section 4.2. These
are the keys to creating guidance: a mechanism for characterizing
or extracting the “essence” of a design, a pre-characterized library
of optimizations, and a mechanism for evaluating and ranking
options.

Before delving into the details of these blocks, we summarize the
key features of the environment:

■ provides estimates of the design’s power, area, and throughput
■ suggests relevant optimizations
■ provides reasonings for their application and predictions of

their effects
■ applies automated optimizations
■ enables the use of non-automated techniques
■ maintains a global view of the exploration space, backtracking

when necessary
■ allows designers to integrate their expertise in the exploration
■ provides optimization knowledge that designers can learn from

4.2 Guidance System
The backbone of the new methodology is guidance generation.

specification,
Design

Optimized

Designer

design(s)

Design Guidance
System

constraints, and
goals

Fig. 1. Guided design space exploration and optimization

Design
Feedback Directives

Library of

Design
characteri-

characterized

New design

Estimation +

Optimi-

version

 Directive
(design version, action)

Estimation

Fig. 2. Components of the design guidance system

Design Feedback

Evaluation
of option

effectiveness
& Ranking

optimizations

zation
zation

Estimators
Hardware

libraryEstimators

Synthesis &

techniques
compiler

310

The basis of the system is a library of optimization techniques.
These techniques are characterized into models of performance.
These models produce cost analysis based on properties that can
be extracted from the design. This section will explain the
characterization of both designs and optimizations. It will also
explain how this information is used to produce ranked
suggestions.

4.2.1 Design Characterization
A key requisite for providing useful design feedback is a
mechanism for analyzing the design being optimized. Previous
research has shown the use of design characteristics, or design
properties, for predicting a variety of design metrics of the final
implementation [Jam87, Gue94]. Effectiveness of various
optimizations can also be linked to a design’s properties. The
propertiesidentify situations in which certain optimization
techniques will work well and can be used in predicting their
effectiveness. Classes of properties used in this work are outlined
below. Examples of their use in optimization characterization are
shown in the next section.

■ Size measures includes quantities such as the number of func-
tional operations, the bitwidth, the number of I/O and delay
operations, and the number of memory accesses.

■ Timing measures include the critical path, the ratio of sample
rate to the critical path, the number and types of nodes on the
ε-critical network, the delays of various operators, and statis-
tics of the scheduling slack.

■ Concurrency measures estimate the number of operation and
interconnect accesses that can be executed concurrently.

■ Uniformity metrics capture the degree to which resource
accesses are evenly distributed in time.

■ Temporal properties capture information about the lifetimes of
variables in the computation.

■ Regularity metrics quantify the degree to which common pat-
terns appear in the control data flow graph.

■ Cyclic properties include the iteration bound, the number of
strongly connected components and the critical paths of each,
and the percentage of operations in cycles.

■ Other metrics include characterizing whether the computation
is linear or non-linear and recursive or non-recursive.

When not already available, algorithms were developed for
quantifying the various design properties. In the developed
environment, properties are automatically extracted and are
available for the interested designer to view (Fig. 3a). This raw
feedback (without the guidance layer) can in itself be a great
design aid that relieves the designer of mundane time-consuming
calculations (e.g. of the crit ical path, operation counts,
concurrency, etc.) that (s)he would have otherwise computed by
hand. The precise definition of the assumed properties are beyond
the scope of this paper, but can be found in [Gue94, Gue96].

4.2.2 Optimization Characterization
Another key step in the methodology involves identifying and
characterizing relevant optimizations. An optimization is
quantified by an encapsulated command-line call for its execution,
by a set of trigger conditions, and by information regarding its
immediate and longer term optimization potential. This
information, or designknowledge, is encapsulated in a library of
optimization characterizations. To date we have characterized over
25 optimizations, with focus on their impact on throughput, power,
and area. Sample optimization characterizations can be found in
[Gue96]. Characterized optimization actions can be either an
atomic synthesis task (e.g. clock selection, module selection,
retiming) or a static script of tasks.

The encapsulated command line calls are included so that an
optimization can be automatically applied (with the appropriate
parameters) when the designer selects it. The trigger conditions aid
in quick pruning of options. If an option’s triggers are not satisfied,
the option is eliminated from consideration, and time need not be
wasted generating feedback regarding its effects. Design
characteristics play a major role in trigger definition. Triggers can
be any boolean function of the design’s properties. Example
triggers include “Is the computation linear?” (for optimizations
that only work on linear computations), “Does the computation
have delays?” (for the delay retiming optimization), and “Does the
computation have multiplications by constants?” (for constant
multiplication expansion into adds and shifts).

The feedback to aid in selecting the next optimization to apply are
encapsulated in the form of text and parameterized rules/equations
(as a function of the design’s properties). There are 3 main types of
feedback that are characterized. The first type of feedback involves
predicting the immediate effect that the action has on the design
metrics. The second type of feedback is information on the
enabling effect that the action has to enhance subsequent
optimizations. We characterize enabling potential for only those
optimizations identified as typical enablers/enhancers of
subsequent optimizations. For these enablers, predictions are made
regarding their 1 or 2-step look-ahead predictions when applied in
combination with a few common transformations. The third type
of feedback includes qualitative hints about the order in which to
apply the optimizations (e.g. “this optimization is often effective

Fig. 3. a) Property and b) property-based
estimation windows

(a)

(b)

311

after applying optimization x”). All information used in the
characterization is assumed to be obtained through the literature
and through design experience.

The feedback is both presented textually to the designer and used
in option ranking. While the ranking uses only the quantitative
feedback pertaining to immediate and potential affects on the cost
functions, the textual feedback can additionally contain more
qualitative information (for example, information about typical
optimizations with which an optimization works well).

4.2.3 Ranking
In addition to suggesting and predicting the effect of feasible
options, another key component of design guidance involves their
ranking. Options are ranked in order of their overall predicted
effectiveness in helping to meet the specified constraint and
optimization objectives. Ranking is done between all proposed
optimization actions along all partially-explored optimization
paths. Note that if a quantitative prediction of an optimization’s
effectiveness is not available, then it is not given a ranking. The
designer uses the rankings in conjunction with the textual feedback
to aid in selecting an optimization and specific design version on
which to apply it.

There are three basic factors used to evaluate an actionai ’s
effectiveness on design versiondj — the resulting performance as
compared to existing solutions; its potential to enhance subsequent
optimization; and the resulting feasibility in meeting constraints.
As an example, for the goal of power minimization under a
throughput constraintTc, measures of these three factors are
defined below:

ImmediateImprovementij = (lowest power so far - powerij) /
(lowest power so far)

if (ai is not an enabler) {

EnablingPotentialij = 0

} else {

EnablingPotentialij = 1/k, where k is ai’s rank among actions
sorted in order of enabling potential on dj }

if constraints are met (predicted throughput > Tc) {

Infeasibilityij = 0

} else {

Infeasibilityij = (predicted critical path / available time) }

The immediate improvement function is a measure of how the
resulting power after application ofai to dj will compare to the
lowest power attained so far among all solutions. The one with the
lowest predicted power wil l have the highest immediate
improvement function. The enabling potential is 0 ifai is not an
enabler. Otherwise it is a function of the action’s predicted
enabling potential as compared to other actions. The infeasibility
function is 0 if constraints are met, otherwise it is a measure of
how far the current achievable throughput is from the minimum
throughput constraint.

The basic effectivenessRij of actionai on design versiondj can
now be formed as a linear combination of these factors. The
actions are ranked in decreasing order ofRij :

Theα1, α2, andα3 are constants empirically derived to be 4, 2, and
5, respectively. The valuetij is an indicator of how far the
application of actionai is into the particular optimization

trajectory:

tij = (1 + length(dj))/ total number of applicable actions 0 < tij 1

It is defined as the ratio of the number of unique actions that have
been applied along a given path to the total number of actions. The
functions1/tij , α1tij , and(α2tij)

α3tij are used to weight the sub-
components of the ranking function as follows. In the beginning of
an exploration trajectory, the actions with high enabling potential
are favored. As the exploration progresses, the guidance favors
more immediate improvements. Towards the end, ensuring
feasibility becomes vitally important.

4.2.4 Interface and Implementation
An environment has been developed to demonstrate the interactive
guided exploration approach. The environment’s graphical user
interface is written using Tcl and Tk. Embedded functions which
perform the design analysis, optimization analysis, and ranking are
implemented in C. The parameters passed to these functions
include the design parameters and constraints, and pointers to the
design (in flowgraph form), hardware library, and optimization
characterization library. All invocations of existing tools are made
through the framework. The Tcl-Tk interface handles all the
software system glue logic and management of exploration history.

From the main window of the guidance environment, design
management, estimation, or guided exploration is invoked. Design
management tasks include loading the design, editing the
algorithm input description, setting parameters and constraints, or
exiting the tool. From the design management menu, the designer
can also view the design’s property metrics (Fig. 3a). Under
estimations, Hyper estimation for area, speed, and power is
encapsulated [Rab91, Meh94], as well as property-based area
estimation. A sample property-based estimation window is shown
in Fig. 3b. The plot sub-window shows a concurrency graph of
subtraction operations over time. Guided design space exploration
is invoked by depressing the guided exploration button, and
selecting a desired performance objective. A sample screen shot
for guidance will be shown in the next section.

5.0 Putting It All Together

5.1 Example
To illustrate the key ideas and the effectiveness of the new
methodology, this section presents the highlights of a sample
“session” of an ASIC design of a General Electric (GE), state-
space, 5-state, 32-bit linear controller [Cha93]. The goal is to
provide a feel for the system, the types of feedback and guidance
that it provides, and the underlying design methodology.
Assuming a required sample rate of 1.2 MHz, direct synthesis
using the Hyper behavioral level synthesis tools and Berkeley
Low-Power library, gives a design with estimated power [Meh94]
of 441 mW at 5 volts using a 1.2µm technology.

Upon commencement of the guided optimization exploration
session, the system characterizes the design then prunes a number
of non-applicable optimizations. For example, library selection is
not triggered since the low-power library has more effective
modules with respect to power than the alternate dpp library
[Bro92]. Clock selection is not suggested since it has already been
set efficiently by the user. The user-specified description does not
have common sub-expressions or for-loops so CSE and for-loop
unfolding are not applicable. Finally, direct voltage scaling is not
triggered since there is no difference between the critical path and
the available time.

The system proposes and ranks a number of actions that may result
in immediate or subsequent power reduction. In this case,

Rij α1tij ImmedImprovementij
1
tij
-----EnablingPotentialij α2tij()

α3tij
Infeasibilityij–+=

≤

312

suggested actions are pipelining, constant multiplication
replacement with additions and shifts, time loop unfolding, and the
“maximally fast” script [Pot92]. For each action it provides
feedback to guide the designer’s selection. Information regarding
pipelining, for example, includes a bound on critical path
improvement attainable by pipelining; in this case, it can reduce
the critical path from 12 clock cycles to the iteration bound of 6
clock cycles. A power prediction is also provided based on an
empirical voltage-delay curve [Cha95]; in this case, the critical
path reduction has enabled a voltage reduction to 2.8 volts, giving
an estimated power reduction of 3.2. Constant multiplication
expansion into addit ions and shifts is another potential
optimization. There are many constant multiplications: 36 out of
67 total operations. Furthermore, their bitwidth of 32 results in a
large difference between multiplier and adder power dissipation,
delay, and area. The maximally fast script is also an attractive
alternative since it can reduce the critical path to at least 4. The
maximally fast static transformation script combines several
algebraic and redundancy manipulation transformations for critical
path and operation reduction.

While each of the mentioned tasks will result in immediate power
reduction, the system proposes time loop unfolding as the most
attractive alternative. This technique reduces the critical path to the
iteration bound of the design, but is favored not for it’s immediate
benefit (which is actually very similar to pipelining’s), but rather
for the long-term improvement potential that it provides for greater
subsequent optimization. In particular, as indicated by the tool’s
analysis, the computation is linear (formal degree is 1) and
therefore unfolding enables effective application of the
“maximally fast” technique simultaneously on several iterations of
the computation. The specific unfolding factor is selected by the
designer. The system provides a table (partial table shown in Table
1) of suggested voltage and number of operations for various
unfolding factors (closed form equations exists for computing the
estimated critical path and number of operations). The suggested
voltage is based on maintaining some slack between the resulting
critical path after voltage scaling and the available time (a slack of
10% is used). Based on this table and qualitative feedback that
control overhead increases with greater unfolding, the designer
selects an unfolding factor of six to balance achieving both
speedup for voltage scaling and reduction in capacitance.

Application of time loop unfolding followed then by the suggested
maximally fast script reduces both the effective critical path by a
factor of 21 and more importantly reduces the effective number of
operations (the number of operations per iteration) by a factor of 2.
This in turn enables application of the MCM technique [Pot94] for
conversion of constant multiplications to series of shifts and

additions, reducing the effective capacitance per operation. The
final steps are suggested by the environment so that immediate
improvements are maximized. They involve lowering the voltage
from 5 to 1 volts and performing clock selection for efficient
utilization of the clock period. The optimized design has a power
of 2.9 mW. For this example, not only is power reduced by a factor
of 151, but area was also reduced by a factor of 2.

Fig. 4 shows a snapshot of the exploration session. The left-most
justified actions are those that were initially suggested (unfolding,

pipelining, MCM, and max-fast). Application of time-loop
unfolding has already been done through selection of the
appropriate radio button and the “Continue” button. Several
optimizations are now suggested for application to the new
unfolded design version (e.g. max-fast, MCM, voltage scaling).
Note that ranking is done on both optimizations suggested for
application to the new unfolded design (ranks 1, 2, and 6) as well
as to the original design (ranks 3, 4, 5). Specific feedback
regarding a suggested action is provided by selecting the
corresponding information button marked with a “?” (see sub-
window in Fig. 4). The information for voltage scaling is
displayed.

5.2 Experimental Results
Table 2 presents the obtained improvements in energy and area.
The designs include a 6th order IIR filter, a bandpass filter, cordic,
5 and 7 point convolutions, an 8-point fft, an image convolver, a

Unfolding
factor

New critical
path Speedup Suggested

voltage

Number of
additions and

multiplications
0 4 3 2.2 66
5 .67 18 1.2 33.5
6 .57 21 1.2 33.43

Table 1: GE controller example — the impact on attainable voltage and
operation counts for various unfolding factors.

Design Initial
cap. (C)Final C C

reduction

Energy
improve-

ment

Area
improve-

ment

Optimization
steps

6 IIR 9.08 0.38 23.9 260.2 5.67
U4, MF, MCM
+ CS, AIB, MP,

V, CS

bandpass 12.26 1.54 7.96 86.7 2.20
CM + CS, U7,

V, CS

conv5 11.20 0.04 280 3049.0 32.57
CM + CS, U5,

V, CS

conv7 3.34 0.04 83.5 909.3 26.9
CM + CS, U6,

V, CS
cordic 49.96 32.76 1.53 16.6 1.08 U8, MP, V, CS
fft8 5.37 1.02 5.26 57.3 2.49 U5, CM, V, CS

imagec 38.82 36.08 1.08 11.7 0.95 U2,MP, V, CS

modem 38.67 0.80 48.3 526.4 16.19
CM + CS, U4,
AIB, P2, V, CS

steam 137.58 85.50 1.61 17.5 0.49
CM + CS, U3,
AIB, P2, V, CS

volterra
2

7.42 1.03 7.20 78.5 4.36
U4, CM + CS,
AIB+ MP, V,

CS

volterra
3

59.90 13.64 4.39 47.8 2.77
U3, CM + CS,
AIB+ MP, V,

CS
wangd 15.90 2.41 6.60 71.85 2.86 U4, CM, V, CS

Table 2: Experimental Results: minimizing power under a fixed
throughput constraint

Fig. 4. View of the exploration ses-
sion after application of time-loop

unfolding

313

modem example, a large controller for a steam plant, 2nd and 3rd
order non-linear Volterra filters, and the Wang 8-point DCT. Note
that most designs have feedback, and several including the Volterra
filters, image convolver, and cordic are nonlinear. The latter 2 are
also control dominated with a high percentage of conditionals. The
last column of Table 2 identified the optimization steps used for
each design. The abbreviations used in the table are defined as
follows: UN - unfolding by a factor N; CM - substitution of
constant multipl ications by addit ion and shifts; MCM -
substitution of constant multiplications by addition and shifts
using the MCM transformation; MF - maximally fast algorithm;
MP - maximal pipelining; PN - pipelining using N stages; R -
retiming; AIB - associativity for iteration bound; A - associativity;
V - voltage scaling; CS - clock selection. Note that a “+” is used to
indicate optimizations that are suggested together as a script (e.g.
CM+CS).

For all examples, we assume that clock selection has been initially
performed and that a starting voltage of 3.3 Volts is used. For all
examples, the final voltage attained was 1 Volt. The maximum,
minimum, average and median capacitance improvements were by
a factor of 280, 1.08, 7.68, and 33.6 respectively. The maximum,
minimum, average and median energy improvements were by
factors of 3049, 11.7, 126.8 and 83.6, respectively. Simultaneously
for area, the maximum, minimum, average and median
improvements were 32.57, 0.49, 7.88 and 2.86 times, respectively.
Note that although the resulting sequences of optimization steps
are in many cases similar, rarely are they identical. Some of the
key issues the design guidance feedback helped in included
determining the unfolding factor, determining how much to
pipeline (if at all), freeing the designer from many manual
calculations, and eliminating optimizations. While in these
examples we lowered voltage always to 1 V, in practice the
designer will likely target a variety of voltages.

Obtained improvements when targeting exclusively area reduction
for the same set of designs are also available, but were omitted
here due to space.

6.0 Summary

A novel methodology for guided design space exploration has
been presented. It has been applied for behavioral-level
opt imizat ion of datapath- intensive semi-custom ASIC
implementations. The approach encourages systematic and
quantitative as opposed to ad-hoc global optimization across point
optimizations. The intelligence of both the system and designer
can be leveraged upon. The methodology and environment
facilitates these goals using a library which characterizes design
optimizations, mechanisms for ranking design alternatives, and
techniques for analysis of designs.

One of the key unanswered issues concerns the portability of the
presented ideas to new application areas (e.g. control-intensive
applications) and architecture models. A change in either would
require a new design characterization where some metrics are
unchanged, some are modified, and some are altogether new. It
would also require establishing the relations between these metrics
and performance. The hope is that with each new domain
addressed, the number of new metrics needed will decrease, and at
some point, a core superset of metrics will be established. Other
areas of future work include continued growth and improvement of
the optimization “knowledge database,” continued research on
ranking and partitioning, and the use of automated searches to
complement the user-driven exploration.

7.0 References

[Bac94] Bacon, D.F., Graham, S.L., Sharp, O.J. Compiler
transformations for high performance computing.ACM
Computing Surveys, Vol. 26, No. 4, 345-420.

[Bra84] Brayton, R.K., et al.Logic Minimization Algorithms for VLSI
Synthesis. Kluwer, Boston, MA, 1984.

[Cha93] Chatterjee, A., Roy, R.K., d’Abreu, M.A. Greedy hardware
optimization for linear digital circuits using number splitting
and refactorization.IEEE Trans. on VLSI Systems, Vol.1,
No.4, 423-431, 1993.

[Cha95] Chandrakasan, A., et al. Optimizing power using
transformations.IEEE Trans. on CAD, Vol. 14, No. 1, 1995.

[Goo94] Goossens, G., Bolsens, I., Lin, B., Catthoor, F. Design of
heterogeneous ICs for mobile and personal communication
systems.ICCAD, 524-531, 1994.

[Gue94] Guerra, L., Potkonjak, M., Rabaey, J. System-level design
guidance using algorithm properties.VLSI Signal Processing
Workshop, 73-62, 1994.

[Gue96] Guerra, L. Behavioral-level design guidance for ASIC
implementations. Ph.D. dissertation, UC Berkeley Dept. of
EECS, 1996.

[Hua93] Huang, S., Rabaey, J. Maximizing the throughput of high
performance DSP applications using behavioral
transformations.European Design & Test Conf., 25-30,
1994.

[Jam87] Jamieson, L. Characterizing parallel algorithms, inThe
Characteristics of parallel algorithms, L. Jamieson, D.
Gannon, R. Douglass (eds.), MIT Press, Cambridge, Mass.,
1987.

[Kle94] Kleinfeldt, S., et al. Design methodology management.Proc.
of the IEEE, Vol.82, No.2, 231-50, 1994.

[Kna91] Knapp, D. W., Parker, A. C. The ADAM design planning
engine. IEEE Trans. on CAD, Vol.10, No.7, 829-46, 1991.

[Lee87] Lee, E.A. and Messerschmitt, D.G. Static scheduling of
synchronous data flow programs for digital signal processing.
IEEE Trans. on Computers, Vol. 36, No. 1, 24-35, 1987.

[Lei83] Leiserson, C. and Saxe, J. Optimizing synchronous systems.
Journal of VLSI and Computer Systems, Vol.1, No.1, 1983.

[McF90] McFarland, M.C., Parker, A.C., Camposano, R. The high-
level synthesis of digital systems.Proc. of the IEEE,Vol. 78,
No. 2, 301-317, 1990.

[McK65] McKeeman, W.M. Peephole optimization.Comm. of the
ACM, Vol. 8, No. 7, 443-444, 1965.

[Meh94] Mehra, R. and Rabaey, J. Behavioral level power estimation
and exploration.Int’l Workshop on Low-Power Design, 197-
202, 1994.

[Par95] Parhi, K.K. High-level algorithm and architecture
transformations for DSP synthesis.Journal of VLSI Signal
Processing, Vol. 9, No. 1-2, 121-143, 1995.

[Pot92] Potkonjak, M. and Rabaey, J. Maximally fast and arbitrarily
fast implementation of linear computations.ICCAD, 304-
308, 1992.

[Pot94] Potkonjak, M., Srivastava, M., and Chandrakasan, A.
Efficient substitution of multiple constant multiplications by
shifts and additions using iterative pairwise matching.Design
Automation Conference, 189-194, 1994.

[Rab91] Rabaey, J., et al. Fast prototyping of data path intensive
architectures.IEEE Design and Test, Vol. 8, No. 2, 40-51,
1991.

[Whi90] Whitfield, D. and Soffa, M.L. An approach to ordering
optimizing transformations.ACM Symposium on Principles
and Practice of Parallel Programming, 137-147, 1990.

[Wol91] Wolf, M. and Lam, M. A loop transformation theory and an
algorithm to maximize parallelism.IEEE Trans. on Parallel
and Distributed Systems, Vol. 2, No. 4, 452-471, 1991.

314

