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Abstract bars, movies, and interesting sights to see and things to do in
a neighborhood or city. But such applications are infeasible
Server-based collaborative filtering systems have beenwithout strong protection of individual data privacy.

very successful in e-commerce and in direct recommenda- Today’s server-based collaborative filtering systems have
tion applications. In future, they have many potential ap- a number of disadvantages. First of all, they are a serious
plications in ubiquitous computing settings. But today’s threat to individual privacy. Most online vendors collect
schemes have problems such as loss of privacy, favoringouying information about their customers, and make rea-
retail monopolies, and with hampering diffusion of innova- sonable efforts to keep this data private. However, customer
tions. We propose an alternative model in which users con-data is a valuable asset and it is routinely sold as such when
trol all of their log data. We describe an algorithm whereby companies have suffered bankruptcy. At this time this prac-
a community of users can compute a public “aggregate” tice is supported by case law. A second disadvantage is that
of their data that does not expose individual users’ data. server-based systems encourage monopolies. There are cor-
The aggregate allows personalized recommendations to berelations between customer purchase choices across product
computed by members of the community, or by outsidersdomains. So companies that can acquire preference data for
The numerical algorithm is fast, robust and accurate. Our many users in one product domain have a considerable ad-
method reduces the collaborative filtering task to an itera- vantage when entering another. Even within one market,
tive calculation of the aggregate requiring only addition of a large established firm will have an advantage over any
vectors of user data. Then we use homomorphic encryptionnew competitor, because the latter will have a much smaller
to allow sums of encrypted vectors to be computed and de-corpus of customer data to draw from, leading to less ac-
crypted without exposing individual data. We give verifica- curate (and less sucessful) recommendations. From the
tion schemes for all parties in the computation. Our system customer perspective, their purchase history is fragmented
can be implemented with untrusted servers, or with addi- across many vendors reducing the quality of their recom-
tional infrastructure, as a fully peer-to-peer (P2P) system. mendations.

Finally there is a subtle but important sociological dis-
advantage. Today’s collaborative filtering algorithms are
all based on ratings from the most similar users to a given

1 Introduction user. In the language of diffusion of innovation [13], this
is called homophilous diffusion. Homophilous diffusion al-
lows rapid diffusion of innovationsvithin socio-economic

X ) . Jroups But diffusion throughout society requirdset-
commerce, direct recommendations (such as Movielens an ; e S
erophilousdiffusion, where individuals seek recommenda-

Ringo) and search engines. Personalized purchase recom: < from more advanced peers who ardikethem. The

mendations on a web site are can significantly increase L . . .
I . lack of choice in today’s systems defeats heterophilous dif-
the likelihood over a customer making a purchase, com-_ . : .
fusion. For instance, although | am not an expert in cook-

pared to unpersonalized suggestions. In future ubiquitous. . L .
) ; g . ing or gardening or medicine, there are times when | would
computing settings, users will routinely be able to record |. . -
. . . . like recommendations from those communities, not from
their own locations (via GPS on personal computing de-

vices and phones), and their purchases (through digital wal-?; Osvtv:mp(\?vehrz'reoizct)rr]‘r?n?l?rﬂltjiE;I?:?ezfeatr\:\; ri]rofv.vn\/\((ig\:\zggsg
lets or through their credit card records). Through collab- Y g

. o . I nd where th ide whether hare this infor-
orative filtering, users could get recommendations aboutpoo.s’ a .d € ?t ey decide whether to share t s Into
. Lo . . mation with outsiders. In some cases, access to this infor-
many of their everyday activities, including restaurants,

Collaborative filtering has important applications in e-



mation could be a service that the community provides to pseudo-identities expose users to significant privacy risks.

outsiders for a fee. Communities that do this will allow het- For example, an attacker who can observe a few of a user’s

erophilous diffusion. transactions may then be able to uniquely identify that user
We propose a “User-owned and operated” principle for from the available records. The attacker can then discover

data such as purchase or document access, or position logshe rest of that user’s purchase records.

Users should have exclusive control and access to all data We believe that this paper describes a practical applica-

recorded about them. They should be able to control howtion of multi-party computation, subject to the availability

and with whom the data will be shared. And they should be of certain distributed or peer-to-peer services (a blackboard

able to hide or restrict any part of the data. This provides and a source of trusted random bits). Both commercial and

us with an interesting algorithm design challenge: is there research versions of such services exist today. Beyond col-

a practical algorithm for collaborative filtering using many laborative filtering, there are many other potential applica-

users’ data, which does not expose any individual's data? tions of these techniques in areas such as online surveys,
In this paper we propose a solution, and argue that it is usability studies, or censuses; where aggregate data is the

practical for an interesting class of application data, given goal.

recent developments in distributed computing infrastruc-

ture. Our scheme is based on distributed computation ofq 1 Assumptions

a certain “aggregate” of all users’ data. The aggregate is

treated as public data. Each user constructs the aggregate . .

and uses local computation to get personalized recommen- -€t7 be the number of users in a community, ande

dations. The computation is designed to be done either onthe number of items rated by them. In order to be prac-

a single reliable server or in peer-to-peer fashion on unreli- 1@ Olg n|1.ethod. mustdhave an ovelrall r(]:omplexny V‘l’)h',Ch
able, untrusted clients. The peer-to-peer architecture allowdS Pseudo-linear im andm separately (there is an obvi-

users to create and maintain their own recommender groupLUS¢(7m) lower bound). Typical values for the number of
themselves. users and items can range from thousands to millions. We

This approach addresses several of the difficulties with show later that total communication and work for our proto-

traditional collaborative filtering systems. While it doesnt CO!isO(mnlogn). In sectior] 4. we expand the constants

prevent vendors from gathering customer data, it provides'™ the method to show that is practical if batrandm are
the customers with the same recommendation services thafit i€ low to middie part of their ranges. o
vendors normally provide. Customers can therefore use Users’ computers pe_rform all the co_mpu'_[anon in the
anonymized purchase systems which are being develope&neth()d' It would be simpler to do this using a set of

elsewhere, and still obtain personalized recommendations S€TVErS as In [5], but this would not achieve our goal of

It blunts the monopoly trend because users can obtain rec® COMmunity-based system. Our peer-to-peer version in-

ommendations directly from their peers, and those recom—CIUdeS anitiona_I verificfa'tion Steps th"%t. [5] .doe's not (their
mendations could then route through meta-storefronts (suchIfO(;OZO_' IS publicly verifiable” but verification is not in-

as C-net, Yahoo etc.) that point to multiple vendors. And ¢ uWe in iy. h fracti f1h ,

it addresses the homophily issue via a community-based | . e assume that a fraction > 1/2 of the USers ma-
model of recommendation. The system we propose makesCh'neS are uncorrupted_. Our prot_ocol proceeds in rounds,
it easy for users to set up communities, and to share theird"d (\j/ve mgdel hcor_rupt;]on 25 static adverhsaryon i‘f"ck?
data within several communities. Because a community ag-'°und [1/12]. Thatis, the adversary can choose which ma-
gregate hides individual member data, we believe that manyc_hlnes to corrupt at the start of a roun_d, but t_h|5 ch0|ce_ stays
communities will be willing to share their aggregate infor- f'ife‘?' thrqughofut l}h_e round. We brslleve this m_ogelfls re-
mation with outsiders (in some cases perhaps charging for2'Stic: First of all, in our setting the greatest risk of cor-

this service). By listing a community with a portal like Ya- 'UPtion is from malicious users who may want to extract
hoo, a community could encourage outsiders to use theirmformaﬂon or influence the aggregate through their own
datd machine. The identities of these users will be static. For an

external adversary to corrupt the protocol, signatures and

Some of the benefits of our scheme could be obtained b
yother information would need to be generated which would

pseudo-identities. Users could use persistent online identi- ; ity ful lofal ¢ X
ties that do not link to their actual identity, and make anony- "¢duire essentially full control of a large set of users” ma-
mous purchases. A persistent pseudo-identity allows infer-chines. Such corruption is reallstlcally a static process. .An
ence of purchase patterns, and supports collaborative ﬁl_adversary having broken into a machine is unlikely to relin-

tering. However, unless the user data is further protected,qUiSh control of it during the round, nor is the user likely to
be able to detect the fault and repair it during the round.

LIf the community is popular, the portal would most likely need to Even if we could justify an ada_ptivg adversary, it WOU'q
cache the aggregate. not be practical to defend against it. The best multi-




party protocols for adaptive adversaries have complexity of domain (collaborative filtering) which we believe makes
O(n?) or higher[4]. This is well outside the realm of possi- economic and practical sense. Itis interesting also as plausi-
bility for a large-scale peer-to-peer community. Fortunately, ble application of encrypted multi-party computation. Col-
the static adversary does model the risks to our protocol sen{aborative filtering using SVD is not new, and was described
sibly. This adversary model allows us to use a simple andin [14]. But that paper used simple inner products to gen-
efficient means to verify intermediate steps in our protocol erate recommendations, while we use the maximum likeli-
by sampling. hood formulation of sectioph 2.1, which is novel. This im-
Our method assumes two services: a write-once, read-roves the mean-square error of our method over [14].
many or WORM storage system (a blackboard), and a We cannot use a “black-box” SVD algorithm with the
trusted source of random bits. The WORM service is no limitations of encrypted computation, so we derive an iter-
longer a theoretical abstraction, but is becoming part of ative SVD using the conjugate gradient method of Polak-
the core services for distributed computing. Small scale Ribiere [11]. This gives us an iteration with only vector ad-
commercial implementations exist in the Groove system ditions of user data. The derivation is a standard application
(www.groovenetworks.com ). Itis not clear whether  of numerical techniques, so we include it as Appendix I.
Groove scales to thousands or even hundreds of sites. BuFor the cryptographic portion of the method, with use ideas
other systems under development do. The Oceanstore sysrom the voting algorithm of Cramer, Gennaro, and Schoen-
tem [8] is designed to provide global-scale services, poten-makers|[5]. For initial key generation, we assume either an
tially to millions of sites. Similar services are under devel- honest dealer, or the distributed key generation scheme of
opment as part of the JXTA peer-to-peer AP| within Java. [9]. While we can use Pedersen directly, Cramer et al.'s [5]
We also assume the existence of a trusted source of ranis a server-based protocol. For our peer-to-peer application,
dom coin tosses. Our protocol requi@$km log? n) ran- we needed some modifications and extensionslito [5]. The
dom bits per round. Given the availability of a WORM main extension is the data and tally verification sedftioh 3.5,
provider, generating and distributing these random bits is which uses sampling and a trusted source of random bits to

straightforward. allow clients to compute reliably with mostly-trustworthy
peers. Finally we modified the multiplication protocol from
1.2 Outline and Contributions [3] for ZKP of products to work for squares (see Appendix

I1). The resulting non-interactive proofs are 7 integers rather
than 10 integers long. This reduces the overall computation

. The paper is structu_red_ as follows: Sect@_n 2 formal- and communication cost by a small but significant constant
izes the collaborative filtering problem, explains how we factor

compute an aggregate model of user preferences, and how

we obtain recommendations from it. The model is a par- o ) . .

tial SVD (Singular Value Decomposition) of the matrix of 2 Distributed Collaborative Filtering

user ratings. We show in sectiph 2 that the SVD algorithm,

which is iterative, requires only vector addition of certain Assume there are users andn items that have been

user data in each iteration. This structure is necessary forrated by them. LeP> be the matrix of user preference data,

the algorithm to work on encrypted data. In secfipn 3 we where P;; is the rating given by userto item j, andi €

show how to compute the sum of encrypted data vectors,{1,...,n} j € {1,...,m}. We setP;; = 0 if useri has

in a peer-to-peer fashion. Since peers are untrusted, thisiot rated itemj, and require that actual ratings are non-

section also describes checks for both the original data (viazero. P is a typically a sparse matrix with many missing

ZKPs) and the sums computed from it (via a sample ma- ratings (density is 0.03 for the EachMovie dataset). We will

jority). Then in sectiorj 4 we give the complete protocol, speak of “clients” and “talliers” although the two functions

along with proofs of its cryptographic protections. Its sta- may occur on the same machines. Each user is assumed to

tistical protections are discussed later in sedfipn 5. In sec-own a client, so there are clients. A tallier computes a

tion[4.1 we describe experiments with an implementation total of client data (transformed from client ratings). For

of the numerical part of the algorithm. The cryptographic simplicity, we will assume there aretalliers which is the

protocols have not yet been implemented, but we give a de-least structured (fully peer-to-peer) case. We assume that

tailed analysis of the running time and space requirementsa fractiona. > 0.5 of clients are talliers are trustworthy,

of the algorithm on a typical dataset using a standard cryp-in the sense of correctly following the protocols. However,

tographic software toolkit (CRYPTO++). In sectiph 5 we no-one is considered trustworthy enough to see unencrypted

discuss the statistical vulnerability of the system. Finally, user data.

sectior] 6 gives a discussion and conclusions. Collaborative filtering methods generally use weighted
The main contribution of the paper is to make a connec- combinations of nearest neighbor votes to extrapolate from

tion between cryptographic techniques and an applicationa user's preferences. Call these methods “neighborhood



methods”. Neighborhood methods ignore global relation- never rated. Underlying our linear approximation is a prob-
ships between user preferences. In fact gldipalar rela- abilistic latent variable model. We assume that each user
tionships between user ratings do exist and were used in théas a static preference (row) vectgre R*. Let D andV
“eigentaste” algorithm by Goldberg et. al.] [6]. The eigen- be the matrices derived from the SVD Bfas described in
taste method is still a neighborhood method, but it uses pro-appendix I. Then each user’s ratings vector is given by
jections of actual user ratings into a low-dimensional space. T

This space is computed with a singular-value decomposi- Py = c12i(DV7) +ni

tion of the ratings matrix. Goldberg showed that this projec- wheren; € R™ is a “noise” random vector and, is a
tion before neighbor matching improves performance, andconstant. Both; andn; are assumed to have gaussian dis-

describes the linear basis vectors as “eigentastes”. tributions. The probability density of a given pdit;, n;)
This suggests that rating prediction might be done us- s given by

ing only a global linear approximation to the ratings set. ) ) ) )
In practice we have found that this works quite well. On coexp(—lz[”/(207))exp(=[nil”/ (207))

tests with the “Eachmovie” database, the ratings from the Gjven a vector of user preferences the most likely pair
linear model are as good as the best current algorithms. I, 1) is the pair that minimizes

a later section we compare it with neighborhood methods

using surveys from Herlocher![7] and Breese et.[al. [2]. |i|?/(203) + |nail?/ (207,)

We construct thek-dimensional linear spacel that
best approximates the user preference matffixin a
least-squares sense. Assumds represented as a row-
orthonormal matrix4d € RF*™_ Now k < m wherem the x; = P,BT(I + BBT)™!
number of data items, and the orthonormality condition im-
plies thatAA” = I. The projection ofP? onto A is PAT A.

The residual modeling error i = P — PAT A and we
want to minimize the sum of squares of the components of
this error matrix, which is = tr(EET). This simplifies to

e = tr(PPT) — tr(PAT APT) and the minimum error is
obtained whenr(PAT APT) is maximized. The optimiza-
tion problem is then to findl such that

wheren; = P, — ¢; (21 (DV'T)) which is a quadratic mini-
mization overz;. The solution is easily shown to be

where B is the restriction of;; DVT to the columns con-
taining known preferences for usér The constant; is
given by o,+/k|D|?, ando, can be estimated from the
dataset. Given;, the estimate of the user’s preferences for
other data items is given by z;(DVT).

2.2 Updating the Aggregate

A= sup tr(PUTUPT) . Thg numericgl method fqr updating the aggregat.e is de-
U. UUT—I rived in appendix I. It is an iterative conjugate-gradient al-
gorithm, using the Polak-Ribiere recurrencel[11]. There are

This optimization uses a conjugate gradient scheme whichtwo phases to each iteration. First each user first computes
is discussed in detail in Appendix I. In fact we show that as their contribution to the gradient of, which is
well as A, we can obtain a partial singular value decompo- T T
sition (SVD) of P using encrypted computation. Our algo- Gi = AP P(I — A7 A) @)
rithm is a straightforward application of the conjugate gra- \yherep, is the vector of preferences for tifé user, andd
dient method, although there is a non-trivial change of basisjs the aggregate from the previous iteration. Then all users
at each step. There are more efficient ways to compute arydd their gradient contributions using the protocol discussed
SVD, but our goal is to compute it in a reasonable amount of j the next section. This gives a total gradiéht= Gy,
time using a cryptographic homomorphism. The conjugate shared by all the users. The next phase of conjugate gradient

of vector additions of user data. In practice its convergenceqyantities:

is fast, taking 40-60 iterations on typical data. ¢; = —2tr(P,GTAPT)
a; — —tI‘(PiGTGPiT) (2)
b; = tr(PATGGT APT)

Each user seeking a recommendation will already havethese values are also tallyed using the vector addition pro-
constructed the public matriA in the course of running the  tocol in the next section to produce global valges:, b) =
protocol described in sectig) 4. The user can then gener-y (c;, a;,b;). Finally, from (c, a,b) the new aggregate is
ate recommendations for themselves usihgUseri has computed as described in appendix I. There are a few extra

a1l x m matrix of preferences’. Many of these will be  steps implement the Polak-Ribiere method but they do not
missing (represented by zerosit) for items the user has  require communication. They are covered in the appendix.

2.1 Generating Recommendations



3 Vector Summation of Encrypted Data our scheme, a private key is secret-shared among all clients,
not just the authorities. Talliers perform a tallying function

We assume that eachofusers has a vector of dE@ c like the authorities, but are not assumed to be secure. So
RF>*™fori = 1,...,nrepresenting their contribution to the in fact our scheme could be implemented as a pure peer-to-
gradient ofA. For convenience, we treat eaGhas a vector ~ Peer system where clients and talliers are the same.
with km coordinatess; = (G, ..., G(xm)). We assume As mentioned earlier, we assume the parties share a

that every user data iteffi;; is integer, and restricted to a  blackboard to which they can all write and read, but such
small number of bits, say 10 bits. We assume that a fractionthat one party’s data cannot be erased or changed by any-
a > 0.5 of clients and talliers are honest. The goal is to one (2 WORM store). We also assume the existence of a
compute the vector suld = 37" | G; at all the honest  trusted source of random coin tosses.

talIiersE} The privacy goals are that:

3.1 Key Sharing
1. The tallier should gain no information about an indi-

vidual user's datd;, except that: The goal of this step is to create a globally-known El-
Gamal public key, and a matching private key which is held
by no-one and instead secret-shared among all the clients.
The key generation protocol of Pedersen [9] does this. The
result is that each player has a sharef the decryption key
3. The totalG should be verified. We will rely on multi- s, ands can be linearly reconstructed from a sufficient num-
ple tallier computations and the trusted coin source to ber of shares. More precisely, letandg be large primes
do this. such that|p—1, and let’,, denote the subgroup &f; of or-
dergq. In normal EI-Gamal encryption, a recipient chooses a
For our method to be practical we must meet some effi- ¢ € G, and a random secret keyand publisheg, h = ¢*
ciency goals: as their public key. In our case, we want the secret key to
be held by no-one and instead secret-shared among all the
1. Typ|Ca.| collaborative f|lter|ng domains have hundreds p|ayers_ After app|y|ng Pedersen’s protocoL each client has
to millions of items (this is the range of). The di- 3 shares; of the decryption key, ands can be linearly re-

mensionk is typically less than ten. Secondly, the constructed from any set of ¢ + 1 shares via appropriate
number of users could range from to 107. Clearly Lagrange coefficients:

Q(knm) is a lower bound on the total work that must
be done. If each user contributes a processor, then the _ o o J
lower bound per machine &(km). To be practical, 5= Z silia Lin = H

the work per machine should stay within a polylog fac-

tor of O(km). These shares can also be used for threshold decryption of
messages encrypted with the public Kgyh). We assume
thatp, ¢, g, h are known to all participants after Pedersen’s
protocol, as well as another generatoe G, needed for
homomorphisms. We also assume that each user publishes
a public key corresponding tq, which is needed to verify
3. It should be possible to efficiently check the computa- their decryption of data.
tion done by the talliers. This will turn out to be the We choose the encryption threshold to be greater than
most expensive step, and it requires a trusted globalthe number of untrusted users, which(is— a)n. Taking
source of random bits. a = 0.8 forinstance, gives us a threshold:ef 0.2n which
allows the scheme to work correctly even when a significant
Our scheme follows the general architecture of the elec-fraction of trusted clients are offline.
tion scheme of Cramer, Gennaro, and Schoenmakeérs [5].
There are several differences between our scheme an@g.2 Value Encryption/Homomorphism
theirs. First, we are computing a sum of vectors of user
preferences instead of binary user votes. Because of this, E5ch user hagimn data valuesGi;,j = 1,... km.
the ZKP of vote validity is different. Second, instead of vot- encrypt, useri chooseskm random values-;;,j =
ers+authorities, we have clients and one or more talliers. Inl’ ..., km from Z,. The encryption of the data is then

2. User data is almost surely valid. Almost surely valid
means thatG;| < L with high probability. This is in
spite of malicious behavior by some talliers or clients.

j—i
i€A JEAj#i

2. The validity proof for each user’'s data should be
“small” compared to the representation®@f, and the
time to check it should be small compared to the time
to addG; to the sum.

2There is also the second phase of totalling the 3-element vectors ] -
(cs,as,b;) but clearly the first phase dominates Iij = (2ij,Yi5) = (g”j,'yG” h"3)(mod p)



forj =1,...,km. In other words, each value is a standard
El-Gamal encryption of the exponentiation of a voté&ii .
Useri sends thesgm values to the write-once blackboard.
Notice that this map is a homomorphism. Define

H: 74 X Zy Ly X Loy
h(v,r) (g",7"h")(mod p)
h(vi +va, 711 +12) h(vi,71) * h(va,r2)(mod p)

where the multiplication on the right side is element-wise.
We will assume element-wise multiplication from here on.

—

This homomorphism allows us to compute the encryption

of a sum of votes by simply multiplying the encryptions.
That is:

h(d_ Gy Y rij)
=1 i=1

forj = 1,...,km. This tally and all partial totals are El-
Gamal encryptions, and provide computational hiding of
the data.

= H h(Gij,rij)(mod p)

=1

3.3 ZK Proof of User Data Validity

Each user should give a ZKP that their encryptions
(Li1s -+, Tikm)) represent a valid input, namely one that
is not “too large”. An expensive way to do this is to give
a ZKP for every elements;; that bounds its size. This is

neither efficient nor desirable. The amount of influence a
single user has over the aggregate can be bounded by the

2-norm of G;. The squared 2-norm is just the sum of the
squares of the elements 6f,. We can bound the 2-norm
in zero-knowledge by bounding a single quantity which we
prove is the sum of the squares of the element§ ,0fThe
bound uses ideas fromi[3], suitably adapted as described i
Appendix II.

For eachl’;; which encrypts &G;;, we first generate a
Wi;; which encryptsG%j. The prover and verifier multiply
togetherlV;; for j = 1,..., km which will be an encryp-
tion of the sum of the squares of elments@f, i.e. the
squared 2-norm of7;. Then prover gives a ZKP that this
value, call it is at mostL?, whereL is the desired bound
on the 2-norm of7.

The bound orv is built by expressing’ as a weighted
sum of 2log, L binary-valued variables (bits), and then

n

It remains for the prover to show in zero knowledge that
eachlV;; is the encryption of the square of the value en-
crypted byl';;, for j = 1,..., km. This requires a modifi-
cation of the multiplication protocol from[3] which we give
in Appendix Il. Since we only need to deal with squares,
the proof in Appendix Il is shorter than the general multi-
plication proof. When implemented non-interactively, each
proof requires a fixed number of integers frép. While
the original protocol from [3] required ten large integers per
multiplication proof, the protocol we give in Appendix Il re-
quires seven. This is a useful saving in the overall commu-
nication cost of the protocol, which is dominated by these
ZKPs. Putting the two proofs together (ferand thel/;;)
shows that total size of the proof of validity 6f; is

Tkm + O(log km) large integers

3.4 Tallying and Threshold Decryption

The tallier computes for each the product of all the
homomorphic images that it receives:

n
Xj = H Tij
i=1

and we notice that; = 77 h®% andX; = g™ where

szzn:Gij and Rjzzn:’l“ij
=1 =1

so (X;,Y;) is an El-Gamal encryption of the desired sum
T;. To decrypt, we broadcasi; to all clients.

Each client that receiveX’; should apply their share of
the secret key to it, and send’*(mod p) to the tallier.
Assume that for eachy the tallier receives at leastt 1 re-
sponses from some s&tof clients. Then tallier computes:

Y; = Hyij (mod p)

i=1

Py =[xy = g% = 1'% (mod p)
ieA
Finally, the tallier computestPj’1 =T (mod p). Al-

though computing’; requires taking a discrete log, the val-
ues of7; will be small enough {0° to 10°) that a baby-

showing in zero knowledge that each bit has value O or step/giant-step approach will be practical. This can be done

1. Cramer and Danggd [3] give zero-knowledge, honest
verifier proof that a given encrypted value(ior 1. Their

by many of the clients in parallel to speed up the process.
In \/|T}| steps, the value df; will be found, and the client

method can be implemented non-interactively by hashing can send this info directly to the tallier for verification, since

the verifier's response, which is best for our application. In

it is public.

that case each ZKP comprises 7 long (mod p) integers. So

to prove thaw has at most bits requirest large (typically
160- or 1024-bit) integers. The length required for our pro-
tocol ist = O(logmk). Note that there is only one such
proof for each gradient vecta¥;.

3.5 Checking Inputs and Tallys

The ZKPs and calculations done by each tallier in our
scheme are “publicly” verifiable, as inl[5]. Howevelr] [5]



gave no scheme for explicitly checking tallys. Checking to-
tals appears to be difficult without seeing the inputs, which
is clearly not efficient. A simple approach to efficient
checking is to use randomly sampled redundant talliers, and
take the majority for each tally. First, assumikg < n,

we compute each of them totals with a different group

of talliers. In the second case éfn > n, we distribute

the km values inton groups so that each group has at most
[km/n] totals to compute. The number of groups in either
case isnin(km, n).

To choose which talliers lie in which group, we
rely on the global coin toss. The number of random
bits needed to allocate tallys to groups of talliers is
O(min(km,n)log?(km + n)). The majority value(s)
among the talliers in a group will determine the value(s)
used in subsequent calculations. lebe the fraction of
honest talliers. When,. talliers are chosen at random us-
ing global coin tosses, the majority scheme will succeed if
most of talliers are honest. Now > 0.5, and the expected
number of honest talliers;, in the sample i&(n,) = an,..
The scheme will fail if the number of honest talliers in the
samplen;, < 0.5n,. Takinga = 0.8 and using Chernoff
bounds, we find that

Pr[np < 0.5n,] < 0.922""

Since there aremin(km,n) groups, and we need a
total probability of failure of O(1), the probability

of failure in any single group should b&r[n;, <
0.5n,] = O(1/min(km,n)). Then it follows thatn, =
Q(log min(km,n)). If p is a bound on the probability of
failure in any group, the number of checkers needed for
a=038Is

n, > 8.5(log, min(km, n) + log,(1/p)) 3

If we choose instead = 0.7 then the constant above in-
creases from 8.5 to 15. Choosihg= 0.6 causes the con-
stant to increase to 50.

4  Protocol

Here we summarize the entire method. As before there
aren clients andm items, andA has dimensiong x m.
First the procedure for computing a least-squares fit and par-
tial SVD of the training data. Assumé&has been initialized
to a random matrix ilR**™ . All users know this matrix.
Repeanumiter times:

1. All clients compute their contribution to the gradient
vector, which isAPT P, for clienti. They compute
ZK proofs that their data are valid and write all of this
to the blackboard.O(km) computation and commu-
nication cost per client. The total number of integers
written by each client i8km + O(log km,).

2. Using the global coin toss, each tallier chooses a sub-
set ofO(logn) clients. The tallier checks the ZKPs of
these clients and posts the results either “OK” or “not-
OK” to the blackboard. This require®(km logn)
computation and computation per tallier.

3. Each tallier reads the results of ZKPs checks in the pre-
vious step. For each client with a majority of OK votes,
the tallier commits to add that client’s data to its to-
tal. The tallier reads the global coin toss and chooses a
subset of items to total. The total for the chosen items
and the valid clients is then written to the blackboard.
This requiresO(km logn) communication and com-
putation cost per tallier.

4. Clients compare encrypted totals from approved tal-
liers (those selected by the global coin toss) and if there
is a clear majority for a total, they decrypt it using their
share of the secret key. They write these to the black-
board. Cost i) (km logn) computation and commu-
nication per client.

5. Talliers collect partial decryptions from clients (which
are easily verified using each client’s public key) for
the data items for which they are responsible, which
is O((km/n)logn) items per tallier. They combine
these to produce decrypted totals, still as exponentials.
Each tallier then computes the discrete logs of those to-
tals using arD(,/n) baby-step/giant-step method, and
writes these values to the blackboard. These are now
fully decrypted coefficients of the gradient af Total
cost is dominated b (km logn) per tallier.

6. Talliers read the blackboard and take the majority
vote among approved talliers for gradient coefficients
for which they werenot responsible. At the end of
this process, every honest tallier should have a com-
plete copy of the new gradient. This process takes
O(kmlogn) steps per tallier.

7. The conjugate gradient algorithm also requires a line
minimization step (Appendix I). This part of the pro-
tocol is a repeat of steps 1-5 above, except that there
are only 3 line coefficient$c;, a;, b;) instead ofkm
gradient coefficients. We assume this has been done,
and now every honest tallier has a copy of the new gra-
dient and the line coefficients.

8. Talliers update the estimate dfusing the decrypted
line coefficients and conjugate gradient as described in
Appendix |. They also compute the partial SVD ma-
trices D andV. These are written to the blackboard.
For efficiency, each tallier does this only for the coeffi-
cients for which it is responsible. Costd¥ km log n)
per tallier.



9. Talliers take majority vote for items for which they

were not responsible. The result is that all honest tal-

liers have updated values fdr, D andV'. Costis once
againO(kmlogn) per tallier.

As we mentioned earlier, the typical number of iterations is
40-60 for convergence on real collaborative filtering data.

ing set. The ratings of these users becameftheatrix on
which we ran the iterative least-squares procedure.

The implementation was done as a Matlab script file. It
was run on a 500MHz processor with 256MB of memory.
There were no clients, so all calculations were done on this
machine. The dimension of the linear spatevask = 8
for these experiments. This was found to give best perfor-

Note that at each step of the protocol, incoming data is mance in cross-validation experiments. The average time

checked for validity. In step 2, this is done using ZKP. In per iteration was about 1 second, and 40 iterations - the en-
step 4 this is through a user’s public key which immediately tire training phase for 74422 users - was completed in under
verifies their decryption of the data. In the other steps, ver- one minute. Typical convergence rates were very fast: 10-

ification is through majority vote of approved talliers using
the global coin toss. If a sufficient majority of talliers is hon-
est, this yields the correct result with high probability. By
totaling the computational effort, we arrive at the following:

fold residual error reduction every 10 iterations. The error
reductions for 40 iterations ranged frar®® to 106. For the
Eachmovie dataset, if the residual error reduction is at least
102 there is no measurable change in the quality of predic-

tions.

The remaining60% of users were used for cross-
validation. For each user, 10 of the items they had rated
were set aside, and the remainder used to generate predic-

We have not said anything yet about sychronizing this tions using the method of sectipn .1. The average time to
protocol. The shared blackboard makes this a fairly sim- generate a recommendation vi&s5 seconds, or 20 ratings
ple process. We can declare each round complete when &€r second. Accuracy was very good. The Mean Abso-
pre-specified fraction (e.g. 70%) of clients or talliers have !ute Error (MAE) is the average of the absolute difference
written their data to the blackboard. All honest clients and Petween a prediction and the actual rating of an item by a
talliers would then always work on the same data, no matterUser. The MAE for our scheme was was 0.96.[In [7], sev-
what was written later. This fraction would need to be de- €ral collaborative filtering schemes were compared on the
termined experimentally, once it was known how many of Eachmovie dataset. The best performance by any of the al-
the possible clients typically participate. gorithms they studied was an MAE of 0.96 - equal to our
method.

Finally we studied the robustness of the scheme by sim-
ulating a fraction of clients “dropping out” of various steps
of the computation. At each iteration a different random

we d'd. not implement the cryptograph|c. protocols g pqet of50% of the clients were discarded from the gra-
above. This would have been reasonably stralghtforward,dient total. A different random subset 66% of clients

bUt_ tedious. Since we can prove their de§ired p_rivacy PIOP-\yas dropped during the line minimization step. The least-
erties, we would not have learned anything by implement- squares algorithm still converged, albeit more slowly and

Ing them. Performance is fairly easy to estimate With- .., 4 ot achieve residual errors below 0.01 of the initial
out implementation, because all of the cryptographic op- oo, Fortunately, this made no measurable difference to

erations have well-charactenzed running times using, e'g'prediction accuracy during cross-validation. This is proba-
the CRYPTO++ toolkit, and are much more expensive than bly because the dataset is very noisy

other operations.
But it was far from clear whether the numerical method L i i i
was practical. How fast would it converge on typical data? 4-2 Communication and Computation Time Esti-
Would it be sensitive to noise? How large shokltie for mates
good predictions? Is it competitive with existing collabo-
rative filtering schemes? Therefore we focussed our imple- We also estimated the running time and communica-
mentation on the numerical method. tion costs of the cryptographic protocols based on recent
We tested the numerical method on the EachMovie benchmarks for the primitives. Efficient cryptographic tools
dataset, a well-known test dataset for collaborative filter- such as Crypto++ provide all the basic operations we need.
ing algorithms|([2]. This dataset comprises ratings of 1648 The size of the aggregate for the EachMovie dataset is
movies by 74422 users. Each rating is an integer in the8x 1648 = 13184 array elements, each element being a pair
rangeo, ..., 5. We normalized the ratings te2.5,...,2.5 of field elements. With El-Gamal encryption, typical field
so that there was no zero rating to be confused with an ab-elements aré024-bit integers, while for ECC they are 168-
sent rating. We chost#)% of the users at random as a train- bit integers. The total storage required for the EachMovie

Lemma The total computation per client/tallier during one
round of the protocol i® (km logn).

4.1 Experiments



aggregate is 3.4 MB for EG or 500 kB for ECC. Each user’s ing the query interface wilbnly reveal information about
encrypted gradient has the same size as the aggregate, btihe modelA, and not the underlying data. In order to avoid
adding ZKPs to the gradients increase their size to 15 MB overfitting, the modelA is at least a 10-fold compression
(EG) and 2.2 MB (ECC). (size measured as number of elements) of the original rat-
There are several steps with complex@ykm logn) in ings data. By adding a small amount of noise to each rating,
the protocol, but the dominant step in terms of constants iswe can achieve a similar compression in an information-
step 2. To derive the cost of this step, we pick a typical value theoretic sense. Typical compression ranges from 10-100
of n = 10°, which was the case for the Eachmovie dataset. times. So even though it is easy to accdsshe amount of
We seta = 0.8 as before. Picking an error probability for information about an individual user’s ratings is very lim-
checking ofl0~% allows us to compute the size of the ran- ited, at least in an average sense. Most of the original in-
dom sampler, = 300 from equatiory B. The total amount formation has simply been lost. But we must guard against
of communication per client during step 2 is the product of concentration of the information.

the ZKP size given above by the redundangy That takes Although the aggregate includes data from many individ-
the total communication per client to 4 GB (EG) or 600 MB uals, some items may have been rated by just a few individ-
(ECC). uals, and those items can be correlated with others using the
To determine running times, we use SVD data. For instance, il encoded ratings of web sites
benchmarks for the CRYPTO++ tookit from based on user visits, personal web sites would leak informa-
www.eskimo.com/"weidai/benchmarks.htmi . tion because their owners frequent them more than anyone

Their experiments show that EG 1024-bit exponentiations else. Other sites that correlate strongly with a personal site
take approximately 10ms. Checking a ZKP as per appendixare strong candidates to have been visited by the owner of
Il requires 11 exponentiations. Multiplying these numbers the site. Highly selective data such as personal web site vis-
by the number of proofs to check gives a total time of its should be filtered out from a scheme like this, as their
13k x 300 x 11 x 10ms which comes to about 50k seconds, potential for leaking information is too great. We assume
or 15 hours. The times for ECC are very similar. that users are able to exclude any chosen site or locations
These times and communications totals are large, butfrom their data, and that the system advises them to do so.
even without improvement it should be feasible to run one  The second source of static leakage is sites that have
round of the protocol over several days as a background probeen rated by very few users. If an item has very few raters,
cess. Since the user ratings data are changing slowly, a fevcorrelations between this item and others will disclose much
days latency does not diminish the value of the aggregate. information about those raters’ choices. It is therefore de-
Finally, the local storage demands of the protocol are sirable to remove items with few raters from the aggregate.
quite modest. A client need only work on a single copy A second reason for doing this is that extrapolated ratings
of a gradient or the aggregate at a time. Including ZKPs, for such an item are likely to be inaccurate. The accuracy

local storage of 10-50MB should be enough. of ratings of an item will be quite poor unless the number
of raters of that item is larger than the dimension of the lin-
5 Statistical Vulnerabilities ear model. If there are fewer, then there is not enough in-

formation to localize the item in the-dimensional ratings
space. To deal with this, we suggest using a dynamically-

While the scheme we described gives good data hiding maintained “frontier” of items

in a cryptographic sense (beyond disclosureipfthere is
still the potential for leakage of information. Such leakage )
may be “static” or “dynamic” arising respectively from one 5.2 The Frontier
snapshot of the aggregate (static leakage), or from several

snapshots of the aggregate over time (dynamic leakage). We As well as the modeH, we employ an integer-valued

discuss static leakage first. vector F' called thefrontier. For elements in the frontier,
_ we maintain only a count of the number of users that have
5.1 Static Leakage rated them, not a model of user ratings. Sofetbe the

count of the number of users who have rated itenThe

We have treated the entire aggregatas public data be-  set of items in the frontieF’ is typically much larger than
cause our scheme for generating ratings (seftign 2.1) allowghe set of items modeled iA. For instance, i’ containsk
the aggregatel to be constructed from a sufficient number times as many items a%, then the vectof” and the matrix
of queries. So as long as a recommendation service is run-A will both containkm elements. With easy extensions to
ning on a modeH, that model can be extracted through the the protocol we described in section 4, the count8’ican
guery interface. This is also true of the SVD CF scheme all be maintained without disclosing user data. Then the set
published in[[14]. The positive aspect of this is that min- of items actually handled in the aggregateat each iter-



ation would be the subset of the most frequently-rated tection against static leakage of individual information. For
items from among the items counted#h It would be an  these methods, it makes no difference whether the model
even smaller subset if there are fewer tharntems whose  is exposed directly, or only via queries. For memory-based

count lies above a cardinality threshold (e2d:) for accu- methods, there is no intermediate model that limits the in-
racy purposes. In this wayl would only model ratings of  formation leakage. The potential for leakage via query min-
reasonably popular items (items with at lezktraters). ing for such methods appears to be severe.

As well as protecting privacy and avoiding inaccurate ex-
trapolations, this scheme allows a much larger set of items5 4 Dynamic Leakage
to be handled by the system with a small impact on storage
and computation. For instance, for the Eachmovie dataset
with 1600 items and = 20, maintaining a frontier with
km = 32000 items would only double the storage needed,

The iterative least-squares scheme makes repeated use
of user data. Suppose a user contributes to one iteration but
.not the next. There will be slight numerical differences in
the gradient which may not mask the difference caused by
that user. The best defence against this problem is to add
more randomness. We tested a modification of the numeri-
cal method where each user tosses a coin to decide whether
to contribute their actual gradient, or a zero vector at each
iteration. As we noted earlier, the iterative method still con-
verges with this disturbance. Such an approach should make
it very difficult for an adversary to isolate individual data
5.3 Static Leakage in other CF systems by “sniffing” the changes im over time. This method of
randomization is valid wrt the SVD calculation, because it
First of all, we note that the SVD scheme described in @mounts to a sub-sampling of the dataset. Other random-
[14] has quite similar properties to ours. Name|y' it pro- ization methods, such as additive noise, do not have this
vides high compression of the original data, and therefore propertf]
good protection of user data if we guard against the two
“information concentration” mechanisms described above.g  Discussion
Like ours, it is straightforward to construct the linear model
from a sufficient number of queries with [14].

It is more complicated to analyze other schemes. But t of th d itv | der t
schemes which do not create an intermediate model like™anagement of theé recommender community. In order to

ours are probably very dangerous. For instance, Pearsor?uccee(,j’ this schgme.must have a majqrity_of honest clients
correlation [7] and personality diagnosis [10] use the en- and talliers. That implies some authentication of the mem-

tire user dataset to generate new recommendations. What’?ers‘ W'thO_Ut I, a mal|c_|0u_s_user could join a communlt_y
more, Pearson correlation makes use of a subset of “neigh_mfisqueradmg as many |r!d_|V|duaIs. Ideally, the community
bors” of the current user who have rated several of the samem'ght be formed from |nd|V|duaI_s who a‘?t”‘?"'.y know each
items. The neighbor subset may be extremely small if the other. This can be extended to include individuals that are

querying user has rated only a few items so far. PearsonvoucheOI foiby a core community member, etc. The design

schemes may simply refuse to return a rating if the neigh- implications are subtle and we have not exp!ored them. The
bor set is empty or too small. An adversay can easily usenext most reliable method would be to restrict membership

this to advantage by choosing their number of rated items®© & ,"”O,W” commumt_y. For instance, campus or company
so that it is just large enough to avoid a “no ratings” mes- email might be used in the key setup phase, ensuring that

sage. That means there are just enough items to give an aa@ach user has a valid email address within the organization.
equate neighbor set, but this neighbor set will be very small, Beyond social and organizational bounds, community setup

and the ratings the adversary sees will be a weighted aver-and maintenance is more problematic. There are a variety of

age of that very small set of neighbors. It is easy to come creativg solutions, e.g. having individuals fill out surveys,
up with artificial (and unrealistic) datasets where the entire or receve afpassword l::y phs n\(/e\} eéc.l,. but ttrr:ets tc;.are bglyond
user dataset can be extracted via queries. Just how well ond'® SbCOPe otour prese? work. Ve etlieve ad tis prob em
can do at extracting information from realistic datasets is a IS @ basiCc oné in peer-1o-peer computing, and IS €.9. being
matter of some concern, since memory-based methods ar%tUOIIed in the development of the Java peer-to-peer API,
in use in some real websites today. XTA.

Soin summary, schemes based on |0W'dimen5ional lin-~ 375 see this, imagine the dataset is drawn from an elliptical gaussian
ear models of ratings data (e.g. SVD) offer quite good pro- distribution. Adding sufficient noise will produce a spherical gaussian.

protocol. Given the typically Zipf-like distributions of num-
ber of raters of items, most of the items in the frontier will
have very few raters, and would not meet the cardinality
threshold. Thus we could not provide accurate extrapola-
tions for them. We can recognize this fact from the values
in F', and advise the user of it.

An important pragmatic issue with our scheme is the

10



The last question is whether this kind of key-sharing ropean Transactions on Telecommunicatid($):481-490,
among peers is a good model of security. After reflecting 1997. . _ _
on this work for some time, we believe that the model is [6] K. Goldberg, D. Gupta, M. Digiovanni, and H. Narita. Jester
not only acceptable, but is very good in many respects. The 2|.0 : .Ehvaluatlon (;)f a new _Ilnezilr time collaboratl;/e filtering
goals of any privacy scheme should be to protectindividuals ~ &90rithm. In22nd International ACM SIGIR Conference on

. . Research and Development in Information Retriealgust
from unreasonable scrutiny or search without cause. At the : :
. L . . . 1999. Poster Session and Demonstration.

same time, it is not socially desirable that criminals be pro- 71 3 Herlocker, J. Konstan, A. Borchers, and J. Ried!. An al-
.tected from scrutiny once guilt has _been esj[abllshed or there gorithmic framework for performing collaborative filtering.
is probable cause. A scheme which provides perfect data In Proc. ACM SIGIR1999.
hiding also provides criminals with effective means to com- [8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,

municate and perhaps perform other kinds of distributed D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
computation. A key escrow scheme like this one places the ~ W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
ability to decrypt information in the hands of individuals. If tecture for global-scale persistent storagePtoc. Sth Int.

Conf. on Architectural Support for Programming Languages

a single individual or agency has this power, then the pos- .
9 gency P P and Operating Systems (ASPLOS 200&)vember 2000.

sibilities for _abuse are many. If_a few '”d'V'dU_'a'S within [9] T. Pedersen. A threshold cryptosystem without a trusted
an organlzauqn hgve this capability, the prptecuons are bet- party. In Eurocrypt ‘9% volume 547, pages 522-526.
ter, but there is still the prospect of coercion by outsiders, Springer-Verlag LNCS, 1991.
or communication of these few powerful keys to others. On [10] D. Pennock and E. Horvitz. Collaborative filtering by per-
the other hand, escrow in the hands of many places the com- sonality diagnosis: A hybrid memory- and model-based ap-
munity’s privacy in the hands of the community. They can proach. InlJCAI Workshop on Machine Learning for In-
also make a judgement about using their keys to decrypt pri- formation Filtering, International Joint Conference on Arti-
vate data in situations where there is a compelling reason to gglgélntelhgence (IJCAI-99) Stockholm, Sweden, August
do so, such as S'USpICIOI’] of (.:rlmlnal'beh.aVlor. qurC|pn of [11] E. Polak. Computational Methods in OptimizatiorAca-
a large community would be impractical in most situations. demic Press. New York 1971
Any abuse from within the community would be highly vis-  [12] 1. Rabin and M. Ben-Or. Verifiable secret-sharing and mul-

To summarize, we described in this paper a practical pages 73-85, 1989.
and useful example of computation on encrypted data. Our[13] E. M. RogersDiffusion of Innovations, Fourth EditionThe
method reduces a non-linear computation (SVD) to a series Free Press, 1995. . .
of linear steps. It can be implemented fully peer-to-peer. We [14] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. RiedI. Ap-
showed by experiment that the algorithm compares well in plication of dimensionality reduction in recomme_nder SYs-
accuracy and speed with traditional collaborative filtering tem —a case study. IRCM WebKDD 2000 Web Mining for

. . - E-Commerce Workshpg000. Full length paper.

methods. We believe that it points the way to a class of

practical algorithms that work on encrypted data. Appendix I: SVD via Vector Addition
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whereS is a symmetric matrix. For a vect6f to lie on the involving the current approximatiod and the gradient:.

tangent manifold defined byt A7 = I, we must have Now notice that all products can be computed as
lim((A + €G) (AT +eGT) — 1) /e =0 n
lim (A4 + €G)( ) - 1)/ e(PXFT) = 3" FX T

o) i=1

AGT +GAT =0 . : ,
+ whereP; is user:'s data as before. So just as with the gra-

substituting forG' and solving gives dient computation, the line minimization step can be done
with summation of encrypted data. Each user computes
their contributions tdc, a, b) and sends them encrypted to
the tallier(s). The computation per clientigkm) for these
terms.

G = 2APTP(I — AT A) The tallier sums all the contributions and computes final

encrypted totalgc, a,b). When these totals are decrypted

Now suppose that is the current approximation to the best (next section), the tallier(s) can compute the gradient step

S =-—24PTPA"

and therefore:

linear fit to P. Let P; denote thel x m matrix of data  siz§|t, = —c/(2(a + b)). The tallier then increments the
from thei'” user. ThenP” P can be computed aB” P = current estimatet® by marching along in the gradient di-
2?21 PZ.TPi and the gradient as: rection. When corrected for curvature, the new estimate is
n (@+1) _ 4G Loyt 40
1=1

Because of numerical errad{""™" will not have orthonor-
mal rows. To obtaind+1) we apply a standard orthonor-

malization scheme, such as Gramm-Schmitt4§6™.

orG =Y, G;whereG; = AP P,(I — AT 4) is thei'"
user’s contribution to the gradient. This is a key point. The
fact that the gradient is expressible as a sum of contributions
from each user makes it possible to computesing only
addition of user data (and therefore using cryptographic ho-Conjugate Gradient
momorphism). We assume that the current approximation

AU) 1o 4 is known to everyone at thg” iteration. Then A simple gradient scheme such as described above will have

, . () ) ) slow (sub-quadratic) convergence. Conjugate gradient is a
useri computes their contributio@;”” to the gradienG'/ ood way to accelerate a minimization, and gives quadratic
using the expression above. The user sends an encrypteaonvergence. The conjugate gradient is a moving average
copy of G to the tallier(s), which then sums all user con- of gradient directions. It requires a “one-step” memory of
tributions to yield the encryption @f'/). The workto com-  the previous gradient, and requires only slight modification
pute each user’s contribution@(km), assuming manifold  of the tallier code (no changes are needed to inter-processor
correction is done on the tallier. communication). We used the Polak-Ribiere formila [11]
The next phase of conjugate gradient is calculation of the g compute a generalized gradielitbased onG and the
extremum along the gradient direction. For this we need a i 7 pairs from earlier iterations. This is a standard tech-
guadratic approximation to the value of the error function nique and we do not describe it here.
e(t) a distance along the gradient direction. Strictly speak- There is one complication with applying conjugate gra-
ing, we actually move along a quadratic curve that tracks thedjent. \We are working in a “moving” coordinate system.
curvature of the manifold. The derivation up to second order That js, every gradien or H has coordinates which are
terms ofe(t) is tedious but straightforward. The quadratic pased on the current approximatidi’). Gradients at two
approximation is:(t) ~ eo + et + ext” and the extremum  gifferent values of4 cannot be compared or combined be-
occurs att ~ —e;/(2e2). We need the two terms; and  cause they will not satisfy the conditiohG” + GAT =0
ez. For convenience, we will breal into two components 4t the otherd. Conjugate gradient requires a weighted sum
ez = a + b, and lete; = c. Then the three quantities we  of gradients from two different time steps. These gradients

need are: ot (PCTAPT are in different coordinate systems and therefore cannot be
¢ = —2tx( ) combined. Fortunately, the set of orthonormahas a Lie
a= —tr(PGTGPT) Algebra structure and there is a simple way to transform
b= tf(PATGGTAPT) 4For large stepss which occur early in the optimization, the estimator

T e2 = a + bis ill-conditioned. Instead we use the less accurate but more
?—nd we nOFe that each term has th? fOﬂTﬁPXP )' and stable estimatoes = b — a. The switch toes = a + b should be made
involves private datd”. All the data in eachX is public, when convergence slows
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between one coordinate system and another. A®€tand
AU+1) pe two orthonormal matrices (and coordinate sys-
tems). To transform a gradie6t expressed im()’s coor-
dinate system tal (‘1) we compute:

G =AY (AOTG — GTAW)

encypted ind is thea!” power ofv, then the message iR
is thea!” power of the message iA. We have to do this
without revealing: of course.

1. Prover knows,, s, such that

A= (g°,4"h*)mod p B = (g**,7’h*)mod p

when both the standard and conjugate gradients from the

previous step are transformed in this way, they can be used

in the Polak-Ribiere formula [11].

Computing Singular Value Decomposition

Prover chooses, r,,r, € Z, uniformly at random
and sends

(g™, " h"™)

to Verifier.

Ca

and Cy, = A"(g"™,h"™)

We can extend the least-squares scheme to compute a par-

tial singular value decomposition (SVD) &f. Recall that

an SVD is a factorization o asP = UDVT whereU
andV have orthonormal columns ard is a diagonal ma-
trix with real non-negative entries sorted in descending or-
der. It is known that the first columns ofU give the op-
timal k-dimensional approximation to the columnspace of
P, while the firstk rows of V7' give the best-dimensional
approximation to the rowspace 8f It follows that if A has
been computed as in the previous sections, then rowgpan
equals the rowspan of the firstrows of V7. We can re-
cover these rows by computing the eigenvectors and eigen
values of a smallX x k) matrix.

Let B = APTPAT and form the eigendecomposition
of BasB = WEWT whereE is a diagonal matrix of
eigenvalues, andll’ is the matrix whose columns are the
corresponding eigenvectors. Notice tiais positive semi-
definite, and assume the real eigenvaluek iare sorted in
descending order. Then

D*=FE V=wTA
The information needed to computeandV is available at
the tallier. The matrix3 is easily computed from the gradi-
entG asB = 1G(I—ATA)~' AT, SinceBis kxk andk is
small (typicallyk < 20), the eigenvalue calculation is inex-
pensive. Computind andV from the eigenvalue decom-
position is also inexpensive, and requit@§:?m) steps.

Note that it is not possible to compute the matiiin the
SVD. This is intentionalU contains information about spe-
cific users. The*" row of U encodes usei's preferences
in the k-dimensional subspace. We do not store informa-
tion that would allowU to be recovered. Botl and V'
however, contain useful information about patterns of user
preferences mapped onto the data items.

Appendix Il
To simplify notation, supposd, B respectively encrypt
a andb, then we give here a ZKP that= a2. This proto-

col is a straightforward adaption of the multiplication pro-
totocol from[3]. The idea is to show that if the “message”
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2. Verifier chooses € Z, uniformly at random and sends

it to Prover.

3. Prover computes

v = ca + xz(mod q)
Za = CSq + 7o (mod q)
zp = ¢(sp — asq) + rp(mod q)

and sends, z,, zp to verifier.

4. \erifier checks that
(97,7 h*) = A°Cq
A¥(g,h)* = B°CYy
and accepts iff both identities hold.

This protocol is honest-verifier zero-knowledge. The
simulation is: Choose:,v,z,,25 € Z, independently
and uniformly at random, and computg and C, to sat-
isfy step 4 above. Both the protocol and the simula-
tion have the same probability distribution on conversations
(Caa Cba C, U, Za, Zb)'

From two accepting conversatiof€',, Cy, ¢, v, zq, 2p)
and(C,, Gy, ', V', 2, z,) We can recovet, ands, via:

)y *a

a=(v—2v)(c—c) Hmod q) and

Sq = (24 — 21)(c — )7L (mod q)

and thens;, as
sy = (26— 23)(c — )7 4 asq(mod q)

finally by equating powers of in the last test in step 4, we
see that:ca® + ax = cb + ax from which it follows that
b=a>

If this protocol is implemented non-interactively, both
prover and verifier will use a secure hash function to com-
putec from A, B, C,, C,. Then the non-interactive proof
consists of”,, Cy, v, 24, 25, Which is a total of sevemod p
ormod g integers.
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