
Collaborative Filtering with Privacy

John Canny
Computer Science Division

UC Berkeley, CA 94720
jfc@cs.berkeley.edu

Abstract

Server-based collaborative filtering systems have been
very successful in e-commerce and in direct recommenda-
tion applications. In future, they have many potential ap-
plications in ubiquitous computing settings. But today’s
schemes have problems such as loss of privacy, favoring
retail monopolies, and with hampering diffusion of innova-
tions. We propose an alternative model in which users con-
trol all of their log data. We describe an algorithm whereby
a community of users can compute a public “aggregate”
of their data that does not expose individual users’ data.
The aggregate allows personalized recommendations to be
computed by members of the community, or by outsiders.
The numerical algorithm is fast, robust and accurate. Our
method reduces the collaborative filtering task to an itera-
tive calculation of the aggregate requiring only addition of
vectors of user data. Then we use homomorphic encryption
to allow sums of encrypted vectors to be computed and de-
crypted without exposing individual data. We give verifica-
tion schemes for all parties in the computation. Our system
can be implemented with untrusted servers, or with addi-
tional infrastructure, as a fully peer-to-peer (P2P) system.

1 Introduction

Collaborative filtering has important applications in e-
commerce, direct recommendations (such as Movielens and
Ringo) and search engines. Personalized purchase recom-
mendations on a web site are can significantly increase
the likelihood over a customer making a purchase, com-
pared to unpersonalized suggestions. In future ubiquitous
computing settings, users will routinely be able to record
their own locations (via GPS on personal computing de-
vices and phones), and their purchases (through digital wal-
lets or through their credit card records). Through collab-
orative filtering, users could get recommendations about
many of their everyday activities, including restaurants,

bars, movies, and interesting sights to see and things to do in
a neighborhood or city. But such applications are infeasible
without strong protection of individual data privacy.

Today’s server-based collaborative filtering systems have
a number of disadvantages. First of all, they are a serious
threat to individual privacy. Most online vendors collect
buying information about their customers, and make rea-
sonable efforts to keep this data private. However, customer
data is a valuable asset and it is routinely sold as such when
companies have suffered bankruptcy. At this time this prac-
tice is supported by case law. A second disadvantage is that
server-based systems encourage monopolies. There are cor-
relations between customer purchase choices across product
domains. So companies that can acquire preference data for
many users in one product domain have a considerable ad-
vantage when entering another. Even within one market,
a large established firm will have an advantage over any
new competitor, because the latter will have a much smaller
corpus of customer data to draw from, leading to less ac-
curate (and less sucessful) recommendations. From the
customer perspective, their purchase history is fragmented
across many vendors reducing the quality of their recom-
mendations.

Finally there is a subtle but important sociological dis-
advantage. Today’s collaborative filtering algorithms are
all based on ratings from the most similar users to a given
user. In the language of diffusion of innovation [13], this
is called homophilous diffusion. Homophilous diffusion al-
lows rapid diffusion of innovationswithin socio-economic
groups. But diffusion throughout society requireshet-
erophilousdiffusion, where individuals seek recommenda-
tions from more advanced peers who areunlike them. The
lack of choice in today’s systems defeats heterophilous dif-
fusion. For instance, although I am not an expert in cook-
ing or gardening or medicine, there are times when I would
like recommendations from those communities, not from
my own peers, or the population as a whole. We propose
a system where communities create their own knowledge
pools, and where they decide whether to share this infor-
mation with outsiders. In some cases, access to this infor-

mation could be a service that the community provides to
outsiders for a fee. Communities that do this will allow het-
erophilous diffusion.

We propose a “User-owned and operated” principle for
data such as purchase or document access, or position logs:
Users should have exclusive control and access to all data
recorded about them. They should be able to control how
and with whom the data will be shared. And they should be
able to hide or restrict any part of the data. This provides
us with an interesting algorithm design challenge: is there
a practical algorithm for collaborative filtering using many
users’ data, which does not expose any individual’s data?

In this paper we propose a solution, and argue that it is
practical for an interesting class of application data, given
recent developments in distributed computing infrastruc-
ture. Our scheme is based on distributed computation of
a certain “aggregate” of all users’ data. The aggregate is
treated as public data. Each user constructs the aggregate
and uses local computation to get personalized recommen-
dations. The computation is designed to be done either on
a single reliable server or in peer-to-peer fashion on unreli-
able, untrusted clients. The peer-to-peer architecture allows
users to create and maintain their own recommender groups
themselves.

This approach addresses several of the difficulties with
traditional collaborative filtering systems. While it doesnt
prevent vendors from gathering customer data, it provides
the customers with the same recommendation services that
vendors normally provide. Customers can therefore use
anonymized purchase systems which are being developed
elsewhere, and still obtain personalized recommendations.
It blunts the monopoly trend because users can obtain rec-
ommendations directly from their peers, and those recom-
mendations could then route through meta-storefronts (such
as C-net, Yahoo etc.) that point to multiple vendors. And
it addresses the homophily issue via a community-based
model of recommendation. The system we propose makes
it easy for users to set up communities, and to share their
data within several communities. Because a community ag-
gregate hides individual member data, we believe that many
communities will be willing to share their aggregate infor-
mation with outsiders (in some cases perhaps charging for
this service). By listing a community with a portal like Ya-
hoo, a community could encourage outsiders to use their
data1.

Some of the benefits of our scheme could be obtained by
pseudo-identities. Users could use persistent online identi-
ties that do not link to their actual identity, and make anony-
mous purchases. A persistent pseudo-identity allows infer-
ence of purchase patterns, and supports collaborative fil-
tering. However, unless the user data is further protected,

1If the community is popular, the portal would most likely need to
cache the aggregate.

pseudo-identities expose users to significant privacy risks.
For example, an attacker who can observe a few of a user’s
transactions may then be able to uniquely identify that user
from the available records. The attacker can then discover
the rest of that user’s purchase records.

We believe that this paper describes a practical applica-
tion of multi-party computation, subject to the availability
of certain distributed or peer-to-peer services (a blackboard
and a source of trusted random bits). Both commercial and
research versions of such services exist today. Beyond col-
laborative filtering, there are many other potential applica-
tions of these techniques in areas such as online surveys,
usability studies, or censuses; where aggregate data is the
goal.

1.1 Assumptions

Let n be the number of users in a community, andm be
the number of items rated by them. In order to be prac-
tical, our method must have an overall complexity which
is pseudo-linear inn and m separately (there is an obvi-
ousΩ(nm) lower bound). Typical values for the number of
users and items can range from thousands to millions. We
show later that total communication and work for our proto-
col isO(mn log n). In section 4.2 we expand the constants
in the method to show that is practical if bothn andm are
at the low to middle part of their ranges.

Users’ computers perform all the computation in the
method. It would be simpler to do this using a set of
servers as in [5], but this would not achieve our goal of
a community-based system. Our peer-to-peer version in-
cludes additional verification steps that [5] does not (their
protocol is “publicly verifiable” but verification is not in-
cluded in it).

We assume that a fractionα > 1/2 of the users’ ma-
chines are uncorrupted. Our protocol proceeds in rounds,
and we model corruption as astatic adversaryon each
round [1, 12]. That is, the adversary can choose which ma-
chines to corrupt at the start of a round, but this choice stays
fixed throughout the round. We believe this model is re-
alistic. First of all, in our setting the greatest risk of cor-
ruption is from malicious users who may want to extract
information or influence the aggregate through their own
machine. The identities of these users will be static. For an
external adversary to corrupt the protocol, signatures and
other information would need to be generated which would
require essentially full control of a large set of users’ ma-
chines. Such corruption is realistically a static process. An
adversary having broken into a machine is unlikely to relin-
quish control of it during the round, nor is the user likely to
be able to detect the fault and repair it during the round.

Even if we could justify an adaptive adversary, it would
not be practical to defend against it. The best multi-

2

party protocols for adaptive adversaries have complexity of
O(n3) or higher [4]. This is well outside the realm of possi-
bility for a large-scale peer-to-peer community. Fortunately,
the static adversary does model the risks to our protocol sen-
sibly. This adversary model allows us to use a simple and
efficient means to verify intermediate steps in our protocol
by sampling.

Our method assumes two services: a write-once, read-
many or WORM storage system (a blackboard), and a
trusted source of random bits. The WORM service is no
longer a theoretical abstraction, but is becoming part of
the core services for distributed computing. Small scale
commercial implementations exist in the Groove system
(www.groovenetworks.com). It is not clear whether
Groove scales to thousands or even hundreds of sites. But
other systems under development do. The Oceanstore sys-
tem [8] is designed to provide global-scale services, poten-
tially to millions of sites. Similar services are under devel-
opment as part of the JXTA peer-to-peer API within Java.

We also assume the existence of a trusted source of ran-
dom coin tosses. Our protocol requiresO(km log2 n) ran-
dom bits per round. Given the availability of a WORM
provider, generating and distributing these random bits is
straightforward.

1.2 Outline and Contributions

The paper is structured as follows: Section 2 formal-
izes the collaborative filtering problem, explains how we
compute an aggregate model of user preferences, and how
we obtain recommendations from it. The model is a par-
tial SVD (Singular Value Decomposition) of the matrix of
user ratings. We show in section 2 that the SVD algorithm,
which is iterative, requires only vector addition of certain
user data in each iteration. This structure is necessary for
the algorithm to work on encrypted data. In section 3 we
show how to compute the sum of encrypted data vectors,
in a peer-to-peer fashion. Since peers are untrusted, this
section also describes checks for both the original data (via
ZKPs) and the sums computed from it (via a sample ma-
jority). Then in section 4 we give the complete protocol,
along with proofs of its cryptographic protections. Its sta-
tistical protections are discussed later in section 5. In sec-
tion 4.1 we describe experiments with an implementation
of the numerical part of the algorithm. The cryptographic
protocols have not yet been implemented, but we give a de-
tailed analysis of the running time and space requirements
of the algorithm on a typical dataset using a standard cryp-
tographic software toolkit (CRYPTO++). In section 5 we
discuss the statistical vulnerability of the system. Finally,
section 6 gives a discussion and conclusions.

The main contribution of the paper is to make a connec-
tion between cryptographic techniques and an application

domain (collaborative filtering) which we believe makes
economic and practical sense. It is interesting also as plausi-
ble application of encrypted multi-party computation. Col-
laborative filtering using SVD is not new, and was described
in [14]. But that paper used simple inner products to gen-
erate recommendations, while we use the maximum likeli-
hood formulation of section 2.1, which is novel. This im-
proves the mean-square error of our method over [14].

We cannot use a “black-box” SVD algorithm with the
limitations of encrypted computation, so we derive an iter-
ative SVD using the conjugate gradient method of Polak-
Ribiere [11]. This gives us an iteration with only vector ad-
ditions of user data. The derivation is a standard application
of numerical techniques, so we include it as Appendix I.
For the cryptographic portion of the method, with use ideas
from the voting algorithm of Cramer, Gennaro, and Schoen-
makers [5]. For initial key generation, we assume either an
honest dealer, or the distributed key generation scheme of
[9]. While we can use Pedersen directly, Cramer et al.’s [5]
is a server-based protocol. For our peer-to-peer application,
we needed some modifications and extensions to [5]. The
main extension is the data and tally verification section 3.5,
which uses sampling and a trusted source of random bits to
allow clients to compute reliably with mostly-trustworthy
peers. Finally we modified the multiplication protocol from
[3] for ZKP of products to work for squares (see Appendix
II). The resulting non-interactive proofs are 7 integers rather
than 10 integers long. This reduces the overall computation
and communication cost by a small but significant constant
factor.

2 Distributed Collaborative Filtering

Assume there aren users andm items that have been
rated by them. LetP be the matrix of user preference data,
wherePij is the rating given by useri to item j, andi ∈
{1, . . . , n} j ∈ {1, . . . ,m}. We setPij = 0 if user i has
not rated itemj, and require that actual ratings are non-
zero. P is a typically a sparse matrix with many missing
ratings (density is 0.03 for the EachMovie dataset). We will
speak of “clients” and “talliers” although the two functions
may occur on the same machines. Each user is assumed to
own a client, so there aren clients. A tallier computes a
total of client data (transformed from client ratings). For
simplicity, we will assume there aren talliers which is the
least structured (fully peer-to-peer) case. We assume that
a fractionα > 0.5 of clients are talliers are trustworthy,
in the sense of correctly following the protocols. However,
no-one is considered trustworthy enough to see unencrypted
user data.

Collaborative filtering methods generally use weighted
combinations of nearest neighbor votes to extrapolate from
a user’s preferences. Call these methods “neighborhood

3

methods”. Neighborhood methods ignore global relation-
ships between user preferences. In fact globallinear rela-
tionships between user ratings do exist and were used in the
“eigentaste” algorithm by Goldberg et. al. [6]. The eigen-
taste method is still a neighborhood method, but it uses pro-
jections of actual user ratings into a low-dimensional space.
This space is computed with a singular-value decomposi-
tion of the ratings matrix. Goldberg showed that this projec-
tion before neighbor matching improves performance, and
describes the linear basis vectors as “eigentastes”.

This suggests that rating prediction might be done us-
ing only a global linear approximation to the ratings set.
In practice we have found that this works quite well. On
tests with the “Eachmovie” database, the ratings from the
linear model are as good as the best current algorithms. In
a later section we compare it with neighborhood methods
using surveys from Herlocher [7] and Breese et. al. [2].

We construct thek-dimensional linear spaceA that
best approximates the user preference matrixP in a
least-squares sense. AssumeA is represented as a row-
orthonormal matrixA ∈ Rk×m. Now k ≤ m wherem the
number of data items, and the orthonormality condition im-
plies thatAAT = I. The projection ofP ontoA is PAT A.
The residual modeling error isE = P − PAT A and we
want to minimize the sum of squares of the components of
this error matrix, which ise = tr(EET). This simplifies to
e = tr(PPT) − tr(PAT APT) and the minimum error is
obtained whentr(PAT APT) is maximized. The optimiza-
tion problem is then to findA such that

A = sup
U : UUT =I

tr(PUT UPT)

This optimization uses a conjugate gradient scheme which
is discussed in detail in Appendix I. In fact we show that as
well asA, we can obtain a partial singular value decompo-
sition (SVD) ofP using encrypted computation. Our algo-
rithm is a straightforward application of the conjugate gra-
dient method, although there is a non-trivial change of basis
at each step. There are more efficient ways to compute an
SVD, but our goal is to compute it in a reasonable amount of
time using a cryptographic homomorphism. The conjugate
gradient scheme allows us to reduce the calculation to series
of vector additions of user data. In practice its convergence
is fast, taking 40-60 iterations on typical data.

2.1 Generating Recommendations

Each user seeking a recommendation will already have
constructed the public matrixA in the course of running the
protocol described in section 4. The user can then gener-
ate recommendations for themselves usingA. User i has
a 1 × m matrix of preferencesPi. Many of these will be
missing (represented by zeros inP) for items the user has

never rated. Underlying our linear approximation is a prob-
abilistic latent variable model. We assume that each useri
has a static preference (row) vectorxi ∈ Rk. Let D andV
be the matrices derived from the SVD ofP as described in
appendix I. Then each user’s ratings vector is given by

Pi = c1xi(DV T) + ni

whereni ∈ Rm is a “noise” random vector andc1 is a
constant. Bothxi andni are assumed to have gaussian dis-
tributions. The probability density of a given pair(xi, ni)
is given by

c2exp(−|xi|2/(2σ2
x))exp(−|ni|2/(2σ2

x))

Given a vector of user preferencesPi, the most likely pair
(xi, ni) is the pair that minimizes

|xi|2/(2σ2
x) + |ni|2/(2σ2

n)

whereni = Pi − c1(xT
i (DV T)) which is a quadratic mini-

mization overxi. The solution is easily shown to be

xi = PiB
T (I + BBT)−1

whereB is the restriction ofc1DV T to the columns con-
taining known preferences for useri. The constantc1 is
given by σn

√
k|D|2, and σn can be estimated from the

dataset. Givenxi, the estimate of the user’s preferences for
other data items is given byc1xi(DV T).

2.2 Updating the Aggregate

The numerical method for updating the aggregate is de-
rived in appendix I. It is an iterative conjugate-gradient al-
gorithm, using the Polak-Ribiere recurrence [11]. There are
two phases to each iteration. First each user first computes
their contribution to the gradient ofA, which is

Gi = APT
i Pi(I −AT A) (1)

wherePi is the vector of preferences for theith user, andA
is the aggregate from the previous iteration. Then all users
add their gradient contributions using the protocol discussed
in the next section. This gives a total gradientG =

∑
Gi,

shared by all the users. The next phase of conjugate gradient
is “line minimization,” where each user computes the scalar
quantities:

ci = −2tr(PiG
T APT

i)

ai = −tr(PiG
T GPT

i)

bi = tr(PiA
T GGT APT

i)

(2)

these values are also tallyed using the vector addition pro-
tocol in the next section to produce global values(c, a, b) =∑

(ci, ai, bi). Finally, from (c, a, b) the new aggregate is
computed as described in appendix I. There are a few extra
steps implement the Polak-Ribiere method but they do not
require communication. They are covered in the appendix.

4

3 Vector Summation of Encrypted Data

We assume that each ofn users has a vector of dataGi ∈
Rk×m for i = 1, . . . , n representing their contribution to the
gradient ofA. For convenience, we treat eachGi as a vector
with km coordinatesGi = (Gi1, . . . , Gi(km)). We assume
that every user data itemGij is integer, and restricted to a
small number of bits, say 10 bits. We assume that a fraction
α > 0.5 of clients and talliers are honest. The goal is to
compute the vector sumG =

∑n
i=1 Gi at all the honest

talliers2. The privacy goals are that:

1. The tallier should gain no information about an indi-
vidual user’s dataGi, except that:

2. User data is almost surely valid. Almost surely valid
means that|Gi| < L with high probability. This is in
spite of malicious behavior by some talliers or clients.

3. The totalG should be verified. We will rely on multi-
ple tallier computations and the trusted coin source to
do this.

For our method to be practical we must meet some effi-
ciency goals:

1. Typical collaborative filtering domains have hundreds
to millions of items (this is the range ofm). The di-
mensionk is typically less than ten. Secondly, the
number of users could range from10 to 107. Clearly
Ω(knm) is a lower bound on the total work that must
be done. If each user contributes a processor, then the
lower bound per machine isΩ(km). To be practical,
the work per machine should stay within a polylog fac-
tor of O(km).

2. The validity proof for each user’s data should be
“small” compared to the representation ofGi, and the
time to check it should be small compared to the time
to addGi to the sum.

3. It should be possible to efficiently check the computa-
tion done by the talliers. This will turn out to be the
most expensive step, and it requires a trusted global
source of random bits.

Our scheme follows the general architecture of the elec-
tion scheme of Cramer, Gennaro, and Schoenmakers [5].
There are several differences between our scheme and
theirs. First, we are computing a sum of vectors of user
preferences instead of binary user votes. Because of this,
the ZKP of vote validity is different. Second, instead of vot-
ers+authorities, we have clients and one or more talliers. In

2There is also the second phase of totalling the 3-element vectors
(ci, ai, bi) but clearly the first phase dominates

our scheme, a private key is secret-shared among all clients,
not just the authorities. Talliers perform a tallying function
like the authorities, but are not assumed to be secure. So
in fact our scheme could be implemented as a pure peer-to-
peer system where clients and talliers are the same.

As mentioned earlier, we assume the parties share a
blackboard to which they can all write and read, but such
that one party’s data cannot be erased or changed by any-
one (a WORM store). We also assume the existence of a
trusted source of random coin tosses.

3.1 Key Sharing

The goal of this step is to create a globally-known El-
Gamal public key, and a matching private key which is held
by no-one and instead secret-shared among all the clients.
The key generation protocol of Pedersen [9] does this. The
result is that each player has a sharesi of the decryption key
s, ands can be linearly reconstructed from a sufficient num-
ber of shares. More precisely, letp andq be large primes
such thatq|p−1, and letGq denote the subgroup ofZ∗p of or-
derq. In normal El-Gamal encryption, a recipient chooses a
g ∈ Gq and a random secret keys, and publishesg, h = gs

as their public key. In our case, we want the secret key to
be held by no-one and instead secret-shared among all the
players. After applying Pedersen’s protocol, each client has
a sharesi of the decryption keys, ands can be linearly re-
constructed from any setΛ of t + 1 shares via appropriate
Lagrange coefficients:

s =
∑
i∈Λ

siLi,Λ Li,Λ =
∏

j∈Λ,j 6=i

j

j − i

These shares can also be used for threshold decryption of
messages encrypted with the public key(g, h). We assume
thatp, q, g, h are known to all participants after Pedersen’s
protocol, as well as another generatorγ ∈ Gq needed for
homomorphisms. We also assume that each user publishes
a public key corresponding tosi, which is needed to verify
their decryption of data.

We choose the encryption threshold to be greater than
the number of untrusted users, which is(1 − α)n. Taking
α = 0.8 for instance, gives us a threshold oft = 0.2n which
allows the scheme to work correctly even when a significant
fraction of trusted clients are offline.

3.2 Value Encryption/Homomorphism

Each user haskm data valuesGij , j = 1, . . . , km.
To encrypt, useri chooseskm random valuesrij , j =
1, . . . , km from Zq. The encryption of the data is then

Γij = (xij , yij) = (grij , γGij hrij)(mod p)

5

for j = 1, . . . , km. In other words, each value is a standard
El-Gamal encryption of the exponentiation of a vote:γGij .
Useri sends thesekm values to the write-once blackboard.
Notice that this map is a homomorphism. Define

H : Zq × Zq → Zp × Zp

h(v, r) = (gr, γvhr)(mod p)

h(v1 + v2, r1 + r2) = h(v1, r1) ∗ h(v2, r2)(mod p)

where the multiplication on the right side is element-wise.
We will assume element-wise multiplication from here on.
This homomorphism allows us to compute the encryption
of a sum of votes by simply multiplying the encryptions.
That is:

h(
n∑

i=1

Gij ,
n∑

i=1

rij) =
n∏

i=1

h(Gij , rij)(mod p)

for j = 1, . . . , km. This tally and all partial totals are El-
Gamal encryptions, and provide computational hiding of
the data.

3.3 ZK Proof of User Data Validity

Each user should give a ZKP that their encryptions
(Γi1, . . . ,Γi(km)) represent a valid input, namely one that
is not “too large”. An expensive way to do this is to give
a ZKP for every elementGij that bounds its size. This is
neither efficient nor desirable. The amount of influence a
single user has over the aggregate can be bounded by the
2-norm ofGi. The squared 2-norm is just the sum of the
squares of the elements ofGi. We can bound the 2-norm
in zero-knowledge by bounding a single quantity which we
prove is the sum of the squares of the elements ofGi. The
bound uses ideas from [3], suitably adapted as described in
Appendix II.

For eachΓij which encrypts aGij , we first generate a
Wij which encryptsG2

ij . The prover and verifier multiply
togetherWij for j = 1, . . . , km which will be an encryp-
tion of the sum of the squares of elments ofGi, i.e. the
squared 2-norm ofGi. Then prover gives a ZKP that this
value, call itν is at mostL2, whereL is the desired bound
on the 2-norm ofG.

The bound onν is built by expressingν as a weighted
sum of 2 log2 L binary-valued variables (bits), and then
showing in zero knowledge that each bit has value 0 or
1. Cramer and Damgård [3] give zero-knowledge, honest
verifier proof that a given encrypted value is0 or 1. Their
method can be implemented non-interactively by hashing
the verifier’s response, which is best for our application. In
that case each ZKP comprises 7 long (mod p) integers. So
to prove thatν has at mostt bits requires7t large (typically
160- or 1024-bit) integers. The length required for our pro-
tocol is t = O(log mk). Note that there is only one such
proof for each gradient vectorGi.

It remains for the prover to show in zero knowledge that
eachWij is the encryption of the square of the value en-
crypted byΓij , for j = 1, . . . , km. This requires a modifi-
cation of the multiplication protocol from [3] which we give
in Appendix II. Since we only need to deal with squares,
the proof in Appendix II is shorter than the general multi-
plication proof. When implemented non-interactively, each
proof requires a fixed number of integers fromZp. While
the original protocol from [3] required ten large integers per
multiplication proof, the protocol we give in Appendix II re-
quires seven. This is a useful saving in the overall commu-
nication cost of the protocol, which is dominated by these
ZKPs. Putting the two proofs together (forν and theWij)
shows that total size of the proof of validity ofGi is

7km + O(log km) large integers

.

3.4 Tallying and Threshold Decryption

The tallier computes for eachj the product of all the
homomorphic images that it receives:

Xj =
n∏

i=1

xij Yj =
n∏

i=1

yij (mod p)

and we notice thatYj = γTj hRj andXj = gRj where

Tj =
n∑

i=1

Gij and Rj =
n∑

i=1

rij

so (Xj , Yj) is an El-Gamal encryption of the desired sum
Tj . To decrypt, we broadcastXj to all clients.

Each client that receivesXj should apply their share of
the secret key to it, and sendXsi

j (mod p) to the tallier.
Assume that for eachj, the tallier receives at leastt + 1 re-
sponses from some setΛ of clients. Then tallier computes:

Pj =
∏
i∈Λ

(Xsi

J)Li,Λ = gsRj = hRj (mod p)

Finally, the tallier computes:YjP
−1
j = γTj (mod p). Al-

though computingTj requires taking a discrete log, the val-
ues ofTj will be small enough (106 to 109) that a baby-
step/giant-step approach will be practical. This can be done
by many of the clients in parallel to speed up the process.
In

√
|Tj | steps, the value ofTj will be found, and the client

can send this info directly to the tallier for verification, since
it is public.

3.5 Checking Inputs and Tallys

The ZKPs and calculations done by each tallier in our
scheme are “publicly” verifiable, as in [5]. However, [5]

6

gave no scheme for explicitly checking tallys. Checking to-
tals appears to be difficult without seeing the inputs, which
is clearly not efficient. A simple approach to efficient
checking is to use randomly sampled redundant talliers, and
take the majority for each tally. First, assumingkm ≤ n,
we compute each of thekm totals with a different group
of talliers. In the second case ofkm > n, we distribute
thekm values inton groups so that each group has at most
dkm/ne totals to compute. The number of groups in either
case ismin(km, n).

To choose which talliers lie in which group, we
rely on the global coin toss. The number of random
bits needed to allocate tallys to groups of talliers is
O(min(km, n) log2(km + n)). The majority value(s)
among the talliers in a group will determine the value(s)
used in subsequent calculations. Letα be the fraction of
honest talliers. Whennr talliers are chosen at random us-
ing global coin tosses, the majority scheme will succeed if
most of talliers are honest. Nowα > 0.5, and the expected
number of honest talliersnh in the sample isE(nh) = αnr.
The scheme will fail if the number of honest talliers in the
samplenh < 0.5nr. Takingα = 0.8 and using Chernoff
bounds, we find that

Pr[nh < 0.5nr] < 0.922nr

Since there aremin(km, n) groups, and we need a
total probability of failure of O(1), the probability
of failure in any single group should bePr[nh <
0.5nr] = O(1/ min(km, n)). Then it follows thatnr =
Ω(log min(km, n)). If p is a bound on the probability of
failure in any group, the number of checkers needed for
α = 0.8 is

nr > 8.5(log2 min(km, n) + log2(1/p)) (3)

If we choose insteadα = 0.7 then the constant above in-
creases from 8.5 to 15. Choosingα = 0.6 causes the con-
stant to increase to 50.

4 Protocol

Here we summarize the entire method. As before there
aren clients andm items, andA has dimensionsk × m.
First the procedure for computing a least-squares fit and par-
tial SVD of the training data. AssumeA has been initialized
to a random matrix inRk×m. All users know this matrix.
Repeatnumiter times:

1. All clients compute their contribution to the gradient
vector, which isAPT

i Pi for client i. They compute
ZK proofs that their data are valid and write all of this
to the blackboard.O(km) computation and commu-
nication cost per client. The total number of integers
written by each client is8km + O(log km).

2. Using the global coin toss, each tallier chooses a sub-
set ofO(log n) clients. The tallier checks the ZKPs of
these clients and posts the results either “OK” or “not-
OK” to the blackboard. This requiresO(km log n)
computation and computation per tallier.

3. Each tallier reads the results of ZKPs checks in the pre-
vious step. For each client with a majority of OK votes,
the tallier commits to add that client’s data to its to-
tal. The tallier reads the global coin toss and chooses a
subset of items to total. The total for the chosen items
and the valid clients is then written to the blackboard.
This requiresO(km log n) communication and com-
putation cost per tallier.

4. Clients compare encrypted totals from approved tal-
liers (those selected by the global coin toss) and if there
is a clear majority for a total, they decrypt it using their
share of the secret key. They write these to the black-
board. Cost isO(km log n) computation and commu-
nication per client.

5. Talliers collect partial decryptions from clients (which
are easily verified using each client’s public key) for
the data items for which they are responsible, which
is O((km/n) log n) items per tallier. They combine
these to produce decrypted totals, still as exponentials.
Each tallier then computes the discrete logs of those to-
tals using anO(

√
n) baby-step/giant-step method, and

writes these values to the blackboard. These are now
fully decrypted coefficients of the gradient ofA. Total
cost is dominated byO(km log n) per tallier.

6. Talliers read the blackboard and take the majority
vote among approved talliers for gradient coefficients
for which they werenot responsible. At the end of
this process, every honest tallier should have a com-
plete copy of the new gradient. This process takes
O(km log n) steps per tallier.

7. The conjugate gradient algorithm also requires a line
minimization step (Appendix I). This part of the pro-
tocol is a repeat of steps 1-5 above, except that there
are only 3 line coefficients(ci, ai, bi) instead ofkm
gradient coefficients. We assume this has been done,
and now every honest tallier has a copy of the new gra-
dient and the line coefficients.

8. Talliers update the estimate ofA using the decrypted
line coefficients and conjugate gradient as described in
Appendix I. They also compute the partial SVD ma-
tricesD andV . These are written to the blackboard.
For efficiency, each tallier does this only for the coeffi-
cients for which it is responsible. Cost isO(km log n)
per tallier.

7

9. Talliers take majority vote for items for which they
were not responsible. The result is that all honest tal-
liers have updated values forA, D andV . Cost is once
againO(km log n) per tallier.

As we mentioned earlier, the typical number of iterations is
40-60 for convergence on real collaborative filtering data.

Note that at each step of the protocol, incoming data is
checked for validity. In step 2, this is done using ZKP. In
step 4 this is through a user’s public key which immediately
verifies their decryption of the data. In the other steps, ver-
ification is through majority vote of approved talliers using
the global coin toss. If a sufficient majority of talliers is hon-
est, this yields the correct result with high probability. By
totaling the computational effort, we arrive at the following:

Lemma The total computation per client/tallier during one
round of the protocol isO(km log n).

We have not said anything yet about sychronizing this
protocol. The shared blackboard makes this a fairly sim-
ple process. We can declare each round complete when a
pre-specified fraction (e.g. 70%) of clients or talliers have
written their data to the blackboard. All honest clients and
talliers would then always work on the same data, no matter
what was written later. This fraction would need to be de-
termined experimentally, once it was known how many of
the possible clients typically participate.

4.1 Experiments

We did not implement the cryptographic protocols
above. This would have been reasonably straightforward,
but tedious. Since we can prove their desired privacy prop-
erties, we would not have learned anything by implement-
ing them. Performance is fairly easy to estimate with-
out implementation, because all of the cryptographic op-
erations have well-characterized running times using, e.g.
the CRYPTO++ toolkit, and are much more expensive than
other operations.

But it was far from clear whether the numerical method
was practical. How fast would it converge on typical data?
Would it be sensitive to noise? How large shouldk be for
good predictions? Is it competitive with existing collabo-
rative filtering schemes? Therefore we focussed our imple-
mentation on the numerical method.

We tested the numerical method on the EachMovie
dataset, a well-known test dataset for collaborative filter-
ing algorithms [2]. This dataset comprises ratings of 1648
movies by 74422 users. Each rating is an integer in the
range0, . . . , 5. We normalized the ratings to−2.5, . . . , 2.5
so that there was no zero rating to be confused with an ab-
sent rating. We chose40% of the users at random as a train-

ing set. The ratings of these users became theP matrix on
which we ran the iterative least-squares procedure.

The implementation was done as a Matlab script file. It
was run on a 500MHz processor with 256MB of memory.
There were no clients, so all calculations were done on this
machine. The dimension of the linear spaceA wask = 8
for these experiments. This was found to give best perfor-
mance in cross-validation experiments. The average time
per iteration was about 1 second, and 40 iterations - the en-
tire training phase for 74422 users - was completed in under
one minute. Typical convergence rates were very fast: 10-
fold residual error reduction every 10 iterations. The error
reductions for 40 iterations ranged from103 to 106. For the
Eachmovie dataset, if the residual error reduction is at least
102 there is no measurable change in the quality of predic-
tions.

The remaining60% of users were used for cross-
validation. For each user, 10 of the items they had rated
were set aside, and the remainder used to generate predic-
tions using the method of section 2.1. The average time to
generate a recommendation was0.05 seconds, or 20 ratings
per second. Accuracy was very good. The Mean Abso-
lute Error (MAE) is the average of the absolute difference
between a prediction and the actual rating of an item by a
user. The MAE for our scheme was was 0.96. In [7], sev-
eral collaborative filtering schemes were compared on the
Eachmovie dataset. The best performance by any of the al-
gorithms they studied was an MAE of 0.96 - equal to our
method.

Finally we studied the robustness of the scheme by sim-
ulating a fraction of clients “dropping out” of various steps
of the computation. At each iteration a different random
subset of50% of the clients were discarded from the gra-
dient total. A different random subset of50% of clients
was dropped during the line minimization step. The least-
squares algorithm still converged, albeit more slowly and
could not achieve residual errors below 0.01 of the initial
error. Fortunately, this made no measurable difference to
prediction accuracy during cross-validation. This is proba-
bly because the dataset is very noisy.

4.2 Communication and Computation Time Esti-
mates

We also estimated the running time and communica-
tion costs of the cryptographic protocols based on recent
benchmarks for the primitives. Efficient cryptographic tools
such as Crypto++ provide all the basic operations we need.
The size of the aggregate for the EachMovie dataset is
8×1648 = 13184 array elements, each element being a pair
of field elements. With El-Gamal encryption, typical field
elements are1024-bit integers, while for ECC they are 168-
bit integers. The total storage required for the EachMovie

8

aggregate is 3.4 MB for EG or 500 kB for ECC. Each user’s
encrypted gradient has the same size as the aggregate, but
adding ZKPs to the gradients increase their size to 15 MB
(EG) and 2.2 MB (ECC).

There are several steps with complexityO(km log n) in
the protocol, but the dominant step in terms of constants is
step 2. To derive the cost of this step, we pick a typical value
of n = 105, which was the case for the Eachmovie dataset.
We setα = 0.8 as before. Picking an error probability for
checking of10−6 allows us to compute the size of the ran-
dom samplenr = 300 from equation 3. The total amount
of communication per client during step 2 is the product of
the ZKP size given above by the redundancynr. That takes
the total communication per client to 4 GB (EG) or 600 MB
(ECC).

To determine running times, we use
benchmarks for the CRYPTO++ tookit from
www.eskimo.com/˜weidai/benchmarks.html .
Their experiments show that EG 1024-bit exponentiations
take approximately 10ms. Checking a ZKP as per appendix
II requires 11 exponentiations. Multiplying these numbers
by the number of proofs to check gives a total time of
13k×300×11×10ms which comes to about 50k seconds,
or 15 hours. The times for ECC are very similar.

These times and communications totals are large, but
even without improvement it should be feasible to run one
round of the protocol over several days as a background pro-
cess. Since the user ratings data are changing slowly, a few
days latency does not diminish the value of the aggregate.

Finally, the local storage demands of the protocol are
quite modest. A client need only work on a single copy
of a gradient or the aggregate at a time. Including ZKPs,
local storage of 10-50MB should be enough.

5 Statistical Vulnerabilities

While the scheme we described gives good data hiding
in a cryptographic sense (beyond disclosure ofA), there is
still the potential for leakage of information. Such leakage
may be “static” or “dynamic” arising respectively from one
snapshot of the aggregate (static leakage), or from several
snapshots of the aggregate over time (dynamic leakage). We
discuss static leakage first.

5.1 Static Leakage

We have treated the entire aggregateA as public data be-
cause our scheme for generating ratings (section 2.1) allows
the aggregateA to be constructed from a sufficient number
of queries. So as long as a recommendation service is run-
ning on a modelA, that model can be extracted through the
query interface. This is also true of the SVD CF scheme
published in [14]. The positive aspect of this is that min-

ing the query interface willonly reveal information about
the modelA, and not the underlying data. In order to avoid
overfitting, the modelA is at least a 10-fold compression
(size measured as number of elements) of the original rat-
ings data. By adding a small amount of noise to each rating,
we can achieve a similar compression in an information-
theoretic sense. Typical compression ranges from 10-100
times. So even though it is easy to accessA, the amount of
information about an individual user’s ratings is very lim-
ited, at least in an average sense. Most of the original in-
formation has simply been lost. But we must guard against
concentration of the information.

Although the aggregate includes data from many individ-
uals, some items may have been rated by just a few individ-
uals, and those items can be correlated with others using the
SVD data. For instance, ifA encoded ratings of web sites
based on user visits, personal web sites would leak informa-
tion because their owners frequent them more than anyone
else. Other sites that correlate strongly with a personal site
are strong candidates to have been visited by the owner of
the site. Highly selective data such as personal web site vis-
its should be filtered out from a scheme like this, as their
potential for leaking information is too great. We assume
that users are able to exclude any chosen site or locations
from their data, and that the system advises them to do so.

The second source of static leakage is sites that have
been rated by very few users. If an item has very few raters,
correlations between this item and others will disclose much
information about those raters’ choices. It is therefore de-
sirable to remove items with few raters from the aggregate.
A second reason for doing this is that extrapolated ratings
for such an item are likely to be inaccurate. The accuracy
of ratings of an item will be quite poor unless the number
of raters of that item is larger than the dimension of the lin-
ear model. If there are fewer, then there is not enough in-
formation to localize the item in thek-dimensional ratings
space. To deal with this, we suggest using a dynamically-
maintained “frontier” of items.

5.2 The Frontier

As well as the modelA, we employ an integer-valued
vectorF called thefrontier. For elements in the frontier,
we maintain only a count of the number of users that have
rated them, not a model of user ratings. So letFi be the
count of the number of users who have rated itemi. The
set of items in the frontierF is typically much larger than
the set of items modeled inA. For instance, ifF containsk
times as many items asA, then the vectorF and the matrix
A will both containkm elements. With easy extensions to
the protocol we described in section 4, the counts inF can
all be maintained without disclosing user data. Then the set
of items actually handled in the aggregateA at each iter-

9

ation would be the subset of them most frequently-rated
items from among the items counted inF . It would be an
even smaller subset if there are fewer thanm items whose
count lies above a cardinality threshold (e.g.2k) for accu-
racy purposes. In this way,A would only model ratings of
reasonably popular items (items with at least2k raters).

As well as protecting privacy and avoiding inaccurate ex-
trapolations, this scheme allows a much larger set of items
to be handled by the system with a small impact on storage
and computation. For instance, for the Eachmovie dataset
with 1600 items andk = 20, maintaining a frontier with
km = 32000 items would only double the storage needed,
and less than double the computation, compared to the basic
protocol. Given the typically Zipf-like distributions of num-
ber of raters of items, most of the items in the frontier will
have very few raters, and would not meet the cardinality
threshold. Thus we could not provide accurate extrapola-
tions for them. We can recognize this fact from the values
in F , and advise the user of it.

5.3 Static Leakage in other CF systems

First of all, we note that the SVD scheme described in
[14] has quite similar properties to ours. Namely, it pro-
vides high compression of the original data, and therefore
good protection of user data if we guard against the two
“information concentration” mechanisms described above.
Like ours, it is straightforward to construct the linear model
from a sufficient number of queries with [14].

It is more complicated to analyze other schemes. But
schemes which do not create an intermediate model like
ours are probably very dangerous. For instance, Pearson
correlation [7] and personality diagnosis [10] use the en-
tire user dataset to generate new recommendations. What’s
more, Pearson correlation makes use of a subset of “neigh-
bors” of the current user who have rated several of the same
items. The neighbor subset may be extremely small if the
querying user has rated only a few items so far. Pearson
schemes may simply refuse to return a rating if the neigh-
bor set is empty or too small. An adversay can easily use
this to advantage by choosing their number of rated items
so that it is just large enough to avoid a “no ratings” mes-
sage. That means there are just enough items to give an ad-
equate neighbor set, but this neighbor set will be very small,
and the ratings the adversary sees will be a weighted aver-
age of that very small set of neighbors. It is easy to come
up with artificial (and unrealistic) datasets where the entire
user dataset can be extracted via queries. Just how well one
can do at extracting information from realistic datasets is a
matter of some concern, since memory-based methods are
in use in some real websites today.

So in summary, schemes based on low-dimensional lin-
ear models of ratings data (e.g. SVD) offer quite good pro-

tection against static leakage of individual information. For
these methods, it makes no difference whether the model
is exposed directly, or only via queries. For memory-based
methods, there is no intermediate model that limits the in-
formation leakage. The potential for leakage via query min-
ing for such methods appears to be severe.

5.4 Dynamic Leakage

The iterative least-squares scheme makes repeated use
of user data. Suppose a user contributes to one iteration but
not the next. There will be slight numerical differences in
the gradient which may not mask the difference caused by
that user. The best defence against this problem is to add
more randomness. We tested a modification of the numeri-
cal method where each user tosses a coin to decide whether
to contribute their actual gradient, or a zero vector at each
iteration. As we noted earlier, the iterative method still con-
verges with this disturbance. Such an approach should make
it very difficult for an adversary to isolate individual data
by “sniffing” the changes inA over time. This method of
randomization is valid wrt the SVD calculation, because it
amounts to a sub-sampling of the dataset. Other random-
ization methods, such as additive noise, do not have this
property3

6 Discussion

An important pragmatic issue with our scheme is the
management of the recommender community. In order to
succeed, this scheme must have a majority of honest clients
and talliers. That implies some authentication of the mem-
bers. Without it, a malicious user could join a community
masquerading as many individuals. Ideally, the community
might be formed from individuals who actually know each
other. This can be extended to include individuals that are
vouched forby a core community member, etc. The design
implications are subtle and we have not explored them. The
next most reliable method would be to restrict membership
to a known community. For instance, campus or company
email might be used in the key setup phase, ensuring that
each user has a valid email address within the organization.
Beyond social and organizational bounds, community setup
and maintenance is more problematic. There are a variety of
creative solutions, e.g. having individuals fill out surveys,
or receive a password by phone, etc., but these are beyond
the scope of our present work. We believe that this problem
is a basic one in peer-to-peer computing, and is e.g. being
studied in the development of the Java peer-to-peer API,
JXTA.

3To see this, imagine the dataset is drawn from an elliptical gaussian
distribution. Adding sufficient noise will produce a spherical gaussian.

10

The last question is whether this kind of key-sharing
among peers is a good model of security. After reflecting
on this work for some time, we believe that the model is
not only acceptable, but is very good in many respects. The
goals of any privacy scheme should be to protect individuals
from unreasonable scrutiny or search without cause. At the
same time, it is not socially desirable that criminals be pro-
tected from scrutiny once guilt has been established or there
is probable cause. A scheme which provides perfect data
hiding also provides criminals with effective means to com-
municate and perhaps perform other kinds of distributed
computation. A key escrow scheme like this one places the
ability to decrypt information in the hands of individuals. If
a single individual or agency has this power, then the pos-
sibilities for abuse are many. If a few individuals within
an organization have this capability, the protections are bet-
ter, but there is still the prospect of coercion by outsiders,
or communication of these few powerful keys to others. On
the other hand, escrow in the hands of many places the com-
munity’s privacy in the hands of the community. They can
also make a judgement about using their keys to decrypt pri-
vate data in situations where there is a compelling reason to
do so, such as suspicion of criminal behavior. Coercion of
a large community would be impractical in most situations.
Any abuse from within the community would be highly vis-
ible to other members, which is itself a strong deterrent.

To summarize, we described in this paper a practical
and useful example of computation on encrypted data. Our
method reduces a non-linear computation (SVD) to a series
of linear steps. It can be implemented fully peer-to-peer. We
showed by experiment that the algorithm compares well in
accuracy and speed with traditional collaborative filtering
methods. We believe that it points the way to a class of
practical algorithms that work on encrypted data.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Com-
pleteness theorems for noncryptographic fault-tolerant dis-
tributed computations. In20th ACM STOC, pages 1–10,
1988.

[2] Breese, Heckermen, and Kadie. Empirical analysis of pre-
dictive algorithms for collaborative filtering. Technical re-
port, Microsoft Research, October 1998.

[3] R. Cramer and I. Damg̊ard. Zero-knowledge for finite field
arithmetic. or: Can zero-knowledge be for free? InProc.
CRYPTO ’98, volume 1462, pages 424–441. Springer Verlag
LNCS, 1998.

[4] R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, and
T.Rabin. Efficient multiparty computations secure against an
adaptive adversary. InProc. EuroCrypt ’99, volume LNCS
1592, pages 311–326. Springer-Verlag, 1999.

[5] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure
and optimally efficient multi-authority election scheme.Eu-

ropean Transactions on Telecommunications, 8(5):481–490,
1997.

[6] K. Goldberg, D. Gupta, M. Digiovanni, and H. Narita. Jester
2.0 : Evaluation of a new linear time collaborative filtering
algorithm. In22nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, August
1999. Poster Session and Demonstration.

[7] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An al-
gorithmic framework for performing collaborative filtering.
In Proc. ACM SIGIR, 1999.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. InProc. 9th Int.
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2000), November 2000.

[9] T. Pedersen. A threshold cryptosystem without a trusted
party. In Eurocrypt ’91, volume 547, pages 522–526.
Springer-Verlag LNCS, 1991.

[10] D. Pennock and E. Horvitz. Collaborative filtering by per-
sonality diagnosis: A hybrid memory- and model-based ap-
proach. InIJCAI Workshop on Machine Learning for In-
formation Filtering, International Joint Conference on Arti-
ficial Intelligence (IJCAI-99), Stockholm, Sweden, August
1999.

[11] E. Polak. Computational Methods in Optimization. Aca-
demic Press, New York, 1971.

[12] T. Rabin and M. Ben-Or. Verifiable secret-sharing and mul-
tiparty protocols with honest majority. In21st ACM STOC,
pages 73–85, 1989.

[13] E. M. Rogers.Diffusion of Innovations, Fourth Edition. The
Free Press, 1995.

[14] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Ap-
plication of dimensionality reduction in recommender sys-
tem – a case study. InACM WebKDD 2000 Web Mining for
E-Commerce Workshop, 2000. Full length paper.

Appendix I: SVD via Vector Addition

Recall that the matrixA minimizes the squared error
e = tr(PPT) − tr(PAT APT). To computeA, we use
a conjugate gradient algorithm. This allows us to compute
A in a number of rounds which equals the number of iter-
ations of the conjugate gradient algorithm (typically 40-60
for our application). This requires onlysummationof indi-
vidual user data, which can be done using the cryptographic
homomorphism described earlier.

Sincetr(PPT) is fixed, minimizinge amounts to max-
imizing tr(PAT APT). SinceA is an orthonormal repre-
sentation of a vector space, it is subject to the constraint
AAT = I. Using Lagrange multipliers, we need to maxi-
mize

tr(PAT APT + Λ(AAT − I))

whereΛ is ak × k matrix of multipliers. The gradient of
this function is

G = 2APT P + (Λ + ΛT)A = 2APT P + SA

11

whereS is a symmetric matrix. For a vectorG to lie on the
tangent manifold defined byAAT = I, we must have

lim
ε→0

((A + εG)(AT + εGT)− I)/ε = 0

so
AGT + GAT = 0

substituting forG and solving gives

S = −2APT PAT

and therefore:

G = 2APT P (I −AT A)

Now suppose thatA is the current approximation to the best
linear fit to P . Let Pi denote the1 × m matrix of data
from theith user. ThenPT P can be computed asPT P =∑n

i=1 PT
i Pi and the gradient as:

G =
n∑

i=1

APT
i Pi(I −AT A)

or G =
∑n

i=1 Gi whereGi = APT
i Pi(I −AT A) is theith

user’s contribution to the gradient. This is a key point. The
fact that the gradient is expressible as a sum of contributions
from each user makes it possible to computeA using only
addition of user data (and therefore using cryptographic ho-
momorphism). We assume that the current approximation
A(j) to A is known to everyone at thejth iteration. Then
useri computes their contributionG(j)

i to the gradientG(j)

using the expression above. The user sends an encrypted
copy ofG(j)

i to the tallier(s), which then sums all user con-
tributions to yield the encryption ofG(j). The work to com-
pute each user’s contribution isO(km), assuming manifold
correction is done on the tallier.

The next phase of conjugate gradient is calculation of the
extremum along the gradient direction. For this we need a
quadratic approximation to the value of the error function
e(t) a distancet along the gradient direction. Strictly speak-
ing, we actually move along a quadratic curve that tracks the
curvature of the manifold. The derivation up to second order
terms ofe(t) is tedious but straightforward. The quadratic
approximation ise(t) ≈ e0 + e1t + e2t

2 and the extremum
occurs att ≈ −e1/(2e2). We need the two termse1 and
e2. For convenience, we will breake2 into two components
e2 = a + b, and lete1 = c. Then the three quantities we
need are:

c = −2tr(PGT APT)

a = −tr(PGT GPT)

b = tr(PAT GGT APT)

and we note that each term has the formtr(PXPT), and
involves private dataP . All the data in eachX is public,

involving the current approximationA and the gradientG.
Now notice that all products can be computed as

tr(PXPT) =
n∑

i=1

PiXPT
i

wherePi is useri’s data as before. So just as with the gra-
dient computation, the line minimization step can be done
with summation of encrypted data. Each user computes
their contributions to(c, a, b) and sends them encrypted to
the tallier(s). The computation per client isO(km) for these
terms.

The tallier sums all the contributions and computes final
encrypted totals(c, a, b). When these totals are decrypted
(next section), the tallier(s) can compute the gradient step
size4 ts = −c/(2(a + b)). The tallier then increments the
current estimateA(i) by marching along in the gradient di-
rection. When corrected for curvature, the new estimate is

A
(i+1)
0 = A(i) + tsG− 1

2
t2sGGT A(i)

Because of numerical error,A
(i+1)
0 will not have orthonor-

mal rows. To obtainA(i+1) we apply a standard orthonor-
malization scheme, such as Gramm-Schmitt, toA

(i+1)
0 .

Conjugate Gradient

A simple gradient scheme such as described above will have
slow (sub-quadratic) convergence. Conjugate gradient is a
good way to accelerate a minimization, and gives quadratic
convergence. The conjugate gradient is a moving average
of gradient directions. It requires a “one-step” memory of
the previous gradient, and requires only slight modification
of the tallier code (no changes are needed to inter-processor
communication). We used the Polak-Ribiere formula [11]
to compute a generalized gradientH based onG and the
H,G pairs from earlier iterations. This is a standard tech-
nique and we do not describe it here.

There is one complication with applying conjugate gra-
dient. We are working in a “moving” coordinate system.
That is, every gradientG or H has coordinates which are
based on the current approximationA(i). Gradients at two
different values ofA cannot be compared or combined be-
cause they will not satisfy the conditionAGT + GAT = 0
at the otherA. Conjugate gradient requires a weighted sum
of gradients from two different time steps. These gradients
are in different coordinate systems and therefore cannot be
combined. Fortunately, the set of orthonormalA has a Lie
Algebra structure and there is a simple way to transform

4For large stepsts which occur early in the optimization, the estimator
e2 = a + b is ill-conditioned. Instead we use the less accurate but more
stable estimatore2 = b − a. The switch toe2 = a + b should be made
when convergence slows

12

between one coordinate system and another. LetA(i) and
A(i+1) be two orthonormal matrices (and coordinate sys-
tems). To transform a gradientG expressed inA(i)’s coor-
dinate system toA(i+1), we compute:

G′ = A(i+1)(A(i)T G−GT A(i))

when both the standard and conjugate gradients from the
previous step are transformed in this way, they can be used
in the Polak-Ribiere formula [11].

Computing Singular Value Decomposition

We can extend the least-squares scheme to compute a par-
tial singular value decomposition (SVD) ofP . Recall that
an SVD is a factorization ofP asP = UDV T whereU
andV have orthonormal columns andD is a diagonal ma-
trix with real non-negative entries sorted in descending or-
der. It is known that the firstk columns ofU give the op-
timal k-dimensional approximation to the columnspace of
P , while the firstk rows ofV T give the bestk-dimensional
approximation to the rowspace ofP . It follows that ifA has
been computed as in the previous sections, then rowspan(A)
equals the rowspan of the firstk rows of V T . We can re-
cover these rows by computing the eigenvectors and eigen-
values of a small (k × k) matrix.

Let B = APT PAT and form the eigendecomposition
of B as B = WEWT whereE is a diagonal matrix of
eigenvalues, andW is the matrix whose columns are the
corresponding eigenvectors. Notice thatB is positive semi-
definite, and assume the real eigenvalues inE are sorted in
descending order. Then

D2 = E V = WT A

The information needed to computeD andV is available at
the tallier. The matrixB is easily computed from the gradi-
entG asB = 1

2G(I−AT A)−1AT . SinceB isk×k andk is
small (typicallyk < 20), the eigenvalue calculation is inex-
pensive. ComputingD andV from the eigenvalue decom-
position is also inexpensive, and requiresO(k2m) steps.

Note that it is not possible to compute the matrixU in the
SVD. This is intentional.U contains information about spe-
cific users. Theith row of U encodes useri’s preferences
in the k-dimensional subspace. We do not store informa-
tion that would allowU to be recovered. BothD andV
however, contain useful information about patterns of user
preferences mapped onto the data items.

Appendix II

To simplify notation, supposeA, B respectively encrypt
a andb, then we give here a ZKP thatb = a2. This proto-
col is a straightforward adaption of the multiplication pro-
totocol from[3]. The idea is to show that if the “message”

encypted inA is theath power ofγ, then the message inB
is theath power of the message inA. We have to do this
without revealinga of course.

1. Prover knowssa, sb such that

A = (gsa , γahsa)mod p B = (gsb , γbhsb)mod p

Prover choosesx, ra, rb ∈ Zq uniformly at random
and sends

Ca = (gra , γxhra) and Cb = Ax(grb , hrb)

to Verifier.

2. Verifier choosesc ∈ Zq uniformly at random and sends
it to Prover.

3. Prover computes

v = ca + x(mod q)

za = csa + ra(mod q)

zb = c(sb − asa) + rb(mod q)

and sendsv, za, zb to verifier.

4. Verifier checks that

(gza , γvhza) = AcCa

Av(g, h)zb = BcCb

and accepts iff both identities hold.

This protocol is honest-verifier zero-knowledge. The
simulation is: Choosec, v, za, zb ∈ Zq independently
and uniformly at random, and computeCa andCb to sat-
isfy step 4 above. Both the protocol and the simula-
tion have the same probability distribution on conversations
(Ca, Cb, c, v, za, zb).

From two accepting conversations(Ca, Cb, c, v, za, zb)
and(Ca, Cb, c

′, v′, z′a, z′b) we can recovera andsa via:

a = (v − v′)(c− c′)−1(mod q) and

sa = (za − z′a)(c− c′)−1(mod q)

and thensb as

sb = (zb − z′b)(c− c′)−1 + asa(mod q)

finally by equating powers ofγ in the last test in step 4, we
see that:ca2 + ax = cb + ax from which it follows that
b = a2.

If this protocol is implemented non-interactively, both
prover and verifier will use a secure hash function to com-
putec from A,B, Ca, Cb. Then the non-interactive proof
consists ofCa, Cb, v, za, zb, which is a total of sevenmod p
or mod q integers.

13

	Introduction
	Assumptions
	Outline and Contributions

	Distributed Collaborative Filtering
	Generating Recommendations
	Updating the Aggregate

	Vector Summation of Encrypted Data
	Key Sharing
	Value Encryption/Homomorphism
	ZK Proof of User Data Validity
	Tallying and Threshold Decryption
	Checking Inputs and Tallys

	Protocol
	Experiments
	Communication and Computation Time Estimates

	Statistical Vulnerabilities
	Static Leakage
	The Frontier
	Static Leakage in other CF systems
	Dynamic Leakage

	Discussion

