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Abstract

A generating extension of a program specializes it with respect to
some specified part of the input. A generating extension of a program
can be formed trivially by applying a partial evaluator to the program;
the second Futamura projection describes the automatic generation
of non-trivial generating extensions by applying a partial evaluator to
itself with respect to the programs.

We derive an ML implementation of the second Futamura projec-
tion for Type-Directed Partial Evaluation (TDPE). Due to the dif-
ferences between ‘traditional’, syntax-directed partial evaluation and
TDPE, this derivation involves several conceptual and technical steps.
These include a suitable formulation of the second Futamura projec-
tion and techniques for making TDPE amenable to self-application. In
the context of the second Futamura projection, we also compare and
relate TDPE with conventional offline partial evaluation.

We demonstrate our technique with several examples, including
compiler generation for Tiny, a prototypical imperative language.
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1 Introduction

1.1 Background

General Notions Given a general program p : σS × σD → σR and a fixed
static input s :σS , partial evaluation (a.k.a. program specialization) yields a
specialized program ps : σD → σR. When this specialized program ps is ap-
plied to an arbitrary dynamic input d :σD, it produces the same result as the
original program applied to the complete input (s, d), i.e., [[psd ]] = [[p(s, d)]].
Often, some computation in p can be carried out independently of the dy-
namic input d, and hence the specialized program ps is more efficient than
what the general program p. In general, specialization is carried out by
performing the computation in the source program p that depends only on
the static input s, and generating program code for the remaining compu-
tation (called residual code). A partial evaluator PE is a program that
performs partial evaluation automatically, i.e., [[PE(ppq, psq)]] (where p·q
denotes “the encoding of”) is a specialized program ps, if PE terminates on
ppq and psq.

The program λs.PE(ppq, s), which computes a specialized program ps

for any input s, is an instance of a generating extension of program p. In
general, a program p′ is a generating extension of the program p, if running p′

on psq yields a specialization of p with respect to the static input s (under
the assumption that p′ terminates on psq). Since PE itself is a general
program, and a specific program p is often available before its particular
static input s, it makes sense to specialize the program PE with respect to
the program p to produce a more efficient generating extension PEp. In the
case when the partial evaluator PE itself is written in its input language,
i.e., if PE is self-applicable, this specialization can be achieved by PE itself.
That is, we can generate an efficient generating extension of p as follows:

p′ = [[PE(pPEq, ppq)]].

Self-application The above equation was first observed in 1971 by Futa-
mura [14] in the context of compiler generation—the generating extension
of an interpreter is a compiler—and is called the second Futamura pro-
jection. Turning this equation into practice, however, proved to be much
more difficult than the simple equational form suggests; it was not until
1985 that Jones’s group implemented Mix [20], the very first effective self-
applicable partial evaluator. They identified the reason for previous failures:
the decision whether to carry out computation or to generate residual code
generally depends on the static input s, which is not available during self-
application; so the specialized partial evaluator still bears this overhead of
decision-making. They solved the problem by making the decision offline:
pre-annotate the source program p with binding-time annotations which
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solely determine the decisions of the partial evaluator. In the simplest form,
a binding time is either static, which indicates computation carried out at
partial evaluation (hence called static computation), or dynamic, which in-
dicates code-generation for the specialized program.

Subsequently, a number of self-applicable partial evaluators have been
implemented, e.g., Similix [2] and Schism [4], but most of them are for
untyped languages. For typed languages, the so-called type specialization
problem arises [18]: since a (traditional) partial evaluator PE must be able
to perform all the static subcomputations, in particular it must subsume
a traditional evaluator. Generally, such an evaluator uses a universal data
type to represent values in the evaluated program. The resulting gener-
ating extension p′, then, often retains the universal data type and the tag-
ging/untagging operations as a source of overhead. Partly because of this, in
the 1990’s, the practice shifted towards hand-written generating-extension
generators [17]; this is also known as the cogen approach. The relationship
between a generating-extension generator and a corresponding partial eval-
uator is like the familiar relationship between a compiler and an interpreter.
It takes more effort to write a generating-extension generator than to write
just a partial evaluator. In the case of self application, this extra effort is
taken care of by reusing the partial evaluator itself. Furthermore, apart from
technology reuse, a related issue is correctness arguments: proving the cor-
rectness of a hand-written generating-extension generator is more difficult
than proving the correctness of a partial evaluator; on the other hand, if a
partial evaluator has been proved correct, the correctness of a generating ex-
tension produced by self-applying this partial evaluator follows immediately.
Furthermore, as we shall see in this article, the problem caused by using uni-
versal data type can be avoided to a large extent, if we can avoid introducing
an implicit interpreter in the first place. The second Futamura projection
thus still remains a viable alternative to the hand-written approach, as well
as a source of interesting problems and a benchmark for partial evaluators.

Type-directed partial evaluation In a suitable setting partial evaluation
can be carried out by normalization. Consider, for example, the pure simply
typed λ-calculus, in which computation means β-reduction. Given two λ-
terms p : τ1 → τ2 and s : τ1, bringing the application ps into β-normal form
specializes p with respect to s. For example specializing the K-combinator
K = λx.λ y.x with respect to itself yields λ y.λ x.λ y′.x.

TDPE, due to Danvy [6], realizes the above idea using a technique
called Normalization by Evaluation (NbE) of Berger and Schwichtenberg [1].
Roughly speaking, NbE works by extracting the normal form of a term from
its meaning, where the extraction function is coded in the object language.

Example 1. Let PL be a higher-order functional language in which we can
define a type Exp of term representations. Consider the combinator K =
λx.λy.x—the term KK is of type Exp→Exp→ Exp→ Exp. We want to extract
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its long βη-normal form from its meaning.
Since Exp→ Exp→ Exp→ Exp is the type of a function which takes three

arguments, one can infer that the long βη-normal form of KK must be of the
form λ v1.λ v2.λ v3.t, for some term t : Exp. Intuitively, the only natural way
to generate the term t from the meaning of term KK is to apply it to (the
values representing) terms v1, v2 and v3. The result of this application is the
term v2. Thus, we can extract the normal form of KK as λ v1.λ v2.λ v3.v2.

TDPE is different from a traditional, syntax-directed partial evaluator
in several respects:

Binding-Time Annotation Traditional partial evaluators require binding-
time annotations for all the subexpressions. TDPE eliminates the need
to annotate expression forms that correspond to function, product and
sum type constructions. One only needs to give a binding-time clas-
sification for the base types appearing in the types of constants. As
we can see from Example 1, function abstraction and application are
always carried out as static computation; all β-redexes are eliminated
this way. The remaining constructions are “coerced” into code repre-
sentations by the extraction function.

Type-Directed The construction of the extraction function relies on the
type of the term to be normalized, making TDPE “type-directed”.

Efficiency Traditional partial evaluators work by symbolic computation on
the source programs; they contain an evaluator to perform the static
evaluation and code generation. TDPE reuses the underlying eval-
uator (interpreter or compiler) to perform these operations; given a
highly optimized evaluation mechanism of functional languages, TDPE
acquires the efficiency for free—a feature shared with the cogen ap-
proach.

Compared with a symbolic normalization technique, TDPE is faster
also because there is no explicit rewriting steps; every term will be
generated only once.

Flexibility Traditional partial evaluators need to be able to deal with all
the constructs in the language. In TDPE, one is free to use various
syntactic constructs, such as pattern matching, since only the meaning
of the term, along with its type, determines the normal form, not how
the term is written.

These differences have contributed to the successful application of TDPE
in various contexts, e.g., to perform semantics-based compilation [11]. An
introductory account, as well as a survey of various treatments concerning
NbE, can be found in Danvy’s lecture notes [8].
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1.2 Our Work

The problem A natural question is whether one can perform self-applica-
tion, in particular the second Futamura projection, in the setting of TDPE.
It is difficult to see how this can be achieved, due to the drastic differences
between TDPE and traditional partial evaluation.

• Since TDPE extracts the normal form of a term according to its type,
a natural self-application of TDPE, one which has been done by Danvy
in his original article for the untyped language Scheme [6], is to spe-
cialize the TDPE process with respect to a particular type. The result
helps one to visualize what a particular instance of TDPE does. But
this form of self-application does not further specialize with respect to
a particular source program. In addition, it is also not clear if self-
application can be achieved in a typed setting, such as in ML, since the
extraction functions are type-indexed. Indeed, the ML implementa-
tion of TDPE encodes a type as the application of several combinators
that correspond to different type constructors; the TDPE algorithm
to be specialized is not a monolithic program.

• Following the second Futamura projection literally, one should special-
ize the source program of the partial evaluator. Partial evaluation us-
ing TDPE is carried out using the underlying evaluator, whose source
code might be written in an arbitrary language or not even available.
In this case, writing this evaluator from scratch by hand is an extensive
task. It further defeats the main point of using TDPE: to reuse the
underlying evaluator and to avoid unnecessary interpretive overhead.

TDPE also poses some technical problems for self-application. For exam-
ple, TDPE deals with monomorphically typed programs, but the standard
call-by-value TDPE algorithm itself uses polymorphically typed control op-
erators shift and reset to perform let-insertion in a polymorphically typed
evaluation context.

Our contribution This article addresses all the above issues. We show
how to effectively carry out self-application for TDPE, in a strongly typed
language, ML. To generate efficient generating extensions, such as compilers,
we reformulate the second Futamura projection in a way that is suitable for
TDPE.

More technically, for the typed setting, we show how to use TDPE on
the combinators and consequently on the type-indexed TDPE itself, and
how to slightly rewrite the TDPE algorithm, so that we only use the control
operators at the unit and boolean types. As a full-fledged example, we derive
a compiler for the Tiny language.

Since TDPE is both the tool and the object program involved in self-
application, we provide a somewhat detailed introduction to the principle
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and the implementation of TDPE in Section 2. Section 3 provides an ab-
stract account of our approach to self-application for TDPE, and Section 4
details the development in the context of ML. Section 5 describes the deriva-
tion of the Tiny compiler. Based on our experiments, we give some bench-
marks in Section 6. Section 7 concludes. The appendix gives further tech-
nical details in the generation of a Tiny compiler. The complete sources of
the development presented in this article are available online [15].

2 TDPE in a nutshell

In order to give some intuition, we first outline TDPE for an effect-free frag-
ment of ML without recursion (Section 2.1). Then we sketch the extensions
and pragmatic issues of TDPE in a larger subset of ML, the setting we will
work with in the later sections (Section 2.2). Finally, to facilitate a precise
formulation of self-application, we outline Filinski’s formalization of TDPE
(Section 2.3).

2.1 Pure TDPE in ML

Pure TDPE deals with an effect-free fragment of ML without recursion,
where the call-by-name and call-by-value semantics agree.

Pure simply-typed λ-terms We first consider only pure simply-typed
λ-terms. We use the type Exp in Figure 1 to represent code (as it is used in
Example 1). In the following we will write v for Var v, λ v.t for LAM (v, t)

and s @ t for APP (s, t); following the convention of the λ-calculus, we use
@ as a left-associative infix operator.

datatype Exp = VAR of string

| LAM of string * Exp

| APP of Exp * Exp

Figure 1: A data type for representing terms

Let us for now only consider ML functions which correspond to pure
λ-terms with type τ of the form τ ::= • | τ1 → τ2, where ‘•’ denotes a base
type. ML polymorphism allows us to instantiate ‘•’ with Exp when coding
such a λ-term in ML. So every λ-term of type τ gives rise to an ML value
of type τ = τ [• := Exp]; that is, a value representing either code (when
τ = Exp), or a code-manipulation function (at higher types).

Figure 2 shows the TDPE algorithm: for every type τ , we define in-
ductively a pair of functions ↓τ : τ → Exp (reification) and ↑τ :Exp → τ

(reflection).
Let us revisit the normalization of KK from Example 1:
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↓• e = e

↓τ1→τ2 f = λx.↓τ2 (f(↑τ1 x)) (x is fresh)

↑• e = e

↑τ1→τ2 e = λx.↑τ2 (e@ (↓τ1 x))

Figure 2: Reification and reflection

Example 2. For the type • → •→ •→ • the equations given in Figure 2
define reification as

↓•→•→•→• e = λx.λ y.λ z.exyz (x, y, z are fresh).

Applying ↓•→•→•→• to KK yields λx.λ y.λ z.y.

What happens if we want to extract the normal form of t : τ1 → τ2 where
τ1 is not a base type? The meaning of t cannot be directly applied to the
code representing a fresh variable, since the types do not match: τ1 6= Exp.
This is where the reflection function ↑τ :Exp → τ comes in; it converts a
code representation into a code-generating function:

Example 3. Consider τ1 = •→ •→ •→ •:

↑•→•→•→• e = λx.λ y.λ z.e@ x@ y @ z

For any term representation e, ↑•→•→•→• e is a function that takes three
term representations and constructs a representation of their subsequent
application to e. It is used, e.g., in reifying the term λx.λy.xyyy with
↓(•→•→•→•)→•→•.

Adding constants So far we have seen that we can normalize a pure
simply-typed λ-term by 1) coding it in ML, interpreting all the base types as
type Exp, so that its value is a code-manipulation function, and 2) applying
reification at the appropriate type. Treating terms with constants follows
the same steps, but the situation is slightly more complicated. Consider,
for example, the ML expression λ z.mult 3.14 z of type real→ real→ real,
where mult is a curried version of multiplication over reals. There is no way
this function can be used as a code-manipulating function. The solution
is to use a non-standard, code-generating instantiation for the base types
real and constants mult. We instantiate type real as realr = Exp, and con-
stant mult as some term multr : Exp→ Exp→ Exp. We also lift the constant
3.14 into Exp using a lifting-function liftreal : real → Exp. (This requires
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a straightforward extension of the data type Exp with an additional con-
structor LIT REAL.) Reflection can be used to construct the code-generating
instantiation multr:

Example 4. A code-generating instantiation multr:Exp→Exp→ Exp of mult:
real→ real→ real is given by

multr = ↑•→•→• “mult” = λx.λ y.“mult”@ x@ y.

Now, applying the reification function ↓•→• to the term

λ z.(multr (liftreal 3.14) z)

evaluates to λx.“mult”@ 3.14 @ x.

Partial evaluation In the framework of TDPE, partially evaluating a
(curried) program p : σS → σD → σR to a static input s : σS is carried out
by normalizing the application ps. We can always take the code-generating
instantiation for all the base types and constants in this term; reifying the
meaning will carry out all the β-reductions, but leave all the constants in the
residual program—no static computation involving constants is carried out.
However, this is not good enough: one would expect that the application of
s to p enables also computation involving constants, not only β-reductions.
Partial evaluation, of course, should also carry out such computation. Not
surprisingly, this is achieved by instantiating the constants to themselves
(this is called the evaluating instantiation).

Example 5. Consider the function

height = λa.λ z.mult (sin a) z.

Suppose we want to specialize height to a static input a:real. It is easy to see
that the computation of sin can be carried out statically, but the computation
of mult cannot. Hence we leave sin as it is (evaluating instantiation), but lift
its result into Exp and give mult the code-generation instantiation introduced
in Example 4:

heightr = λa.λ z.multr (liftreal(sin a)) z

Now we can specialize height with respect to π
6 by evaluating ↓•→• (heightr

π
6 ),

which yields λx.“mult”@ 0.5 @ x

In general, to perform TDPE for a term, one needs to decide for each
constant occurrence, whether to use the evaluating instantiation or the code-
generation instantiation, and to insert appropriate lifting functions where
necessary. The result must type-check, and its partial application to the
static input must represent a code-manipulation function (i.e., its type is
built up from only the base type Exp), so that we can apply the reification
function. This corresponds to a binding-time annotation phase, which turns
the source term into a well-formed two-level term. This will be made precise
in the framework of a two-level language (Section 2.3).

8



2.2 TDPE in ML: implementation and extensions

Implementation Type-indexed functions such as reification and reflec-
tion can be implemented in ML employing a technique first used by Filinski
and Yang [7, 26]; see also Rhiger’s derivation [22]. A combinator is defined
for every type constructor T (• and → in the case of Pure NbE in Sec-
tion 2). This combinator takes a pair of reification and reflection functions
for every argument τi to the (n-ary) type constructor T , and computes the
reification-reflection pair for the constructed type T (τ1, . . . , τn). Reification
and reflection functions for a certain type τ can then be created by com-
bining the combinators according to the structure of τ and projecting out
either the reification or the reflection function.

As Figure 3 shows, we implement NbE as a functor parameterized over
three structures of respective signatures EXP (term representation), GENSYM

(name generation for variables) and CONTROL (control operators, used in “ex-
tensions” below). The implementation for Pure NbE shown in Figure 4 is a
direct transcription from the formulation in Section 2.1.

Example 6. With an implementation pNbe: NBE of Pure NbE (acquired by
applying the functor pureNbe), normalization of KK (see Examples 1 and 2)
is carried out as follows:

local open pNbe; infixr 5 --> in

val K = (fn x => fn y => x)

val KK_norm = reify (a’ --> a’ --> a’ --> a’) (K K)

end

Extensions We will use a much extended version of TDPE, referred to as
Full TDPE in this article. Full TDPE not only deals with the function type
constructor, but also with tuples and sums. Furthermore, a complication
which we have disregarded so far is that ML is a call-by-value (cbv) language
with computational effects. In such languages, the rule of β-reduction is not
sound because it might discard or duplicate computations with effects.

Extending TDPE to tuples is straightforward: reifying a tuple is done
by producing the code of a tuple constructor and applying it to the reified
components of the tuple; reflection at a tuple type means producing code
for a projection on every component, reflecting these code pieces at the
corresponding component type and tupling the results.

One approach to handling sum types and call-by-value languages is to im-
plement the reflection function by manipulating the code-generation context.
This has been achieved by using the control operators shift and reset [9, 12].
Section 4.4 gives a more detailed treatment of dealing with sum types and
call-by-value languages in TDPE.

An implementation of Full TDPE is described in Danvy’s lecture notes [8].
The relevance of Full TDPE in this article is that (1) it is the partial
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signature EXP = (* term representation *)
sig

type Exp

type Var

val VAR: Var -> Exp

val LAM: Var * Exp -> Exp

val APP: Exp * Exp -> Exp
...

end

signature GENSYM = (* name generation *)
sig

type Var

val new: unit -> Var (* make a new name *)
val init: unit -> unit (* reset name counter *)

end;

signature CTRL = (* control operators *)
sig

type Exp

val shift: ((’a -> Exp) -> Exp) -> ’a

val reset: (unit -> Exp) -> Exp

end;

signature NBE = (* normalization by evaluation *)
sig

type Exp

type ’a rr (* (↓τ , ↑τ) : τ rr *)

val a’ : Exp rr (* τ = • *)
val --> : ’a rr * ’b rr -> (’a -> ’b) rr (* τ = τ1 → τ2 *)

...

val reify: ’a rr -> ’a -> Exp (* ↓τ *)
val reflect: ’a rr -> Exp -> ’a (* ↑τ *)

end

functor nbe(structure G: GENSYM

structure E: EXP

structure C: CTRL): NBE = ...

Figure 3: NbE in ML

evaluator that one would use for specializing realistic programs; and (2)
in particular, it handles all features used in its own implementation (e.g.,
name-generation uses side effects to maintain a counter). Hence in principle
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functor pureNbe(structure G: GENSYM

structure E: EXP): NBE =

struct

type Exp = E.Exp

datatype ’a rr = RR of (’a -> Exp) * (Exp -> ’a)

(* (↓τ , ↑τ) : τ rr *)

infixr 5 -->

val a’ = RR(fn e => e, fn e => e) (* τ = • *)
fun RR (reif1, refl1) --> RR(reif2, refl2) (* τ = τ1 → τ2 *)

= RR (fn f =>

let val x = G.new ()

in E.LAM (x, reif2 (f (refl1 (E.VAR x))))

end,

fn e =>

fn v => refl2 (E.APP (e, reif1 v)))

fun reify (RR (reif, refl)) v

= (G.init (); reif v)

fun reflect (RR (reif, refl)) e

= refl e

end

Figure 4: Implementation of Pure NbE

self-application should be possible.

2.3 A general account of TDPE

This section describes Filinski’s formalization of TDPE [13]. The formal
result makes precise how TDPE is used, which is important in deriving the
formulation of self-application later.

Preliminaries First we fix some standard notions. A simple functional
language is given by a pair (Σ,I) of a signature Σ and an interpretation I
of this signature. More specifically, the syntax of valid terms and types in
this language is determined by Σ, which consists of base type names, and
constants with types constructed from the base type names. (The types are
possibly polymorphic; however, in our technical development, we will only
work with monomorphic instances.) A set of typing rules generates, from
the signature Σ, typing judgments of the form Γ ⊢Σ t : σ, which reads “t is
a well-formed term of type σ under typing context Γ”.

Types and terms are associated with domain-theoretical denotations by
an interpretation. An interpretation I of signature Σ assigns domains to
base type names, and elements of appropriate domains to literals and con-
stants (and, in the setting of cbv-languages with effects, also monads to
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various effects). The interpretation I extends canonically to the meaning
[[σ]]I of every type σ and the meaning [[t]]I of every term t :σ in the language;
to keep the presentation simple, we write [[t]]I only for closed terms t, which
denote an element in the domain [[σ]]I .

The syntactic counterpart of the notion of an interpretation is that of
an instantiation. An instantiation maps syntactic phrases in a language L

to syntactic phrases in (possibly) another language L′, specified as a substi-
tution Φ from the base types in language L to L′-types, and constants c : τ

to L′-terms of type τ{Φ}. It is obvious that an interpretation of a language
L′ and an instantiation of a language L in language L′ together determine
an interpretation of L.

Two-level language Filinski formalized TDPE using a notion of two-level
languages (or, binding-time-separated languages). The signature Σ2 of such
a language is the disjoint union of a static signature Σs (static base types bs

and static constants cs, written with superscript s), a dynamic signature Σd

(dynamic base types bd and dynamic constants cd, written with superscript
d), and lifting functions $b for base types. For simplicity, we assume all
static base types bs are persistent, i.e., each of them has a corresponding
dynamic base type bd, and is equipped with a lifting function $b : bs → bd.
The intuition is that a value of a persistent base type always has a unique
external representation as a constant, which can appear in the generated
code; we call such a constant a literal. For TDPE, Filinski used a technical
notion of fully dynamic types: a fully dynamic type is a type constructed
solely from dynamic base types. The meaning [[e]]I

2

of a term e is fully
determined by a static interpretation Is of signature Σs, and a dynamic
interpretation Id of signature Σd and the lifting functions. A two-level
language is different from a one-level language in that it is specified by a
pair (Σ2,Is) of its signature Σ2 and only a fixed static interpretation Is.
In other words, the meaning of terms is parameterized over the dynamic
interpretation Id.

A two-level language PL2 = (Σ2,Is) is usually associated with a one-level
language PL = (ΣPL,IPL). Without loss of generality, we let the languages
PL and PL2 be fixed, where (1) the dynamic signature Σd of PL2 duplicates
ΣPL (except for literals, which can be lifted from static literals) with all
constructs superscripted by d, (2) the static signature Σs of PL2 comprises all
the base types in PL and all the constants in PL that have no computational
effects except possible divergence, with all constructs superscripted by s, and
(3) the static interpretation Is is the restriction of interpretation IPL to Σs.
For clarity, we use metavariables t, e, σ, and τ to range over ΣPL-terms,
Σ2-terms, ΣPL-types, and Σ2-types, respectively.

We can induce an evaluating dynamic interpretation Id

ev from IPL by
taking [[bd]]I

d
ev = [[b]]I

PL

, [[cd]]I
d
ev = [[c]]I

PL

, and [[$]]I
d
ev = λx ∈ [[b]]I

PL

.x. A
closely related notion is the evaluating instantiation of Σ2-phrases in ΣPL:
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Definition 7 (Evaluating Instantiation). The evaluating instantiation
of a Σ2-term ⊢Σ2 e :τ in PL is ⊢ΣPL ẽ :τ̃ , given by ẽ = e{Φ∼} and τ̃ = τ{Φ∼},
where instantiation Φ∼ is a substitution of Σ2-constructs (constants and
base types) into ΣPL-phrases (terms and types): Φ∼(bs) = Φ∼(bd) = b,
Φ∼(cs) = Φ∼(cd) = c, Φ∼($b) = λx.x.

We have that for all Σ2-types τ and Σ2-terms e, [[τ̃ ]]I
PL

= [[τ ]]I
s ,Id

ev and

[[ẽ]]I
PL

= [[e]]I
s ,Id

ev.

Static normalization A Σ2-term of some fully dynamic type is in static
normal form if it is free of β-redexes and free of static constants, except
literals that appear as arguments to lifting functions; in other words, the
term cannot be further simplified without knowing the interpretations of the
dynamic constants. Terms e in static normal form are, in fact, in one-to-one
correspondence to terms ẽ in ΣPL. They can thus be represented using a
one-level term representation such as the one provided by Exp.

A static normalization function NF for PL2 is a computable partial func-
tion on well-typed Σ2-terms such that if e ′ = NF (e) then e ′ is a Σ2-term
in static normal form, and e and e ′ are not distinguished by any dynamic
interpretation Id of Σd, i.e., ∀Id.[[e]]I

s ,Id

= [[e ′]]I
s ,Id

; in other words, term
e′ and term e have the same (parameterized) meaning. Notice that NF is
usually partial, since terms for which the static computation diverges have
no normal form.

Normalization by Evaluation In this framework, NbE can be described
as a technique to write the static normalization function NF for a two-level
language PL2 by reduction to evaluation in the ordinary language PL. For
this to be possible, we require language PL to be equipped with a base type
Exp for code representation of its own terms (and thus of static normal forms
in PL2), and constants that support code construction and name generation.

Filinski shows that in the described setting, NbE can be performed with
two type-indexed functions ↓τ : τ → Exp (reification) and ↑τ :Exp → τ

(reflection). The function ↓τ extracts the static normal form of a term ⊢Σ2

e :τ from a special residualizing instantiation of the term in PL, ⊢ΣPL e : τ ;
the function ↑τ is used in both the definition of reification function and the
construction of the residualizing instantiation e .

Definition 8 (Residualizing Instantiation). The residualizing instanti-
ation of a Σ2-term ⊢Σ2 e :τ in PL is ⊢ΣPL e : τ , given by e = e{Φ } and
τ = τ{Φ }, where instantiation Φ is a substitution of Σ2-constructs into
ΣPL-phrases: Φ (bs) = b, Φ (bd) = Exp, Φ (cs) = c, Φ (cd : τ) =↑τ “c”,
Φ ($b) = liftb.

In words, the residualizing instantiation τ of a fully dynamic type τ sub-
stitutes all occurrences of dynamic base types in τ with type Exp; since type
τ is fully dynamic, type τ is constructed from type Exp, and it represents
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code values or code manipulation functions (see Section 2.1). The residual-
izing instantiation e of a term e substitutes all the occurrences of dynamic
constants and lifting functions with the corresponding code-generating func-
tions. For example, in Examples 4 and 5, if we regard mult and height as
two-level terms, then multr and heightr are simply their respective residu-
alizing instantiation: multr = mult and heightr = height .

The function NF in NbE is defined by Equation (1) in Figure 5: it
computes the static normal form of term e by evaluating the ΣPL-term
⊢ΣPL ↓τ e : Exp using an evaluator for language PL. In Filinski’s semantic
framework for TDPE, a correctness theorem of NbE has the following form,
though the exact definition of function NF varies depending on the setting.

Theorem 9 (Filinski). The function NF defined in Equation (1) is a static
normalization function. That is, for all well-typed Σ2-terms e, if e′ =
NF (e), then term e′ is in static normal form, and ∀Id.[[e ]]I

s ,Id

= [[e ′]]I
s ,Id

.

The detail of how Theorem 9 is proved is out of the scope of this article.
Just as self application reduces the technique of producing an efficient gen-
erating extension to the technique of partial evaluation, our results on the
correctness of self application reduce to Theorem 9.

Normalization by Evaluation
For term ⊢Σ2 e : τ , we use

NF (e) = [[↓τ
e ]]I

PL

. (1)

to compute its static normal form, where
1. Term ⊢ΣPL e : τ is the residualizing instantiation of term e, and
2. Term ⊢ΣPL ↓τ : τ → Exp is the reification function for type τ .

Binding-time annotation The task is, given ⊢ΣPL t:σ and some binding-
time constraints, to find ⊢Σ2 tann :τ that satisfies the constraints and

[[τ ]]I
s ,Id

ev = [[σ]]I
PL

, [[tann]]
Is ,Id

ev = [[t]]I
PL

Figure 5: A formal recipe for NbE

Partial Evaluation Given a Σ2-term ⊢Σ2 p : τS × τD → τR, and its static
input ⊢Σ2 s : τS , where both type τD and type τR are fully dynamic, spe-
cialization can be achieved by applying NbE (Equation (1)) to statically
normalize the trivial specialization λx.p(s, x):

NF (λx.p(s, x)) = [[↓τD→τR λx.p(s , x) ]]I
PL

= [[↓τD→τR λx . p ( s , x )]]I
PL (2)
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In the practice of partial evaluation, one usually is not given two-level
terms to start with. Instead, we want to specialize ordinary programs. This
can be reduced to the specialization of two-level terms through a binding-
time annotation step. For TDPE, the task of binding-time annotating a ΣPL-
term t with respect to some knowledge about the binding-time information
of the input is, in general, to find a two-level term tann such that (1) the
evaluating interpretation [[tann]]

Is ,Id
ev of term tann agrees with the meaning

[[t]]I
PL

of term t, and (2) term tann is compatible with the input’s binding-
time information in the following sense: combining tann with the static input
results in a term of fully dynamic type. Consequently, the resulting term
can be normalized with the static normalization function NF .

Consider again the standard form of partial evaluation. We are given a
ΣPL-term ⊢ΣPL p : σS × σD → σR and the binding-time information of its
static input s of type σS , but not the static input s itself. The binding-time
information can be specified as a Σ2-type τS such that τ̃S = σS ; for the more
familiar first-order case, type σS is some base type b, and type τS is simply
bs. We need to find a two-level term ⊢Σ2 pann : τS × τD → τR, such that (1)
types τD and τR are the fully dynamic versions of types σD and σR, and (2)

[[pann]]
Is ,Id

ev = [[p]]I
PL

.
When given an annotated static input which has the specified binding-

time information, sann : τS (of some s :σS such that [[sann]]
Is ,Id

ev = [[s]]I
PL

), we
can form the two-level term ⊢Σ2 tann , λx.pann(sann, x) : τD → τR. It corre-
sponds to a one-level term t , λx.p(s, x), for which (by compositionality of

the meaning functions) [[tann]]
Is ,Id

ev = [[t]]I
PL

. Our goal is to normalize term t.
If term e = NF (tann) is the result of the NbE algorithm, we see that its one-
level representation ẽ, which we regard as the result of the specialization,
has the same meaning as the term t:

[[ẽ]]I
PL

= [[e]]I
s ,Id

ev = [[tann]]
Is ,Id

ev = [[t]]I
PL

This verifies the correctness of the specialization.
This process of binding-time annotation can be achieved mechanically or

manually. In general, one tries to reduce occurrences of dynamic constants
in term t, so that more static computation involving constants is carried out
during static normalization.

Our setting In this article, the language PL we will work with is essentially
ML, with a base type Exp for encoding term representations, its associated
constructors, constants for name generations (GENSYM.init and GENSYM.new),
and control operators. All of these can be introduced into ML as user-
defined data types and functions; in practice, we do not distinguish PL and
ML. The associated two-level language PL2 is constructed from language
PL mechanically.

Instantiation through functors Given a two-level term p, the ML
module system makes it possible to encode p such that one can switch
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between the evaluating instantiation p̃ and the residualizing instantiation
p in a structured way [8]. This is done by defining p inside a functor
p pe(structure D: DYNAMIC) = ... which parameterizes over all dynamic
types, dynamic constants and lifting functions. Depending on how D is
instantiated, one can create either the evaluating instantiation of p or its
residualizing instantiation.

signature DYNAMIC = (* Σd *)
sig

type Real (* reald *)

val mult: Real -> Real -> Real (* multd *)
val lift_real: real -> Real (* $real *)

end

functor height_pe(structure D: DYNAMIC) =

struct

fun height a z = D.mult (D.lift_real (sin a)) z

end

structure EDynamic: DYNAMIC = (* Evaluating Inst. Φ∼ on Σd *)
struct

type Real = real

fun mult x y = x * y

fun lift_real r = r

end

structure RDynamic: DYNAMIC = (* Residualizing Inst. Φ on Σd *)
struct

local

open EExp pNbe

infixr 5 -->

in

type Real = Exp

val mult = reflect (a’ --> a’ --> a’) (VAR "mult")

fun lift_real r = LIT_REAL r

end

end

structure Eheight = height_pe (structure D = EDynamic);

(* h̃eight *)
structure Rheight = height_pe (structure D = RDynamic);

(* height *)

Figure 6: Instantiation via functors
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Example 10. In Example 5 we sketched how a function height can be
partially evaluated with respect to its first argument. Figure 6 shows how
to provide a residualizing instantiation in ML using functors. A functor
height pe(structure D:DYNAMIC) parameterizes over all dynamic types, dy-
namic constants and lifting functions that appear in (a two-level version)
of height. The functor height pe can be instantiated to yield either the
evaluating instantiation h̃eight or the residualizing instantiation height .

3 Formulating Self-application

In this section, we formulate two forms of self-application for TDPE: one
simply generates more efficient reification and reflection functions for a type
τ ; the other adapts the second Futamura projection to generate efficient
generating extensions.

Visualization The first natural candidates for considerations of self-ap-
plying TDPE are the reification and reflection functions. For example, for
a specific fully dynamic type τ , the reification function ↓τ contains one β-
redex for each recursive call following the type structure. We want to use
TDPE to remove the overhead of β-reductions.

Starting from ⊢ΣPL ↓τ : τ → Exp, we follow the “recipe” outlined in
Figure 5 to achieve specialization. First, the term needs to be binding-time
annotated. A straightforward analysis of the implementation of NbE (see
Figures 3 and 4) shows that all the base types (Exp, Var, etc.) and constants
(APP, Gensym.init, etc.) are needed in the code generation phase; hence they
all should be classified as dynamic. We thus introduce a trivial binding-time
annotation.

Definition 11 (Trivial Binding-Time Annotation). The trivial bind-
ing-time annotation of a ΣPL-term ⊢ΣPL t :σ is a PL2-term ⊢Σ2 〈 t 〉 : 〈 σ 〉,
given by 〈 t 〉 = t{Φ〈 〉} and 〈 σ 〉 = σ{Φ〈 〉}, where the instantiation Φ〈 〉 is

a substitution of ΣPL-constructs into Σ2-phrases: Φ〈 〉(b) = bd, Φ〈 〉(ℓ : b) =

$bℓ
s (ℓ is a literal), Φ〈 〉(c) = cd (c is not a literal).
The following properties hold:

1. [[〈 t 〉]]I
s ,Id

ev = [[t]]I
PL

, making 〈 t 〉 a binding-time annotation of t;

2. 〈̃ t 〉 = t;

3. 〈 σ 〉 is always a fully dynamic type;

4. If a Σ2-type τ is fully dynamic, then 〈 τ 〉 = τ .

Since the trivial binding-time annotation of ↓τ , ⊢Σ2 〈 ↓τ 〉 : 〈 τ → Exp 〉,
has a fully dynamic type, we can apply NbE (Equation (1)) to achieve static
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normalization for this term:

NF (〈 ↓
τ 〉) = [[↓〈

τ →Exp 〉 ( 〈 ↓
τ 〉 )]]I

PL

.

We write ⇓τ for 〈 ↓τ 〉 and ⇑τ for 〈 ↑τ 〉 for notational conciseness.
Meanwhile, the reader should keep in mind that, by definition, they are
just the residualizing instantiation of the two-level terms 〈 ↓τ 〉 and 〈 ↑τ 〉,
respectively. In fact, term ↓τ and term ⇓τ are respectively the evaluating
instantiation and residualizing instantiation of the same two-level term 〈 ↓τ 〉:

〈̃ ↓τ 〉 =↓τ , and 〈 ↓τ 〉 =⇓τ ; analogous for term ↑τ and term ⇑τ . We will
exploit this fact in Section 4.1 to apply the functor-based approach to the
reification/reflection combinators themselves.

Since 〈 · 〉 and · are simply substitutions, they distribute over all type
constructors. Note also that both ↓τ and ↑τ depend only on τ ; that is, if
τ1 = τ2 , then ↓τ1=↓τ2 and ↑τ1=↑τ2 . This justifies our practice of writing
“•” to denote arbitrary dynamic base type in τ . A simple derivation using
these properties and property (3) in Definition 11 gives the following simple
formulation of the self-application.

NF (〈 ↓
τ 〉) = [[↓τ→• (⇓τ )]]I

PL

. (3)

The following corollary follows immediately from Theorem 9 and the
property of trivial binding-time annotation.

Corollary 12. If eτ = NF (〈 ↓
τ 〉), then its one-level representation ẽτ is

free of β-redexes and is semantically equivalent to ↓τ :

[[ẽτ ]]
IPL

= [[eτ ]]
Is ,Id

ev = [[〈 ↓
τ 〉]]I

s ,Id
ev = [[↓τ ]]I

PL

Normalizing ↓τ not only speeds up the reification, but also helps one to,
as Danvy phrased it [6], visualize reification for a particular type. Indeed,
the reification and reflection functions of Examples 2 and 3 are presented in
the normalized form, which can be generated by this visualization.

Danvy carried out a similar self-application in the setting of Scheme [6];
his treatment explicitly λ-abstracts over the constants occurring in ↓τ , which,
by the TDPE algorithm, would be reflected according to their types. This
reflection also appears in our formulation: for any constant c : σ appearing

in ↓τ , we have 〈 c 〉 = cd =↑〈 σ 〉 “c”. Consequently the results of these two
treatments are essentially the same.

Adapted second Futamura projection As we have argued in the intro-
duction, in the setting of TDPE, following the second Futamura projection
literally is not a viable choice for deriving efficient generating extensions—
the evaluator for language PL, which implements the meaning function
[[·]]I

PL

, might not even be written in PL; making such an evaluator explicit in
the partial evaluator to be specialized will bring in a large overhead, which
defeats the advantages of TDPE. We thus consider instead the general idea
behind the second Futamura projection:
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Using partial evaluation to perform the static computations in
a ‘trivial’ generating extension (usually) yields a more efficient
generating extension.

Recall from Equation (2) that in order to specialize a two-level term ⊢Σ2

p : τS × τD → τR with respect to a static input ⊢Σ2 s : τS , we execute the
ΣPL-program ⊢ΣPL ↓τD→τR λd. p ( s , d) : Exp. By λ-abstracting over the
residualizing instantiation s of the static input s, we can trivially obtain
a generating extension p†, which we will refer to as the trivial generating
extension.

⊢ΣPL p
† , λsr. ↓

τD→τR (λd.( p (sr, d))) : τS → Exp.

Corollary 13. The term p† is a generating extension of program p.

Since the term p† is itself a ΣPL-term, we can follow the recipe in Fig-
ure 5 to specialize it into a more efficient generating extension. There might
be some flexibility in the binding-time annotation of the term p . We there-
fore analyze the different occurrences of constants in p . Since · = Φ is
an instantiation, i.e., a substitution on dynamic constants and lifting func-
tions, every constant c′ in p must appear as a subterm of the image of
a constant or a lifting function under the substitution Φ . If c′ appears
inside Φ (cd) =↑τ “c” (where c′ could be a code-constructor such as LAM,
APP appearing in term ↑τ ) , or Φ ($b) = liftb, then c′ is needed in the code
generation phase, and hence it should be classified as dynamic. If c′ appears
inside Φ (cs) = c, then c′ = c is an original constant, classified as static
assuming the input s is given. Such a constant could rarely be classified as
static in p†, since the input s is not statically available at this stage. It is
thus not too conservative to take the trivial binding time annotation of the
trivial generating extension p†, and proceed with Equation (1) to generate
a more efficient generating extension.

p‡=NF (〈 λsr. ↓
τD→τR (λd.( p (sr, d))) 〉)

=[[↓〈 τS→• 〉 〈 λsr. ↓
τD→τR (λd.( p (sr, d))) 〉 ]]I

PL

=[[↓τS→• (λsr. 〈 ↓
τD→τR 〉 (λd .( 〈 p 〉 (sr, d))))]]I

PL

Writing p for the subterm 〈 p 〉 , we have

p
‡ = [[↓τS→• (λsr. ⇓

τD→τR (λd . p ) (sr, d))]]I
PL

(4)

The correctness of the second Futamura projection follows from Corol-
lary 13 and Theorem 9.

Corollary 14. Program p̃‡ (the one-level form of the static normal form
p‡) is a generating extension of p which is free of β-redexes.
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Proof. By Theorem 9 and the property of trivial binding-time analysis, we

have p‡ is in static normal form, and [[p̃‡]]I
PL

= [[p†]]I
PL

. That the program

p̃‡ is a generating extension of p follows from Corollary 13.

Now let us examine how the term p is formed. Note that p = 〈 p 〉 =
((p{Φ }){Φ〈 〉}){Φ } = p{Φ ◦Φ〈 〉◦Φ }; thus · corresponds to the compo-
sition of three instantiations, Φ = Φ ◦Φ〈 〉 ◦Φ , which is also an instantia-
tion. We call Φ the generating-extension instantiation (GE-instantiation);
a simple calculation gives its definition.

Definition 15 (GE-instantiation). The GE-instantiation of a Σ2-term
⊢Σ2 e : τ in PL is ⊢ΣPL e : τ given by e = e{Φ } and τ = τ{Φ }, where
instantiation Φ is a substitution of Σ2-constructs into ΣPL-phrases:

Φ (bs) = Φ (bd) = Exp

Φ (cs : τ) = 〈 c : τ 〉 =↑〈 τ 〉 “c”

Φ (cd : τ) = ↑τ “c” =⇑τ 〈 Var 〉 (liftstring“c”)

Φ ($b) =↑•→• “liftb”

Note that at some places, we intentionally keep the · form unexpanded,
since we can just use the functor-based approach to obtain the residualiz-
ing instantiation. Indeed, the GE-instantiation boils down to “taking the
residualizing instantiation of the residualizing instantiation”. In Section 4.5,
we show how to extend the instantiation-through-functor approach to cover
GE-instantiation as well.

4 The Implementation

In this section we treat various issues arising when implementing in ML the
abstract formulation given in Section 3.

4.1 Residualizing Instantiation of the Combinators

In Section 3 we remarked that ↓τ and ⇓τ are respectively the evaluating
instantiation and the residualizing instantiation of the same two-level term
〈 ↓τ 〉. This suggests that the ML module system can be used again to
conveniently implement both instantiations for a given two-level term (see
Example 10). However, we have formulated reification and reflection as
type-indexed functions, and implement them not as a monolithic program,
but as combinators which can be plugged together by the user to construct
a type encoding as a reification-reflection pair (↓τ , ↑τ ). Fortunately, because
〈 · 〉 is a substitution, it distributes over all constructs in a term; it marks all
the types and constants as dynamic. Therefore it suffices to parameterize
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all the combinators. These combinators, when instantiated with either an
evaluating or a residualizing interpretation, can be combined according to a
type τ to yield either (↓τ , ↑τ ) or (⇓τ ,⇑τ ).

We basically already have achieved our goal, because the functor nbe

(see Figure 3) is parameterized over the primitives used in the NbE module.
Hence, rather than hardwiring code-generating primitives, this factorization
reuses the implementation for producing both the evaluating instantiation
and the residualizing instantiation. An evaluating instantiation ENbe of NbE
is produced by applying the functor nbe to the standard evaluating structures
EExp, EGensym and ECtrl of the signatures EXP, GENSYM and CTRL, respectively
(Figure 7—we show the implementations of structures EExp and EGensym;
for structure ECtrl, we use Filinski’s implementation [12]). Residualizing
instantiations RNbe of Full NbE and RpNbE of Pure NbE result from apply-
ing the functors nbe and pureNbe, respectively, to appropriate residualizing
structures RGensym, RExp, and RCtrl (Figure 8).

structure EExp (* Evaluating Inst. Φ∼ on EXP *)
= struct

type Var = string

datatype Exp =

VAR of string (* v *)
| LAM of string * Exp (* λx.e *)
| APP of Exp * Exp (* e1 @ e2 *)
| PAIR of Exp * Exp (* (e1,e2) *)
| PFST of Exp (* fst *)
| PSND of Exp (* snd *)
| LIT_REAL of real (* $real *)

end

structure EGensym (* Evaluating Inst. Φ∼ on GENSYM *)
= struct

type Var = string

local val n = ref 0

in fun new () = (n := !n + 1; (* make a new name *)
"x" ^ Int.toString (!n))

fun init () = n := 0 (* reset name counter *)
end

end;

(* Evaluating Instantiation *)
structure ENbe = nbe (structure G = EGensym

structure E = EExp

structure C = ECtrl): NBE

Figure 7: Evaluating Instantiation of NbE

21



structure RExp: EXP = struct

type Exp = EExp.Exp

type Var = EExp.Exp

(* VAR v = APP@ v *)
fun VAR v = EExp.APP (EExp.VAR "VAR", v)

(* LAM (v, e) = LAM@ (v,e) *)
fun LAM (v, e) = EExp.APP (EExp.VAR "LAM",

EExp.PAIR (v, e))

(* APP (s, t) = APP@ (s,t) *)
fun APP (s, t) = EExp.APP (EExp.VAR "APP",

EExp.PAIR (s, t))
...

end

...

(* Residualizing Instantiations *)
structure RNbe = nbe (structure G = RGensym

structure E = RExp

structure C = RCtrl): NBE

structure RpNbe = pureNbe (structure G = RGensym

structure E = RExp): NBE

Figure 8: Residualizing Instantiation of NbE

For example, in the structure RExp, the type Exp and the type Var are
both instantiated with EExp.Exp since they are dynamic base types, and all
the code-constructing functions are implemented as functions that generate
‘code that constructs code’; here, to assist understanding, we have unfolded
(visualized) the definition of reflection (see also Example 3).

With the residualizing interpretation of reification and reflection at our
disposal, we now can perform visualization by following Equation (3).

Example 16. We show the visualization of ↓•→• for Pure NbE. Follow-
ing Equation (3), we have to compute ↓(•→•)→• (⇓•→•). This is done in
Figure 9; it is not difficult to see that the result matches the execution of
the term reify (a’ --> a’) (see Figure 4). Visualization of the reflection
function is carried out similarly.

4.2 An Example: Church Numerals

We first demonstrate the second Futamura projection with the example of
the addition function for Church numerals. The definitions for the Church
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local open ENbe

infixr 5 -->

val Ereify_aa_exp

= reify ((a’ --> a’) --> a’) (* ↓(• → •) → • *)
open RpNbe

infixr 5 -->

val Rreify_aa = reify (a’ --> a’) (* ⇓• → • *)
in val _ = Ereify_aa_a (Rreify_aa) end

The (pretty-printed) result is:

λx1.let r2 = init()
r3 = new()

in
λ r3.x1 r3

Figure 9: Visualizing ↓•→•

numeral 0ch, successor sch, and the addition function +ch in Figure 10 are
all standard; as the types indicate, they are given as the residualizing in-
stantiation. One can see that partially evaluating the addition function
+ch with respect to the Church numeral nch = sn

ch
(0ch) should produce a

term λn2.λf.λx.fn(n2fx); by definition, this is also the functionality of a
generating extension of function +ch.

The term +ch contains no dynamic constants, hence +ch = +ch = +ch.
Following Equation (4), we can compute an efficient generating extension
+ch

‡, as shown in Figure 10.

4.3 Type Specification For Self-Application

When performing visualization in Figure 9, we followed Equation (3) step
by step, building ↓(•→•)→• and ⇓•→• with two sets of combinators, one for
the residualizing instantiation of NbE, the other for the evaluating instan-
tiation. Notice that a’ --> a’ is constructed twice, once with each set of
combinators—when visualizing ↓τ by coding Equation (3) by hand, τ al-
ways has to be encoded twice. This is cumbersome; more important, good
engineering practice demands the abstract formulation of various instances
of self-application to be programs by themselves, instead of templates to
be instantiated manually. That type-indexed functions are implemented as
combinators makes it impossible to abstract over the type argument at a
function level. Because the problem appears as a result of the interaction
between types, we should first analyze the necessary type structure.

In both forms of the self applications, types are used to index several dif-
ferent families of type-indexed values {↓τ}τ , {⇓

τ}τ and {⇑τ}τ ; in particular,
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type ’a num = (’a -> ’a) -> (’a -> ’a) (* Type num *)
val c0 : EExp.Exp num

= fn f => fn x => x (* 0ch : num *)
fun cS (n: EExp.Exp num)

= fn f => fn x => f (n f x) (* sch : num → num *)
fun cAdd (m: EExp.Exp num, n: EExp.Exp num)

= fn f => fn x =>

m f (n f x) (* +ch : (num × num) → num *)

local open ENbe

infixr 5 -->

val Ereify_n_exp

= reify (((a’ --> a’) --> (a’ --> a’)) --> a’)

(* ↓ num →• *)
open RpNbe

infixr 5 -->

val Rreify_n_n

= reify (((a’-->a’)-->a’-->a’) -->

((a’-->a’)-->a’-->a’)) (* ⇓ num→num *)
in val ge_add

= Ereify_n_exp (fn m => (Rreify_n_n (fn n =>

cAdd (m, n)))) (* +ch
‡ *)

end;

The (pretty-printed) result +ch
‡ is:

λx1. let r2 = init() r3 = new() r4 = new()
r5 = new() r7 = new()

in
λ r3.λ r4.λ r5.(x1(λx6.(r4 @ x6)))

(((r3 @ (λ r7.(r4 @ r7)))@ r5)))

For example, applying +ch
‡ to (cS (cS (c0))) generates

λx1.λx2.λx3.(x2(x2(x1(λx4.x2 x4)x3))).

Figure 10: Church numerals

the same type might be used to index both families of type-indexed val-
ues. Our method of implementing type-indexed values is to plug together
combinators that correspond to the type-indexed values according to the
type structure. Therefore, specifying a type amounts to writing down how
combinators are plugged together, parameterized over the definition of the
combinators, i.e., an Nbe-structure. A self-application algorithm should take
such parameterized type encodings, instantiate them with the combinators
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signature VIS_INPUT = (* Signature for a type specification *)
sig

type ’a vis_type (* Type τ , parameterized at the base type *)
functor inp(Nbe: NBE) : (* parameterized type coding *)

sig

val T_enc: (Nbe.Exp vis_type) Nbe.rr

end

end

functor vis_reify (P: VIS_INPUT) =

struct

local

structure eVIS = P.inp(sNbe) (* Instantiating with sNbe *)
structure rVIS = P.inp(dNbe) (* Instantiating with dNbe *)
open sNbe

infixr 5 -->

in

val vis = ENbe (eVIS.T_enc --> a’) (RpNbe.nbe rVIS.T_enc)

(* ↓τ → • (⇓τ ) *)
end

end

Figure 11: Specifying types as functors

for {↓τ}τ , {⇓
τ}τ and {⇑τ}τ , respectively, and combine the result according

to the corresponding formulation (Equation (3) or Equation (4)).
Consider the example of visualizing reification: the specification of a

type τ should consists not only the type τ itself, but also a functor that
maps a NBE-structure Nbe to the pair (↓τ , ↑τ ), which is of type τ Nbe.rr . This
suggests that the type specification should have the following dependent
type:

∑
τ : ∗.

∏
Nbe : NBE.(τ Nbe.rr),

where
∑

is the dependent sum formation, and
∏

is the dependent product
formation.

We can then turn this type into a higher-order signature VIS INPUT

in Standard ML of New Jersey, and in turn write a higher-order functor
vis reify that performs visualization of the reification function (Figure 11).

The example visualization in Figure 9 can be now carried out using the
type specification given in Figure 12.

4.4 Monomorphizing Control Operators

Let-Insertion via Control Operators
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structure a2a : VIS_INPUT = (* A type specification *)
struct

type ’a vis_type = ’a -> ’a (* τ = • → • *)
functor inp(Nbe: NBE) = (* Nbe *)

struct

val T_enc = Nbe.--> (Nbe.a’, Nbe.a’) (* τ Nbe.rr *)
end

end

structure vis_a2a = vis_reify(a2a); (* Visualization *)

Figure 12: Type specification for visualizing ↓•→•

Full TDPE deals with cbv-languages with computational effects. In such
a setting, a standard partial-evaluation technique to prevent duplicating or
discarding computations that have side-effects is let-insertion [2, 16]: all
computation that might have effects will be bound to a variable and se-
quenced using the (monadic) let construct. However, when the TDPE algo-
rithm identifies the need to insert a let-construct, the execution usually is
not at a point where a let-construct can be inserted, i.e., a code-generating
expression.

Danvy [5] solves this problem by using Danvy and Filinski’s control op-
erators shift and reset: roughly speaking, operator shift grabs the current
evaluation context up to the closest delimiter reset and passes it to its ar-
gument, which can then invoke this delimited evaluation context just like a
normal function. Formally, Danvy and Filinski introduced the semantics of
shift and reset in terms of the CPS transformation (Figure 13; see Danvy
and Filinski [9] and Filinski [12] for more details).

[[shift E ]]
CPS

= λκ.[[E ]]
CPS

(λ f.f(λ v.λ κ′.κ′(κ v))(λx.x))

[[reset〈E 〉]]
CPS

= λκ.κ([[E ]]
CPS

(λx.x))

Figure 13: The CPS semantics of shift/reset

With the help of these control operators, Danvy’s treatment [5] achieves
the task of let-insertion as follows: (1) use a reset to surround every expres-
sion that has type Exp, thus ‘marking the boundaries’ for code generation;
(2) when let-insertion is needed, use shift to ‘grab the context up to the
marked boundary’ and bind it to a variable k (thus k is a code-constructing
context); (3) apply k to the intended return value to form the body expres-
sion of the let-construct, and then wrap it with the let-construct. The new

26



definitions for reification and reflection functions given by Danvy are shown
in Figure 14; there are two function type constructors: function type without
effects τ1→τ2, which does not need let-insertion, and function type with pos-
sible latent effects τ1

!→ τ2, which performs let-insertion (we extend the type
Exp of code representations with a constructor LET of string * Exp * Exp

and write let x = e1 in e2 for LET (x,e1,e2); we implement a new TDPE
constructor -!> for the new type constructor !→ ).

↓• e = e

↓τ1→τ2 f = λx.reset〈↓τ2 (f(↑τ1 x))〉 (x is fresh)

↓τ1
!→τ2 f = λx.reset〈↓τ2 (f(↑τ1 x))〉 (x is fresh)

↑• e = e

↑τ1→τ2 e = λx.↑τ2 (e@ (↓τ1 x))
↑

τ1
!→τ2

e = λx.shift (λk.let x′ = e@ ↓τ1 x in reset〈k(↑τ2 x′)〉)

(x′ is fresh)

Figure 14: TDPE with let-insertion

Monomorphizing control operators In the definition of reflection for
function types with latent effects, ↑

τ1
!→τ2

, the return type (here τ2) of the

shift-expression depends on the type of the reflection. Hence it is not immedi-
ately amenable to be treated by TDPE itself, because during self-application,
shift is regarded as a dynamic constant, whose type is needed to determine
its residualizing instantiation.

However, observe that the argument to the context k is fixed to be ↑τ2 x′;
this prompts us to move this term into the context surrounding the shift-
expression, and to apply k to a simple unit value ()—no information needs
to be carried around, except for the transfer of the control flow.

↑new

τ1
!→τ2

e = λx.(λ (). ↑τ2 x′)(shift (λk.let x′ = e@ ↓τ1 x in reset〈k()〉))

(x′ is fresh)

Now the aforementioned problem is solved, since the return type of shift

is fixed to unit.
Recently, Sumii (email exchange, February 2000) pointed out that the

reset in the above definition can be removed. This simplification improves
the performance of TDPE and the generated extension to be generated by
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self-application.

↑new′

τ1
!→τ2

e = λx.(λ (). ↑τ2 x′)(shift (λk.let x′ = e@ ↓τ1 x in k()))

(x′ is fresh)

To show this change is semantic-preserving, we compare the CPS-based
denotational semantics of both the original definition and the new defini-
tions.

Proposition 17. The terms [[↑new

τ1
!→τ2

]]
CPS

, [[↑new′

τ1
!→τ2

]]
CPS

and [[↑
τ1

!→τ2
]]
CPS

are

βη-convertible.

Example 18. The monomorphized definition of reflection for function types
with latent effects is amenable to TDPE itself. Figure 15 shows the result of
visualizing the reification function at the type (• !→•) !→ •. Note that both
shift and reset have effects themselves; consequently TDPE has inserted let-
constructs for the result of visualization. For comparison, we also show the
visualization of (• → •)→• of Pure NbE, which appears to be much compact.

Sum types Full TDPE also deals with sum types using control operators;
this treatment is also due to Danvy [6]. Briefly, the operator shift is used
in the definition of reflection function for sum types, ↑τ1+τ2 . As the type
suggests, the return type of this function should be a value of type τ1 + τ2 ,
i.e., a value of the form inl (v1 : τ1 ) or inr (v2 : τ2 ) (for some appropriate
v1 or v2), but not both; on the other hand, both values are needed to have
the complete information. The solution by Danvy is to “return twice” to
the context by capturing the delimited context and apply it separately to
inl (↑τ1 e1) and inr (↑τ2 e2), and combine the result using a case-construct
which introduces the bindings for e1 and e2. The original definition of ↑τ1+τ2

is given below.

↑τ1+τ2 e = shift(λk. case e of inl(x1) ⇒ reset〈k(inl (↑τ1 x1))〉
| inr(x2) ⇒ reset〈k(inr (↑τ2 x2))〉 )

(x1, x2 are fresh)

where Exp has been extended with constructors for a case distinction and
injection functions in the obvious way. Again, the return type of the shift-
expression in the above definition is not fixed; an alternative definition is
needed for the sake of self-application.

Following the same analysis as before, we observe that the arguments
to k must be one of the two possibilities, inl (↑τ1 e1) and inr (↑τ2 e2): the
information to be passed through the continuation is just the binary choice
between the left branch and the right branch. We can thus move these two
fixed arguments into the context, and replace them with booleans true and
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Visualization of ↓(• !→•) !→• results in:

λx1.let
r2 = init()
r3 = new()
r11 = reset〈 let

r10 = x1(λx5.let
r6 = new()
r9 = shift(λx7.let

r8 = x7()
in
let r6 = r3 @ x5 in r8

end)
in
r6

end)
in
r10

end〉
in
λ r3.r11

end

In contrast, visualization of ↓(•→•)→• of Pure NbE results in:

λx1.let r2 = init()
r3 = new()

in λ r3.x1(λx4.r3 @x4)
end

Figure 15: Visualizing TDPE with let-insertion

false as arguments to continuation k (again, following Sumii’s suggestion,
we have dropped the unncessary uses of reset):

↑new
τ1+τ2

e = if shift(λk. case e of inl(x1) ⇒ k true
| inr(x2) ⇒ k false )

then inl (↑τ1 x1) else inr (↑τ2 x2)
(x1, x2 are fresh)
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The use of shift is instantiated with the fixed boolean type. Again, we
check that this change does not modify the semantics.

Proposition 19. [[↑new
τ1 +τ2

]]
CPS

and [[↑τ1 +τ2 ]]
CPS

are βη-convertible.

4.5 Pragmatics

We generalize the technique of encoding a two-level term p in ML presented
at the end of Section 2.3: we code p inside a functor

p ge(structure S:STATIC structure D:DYNAMIC) = ...

which parameterizes over both static and dynamic constants. With suitable
instantiations of S and D one thus can create not only p̃ and p , but also p ;
the instantiation table displayed in Figure 16 summarizes how to write the
components of the three kinds of instantiation functors for S and D.

Φ∼ Φ Φ

bs b b Exp
S cs : τ c c ↑〈 τ 〉 “c”

bd b Exp Exp

D cd : τ c ↑τ “c” ⇑τ 〈 Var 〉 (liftstring“c”)

$b λx.x liftb ↑•→• “liftb”

Figure 16: Instantiation table

Note, in particular, that Φ∼ and Φ have the same instantiation for the
static signature; hence we can reuse Φ∼ on Σs for Φ on Σs.

Example 20. We revisit the function height from Examples 5 and 10.
In Figure 17 we define the functor height ge along with signatures STATIC

and DYNAMIC. Structure GEStatic and structure GEDynamic provide the GE-
instantiation for the signature Σ2. The instantiation of height ge with these
structures gives height . Applying the second Futamura projection as given
in Equation (4) yields

λx1. let r2 = init()
r3 = new()

in
λ r3.“mult”@ (lift real(sin x1))@ r3

5 Generating a Compiler for Tiny

It is well known that partial evaluation allows compilation by specializing
an interpreter with respect to a source program. TDPE has been used for

30



signature STATIC = (* Σs *)
sig

type SReal (* reals *)
val sin: SReal -> SReal (* sins *)

end

signature DYNAMIC = (* Σd *)
sig

type SReal (* reals *)
type DReal (* reald *)
val mult: DReal -> DReal -> DReal (* multd *)
val lift_real: SReal -> DReal (* $real *)

end

functor height_ge(structure S: STATIC

structure D: DYNAMIC

sharing type D.SReal = S.SReal) =

struct

fun height a z = D.mult (D.lift_real (S.sin a)) z

end

structure GEStatic: STATIC = (* Φ on Σs *)
struct

local open EExp ENbe; infixr 5 -->

in

type SReal = Exp

val sin = reflect (a’ --> a’) (VAR "sin")

end

end

structure GEDynamic: DYNAMIC = (* Φ on Σd *)
struct

local open RExp RNbe; infixr 5 -->

in

type DReal = Exp

val mult = reflect (a’ --> a’ --> a’)

(VAR (EExp.STR "mult"))

fun lift_real r = LIT_REAL r

end

end

Figure 17: Instantiation via functors

this purpose in several instances [5, 6, 10, 11]. Having implemented the
second Futamura projection, we can instead generate a compiler, which is
the generating extension of an interpreter.

One of the languages for which compiling using TDPE has been stud-
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ied [5] is Tiny [21], a prototypical imperative language. As outlined in
Section 2.2, a functor tiny pe(D:DYNAMIC) is used to carry out type-directed
partial evaluation in a convenient way. This functor provides an interpreter
meaning which is parameterized over all dynamic constructs. Appendix A.1
gives an overview of Tiny and type-directed partial evaluation of a Tiny in-
terpreter. Compiling Tiny programs by partially evaluating the interpreter
meaning corresponds to the trivial generating extension meaning†.

Following the development in Section 4.5, we proceed in three steps:

1. Rewrite tiny pe into a functor tiny ge(S:STATIC D:DYNAMIC) in which
meaning is also parameterized over all static constants and base types.

2. Give instantiations of S and D as indicated by the instantiation table
in Figure 16, thereby creating the GE-instantiation meaning .

3. Perform the second Futamura projection; this yields the efficient gen-
erating extension meaning‡, a Tiny compiler.

Appendix A.2 describes these steps in more detail.
Tiny was the first substantial example we treated; nevertheless we were

done within a day—none of the three steps described above is conceptually
difficult. They can be seen as a methodology for performing the second
Futamura projection in TDPE on a binding-time-separated program.

Although conceptually simple, the first of the three steps from above is
somewhat tedious:

• Every construct that is not handled automatically by TDPE has to be
parameterized over. This is not a problem for user-defined constants,
but for ML-constructs like recursion and case-distinctions over recur-
sive data-types. Both have to be rewritten, using fixed-point operators
and elimination functions, respectively.

• For every instance of a constant appearing in the program, its mono-
type has to be determined; polymorphic constants have to be monomor-
phized, possibly creating several instances if the constant is used at
more than one type. This is a consequence of performing type-directed
partial evaluation; for the second Futamura projection, every constant
is instantiated with a code-generating function, the form of which de-
pends on the exact type of the constant in question.

Because the Tiny interpreter we started with was already binding-time
separated, we did not have to perform the binding-time analysis needed
when starting from scratch. Our experience with TDPE, however, shows
that performing such a binding-time analysis is relatively easy, because

• TDPE restricts the number of constructs which have to be consid-
ered, since functions, products and sums do not require binding-time
annotations, and
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• TDPE utilizes the ML type system: type checking checks the consis-
tency of the binding-time annotations.

6 Benchmarks

In Section 3 we claimed that the generating extension p‡ of a program p

produced by the second Futamura projection for TDPE is, in general, more
efficient than the trivial generating extension p†. In order to assess how
much more efficient p‡ is in comparison to p† we ran some benchmarks.
These were performed on a 250 MHz Silicon Graphics O2 workstation using
Standard ML of New Jersey version 110.0.3.

To compare the generated compiler meaning‡ with the trivial generat-
ing extension meaning†, we compiled the factorial function written in Tiny
1,000,000 times; using meaning† it took 261.2 seconds, whereas using meaning‡

it took 194.9 seconds—a speedup of about 34%. Notice, however, that the
trivial generating extension meaning† we used for the benchmarks is based
on partially evaluating the fully parameterized version of meaning (see Sec-
tion 5 and Appendix A), i.e., a suitable instantiation of tiny ge rather than
tiny pe. Performing the same experiment with the original version tiny pe,
where only the dynamic constructs are parameterized over, actually takes
only 169.5 seconds—it is even faster than meaning‡. The reason for this
slowdown is that meaning‡ ‘inherits’ the parameterization from tiny ge as
a source of inefficiency. Eliminating the top-level fixed-point operator and
the user-defined case operators (see Section A.2.1) in meaning‡ by using
the built-in recursion and case construct reduced the runtime to 99.2 sec-
onds.1 If we compare the running times of the generating extensions with
‘less parameterization’, i.e., meaning† based on tiny pe and meaning‡ where
the user-defined fixed point operator and case operators were removed, the
speedup is about 71%.

The speedup of the second Futamura projection with TDPE for com-
piling Tiny programs is disappointing compared to the order-of-magnitude
speedup achievable in traditional partial evaluation [19]. This on the other
hand reflects the high efficiency of TDPE, which carries out static compu-
tations by evaluation rather than symbolic manipulation. Turning symbolic
manipulation (i.e., interpretation) into evaluation is one of the main goals
one hopes to achieve by specializing a syntax-directed partial evaluator.
Since TDPE does not have any such overhead in the first place, the further
speedup is bound to be lower.

1Initially, this elimination was carried out by hand. Later, we found out how it can be
carried out automatically by (1) incorporating TDPE with patterns as generated bindings;
and (2) systematically changing the code-generating instantiations for the fixed point and
case operators used. These two improvements are independent of each other. The details
of these techniques are out of the scope of the present article.
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Which overhead of TDPE can we actually remove by using the second
Futamura projection? An examination of the basic algorithm (see Figure 2)
shows that the actual work done by TDPE is governed by the type index
at which reification is used. Thus one would expect that using the sec-
ond Futamura projection for specializing programs of higher types gives a
better speedup. This is indeed the case: running the generating extension
+ch

‡ on various Church numerals has a consistent 200% speedup over using
TDPE directly to perform the same specialization. This substantially higher
speedup over the Tiny experiment is also due to the lack of computational
effect in the case of Church numerals, which enables us to specialize Pure
TDPE instead of Full TDPE. Since the control operators shift and reset

used in Full TDPE to handle possible side effects and sum types cannot
be specialized away, they remain to be an obstacle to a higher speedup in
specializing Full TDPE.

7 Conclusions and Issues

We have adapted the underlying concept of the second Futamura projection
to TDPE and derived an ML implementation for it. By treating several
examples, among them the generation of a compiler from an interpreter, we
have examined the practical issues involved in using our implementation for
deriving generating extensions of programs. Our experience with the second
Futamura projection gave additional evidence that binding-time annotation
for TDPE is relatively easy when compared with traditional offline partial
evaluators.

When using the hand-written cogen approach, researchers often imple-
ment the generating extension starting from a partial evaluator, thereby
reducing the implementation and the accompanying the correctness of the
cogen to those of the partial evaluator [3, 24, 25]. The reduction itself,
however, is generally quite non-trivial. In using the second Futamura pro-
jection to produce generating extensions, we have further reused TDPE for
the reductions of the implementation and the correctness.

The third Futamura projection states that specializing a partial evaluator
with respect to itself yields an efficient generating-extension generator. The
type-indexed nature of TDPE makes it challenging, if possible at all, to
implement the third Futamura projection directly in ML. Even if it could
be done, our experience with the second Futamura projection suggests that
only an insignificant speedup could be obtained.

At the current stage, our contribution seems to be more significant at
a conceptual level, since the speedup achieved by using the generated gen-
erating extensions is rather modest. However we observed that a higher
speedup can be achieved for more complicated type structures, especially in
a setting with no or few uses of computational effects; this suggests that our
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approach to the second Futamura projection using TDPE might find more
practical applications in, e.g., the field of type theory and theorem proving.

The technical inconveniences mentioned in Section 5 clearly are an ob-
stacle for using the second Futamura projection for TDPE (and, to a lesser
extent, for using TDPE itself). A possible solution is to implement a trans-
lator from the two-level language into ML, thus handling the mentioned
technicalities automatically. Of course such an approach would sacrifice the
flexibility of TDPE to handle every language feature that is used statically.
Even so, TDPE would still retain a distinct flavor when compared to tra-
ditional partial evaluation techniques: only those constructs not handled
automatically by TDPE need to be binding-time annotated. This simpli-
fies the binding-time analysis considerably and often makes binding-time
improvements unnecessary, which was one of the original motivations of
TDPE.
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A Compiler Generation for Tiny

A.1 A Binding-Time-Separated Interpreter for Tiny

Paulson’s Tiny language [21] is a prototypical imperative language—the
BNF of its syntax is given in Figure 18. Figure 19 displays the factorial
function coded in Tiny.

program ::= block declaration in command end

declaration ::= identifier∗

command ::= skip
| command ; command

| identifier := expression

| if expression then command else command

| while expression do command end

expression ::= literal

| identifier

| (expression primop expression)

identifier ::= a string

literal ::= an integer

primop ::= + | - | * | < | =

Figure 18: BNF of Tiny programs

block res val aux in
aux := 1;

while (0 < val) do
aux := (aux * val);

val := (val - 1)

end;
res := aux

end

Figure 19: Factorial function in Tiny

Experiments in type-directed partial evaluation of a Tiny interpreter
with respect to a Tiny program [5, 6] used an ML implementation of a Tiny
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interpreter (Figure 20): For every syntactic category a meaning function
is defined—see Figure 21 for the ML datatype representing Tiny syntax.
The meaning of a Tiny program is a function from stores to stores; the
interpreter takes a Tiny program together with a initial store and, provided
it terminates on the given program, returns a final store. Compilation by
partially evaluating the interpreter with respect to a program thus results
in the ML code of the store-to-store function denoted by the program.

Performing a binding-time analysis on the interpreter (under the as-
sumptions that the input program is static and the input store is dynamic)
classifies all the constants in the bodies of the meaning functions as dy-
namic; literals have to be lifted. As described at the end of Section 2.3, the
implementation is made as part of a functor which abstracts over all dy-
namic constants (for example cond, fix and update in mc). This allows one

to easily switch between the evaluating instantiation ˜meaning and the resid-
ualizing instantiation meaning . For the evaluating instantiation we simply
instantiate the functor with the actual constructs, for example

fun cond (b, kt, kf, s) = if b <> 0 then kt s else kf s

fun fix f x = f (fix f) x

For the residualizing instantiation meaning we instantiate the dynamic con-
stants with code-generating functions; as pointed out in Example 3 and
made precise in Definition 8, reflection can be used to write code-generating
functions:

fun cond e = reflect (rrT4 (a’, a’ -!> a’, a’ -!> a’, a’) -!> a’)

(VAR "cond") e

fun fix f x = reflect (((a’ -!> a’) --> a’ -!> a’) --> a’ -!> a’)

(VAR "fix") f x

A.2 Generating a Compiler for Tiny

As mentioned in Section 5, we derive a compiler for Tiny in three steps:

1. rewrite tiny pe into a functor tiny ge(S:STATIC D:DYNAMIC) in which
meaning is also parameterized over all static constants and base types

2. give instantiations of S and D as indicated by the instantiation table
in Figure 16, thereby creating the GE-instantiation meaning

3. use the GE-instantiation meaning to perform the second Futamura
projection

The following three sections describe the first two steps in more detail.
Once we have a GE-instantiation, the third step is easily carried out with
the help of an interface similar to the one for visualization described in
Section 4.3.
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A.2.1 “Full parameterization”

Following Section 4.5 we re-implement the interpreter inside a functor to
parameterize over both static and dynamic base types and constants. Note
however, that the original implementation of Figure 20 makes use of recur-
sive definitions and case distinctions; both constructs cannot be parame-
terized over directly. Hence we have to express recursive definitions with a
fixed point operator and case distinctions with appropriate elimination func-
tions, respectively. Consider for example case distinction over Expression;
Figure 22 shows the type of the corresponding elimination function.

The resulting implementation is sketched in Figure 23. The recursive
definition is handled by a top-level fixed point operator, and all the case
distinctions have been replaced with a call to the corresponding elimination
function.

Now that we are able to parameterize over every construct, we enclose
the implementation in a functor as shown in Figure 24. The functor takes
two structures; their respective signatures STATIC and DYNAMIC declare names
for all base types and constants that are used statically and dynamically,
respectively. A base type (for example int) may occur both statically and
dynamically—in this case two distinct names (for example Int s and Int d)
have to be used.

As mentioned in Section 5, the monotype of every instance of a constant
appearing in the interpreter has to be determined. It is these monotypes
that have to be declared in the signatures STATIC and DYNAMIC. Figure 25
shows a portion of signature STATIC: the polymorphic type of caseExpression
(Figure 22) gives rise to a type abbreviation case Exp type, which can be
used to specify the types of the different instances of caseExpression. Note
that if a static polymorphic constant is instantiated with a type that contains
dynamic base types—like Int d in the case of caseExpression—then these
dynamic base types have to be included in the signature STATIC of static
constructs.2 For base types which occur both in signatures STATIC and
DYNAMIC, sharing constraints have to be declared in the interface of functor
tiny ge (Figure 24).

Finding the monotypes for the different instantiations of constants ap-
pearing in the interpreter can be facilitated by using the type-inference
mechanism of ML: we transcribe the output of ML type inference by hand
into a type specification. This transcription is straightforward, because the
type specifications of TDPE and the output of ML type inference are very
much alike.

2Note that static base types appear also in the signature of dynamic constructs, because
we make the lifting functions part of the latter. However there is a conceptual difference:
in a two-level language, it is natural that the dynamic signature has dependencies on the
static signature, whereas the static signature should not depend on the dynamic signature.
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A.2.2 The GE-instantiation

After parameterizing the interpreter as described above, we are in a posi-
tion to either run the interpreter by using its evaluating instantiation (see
Definition 7), perform type-directed partial evaluation by employing the
residualizing instantiation (Definition 8), or carry out the second Futamura
projection with the GE-instantiation (Definition 15). Section 4.5 shows how
the static and dynamic constructs have to be instantiated in each case.
For the GE-instantiation, all base types become Exp; static and dynamic
constants are instantiated with code-generating functions. The latter are
constructed using the evaluating and the residualizing instantiation of re-
flection, respectively. Note that because the signatures STATIC and DYNAMIC

hold the precise type at which each constant is used, it is purely mechanical
to write down the structures needed for the GE-instantiation.
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fun meaning p store =

let fun mp (PROGRAM (vs, c)) s(* (* program *)*)
= md vs 0 (fn env => mc c env s)

and md [] offset k (* declaration *)
= k (fn i => ~1)

| md (v :: vs) offset k

= (md vs (offset + 1)

(fn env => k (fn i => if v = i

then offset

else env i)))

and mc (SKIP) env s (* command *)
= s

| mc (SEQUENCE(c1, c2)) env s

= mc c2 env (mc c1 env s)

| mc (ASSIGN(i, e)) env s

= update (lift_int (env i), me e env s, s)

| mc (CONDITIONAL(e, c_then, c_else)) env s

= cond (me e env s,

mc c_then env,

mc c_else env,

s)

| mc (WHILE(e, c)) env s

= fix (fn w => fn s

=> cond (me e env s,

fn s => w (mc c env s),

fn s => s,

s) ) s

and me (LITERAL l) env s (* expression *)
= lift_int l

| me (IDENTIFIER i) env s

= fetch (lift_int (env i), s)

| me (PRIMOP2(rator, e1, e2)) env s

= mo2 rator (me e1 env s) (me e2 env s)

and mo2 b v1 v2 (* primop *)
=

case b of

Bop_PLUS => add (v1, v2)

| Bop_MINUS => sub (v1, v2)

| Bop_TIMES => mul (v1, v2)

| Bop_LESS => lt (v1, v2)

| Bop_EQUAL => eqi (v1, v2)

in

mp p store

end

Figure 20: An interpreter for Tiny
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type Identifier = string

datatype

Program = (* program and declaration *)
PROGRAM of Identifier list * Command

and

Command = (* command *)
SKIP (* skip *)

| SEQUENCE of Command * Command (* ; *)
| ASSIGN of Identifier * Expression (* := *)
| CONDITIONAL of Expression * Command * Command (* if *)
| WHILE of Expression * Command (* while *)

and

Expression = (* expression *)
LITERAL of int (* literal *)

| IDENTIFIER of Identifier (* identifier *)
| PRIMOP2 of Bop * Expression * Expression (* primop *)

and

Bop = (* primop *)
Bop_PLUS (* + *)

| Bop_MINUS (* - *)
| Bop_TIMES (* * *)
| Bop_LESS (* < *)
| Bop_EQUAL (* = *)

Figure 21: Datatype for representing Tiny programs

val case_Expression

: Expression -> ((Int_s -> ’a) *

(Identifier -> ’a) *

(Bop * Expression * Expression -> ’a)

) -> ’a

Figure 22: An elimination function for expressions
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fun meaning p store =

let val (mp, _, _, _, _) =

fix5

(fn (mp, md, mc, me, mo2) =>

let fun mp’ prog (* program *)
= ...

and md’ idList (* declaration *)
= ...

and mc’ c (* command *)
= (case_Command c

( (* mc (SKIP) env s *)
fn _ => fn env => fn s

=> s,

(* mc (SEQUENCE(c1, c2)) env s *)
fn (c1, c2) => fn env => fn s

=> mc c2 env (mc c1 env s),

(* mc (ASSIGN(i, e)) env s *)
fn (i, e) => fn env => fn s

=> update (lift_int (env i), me e env s, s),

(* mc (CONDITIONAL(e,c_then,c_else)) env s *)
fn (e, c_then, c_else) => fn env => fn s

=> cond (me e env s,

mc c_then env,

mc c_else env,

s),

(* mc (WHILE (e, c)) env s *)
fn (e, c) => fn env => fn s

=> fix (fn w

=> fn s

=> cond (me e env s,

fn s => w (mc c env s),

fn s => s,

s)) s

))

and me’ e (* expression *)
= (case_Expression e (...))

and mo2’ bop (* primop *)
= (case_Bop bop (...))

in

(mp’, md’, mc’, me’, mo2’)

end)

in

mp p store

end

Figure 23: A fully parameterizable implementation

45



functor tiny_ge (structure S : STATIC

structure D : DYNAMIC

sharing type S.Int_s = D.Int_s
... =

struct

local open S D

in

fun meaning p store

= ...

end

end

Figure 24: Parameterizing over both static and dynamic constructs

...

type ’a case_Exp_type

= Expression -> ((Int_s -> ’a) *

(Identifier -> ’a) *

(Bop * Expression * Expression -> ’a)

) -> ’a

type case_Exp_res_type

= (Identifier -> Int_s) -> sto -> Int_d

...

val case_Expression: case_Exp_res_type case_Exp_type

...

Figure 25: Excerpts from signature STATIC
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