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The original idea of such characterisations is that of [2]. He proved that if a real-valued
additive function is non-decreasing, or satisfies f(n+ 1) — f(n) — 0 (as n — o0), then it
must have the form clogn for some constant c. He had a separate argument for each case.

In [1] Elliott solves the problem in a generalised form: Let a > 0, b, A > 0 and B be
integers with A = aB — Ab non-zero. If G is a real additive arithmetic function and for
some constant C' satisfies G(an +b) — G(An + B) — C as n — oo, then there is a further
constant ¢ such that G(z) = clogx for every x € N which are prime to aAA.

The problem can be generalised further, there is a great variety of conditions that can
be introduced giving numerous different results. This paper gives proof of the following
rather interesting theorem:

Theorem 1. Assume that a € N and G(z) : R — R is non-decreasing modulo 1 by which
we mean non-decreasing over (0,1) and [n,n+1) VYn € N and additive on the set ¥, where
Y is defined as

Z:{an+9:n€N,9<a,9:§ s. t.p,qEN,(p,q):(a,p)zl},

then
G(z) = cplogx for a constant ¢y and all © € R.

In order to prove this theorem we need to give some lemmas. First some properties of
the set X:

Lemma 2. ¥ is closed under multiplication.

Proof. Take any two elements of 3, any + % and ang + ’;—5. Their product is

( pl) ( pz) _amqr+prangge +pa aPnangqige + anypaqi 4 angpige + pips
any +— | any + — | = =
41

q2 q1 q2 q192
If (a*ninagiqe + anipaqy + anspigs + pipa,a) # 1 then either (aniq + p1,a) # 1 or
(ansgs + p2,a) # 1, so (a*ninaqigs + anipaqy + anspigs + pips, a) = 1 and hence

a*ninaqige + anipaqy + anspigs + pipo kg P
q192 4192

for some p € N. Lemma is proved. O
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Before giving the other property, for any p € R we define
1) 1)t
p= | g = |
p P

where [x] and |z] mean the nearest integer that is not less and not greater than x,
respectively (|z| =sup(n < z,n € N), [z] = inf(n > z,n € N)), and let
a+1) a+1)
Di 4
m; and 6; are defined such that as i — oo, m; — p and 6; — p.

Lemma 3. X has an element between any two distinct real numbers.

Proof. Take real numbers x # y and p € (x,y) such that p ¢ Q. Such p exists. m; and 6;
are approximators of p, while m;,60; € ¥ and so Jjsuch thatn; € (z,y) (of course, for some
J' 0y € (x,y) is true, too, but this is not our current interest) U
Lemma 4. Assume that a € N and G is additive on the set X, and

lim (G(a(n+m)+p) —Glan+o0)) =0 ifn,meN,p,c € X, p<a,0<a
Then we have
(1) G(an + p) = colog(an + p) for some ¢y € R

Proof. Assume that 3h; and ho(hy # he) such that h; = 6(mod a) , he = 7(mod a) (where

0,7 €X), g(gh}fg # i;hgl) Let e.g. f)(gh,fz) > g(ghgl) Let x¢ be an arbitrary but fixed number,

for which

G(ha) G(hy)
log ho > o = log hy
Denote Gy := G — zglog. Then Gy is additive on ¥ and

(1) lim (Go(a(n +m) + p) — Go(an + o)) = 0 if a,n, m, p,o are as before.

Further

_ G(he) _G(h) _
(2) Cy 1= log I > log Iy =:¢; and Go(hg) >0 > Go(hl)

Denote dp,(n) := Go(an + o) — (1 — ) logn, where 0 < & < 1, we will choose later. We
show that dj,(n) is bounded above, i.e. we show that if n > ng(cy, co, hy, ha, ) then there
exists m < n for which

(3) Golan+0) — (1 —e)cglogn < Go(am + p) — (1 — €)cg logm.
We are looking for such m for which
(4) hi(am +p) > an+o

In the following we extend congruences to reals by defining =* as follows:

a =" b(mod ¢) for a,b,c € R< a=b+ kc, where k € Z
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We are looking for m, such that

(5) am + p =" p(mod hy)

This implies am =* 0(mod hq), i.e. am = hyk for some k € N. Also a,m € N, so hy = ““q*l’

where p,q € N, and as hy € &, (p,a) = 1. So am =* 0(mod hy) < amqg =* 0(mod an+ p).

But (a,an+p) = 1 so there exists a unique solution (mod an+p), hence also ( mod %J”D),
i.e. (mod hy), it is my. All solutions of (5) are my+ khyi(k € N). Choose the smallest k for
which (4) is fulfilled, i.e. m =mg + khy > 3~ + -7~ — £, hence

ahy a

(6) m= hﬁ + O(1) as before.
1

Thus m < n is satisfied. Since hy =* #(mod a) therefore as ¥ is closed under multiplication,
for some o € X, hy(am + p) =* o(mod a) with ak + o € X. Further, using (6), hi(am +
p) — (an+ o) = O(1). Thus we can use (1),

™) Golan + 7) = Go(ha(am + p)) + 0n(1)
where 0, means 0,(1) — 0 as n — oco. Since Gy is additive on X,
Go(an + U) = Go(hl) + Go(am + P) + On(l),
where we used that h; and am + p are both in . From this
Go(an+o)—(1—¢)calogn = Go(hy)—(1—¢)eq log %—F(Go(am%—p)—(l—a)cg log m)+on(1)

From (8) £ = hy + O (£), thuslog 2 =logh; + O (1), and

n 1
m m

Golan+0) — (1 —e)cglogn < Go(am + p) — (1 — €)cy logm,

where we chose ¢ such that 0 < € < ¢, (if;hﬁl) - (1- é)i(gh}fz)) < 0 and n > ng. Hence

dp,(n) is bounded above.
We can prove similarly that dp,(n) is bounded below. We are looking for such m < n
for which

(3) Golan+0) — (1 —e)exlogn > Golam + p) — (1 — £)calog m.

(4" ha(am + p) >an+ o

(5") am+ p =" p(mod hy)
Then we have
(6) m = }%‘FO(I).

Thus m < n is satisfied. Hence

Golan+o)—(1—¢)calogn = Go(he) —(1—¢)ey log %+(Go(am+p)—(1—5)cz log m)+o0,(1)

Here 7 = hy (1—|—O( )),thus log%:loghg—l—O( ).Usingthis,

1 1
m m

Golan + 0)(1 —e)cglogn > Go(am + p) — (1 — €)cglogm,
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where we used Gy(hs) > 0 and n > ng. Hence dp,(n) is bounded below. Consequently
dp,(n) is bounded.
Now we show that dj, (n) is bounded, where dj, (n) := Go(an + 0) — (1 — €)cy logn.
By similar calculations, first we obtain
Go(an+0) — (1 —g)erlogn < Go(am + p) — (1 — €)cy logm,
where we used Go(h;) < 0 and n > ng. Hence dp,, (n) is bounded above.
Also
Golan+0) — (1 —¢e)erlogn > Go(am + p) — (1 — €)cq logm,

ifghifg) —(1 _5)%> > 0 and n > ng. Hence

where we chose € such that 0 < ¢ < &g, ( Tog .

dp, (n) is bounded below. Consequently dj,(n) is bounded. Since dj,(n) and dp,(n) are
both bounded
k’(hl, hg, Ef) S dhg (n) - dh1 (n) S K(hl, hg, 8).
On the other hand

%mwwmmzu—@(

for every n € N, consequently

G(hs)  G(M) log n
loghs  loghy

G(hy)  G(h)

log h2 N 10g hl 7
i.e. if h € ¥ then Gy(h) = clogh. Using the definition of Gy we obtain G(h) = ¢glogh,
where ¢( is a constant. Lemma is proved. ]

Lemma 5. Assume that G is additive on the set 33, and is non-decreasing. Then G satisfies
lim (G(a(n+m)+7r)—Glan+s)) =0ifn,meN,rse X r<a,s<a
Proof. Observe that all § are in X if (p,q) = 1. We use this property repeatedly in the

following.
As G is monotone increasing, by additivity, G must satisfy

G)—0ford — 1,0 X
Hence
Gla(n+m)+7r)—G(an+s) =
= Gan+ (am+7r)) —Glan+7r)+ Glan+1) — Glan+ s) =

— Glan+7)+G (“” Zéaf: 7")) — Glan+7) + Glan + ) + G (

_ G(an+(am+r)> jLG(an—l—r)7
an—+r an—+s

where both @H@m+) 4 and @t 1 45 n — 0o, and so
an—+r an-+s

an +r

) - Glan+5) -

an + s

an +r

G(an+(am—|—r)an+r)—>0andG( )—>0asn—>oo,

an + s
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hence
lim G(a(n+m)+r)—G(an+s) =0
as required. Lemma is proved. O

Lemma 6. Assume that a € N and G(z) : RT — R is non-decreasing and additive on the
set ¥. Furthermore

lim (G(a(n+m)+7r)—Gan+s)) =0 ifn,meNrse X r<a,s<a

n—oo

Then
G(z) = cologx for a constant ¢y and all x € R.

Proof. ¥ C R, and for any x € 3, G(x) = clogx for some constant ¢ by Lemma 3. Let
z € R, G(z) = ' log z, we prove that ¢ = ¢, and so ¢ = ¢g. Assume also, that z = am +r,
where 0 < r < 2a. Then let p; and ¢; as before. As G is non-decreasing.

(8) a<b= G(a) <G() Va,beR.
The series ¢;, and p; satisfy m; < 741 and 6,41 < 6;, hence
9) P:=an+m —an+p=zasi—ooand Q; :=an+0; — an+p =z as i — o0,

thus P; < z < @Q; for all i, and therefore by (8)

(10) G(P;) < G(2) < G(Qy)
that is
(11) clog P; < ¢olog z < clog Q;,

but P, and Q); were constructed to satisfy P; € ¥, and Q; € X, i.e. by lemma 5 G(P;) =
clog P;, G(Q;) = clog Q;. The function log x is continuous, so log P; — log z and log Q); —
log z as i — 0o0. Hence ¢ = ¢ as required. Thus ¢q = ¢, and so for all z€ R, G(z) = ¢glog z.
By this we proved Lemma 5. U

Lemma 7. Assume that a € N and G(z) : Rt — R is non-decreasing and additive on the
set Y. Then

G(z) = cologx for a constant ¢y and all x € R.
Proof. By means of Lemma 4.,
lim (G(a(n+m)+7r)—Glan+s))=0ifn,meNrseXr<as<a

is true, too. Then the conditions of Lemma 5. are all satisfied and hence Lemma follows.
O

Lemma 8. G(z) : RT to R, additive over the set ¥ = {an +6 : n € N, < a,0 =

g—; s. t. (q1,q2) = (a,q1) = 1}, non-decreasing modulo 1 (by which we mean non-increasing

over (0,1) and [n,n+ 1) Vn € N), then G is non-decreasing.
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Proof. The proof is induction. We show that the result is true for the interval (0,2) and
that provided it is true in the interval (0,n) it is true for (0,n + 1), too.

By assumption G is non-decreasing over the intervals I; = (0,1) and Iy = [1,2). Let
11,71 € 11,72 € Iy and let 15 € I, such that isjs € I, We also require i1, 29, j1, J2 € 2.

By additivity,

(12) G(irj1) = G(i1) + G(j)

71 < 1,80 i1J1 < i1 hence, as GG is non-decreasing over I,

(117) G(ij) = G(in) + G(j1) < G(i)

hence

(12) Glj)) <OVji €1,
Similarly by additivity over Is:

(13) G(izf2) = G(i2) + G(j2)

19J2 > 12, SO as (G is non-decreasing in I

(13) G(izj2) = G(ia) + G(j2) > G(i2)

Hence

G(]Q) > OVJQ el
Therefore, putting (12) and (14) together, we get
G(]Q) 2 0 2 G(]l) le € [1 and jg € IQ.

Hence G is non-decreasing over I; U Iy = (0,2). Let Jy = (0, 2).

The inductive step is proved by contradiction.

We want to prove that if G is non-decreasing over J, = (0,k) for k£ € N, then G is
non-decreasing over Jp.1 = (0,5 + 1).

Assume that this is not true, that is, do € ¥ N1, such that G(8) > G(a) where 3 € Jix11
and hence f < a. Asa € ¥, a € N and so k — 1 and « are distinct.
%
as before. For some j € N,

Take p = & € R and find the corresponding approximators 7;, #; in the interval (%1’ %) ,

k—1 Q@
I<—<m<5=p

g g

Hence
E-1<mfB<a
where ;3 € I; N X and so by the non-decreasing property within 7,
G(m;f) < G(a).
By additivity over X,
G(m;f) = G(m;) + G(B)
Hence, putting (18) and (19) together

G(B) < G(m;) + G(B) = G(m;B) < G(«)
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Contradiction, so the result is true.
The non-decreasing property has been proved for Js, so lemma is proved. U

Theorem 1. By Lemma 7. G is non-decreasing, hence the conditions of Lemma 6. are
satisfied. Hence
G(z) = ¢ logx for a constant ¢y and all z € R.

and so theorem is proved. ]

REFERENCES

1. P D T A Elliot, Arithmetic functions and integer products, Grundlehren der Mathematischen Wis-
senschaften, vol. 272, Springer-Verlag, New York and Heidelberg, 1985.

2. Paul Erdés, On the distribution function of additive functions, Annals of Mathematics, Series II. 47
(1946), 1-20.



