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The original idea of such characterisations is that of [2]. He proved that if a real-valued
additive function is non-decreasing, or satisfies f(n + 1) − f(n) → 0 (as n → ∞), then it
must have the form c log n for some constant c. He had a separate argument for each case.

In [1] Elliott solves the problem in a generalised form: Let a > 0, b, A > 0 and B be
integers with ∆ = aB − Ab non-zero. If G is a real additive arithmetic function and for
some constant C satisfies G(an + b)−G(An + B) → C as n →∞, then there is a further
constant c such that G(x) = c log x for every x ∈ N which are prime to aA∆.

The problem can be generalised further, there is a great variety of conditions that can
be introduced giving numerous different results. This paper gives proof of the following
rather interesting theorem:

Theorem 1. Assume that a ∈ N and G(x) : R → R is non-decreasing modulo 1 by which
we mean non-decreasing over (0, 1) and [n, n+1) ∀n ∈ N and additive on the set Σ, where
Σ is defined as

Σ =

{
an + θ : n ∈ N, θ < a, θ =

p

q
s. t.p, q ∈ N, (p, q) = (a, p) = 1

}
,

then

G(x) = c0 log x for a constant c0 and all x ∈ R.

In order to prove this theorem we need to give some lemmas. First some properties of
the set Σ:

Lemma 2. Σ is closed under multiplication.

Proof. Take any two elements of Σ, an1 + p1

q1
and an2 + p2

q2
. Their product is(

an1 +
p1

q1

) (
an2 +

p2

q2

)
=

an1q1 + p1

q1

an2q2 + p2

q2

=
a2n1n2q1q2 + an1p2q1 + an2p1q2 + p1p2

q1q2

If (a2n1n2q1q2 + an1p2q1 + an2p1q2 + p1p2, a) 6= 1 then either (an1q1 + p1, a) 6= 1 or
(an2q2 + p2, a) 6= 1, so (a2n1n2q1q2 + an1p2q1 + an2p1q2 + p1p2, a) = 1 and hence

a2n1n2q1q2 + an1p2q1 + an2p1q2 + p1p2

q1q2

= ak +
p

q1q2

for some p ∈ N. Lemma is proved. �
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Before giving the other property, for any ρ ∈ R we define

pi =

⌈
(a + 1)i

ρ

⌉
and qi =

⌊
(a + 1)i

ρ

⌋
where dxe and bxc mean the nearest integer that is not less and not greater than x,
respectively (bxc = sup(n < x, n ∈ N), dxe = inf(n > x, n ∈ N)), and let

πi =
(a + 1)i

pi

< ρ <
(a + 1)i

qi

= θi

πi and θi are defined such that as i →∞, πi → ρ and θi → ρ.

Lemma 3. Σ has an element between any two distinct real numbers.

Proof. Take real numbers x 6= y and ρ ∈ (x, y) such that ρ 6∈ Q. Such ρ exists. πi and θi

are approximators of ρ, while πi, θi ∈ Σ and so ∃jsuch thatπj ∈ (x, y) (of course, for some
j′ θj′ ∈ (x, y) is true, too, but this is not our current interest) �

Lemma 4. Assume that a ∈ N and G is additive on the set Σ, and

lim
n→∞

(G(a(n + m) + ρ)−G(an + σ)) = 0 if n, m ∈ N, ρ, σ ∈ Σ, ρ < a, σ < a

Then we have

(1) G(an + ρ) = c0 log(an + ρ) for some c0 ∈ R

Proof. Assume that ∃h1 and h2(h1 6= h2) such that h1 ≡ θ(mod a) , h2 ≡ τ(mod a) (where

θ, τ ∈ Σ), G(h2)
log h2

6= G(h1)
log h1

. Let e.g. G(h2)
log h2

> G(h1)
log h1

. Let x0 be an arbitrary but fixed number,

for which
G(h2)

log h2

> x0 >
G(h1)

log h1

Denote G0 := G− x0 log. Then G0 is additive on Σ and

(1′) lim
n→∞

(G0(a(n + m) + ρ)−G0(an + σ)) = 0 if a, n, m, ρ, σ are as before.

Further

(2) c2 :=
G(h2)

log h2

>
G(h1)

log h1

=: c1 and G0(h2) > 0 > G0(h1).

Denote dh2(n) := G0(an + σ)− (1− ε)c2 log n, where 0 < ε < 1, we will choose later. We
show that dh2(n) is bounded above, i.e. we show that if n > n0(c1, c2, h1, h2, ε) then there
exists m < n for which

(3) G0(an + σ)− (1− ε)c2 log n < G0(am + ρ)− (1− ε)c2 log m.

We are looking for such m for which

(4) h1(am + ρ) > an + σ

In the following we extend congruences to reals by defining ≡∗ as follows:

a ≡∗ b(mod c) for a, b, c ∈ R ⇔ a = b + kc, where k ∈ Z
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We are looking for m, such that

(5) am + ρ ≡∗ ρ(mod h1)

This implies am ≡∗ 0(mod h1), i.e. am = h1k for some k ∈ N. Also a, m ∈ N, so h1 = an+p
q

where p, q ∈ N, and as h1 ∈ Σ, (p, a) = 1. So am ≡∗ 0(mod h1) ⇔ amq ≡∗ 0(mod an+p).

But (a, an+p) = 1 so there exists a unique solution (mod an+p), hence also
(
mod an+p

q

)
,

i.e. (mod h1), it is m0. All solutions of (5) are m0 + kh1(k ∈ N). Choose the smallest k for
which (4) is fulfilled, i.e. m = m0 + kh1 > n

h1
+ σ

ah1
− ρ

a
, hence

(6) m =
n

h1

+ O(1) as before.

Thus m < n is satisfied. Since h1 ≡∗ θ(mod a) therefore as Σ is closed under multiplication,
for some σ ∈ Σ, h1(am + ρ) ≡∗ σ(mod a) with ak + σ ∈ Σ. Further, using (6), h1(am +
ρ)− (an + σ) = O(1). Thus we can use (1′),

(7) G0(an + σ) = G0(h1(am + ρ)) + on(1)

where on means on(1) → 0 as n →∞. Since G0 is additive on Σ,

G0(an + σ) = G0(h1) + G0(am + ρ) + on(1),

where we used that h1 and am + ρ are both in Σ. From this

G0(an+σ)−(1−ε)c2 log n = G0(h1)−(1−ε)c2 log
n

m
+(G0(am+ρ)−(1−ε)c2 log m)+on(1)

From (8) n
m

= h1 + O
(

1
m

)
, thus log n

m
= log h1 + O

(
1
m

)
, and

G0(an + σ)− (1− ε)c2 log n < G0(am + ρ)− (1− ε)c2 log m,

where we chose ε such that 0 < ε < ε0,
(

G(h1)
log h1

− (1− ε)G(h2)
log h2

)
< 0 and n > n0. Hence

dh2(n) is bounded above.
We can prove similarly that dh2(n) is bounded below. We are looking for such m < n

for which

(3′) G0(an + σ)− (1− ε)c2 log n > G0(am + ρ)− (1− ε)c2 log m.

(4′) h2(am + ρ) > an + σ

(5′) am + ρ ≡∗ ρ(mod h2)

Then we have

(6′) m =
n

h2

+ O(1).

Thus m < n is satisfied. Hence

G0(an+σ)−(1−ε)c2 log n = G0(h2)−(1−ε)c2 log
n

m
+(G0(am+ρ)−(1−ε)c2 log m)+on(1)

Here n
m

= h2

(
1 + O

(
1
m

))
, thus log n

m
= log h2 + O

(
1
m

)
. Using this,

G0(an + σ)(1− ε)c2 log n > G0(am + ρ)− (1− ε)c2 log m,
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where we used G0(h2) > 0 and n > n0. Hence dh2(n) is bounded below. Consequently
dh2(n) is bounded.

Now we show that dh1(n) is bounded, where dh1(n) := G0(an + θ)− (1− ε)c1 log n.
By similar calculations, first we obtain

G0(an + σ)− (1− ε)c1 log n < G0(am + ρ)− (1− ε)c1 log m,

where we used G0(h1) < 0 and n > n0. Hence dh1(n) is bounded above.
Also

G0(an + σ)− (1− ε)c1 log n > G0(am + ρ)− (1− ε)c1 log m,

where we chose ε such that 0 < ε < ε0,
(

G(h2)
log h2

− (1− ε)G(h1)
log h1

)
> 0 and n > n0. Hence

dh1(n) is bounded below. Consequently dh1(n) is bounded. Since dh1(n) and dh2(n) are
both bounded

k(h1, h2, ε) ≤ dh2(n)− dh1(n) ≤ K(h1, h2, ε).

On the other hand

dh2(n)− dh1(n) = (1− ε)

(
G(h2)

log h2

− G(h1)

log h1

)
log n

for every n ∈ N, consequently
G(h2)

log h2

=
G(h1)

log h1

,

i.e. if h ∈ Σ then G0(h) = c log h. Using the definition of G0 we obtain G(h) = c0 log h,
where c0 is a constant. Lemma is proved. �

Lemma 5. Assume that G is additive on the set Σ, and is non-decreasing. Then G satisfies

lim
n→∞

(G(a(n + m) + r)−G(an + s)) = 0 if n, m ∈ N, r, s ∈ Σ, r < a, s < a

Proof. Observe that all p
q

are in Σ if (p, q) = 1. We use this property repeatedly in the

following.
As G is monotone increasing, by additivity, G must satisfy

G(θ) → 0 for θ → 1, θ ∈ Σ

Hence

G(a(n + m) + r)−G(an + s) =

= G(an + (am + r))−G(an + r) + G(an + r)−G(an + s) =

= G(an + r) + G

(
an + (am + r)

an + r

)
−G(an + r) + G(an + s) + G

(
an + r

an + s

)
−G(an + s) =

= G

(
an + (am + r)

an + r

)
+ G

(
an + r

an + s

)
,

where both an+(am+r)
an+r

→ 1 and an+r
an+s

→ 1 as n →∞, and so

G (an + (am + r)an + r) → 0 and G

(
an + r

an + s

)
→ 0 as n →∞,
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hence

lim
n→∞

G(a(n + m) + r)−G(an + s) = 0

as required. Lemma is proved. �

Lemma 6. Assume that a ∈ N and G(x) : R+ → R is non-decreasing and additive on the
set Σ. Furthermore

lim
n→∞

(G(a(n + m) + r)−G(an + s)) = 0 if n, m ∈ N, r, s ∈ Σ, r < a, s < a

Then

G(x) = c0 log x for a constant c0 and all x ∈ R.

Proof. Σ ⊂ R, and for any x ∈ Σ, G(x) = c log x for some constant c by Lemma 3. Let
z ∈ R, G(z) = c′ log z, we prove that c′ = c, and so c = c0. Assume also, that z = am + r,
where 0 < r < 2a. Then let pi and qi as before. As G is non-decreasing.

(8) a ≤ b ⇒ G(a) ≤ G(b) ∀a, b ∈ R.

The series qi, and pi satisfy πi < πi+1 and θi+1 < θi, hence

(9) Pi := an + πi → an + ρ = z as i →∞ and Qi := an + θi → an + ρ = z as i →∞,

thus Pi ≤ z ≤ Qi for all i, and therefore by (8)

(10) G(Pi) ≤ G(z) ≤ G(Qi)

that is

(11) c log Pi ≤ c0 log z ≤ c log Qi,

but Pi and Qi were constructed to satisfy Pi ∈ Σ, and Qi ∈ Σ, i.e. by lemma 5 G(Pi) =
c log Pi, G(Qi) = c log Qi. The function log x is continuous, so log Pi → log z and log Qi →
log z as i →∞. Hence c′ = c as required. Thus c0 = c, and so for all z∈ R, G(z) = c0 log z.
By this we proved Lemma 5. �

Lemma 7. Assume that a ∈ N and G(x) : R+ → R is non-decreasing and additive on the
set Σ. Then

G(x) = c0 log x for a constant c0 and all x ∈ R.

Proof. By means of Lemma 4.,

lim
n→∞

(G(a(n + m) + r)−G(an + s)) = 0 if n, m ∈ N, r, s ∈ Σ, r < a, s < a

is true, too. Then the conditions of Lemma 5. are all satisfied and hence Lemma follows.
�

Lemma 8. G(x) : R+ to R, additive over the set Σ = {an + θ : n ∈ N, θ < a, θ =
q1

q2
s. t. (q1, q2) = (a, q1) = 1}, non-decreasing modulo 1 (by which we mean non-increasing

over (0, 1) and [n, n + 1) ∀n ∈ N), then G is non-decreasing.
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Proof. The proof is induction. We show that the result is true for the interval (0, 2) and
that provided it is true in the interval (0, n) it is true for (0, n + 1), too.

By assumption G is non-decreasing over the intervals I1 = (0, 1) and I2 = [1, 2). Let
i1, j1 ∈ I1, j2 ∈ I2 and let i2 ∈ I2 such that i2j2 ∈ I2. We also require i1, i2, j1, j2 ∈ Σ.

By additivity,

(12) G(i1j1) = G(i1) + G(j1)

j1 < 1, so i1j1 < i1 hence, as G is non-decreasing over I1,

(11′) G(i1j1) = G(i1) + G(j1) ≤ G(i1)

hence

(12) G(j1) ≤ 0 ∀j1 ∈ I1

Similarly by additivity over I2:

(13) G(i2j2) = G(i2) + G(j2)

i2j2 ≥ i2, so as G is non-decreasing in I2

(13′) G(i2j2) = G(i2) + G(j2) ≥ G(i2)

Hence
G(j2) ≥ 0∀j2 ∈ I2

Therefore, putting (12) and (14) together, we get

G(j2) ≥ 0 ≥ G(j1) ∀j1 ∈ I1 and j2 ∈ I2.

Hence G is non-decreasing over I1 ∪ I2 = (0, 2). Let J2 = (0, 2).
The inductive step is proved by contradiction.
We want to prove that if G is non-decreasing over Jk = (0, k) for k ∈ N, then G is

non-decreasing over Jk+1 = (0, k + 1).
Assume that this is not true, that is, ∃α ∈ Σ∩Ik such that G(β) > G(α) where β ∈ Jk+1

and hence β < α. As α ∈ Σ, α 6∈ N and so k − 1 and α are distinct.

Take ρ = α
β
∈ R and find the corresponding approximators πi, θi in the interval

(
n−1

β
, k

β

)
,

as before. For some j ∈ N,

1 <
k − 1

β
< πj <

α

β
= ρ

Hence
k − 1 < πjβ < α

where πjβ ∈ Ik ∩ Σ and so by the non-decreasing property within Ik,

G(πjβ) < G(α).

By additivity over Σ,
G(πjβ) = G(πj) + G(β)

Hence, putting (18) and (19) together

G(β) < G(πj) + G(β) = G(πjβ) < G(α)
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Contradiction, so the result is true.
The non-decreasing property has been proved for J2, so lemma is proved. �

Theorem 1. By Lemma 7. G is non-decreasing, hence the conditions of Lemma 6. are
satisfied. Hence

G(x) = c0 log x for a constant c0 and all x ∈ R.

and so theorem is proved. �
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