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On the no-counterexample interpretationUlrich KohlenbachBRICS�Department of Computer ScienceUniversity of AarhusNy Munkegade, Bldg. 540DK-8000 Aarhus C, Denmarkkohlenb@brics.dkDecember 1997AbstractIn [15],[16] Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peanoarithmetic. In particular he proved, using a complicated "-substitution method (due toW. Ackermann), that for every theorem A (A prenex) of �rst-order Peano arithmeticPA one can �nd ordinal recursive functionals �A of order type < "0 which realize theHerbrand normal form AH of A.Subsequently more perspicuous proofs of this fact via functional interpretation (com-bined with normalization) and cut-elimination where found. These proofs however donot carry out the n.c.i. as a local proof interpretation and don't respect the modusponens on the level of the n.c.i. of formulas A and A ! B. Closely related to thisphenomenon is the fact that both proofs do not establish the condition (�) and { atleast not constructively { (
) which are part of the de�nition of an `interpretation of aformal system' as formulated in [15].In this paper we determine the complexity of the n.c.i. of the modus ponens rule for(i) PA-provable sentences,(ii) for arbitrary sentences A;B 2 L(PA) uniformly in functionals satisfying then.c.i. of (prenex normal forms of) A and A! B; and(iii) for arbitrary A;B 2 L(PA) pointwise in given �(< "0)-recursive functionalssatisfying the n.c.i. of A and A! B.�Basic Research in Computer Science, Centre of the Danish National Research Foundation.1



This yields in particular perspicuous proofs of new uniform versions of the conditions(
); (�).Finally we discuss a variant of the concept of an interpretation presented in [17] andshow that it is incomparable with the concept studied in [15],[16]. In particular we showthat the n.c.i. of PAn by �(< !n(!))-recursive functionals (n � 1) is an interpretationin the sense of [17] but not in the sense of [15] since it violates the condition (�).1 IntroductionLet 9xA0(x; a) be a �01-formula in the language L(PL) of �rst-order predicate logic PL(a = a1; : : : ; ak) are all its free variables).If PL ` 9xA0(x; a)then by Herbrand's theorem there are terms t1[a]; : : : ; tn[a] (built up out of a, a distinguishedobject constant 0 and the object and function constants of A0)1 such that nWi=1A0(ti[a]; a) isa tautology.This extends to �0n-formulas by introducing so-called index functions. For notational sim-plicity lets consider n = 4 onlyA(a) � 9x18y19x28y2A0(x1; y1; x2; y2; a):We replace y1; y2 by fx1; gx1x2, where f; g are new function symbols. If PL ` A thenPL ` 9x1; x2A0(x1; fx1; x2; gx1x2; a)and so by Herbrand's theorem for �01-formulas there are terms built up from a; f; g; 0 andthe constants of A0(x; a) such thatn_i=1 k_j=1A0(ti[a; f; g]; f(ti[a; f; g]); sj[a; f; g]; g(ti[a; f; g]; sj[a; f; g]); a)is a tautology.If we allow de�nition by cases and characteristic functions for quanti�er-free formulas wecan avoid the disjunction:�1afg := 8>>>>>>><>>>>>>>: t1; if kWj=1A0(t1; f(t1); sj; g(t1; sj); a)t2 if : (case 1) ^ kWj=1A0(t2; : : :)...1Throughout this paper A0;B0; C0; : : : denote quanti�er-free formulas.2



�2afg := 8>>>><>>>>: s1; if s1 if A0(�1afg; f(�1afg); s1; g(�1afg; s1); a)s2 if : (case 1) ^ A0(�1afg; f(�1afg); s2; g(�1afg; s2); a)...Then (+) 8a; f; g A0(�1afg; f(�1afg);�2afg; g(�1afg;�2afg); a)holds in a suitable extension of PL.We say (following Kreisel [15]) that �1;�2 satisfy the no-counterexample interpretationof A (short: �1;�2 n:c:i: A).If A is no longer logically true but provable in some �rst-order theory, e.g. PA, thende�nition by cases will not be su�cient in general. In the case of PA for instance one needsall �-recursive functionals for � < "0 and these functionals are also su�cient. This wasproved �rstly in [16] using an "-substitution procedure based on [1].2 Later Schwichtenberg[25] gave a proof of this result using a form of cut-elimination (due to [30]) instead.The cut-elimination procedure does not give a local interpretation of proofs, i.e. given proofsof A and A ! B, a realization of the n.c.i. of B is not computed out of given realizationsfor the n.c.i of A and A ! B but by a global proof transformation of the proof of B(which in general will cause a non-elementary increase in the length of this proof).3The method of "-substitution can be used (as indicated in the proof of the condition (�), tobe discussed below, in [16]) to obtain �(< "0)-recursive functionals satisfying the n.c.i. of Bout of given �(< "0)-recursive functionals satisfying the n.c.i. of (prenex normal formsof) A and A ! B. This method however (which again in general has a non-elementarycomplexity in the logical depth of A) does not yield a uniform procedure (given by func-tionals of type level 3) which would provide functionals satisfying the n.c.i. of B uniformlyin arbitrary functionals satisfying the n.c.i. of A and A! B.A third way to prove the no-counterexample interpretation of PA (by functionals whichare �(< "0)-recursive) is via G�odel's functional interpretation (combined with negativetranslation) of PA in the calculus T of primitive recursive functionals of �nite type (see e.g.[31]). This (combination of negative translation and) functional interpretation is a local2A formalization of the method of "-substitution was given by [29] and used in [20](thm.12).3One should also mention here G�odel's discussion of Gentzen's 1936 consistency proof in his amazing`Vortrag bei Zilsel' from 1938, �rst published (together with an English translation in [8]). Here G�odel inter-prets Gentzen's proof in terms of the no-counterexample interpretation and gives a discussion of the modusponens rule in these terms which emphasizes the fact that this rule is decisive for the ordinal exponentiationindicating even a kind of local treatment of this rule, however without giving any details ([8] pp. 108-110).See also the illuminating remarks in [27]. 3



proof transformation but at the level of the functional interpretation (of the negativetranslation) of A and A ! B and not at the level of their n.c.i.: realizing functionals for(B0)D can be obtained uniformly in any realizations of (A0)D and ((A! B)0)D by a simpletyped lambda term (depending only on the logical form of A and B (Here A0 and AD denotethe negative translation and the functional interpretation of A).The passage through higher types makes it necessary to use a normalization procedure forT in order to obtain the n.c.i. in terms of �(< "0)-recursive functionals rather than type 2functionals de�ned in terms of primitive recursion in higher types (see e.g [21],[25]).Instead of functional interpretation one could also use a combination of (negative translationplus) the Friedman-Dragalin A-translation and a suitable notion of realizability. If one useshere the so-called `minimal realizability' of [3] one can avoid the use of higher types but theresulting interpretation again is not local at the level of the n.c.i. but only at the level of the`minimal realizability' interpretation of (the Friedman-Dragalin translation of the negativetranslation of) A, A! B.4In this paper we calibrate the complexity of performing the modus ponens rule directly onthe level of the n.c.i. without using higher types. It turns out that even for PA-provablesentences A and A ! B with n.c.i. in T0 no �xed subsystem Tn of T su�ces:5 for everyn 2 IN there are PA-provable sentence A;B (B 2 �02) and functionals in T0 satisfying(provably in dPA!jn6) the n.c.i. of (arbitrary prenex normal forms of) A and A ! B suchthat the n.c.i. of B is not satis�ed by any function(al) 2 Tn (since with A and A! B alsoB is provable in PA, it is clear that the n.c.i. of B can be carried out in T ). So alreadyfor PA-provable sentences the modus-ponens-complexity of the n.c.i. is not lower than thecomplexity of the n.c.i. of the whole theory PA. If A and A ! B are not assumed tobe provable in PA, then even T is not su�cient to solve the n.c.i. of the modus ponensrule (uniformly in functionals satisfying the n.c.i. of the assumptions) but dPR! +BR0;1 is,where BR0;1 is the schema of bar recursion for bar recursion of type 0 (with values of type1) and dPR! are all predicative primitive recursive functionals of �nite type (in the sense of[13],[4]).In special cases we can even solve the n.c.i. of the modus ponens as a uni�cation problemyielding functionals satisfying the n.c.i. of B by uni�cation (not depending on the quanti�er-free part of A;B but only on the quanti�er-pre�x of their prenex normal forms): This is4In connection with [3] one should mention that some of the result obtained in this paper by `minimalrealizability' can in fact be derived (sometimes in much stronger form) using only well-known facts from theliterature ([31],[24]), see [14].5Tn denotes the fragment of G�odel's T (see [7]) with R� for deg(�) � n only.6 cPA!jn is the subsystem of PA! based on T0 instead of T and with quanti�er-free induction only, see [4]and section 2 below. 4



true for A 2 �03 and B 2 �01 (but already in this case T is not su�cient). This particularmatter will be studied further in a subsequent paper.Kreisel introduced his n.c.i. of arithmetic as an instance of his general de�nition of an`interpretation of a system �' which we recall here from [15]:`A computable function f(n; a) is called an interpretation of the system � if(�) f(n; a) is the number of a free variable formula An when a is the number of a formulaA of � (some G�odel numbering being assumed),(�) if A is proved in �, from the proof we �nd an n such that An is veri�able,(
) if :A is proved in �, for each n we �nd a substitution for the (individual and function)variables of An which makes An false,(�) if B is proved from A in �, we �nd a g(n) so that Bg(n) is veri�able if An is veri�able.'For the n.c.i. of PA by �(< "0)-recursive functionals (resp. functionals in T ) condition(�) follows immediately from the fact that the resulting set of free variable formulas isrecursively enumerable. Condition (�) follows from each of the proof-methods discussedabove. The condition (
) and in particular the condition (�) however (which are provedin [16] using the method of "-substitution) do not follow from the approachs to the n.c.i.by cut-elimination or functional interpretation (or the Friedman-Dragalin translation plusrealizability). The condition (�) can be formulated in the case of the no-counterexampleinterpretation of PA in T (or, slightly reformulated, for �(< "0)-recursive functionals) asfollows (�) : 8><>: If �A n:c:i A is true for �A 2 T and PA ` A! B:Then one can construct �B 2 T such that �B n:c:i: B is true.Using (a careful analysis of the computational strength of) bar recursion of type 0 we givea new prove of Kreisel's results including a strengthened uniform version of his condition(�).The condition (
) translates in the case of the n.c.i. of PA at hand into(
) 8>>>><>>>>: If A � 9x18y1 : : :9xk8ykA0(x1; y1; : : : ; xk; yk; a) 2 L(PA) and PA ` :A:Then constructively it holds that for all closed terms � 2 T (of suitable types)there are h such that A0(�1h; h1(�1h); : : : ;�kh; hk(�1h; : : : ;�kh); a) is false:5



Classically the existence of h satisfying (
) can be shown quite easily (see remark 4.10). Aconstructive proof of (
) was given in [16], again by the use of the "-substitution method.We give a new proof of a uniform strengthening of (
) in section 4.Finally we discuss a di�erent de�nition of interpretation presented in [17] and show thatthis de�nition is incomparable with the de�nition given in [15]. In particular we show: then.c.i. of PAn+1 (the fragment of PA with �0n+1-induction only) in Tn (which holds by [22])is an interpretation in the sense of [17] but not in the sense of [15] since the condition (�)is violated in this case.2 The modus ponens complexity of the no-counterexampleinterpretation for PA-provable sentencesDe�nition 2.1 Let A :� 9x18y1 : : :9xk8ykA0(x1; y1; : : : ; xk; yk; a)7 be a formula in the lan-guage L(PA)of Peano arithmetic PA (which for convenience is assumed to contain symbolsfor every primitive recursive function with the corresponding de�ning equations as axiom ofPA).The Herbrand normal form AH of A is de�ned byAH :� 8h1; : : : ; hk9x1; : : : ; xk AH0 :�z }| {A0(x1; h1x1; : : : ; xk; hkx1 : : : xk; a) :A tuple �(= �1; : : : ;�k) of functionals of type levels � 2 satis�es the no-counterexampleinterpretation of A if �a h realizes `9x' (where h := h1; : : : ; hk and x := x1; : : : ; xk), i.e. if8a; hA0(�1a h; h1(�1a h); : : : ;�ka h; hk(�1ah; : : :;�kah); a):In this case we write `� n:c:i: A'.In the following PRA denotes primitive recursive arithmetic extended by classical �rst-order predicate logic. PA! (resp. HA!) is the classical (resp. intuitionistic) arithmeticin all �nite types with full induction and all primitive recursive functionals in the sense ofG�odel and a quanti�er-free rule of extensionality (so in the terminology of [31], HA! isthe system WE-HA!). dPA!jn (resp. dHA!jn) denotes the fragment of PA! (resp. HA!)with quanti�er-free induction only and the G�odel-recursors R� replaced by the predicativeKleene-recursors bR� (this systems was introduced and studied in [4]). By T and dPR! wedenote the quanti�er-free parts (in the sense on [31](1.6.13)) of PA! and dPA! jn respectively.7Here a are all the free variables of A. 6



Tn is the fragment of T with R� for � of level � n only. dPR! is simply a de�nitorial extensionof T0 since R0 = bR0 and bR� for � > 0 is de�nable from bR0 by �-abstraction.The type level or degree deg(�) of a type � is de�ned as deg(0) := 0; deg(�(�)) :=max(deg(�) + 1; deg(�)).Convention: By the phrase `a functional � 2 T(n)' we always mean `a closed term � ofT(n)'. Sometimes we only write � 2 T(n) but again always refer to a closed term of T(n)representing the functional.Proposition 2.2 For every n 2 IN there are sentence (i.e. closed formulas) A;B such that1) A is prenex,2) B � 8x9y B0(x; y) 2 �02,3) PRA ` A,4) PA ` A! B,5) A as well as every prenex normal form (A! B)pr of A! B has (provably in dHA! jn)a n.c.i. by suitable functionals in T0, i.e.dHA!jn ` �A n:c:i: A ^ �(A!B)pr n:c:i: (A! B)prwith �A;�(A!B)pr 2 T0,but:6) there is no function ' 2 Tn which satis�es the n.c.i. of B, i.e. there is no ' 2 Tn forwhich 8xB0(x; 'x) is true in the standard model of PA.Proof: Let n 2 IN be �xed. It is well-known that the provably recursive functions of PAare just the �(< "0)-recursive functions. Since the de�nable functions of type 1 in Tn are< !n+1(!)-recursive (see [21]), there is a �02-sentence B � 8x9y B0(x; y) in L(PA) (namely8x9y T (e; x; y) for a certain numeral e) such that PA ` B, but there is no t1 2 Tn for which8x 2 INB0(x; tx) is true.Since PA ` B there are �nitely many instances ~A1; : : : ; ~Ak such that for their universalclosures A1; : : : ; Ak PRA ` k̂i=1Ai ! B:7



Let bAi(x; a) be the induction formula corresponding to Ai, where x is the induction variableand a includes all parameters, i.e.Ai $ 8a( bAi(0; a) ^ 8x( bAi(x; a)! bAi(x0; a))! 8x bAi(x; a)):We now de�ne A :� 8x; a9y1; : : : ; yk k̂i=1 (yi = 0$ bAi(x; a)):It is clear that(i) PRA ` A (in fact predicate logic with equality plus the axiom 0 6= S0 su�ces),(ii) PA ` A! B.In PRA, the variables x1; : : : ; xk; a and the variables y1; : : : ; yk can be coded together assingle variables x; y. Although we do not carry out this coding for the sake of better read-ability we are free to consider these tuples as single variables from now on. As a consequencewe only have to deal with the following prenex normal forms of A! 8u9v B0(u; v)(1) 9x; a8u9v8y( : : : )pr;(2) 9x; a8y( : : : )pr;(3) 8u9x; a8y( : : :)pr;(4) 8u9v; x; a8y( : : :)pr;where ( : : : )pr refer to any prenex normal form of the remaining formula in each case.For i = 1; : : : ; 4 the Herbrand normal from (i)H of (i) is implied by the partial Herbrand nor-mal form where Herbrand index functions are introduced only for the universal quanti�ersin front of ( : : : )pr. So e.g. for (1), (1)H is implied by(+) 8f; g9x; a; v ([u=f(x; a)]; [y=g(x; a; v)])pr:One easily shows by classical logic (and �-abstraction) that (+) is equivalent to(�) 9g8x; a( k̂i=1(gixa = 0$ Ai(x; a))! 8u9vB0(u; v):8



In fact (+),8f; g(8x; a; v kVi=1(gixav = 0$ bAi(x; a))! 9x; a; v B0(fxa; v)),9g8x; a; v kVi=1(gixav = 0$ bAi(x; a))! 8f9x; a; v B0(fxa; v),9g8x; a; v kVi=1(gixav = 0$ bAi(x; a))! 8u9v B0(u; v),9g8x; a kVi=1(gixa = 0$ bAi(x; a))! 8u9v B0(u; v):In a similar way one shows the corresponding result for (2); (3); (4). So put together wehave (�)! (i)H ; where i = 1; : : : ; 4;by predicate logic (and �-abstraction). But (�) and therefore (i)H is provable in PRA2which is the extension ofPRA by adding function quanti�ers to PRA and allowing functionvariables to occur in the schema of quanti�er-free inductionQF-IA : A0(0)^ 8x(A0(x)! A0(x0))! 8xA0(x):This follows simply by applying QF-IA to A0(x) :� (gixa = 0) which yields Ai and so8u9v B0(u; v).So PRA2 ` ((A! B)pr)H for every prenex normal form of A! B.However PRA2 has (via negative translation) a functional interpretation and hence a n.c.i.in dHA!jn by terms 2 T0. Thus there are functionals �(A!B)pr 2 T0 such thatdHA!jn ` �(A!B)pr n:c:i: (A! B)prfor each prenex normal form of A! B. The same holds true for A which is even provablein PRA: there are functionals �A 2 T0 such thatdHA!jn ` �A n:c:i: A;which concludes the proof of the proposition. 2Remark 2.3 We can replace `' 2 Tn', `� 2 T0' in the proposition above by `' is �(<!n+1(!))-recursive' and `� is primitive recursive in the sense of Kleene', since the closedterms t2 2 Tn denote just the �(< !n+1(!))-recursive functionals (see e.g. [21]). In thefollowing we only state the Tn-versions of our results explicitly since it is straightforward toformulate them in terms of ordinal recursive function(al)s as well.9



We now consider the condition (�) mentioned in the introduction. This condition wasveri�ed for the n.c.i. of PA (by �(< "0)-recursive functionals) in [16] using the methodof "-substitution. It does not follow from the proofs of the n.c.i. by cut-elimination orfunctional interpretation. In section 4 below we will prove a new strong uniform version ofthis condition.Let PAn be the subsystem of PA with induction restricted to �0n-formulas. In [22] it isshown that PAn+1 has (via negative translation) a functional interpretation in Tn. Hencealso the n.c.i. of PAn+1-provable formulas can be satis�ed in Tn. However as a corollary ofproposition 2.2 we haveCorollary 2.4 The no-counterexample interpretation of PAn+1 in Tn (or { equivalently {by �(< !n+1(!))-recursive functionals) does not satisfy the condition (�) and hence is notan interpretation in the sense of [15].Proof: Choose A;B 2 L(PAn+1) as in proposition 2.2 and let (A ! B)pr be any prenexnormal form of A! B and ~A be the prenex normal form of A^(A ! B)pr which results e.g.by shifting �rst all A-quanti�ers to the front and then all (A ! B)pr-quanti�ers. Alreadyby classical logic, ~A implies B and so in particularPAn+1 ` ~A! B:From proposition 2.2 it follows that both A and (A ! B)pr have a n.c.i. by functionalsin T0 (i.e. by �(< !!)-recursive and hence ordinary primitive recursive functionals). Fromthis one easily constructs functionals in T0 satisfying the n.c.i. of ~A. However, again byproposition 2.2, B does not have a n.c.i. in Tn (and hence not by an �(< !n+1(!))-recursivefunction). So ~A and B provide a counterexample to the condition (�) for the n.c.i. of PAn+1in Tn. 23 The uniform modus ponens complexity of the no-counter-example interpretation for arbitrary formulas A;B 2 L(PA)De�nition 3.1 A pair (T ;F) consisting of a theory T and a quanti�er-free functionalcalculus F � T su�ces for the uniform n.c.i. of the modus ponens rule if for all(prenex) formulas A;B 2 �01 (A;B 2 L(PA) and every prenex normal form (A! B)pr ofA! B there are functionals 	 2 F (i.e. closed terms 	 of F) such thatT ` 8�A;�(A!B)pr�(�A n:c:i: A)^ (�(A!B)pr n:c:i: (A! B)pr)! 	(�A;�(A!B)pr) n:c:i: B�:10



Proposition 3.2 There are sentences A;B 2 L(PA) in prenex normal form such that forall prenex normal forms (A! B)pr of A! BPA! =̀9�A(�A n:c:i: A)^ 9�(A!B)pr(�(A!B)pr n:c:i: (A! B)pr)! 9�B(�B n:c:i: B):Moreover we can take A 2 �03 and B quanti�er-free (so that (�B n:c:i: B) $ B with �Bbeing the empty tuple).Proof: Let A :� 8x9y8z(Txxy _ :Txxz), where T denotes Kleene's T -predicate, andB :� (0 = 1). There is only one prenex normal form of A! B:9x8y9z(Txxy _ :Txxz ! 0 = 1)and its n.c.i. requires a functionals �1;�2 such that(�) 8f(T (�1f;�1f; f(�1f))_ :T (�1f;�1f;�2f)! 0 = 1):The n.c.i. of A is realized by a functional �0 such that(��) 8x; g(T (x; x;�0xg)_ :T (x; x; g(�0xg)):We now show that PA! =̀9�0;�1;�2((�)^ (��))! 0 = 1:We have to show that PA! + 9�0;�1;�2((�)^ (��)) is consistent:De�ne �0xg := 8><>: g0; if T (x; x; g0)0; otherwise:Then one easily veri�es thatPA! ` 8x; g(T (x; x;�0xg)_ :T (x; x; g(�0xg)):Next we show thatPA! + AC1;0-qf + 8f1( f is recursive ) `9�1;�28f(T (�1f;�1f; f(�1f))_ :T (�1f;�1f;�2f)! 0 = 1):This however follows from the fact that PA! + 8f1(f is recursive) proves (using the unde-cidability of the halting problem)8f9x; z(T (x; x; fx)_ :T (x; x; z)! 0 = 1);11



which implies using AC1;0-qf9�1;�28f(T (�1f;�1f; f(�1f))_ :T (�1f;�1f;�2f)! 0 = 1):The proof is now �nished by verifying the consistency ofPA!+ AC1;0-qf +8f1(f is recursive)which however follows from the fact thatHEO j= PA! + AC1;0-qf + 8f1(f is recursive );where HEO is the type structure of the hereditarily e�ective operations in all �nite types(the fact that HEO forms a model of PA! is proved in [31]. That it is a model of AC1;0-qffollows from the fact that one can always �nd an e�ective choice functional by unboundedsearch since quanti�er-free formulas of PA! are decidable).2Corollary 3.3 (PA!; T ) does not su�ce for the uniform n.c.i. of the modus ponens rule.Remark 3.4 1) The proof above does not exclude the possibility that e.g.(PA!+ AC0;0ar ; T ) satis�es the uniform n.c.i. of the modus ponens rule which remainsan open problem. Nevertheless we will show below that even (S!; T ) does not su�ce tosolve uniformly the uni�cation problem associated with the n.c.i. of the modus ponens(which however does not exclude other ways of satisfying the n.c.i. of the modusponens)2) In section 4 below we will show that (PA!; T ) su�ces for the pointwise n.c.i. ofthe modus ponens in the sense that one can construct functionals of type level 3 in agenuine extension of T which produce out of given functionals 2 T which satisfythe n.c.i. of A; (A! B)pr functionals 2 T which satisfy the n.c.i. of B.We now show that both (dHA!jn + �; dPR! + �) and (dHA!jn + BR0;1;dPR! + BR0;1) dosu�ce:De�nition 3.5 ([4]) T ! + � is the extension of T ! obtained by adding a constant �2together with the axioms(�) : f1x =0 0! f(�f) =0 0 ^ �f �0 x; f(�f) 6= 0! �f =0 0:De�nition 3.6 ([28]) T ! + BR�;� is the extension of T ! obtained by adding the bar re-cursor constant B�;� with the axioms(BR�;�) : 8><>: x(y; n0) < n! B�;�xzuny =� znyx(y; n) � n! B�;�xzuny =� u(�D�:B�;�xzun0(y; n �D))ny;12



where y is of type 0(�0) and u is of type �(�0)(0)(��) and(y; n �D)(k0) =� 8>>>><>>>>: yk; if k < nD; if k = n0�; otherwise:Proposition 3.7 Let (T ;F) be either (dHA! jn+ �; dPR! + �) or (dHA!jn + BR0;1;dPR! +BR0;1). Then (T ;F) su�ces for the n.c.i. of the modus ponens (uniformly in functionalssatisfying the n.c.i. any of prenex normal forms of A and A! B).Proof: Lets consider the schema of arithmetical choiceAC0;0ar : 8x9y A(x; y)! 9f8x; y A(x; fx);where A 2 �01 (A may contain function parameters).One easily veri�es that dPA!jn+ AC0;0ar ` (9�A(�A n:c:i: A))! Afor all prenex formulas A 2 �01. Since furthermoredPA! jn ` B ! BHfor all prenex formulas B 2 �01 we havedPA!jn+ AC0;0ar `9�A(�A n:c:i: A)^ 9�(A!B)pr(�(A!B)pr n:c:i: (A! B)pr)!8h; a9xBH0 (h; x; a));where 8h9xBH0 (h; x; a) is the Herbrand normal form BH (a) of B(a) and a are all freevariables of B.dPA!jn+ AC0;0ar has (via negative translation) a functional interpretation in T by terms 2 F .For (dHA!jn + �; dPR! + �) this is proved in [4]. For (dHA! jn + BR0;1; dPR! + BR0;1) thisfollows from [28] using the facts that dPA!jn has an interpretation in dPR!, that AC0;0ar isderivable in dPA! jn+�01-AC0;0 (note that dPA! jn+�01-AC0;0 ` �01-CA and so by iteration {using the presence of function parameters in �01-CA { also dPA!jn+�01-AC0;0 ` �01-CA andtherefore dPA!jn+�01-AC0;0 ` AC0;0ar ) and that the interpretation of �01-AC0;0 uses only B0;1and functionals from dPR!. Note that the crucial lemma 1 from [28] (restricted to B0;1) caneasily be proved in dPR! +BR0;1. 13



Hence there are functionals ~	 2 F such that(+)8><>: T ` 8�A;�(A!B)pr�(�A n:c:i: A) ^ (�(A!B)pr n:c:i: (A! B)pr)! 8h; aBH0 (h; ~	(�A;�(A!B)pr ; h; a); a)�:Thus 	 := �h:~	(�A;�(A!B)pr ; h; a) satis�es the claim made in the proposition. 2Remark 3.8 1) Similar to 	 one can also extract �; � 2 dPR! + BR0;1 realizing theuniversal function quanti�ers hidden in `�A n:c:i: A' and `�(A!B)pr n:c:i: (A! B)pr'.2) In the above proof, (+) can actually be strengthened by not assuming that �A (resp.�(A!B)pr) satis�es the no-counterexample interpretation uniformly in the parametersa of A8, i.e. we can quantify a outside the whole implication in (+) and weaken(�A n:c:i: A) (and likewise also (�(A!B)pr n:c:i: (A! B)pr)) to8hA0(�A1 h; h1(�A1 h); : : : ;�Ak h; hk(�A1 h; : : : ;�Ak h); a):I.e. we only require �A to satisfy the n.c.i. of A for the �xed parameters a. As in theproof above we now obtain functionals � which satisfy the modus ponens uniformly inh; a and functionals �A,�(A!B)pr satisfying the n.c.i. for the parameters a.Corollary to the proof of proposition 3.7: The proof above immediately general-izes to the case where A and B contain function parameters �; � and yields functionals	(�A;�(A!B)pr ; �; �) which solve the corresponding modus ponens instance uniformly in�A;�(A!B)pr and �; �. This in particular implies that we can solve the modus ponensproblem uniformly in arbitrary formulas A;B in L(PA) of �xed quanti�er complexitiessince all formulas A 2 �0n can be obtained from 8x19y1 : : :8xn9yn(�(x; y) =0 0) by substi-tuting the characteristic function of the quanti�er-free matrix of A (which can be de�nedin dPR!) for the function variable �.For A 2 �03; B 2 �01, the functionals 	 2 dPR! + BR0;1 solving the n.c.i. of the modusponens rule (which exist by 3.7) can be obtained as the solution of a system of functionalequations:8Lets assume here for simplicity that A and B contain the same parameters a. This can be achieved byintroducing dummy variables if necessary. 14



Let A :� 8x9y8zA0(x; y; z) and B :� 8u19v1B0(u1; v1; : : :). Consider the following prenexnormal form of A! B(A! B)pr :� 9x8y9z8u19v1 : : :(A0(x; y; z)! B0(u1; v1; : : :)):Then ((A! B)pr)H � 8f; h9x; z; v(A0(x; fx; z)! B0(h0xz; v1; h1xzv1; v2; : : :)):So the n.c.i. of (A! B)pr requires functionals �1;�2;	1;	2; : : : such that(�) 8f; h(A0(�1fh; f(�1fh);�2fh)! B0(h0(�1fh;�2fh);	1fh; : : :)):Since AH � 8g; x9y A0(x; y; gy);the n.c.i. of A requires a functional �0 such that(��) 8g; xA0(x;�0gx; g(�0gx)):To perform a modus ponens using (�); (��) to obtain a solution for the for the n.c.i. ofB we solve the following systems of equations (mp-uni�cation) for x; f; g (uniformly inh;�0;�1;�2): (1) 8>>>><>>>>: x =0 �1fhf(�1fh) =0 �0gx�2fh =0 g(�0gx):Let f [h;�] be the f -solution for h;�0;�1;�2. Taking then ~h0 := �x; y:u, ~hixyv1 : : : vi :=hiv1 : : : vi (for i � 1) and ~	i(u; h1; : : :) := 	i(f [~h;�]; ~h) we obtain that~	 n:c:i: B.Remark 3.9 Note that the system of equation (1) is the same as the one resulting fromthe functional interpretation of the double{negation shift8x0::9y08z0A0(x; y; z)! ::8x9y8zA0(x; y; z)solved by Spector [28] using bar recursion in his functional interpretation of classical analysis(via negative translation). For completeness we include here the solution.In our case it su�ces in fact to construct an f such that there exists a g so that (1) holdsfor x = �1fh, since the functionals ~	 do not depend on g.15



In fact we solve (following Spector [28])(2) 9f8n � �1fh9gn(�0(gn; n) =0 fn ^ gn(fn) =0 �2fh)for f . Note that this solves (1) as well: take x := n := �1fh and g := gx.Solution of (2): De�neA(f; n) :� n � �1fh! 9gn(�0(gn; n) = fn ^ gn(fn) = �2fh):We de�ne a functional B 2 1(0)(1) which satis�es(i) 8i < x(B(f; x; x)(i) = fi),(ii) 8n � xA(B(f; x; x); n).Then B(01; 00) satis�es 8nA(B(0; 0); n), i.e. solves `9f ' in (2).We now de�ne B(f; x; x) by bar recursion:Case 1): �1(f; x)h < x. Take B(f; x; x) := f; x. Then B(f; x; x) trivially satis�es (i) andbecause of n � x! n > �1(f; x)h (by the case) also (ii).Case 2): �1(f; x)h � x. By assumption B(f; x � hXi; x0) is de�ned already such that(i)' 8i � x(B(f; x � hXi; x0)(i) = (f; x � hXi)(i)) and(ii)' 8n � x0A(B(f; x � hXi; x0); n) for all X (Note that f; x � hXi = f; x � hXi; x0).De�ne B(f; x; x) := B(f; x � hKi; x0),where K := �0gxx and gx := �X:�2(B(f; x � hXi; x0))h.By (i)0; (ii)0 we have8n � x0A(B(f; x; x); n) and 8i < x(B(f; x; x)(i) = fi):So it remains to show A(B(f; x; x); x), i.e.9gx(�0(gx; x) = B(f; x; x)(x)^ gx(B(f; x; x)(x)) = �2(B(f; x; x))h) :B(f; x; x)(x) = B(f; x � h�0gxxi; x0)(x) (i)0= �0(gx; x).gx(B(f; x; x)(x)) = �2(B(f; x � hB(f; x; x)(x)i; x0))h =�2(B(f; x � h�0(gx; x)i; x0))h = �2(B(f; x; x))h, which concludes the proof. 2We call the system of equations (1) above the mp-system corresponding to A andA! B.By the reasoning above we have 16



Proposition 3.10 For A;B 2 L(PA) with A 2 �03; B 2 �01 one can construct functionals	 2 dPR! +BR0;1 which uniformly solve the corresponding mp-system.In a separate paper we intend to investigate in greater generality what types of uni�cationproblems can be solved by (restricted forms of) bar recursion.The use of bar recursion in proposition 3.10 is crucial as the following proposition shows:Proposition 3.11 Even for A 2 �03; B 2 �00 there are no functionals 	 2 T for which itis true in S! that they solve the corresponding mp-system uniformly.Proof: The mp-system corresponding to A and the unique prenex normal form of A! Bagain is identical to the system of equations emerging from the functional interpretation ofthe double negation shift8x0::9y08z0A0(x; y; z)! ::8x09y08z0A0(x; y; z):So if the mp-system would be solvable in T then this double negation shift and consequently{ via negative translation { PA!+ AC0;0ar would have a functional interpretation by func-tionals in T (veri�able in S!). However it is known that all �(< ""0)-recursive functionsare provably recursive in PA!+ AC0;0ar whereas the de�nable functions in T are �-recursivewith � < "0 (see e.g. [4]). 2In contrast to this result we haveProposition 3.12 For A 2 �02; B 2 �01 the corresponding mp-system has a trivial solutionby substitution.Proof: The corresponding system of equations is x =0 �1fh;�0x =0 fx. Take f := �0and x := �1fh. 2.4 The pointwise mp-complexity for arbitrary formulas A;B 2L(PA) and the conditions (�) and (
)In the following we need a slight generalization of a result due to Schwichtenberg [24],[26]9on the closure of T under the rule of bar recursion of type 0 (and 1):Proposition 4.1 Let t2[x0; h1] a term of T containing at most the free variables x of type 0and the variables h of type level 1. Then the functional �x; h; z; u; n; y:B0;�(t[x; h]; z; u; n; y)is de�nable in T such that PA! (and even HA!) proves its characterizing equations.9Compare also remark 3.1 in [11] for a related result.17



Proof: In [26] it is proved that for all closed terms t; s; r of T (of appropriate types)�n; y:B0;�trsny is de�nable in T (formalizable in HA!). Since there is no restriction on thetype � we can replace r; s by free variables z; u observing that B0;� tzuny =� (B0;�trsny)zufor suitable closed �-terms r; s (� being a corresponding type). Moreover, Schwichtenberg'sproof immediately relativizes uniformly to the case where t is allowed to contain numberand function parameters yielding a primitive recursive functional (in the sense of T ) in theseparameters and z; u; n; y (to see this one could also use the technique of elimination of freevariables from section 5 of [9]). 2Proposition 4.2 Let t0�1:::�m�1:::�l�1:::�k a (closed) term of T1 + BR0;1, where�1 = : : : = �k = 0; deg(�1) = : : : = deg(�l) = 1; deg(�1); : : : ; deg(�m) � 3.Let ��11 ; : : : ;��mm be closed terms in T . Then s := �x�; h�:t(x; h;�1; : : : ;�m) is de�nable asa closed term ~s in T and HA! +BR0;1 ` s =
 ~s, where 
 is the type of s.Proof: Let t[h]0 be built up from n-ary function variables h, the combinators �;� (ofarbitrary �nite type),00, S00, closed terms ��11 ; : : : ;��mm 2 T with deg(�i) � 3 and B0;1. Weshow that �h:t[h] can be de�ned in T (note that this proves the proposition since the typelevel of R1 is 3 and R0 has type level 2).For notational simplicity we assume that �i = 3 for i = 1; : : : ; m. By `logical normalization'we perform all possible �;�-reductions on10 t[h]0 and denote the result by bt[h]0 (note thatHA! ` t[h] =0 bt[h]).11 The outmost constant or variable of bt[h]0 cannot be � or � sinceif bt[h]0 � �t1t2 : : : ti (resp. �t1t2 : : : tj) then i � 2 (resp. j � 3) since bt[h] is of type0. But this contradicts the fact that all possible �;�-reductions have been carried outalready. Hence bt[h] � 00, bt[h] � S(~t[h]), bt[h] � �3i (t0[h]), bt[h] � (hi(t1[h]) : : :(tj [h]))0 orbt[h] � B0;1(t1[h]) : : :(t6[h]). By proposition 4.1 (to be used in the last case only), bt[h]is primitive recursive (in the sense of T ) in h if ~t[h] or (t0[h]f0)0 or (t1[h])0; : : : ; (tj[h])0resp. (t1[h] f1)0; : : : ; (t6[h] f6)0 are primitive recursive in all of there free variables. Heref i are the (possibly empty) tuples of variables needed to reach the ground type 0 (notethat the type levels of f0; f i are � 1 since all the arguments of B0;1 and �3i have typelevels � 2). We now proceed with these terms instead of t[h] (note that in the case oft0[h]f0; ti[h]f i we again �rst have to carry out all possible �;�-reductions since in view ofthe new arguments f0; f i new reductions may be possible). Eventually we end up with termswhich no longer contain B0;1 and hence are primitive recursive. So �h:t[h] is a primitive10Here we consider the terms ��ii as primitives, i.e. we don't carry out �;�-reductions on the �;�-constants occuring in these terms.11Here the notation s[h] means that s contains at most free variables from h.18



recursive functional which can be written as a closed term ~s 2 T . To see thatHA!+BR0;1 `~sh =0 t[h] we argue as follows: Consider a term r � B0;1t1[h] : : : t6[h], where t1[h]; : : : ; t6[h]do not contain B0;1. By proposition 4.1 we can �nd a closed term ~r 2 T such that ~rhn�satis�es (provably in HA!) the instance of BR0;1 for t1[h]; : : : ; t3[h]; n; �. Since BR0;1de�nes �n; �:B0;1(t1[h]; : : : ; t3[h]; n; �) uniquely in ti[h] (provable using extensionality andbar induction or { classically { dependent choice) we have ~rhn� =1 B0;1(t1[h]; : : : ; t3[h]; n; �)for all n0; �1. This can be formalized in e.g. PA! + �01-DC0 + BR0;1 (where �01-DC0 isthe axiom schema of dependent choice of type 0 for arithmetical predicates) using thefacts that all primitive recursive functionals of type 2 are HA!-provable extensional (see[31](2.7.4)) and that =12 �01 is arithmetical. Hence PA! + �01-DC0 + BR0;1 ` ~rhn� =1B0;1(t1[h]; : : : ; t3[h]; n; �). But PA!+�01-DC0+BR0;1 = PA!+ AC0;0ar +BR0;1 = PA!+�01-AC0;0+BR0;1 has a functional interpretation in HA! +BR0;1 and hence HA! +BR0;1 `~rhn� =1 B0;1(t1[h]; : : : ; t3[h]; n; �). Thus for brh :� ~r(h; t4[h]; t5[h]; t6[h]) we have HA! +BR0;1 ` brh =0 B0;1t1[h] : : : t6[h]. The claim now follows inductively by the normalizationargument above using the quanti�er-free rule of extensionality of HA! +BR0;1. 2Remark 4.3 1) Proposition 4.2 is related to a result from [10] (thm.3.2 and remark 1)which in our terminology states that every term (containing only variables type of level� 1) of type level � 2 in T1 +BR0;1 has computation size strictly less then "0.2) Even for closed terms t1 proposition 4.2 is false for dPR! + BR1;1 or dPR! + BR0;2instead of T1 + BR0;1: the system dPA! jn + �11-DC has12 (via negative translation)a functional interpretation in dPR! + BR1;1. But the system is proof-theoreticallystronger than PA (see e.g. [2] pp. 128-129) and proves more recursive functionsto be total than are de�nable in T . The counterexample for dPR! + BR0;2 followsfrom the fact that BR1;1 can be reduced to BR0;2 (see [18],[12]). The essential formaldi�erence between BR0;1 and both BR1;1; BR0;2 is that the corresponding bar recursorconstant B0;1 is of type level 3 whereas both B1;1 and B0;2 are of type level 4 (see also[10],appendix 2).3) Even for closed terms t1 proposition 4.2 is false for T2+BR0;1 instead of T1+BR0;1.This follows from the fact that R� with deg(�) = 2 (which has type level 4) can beused to iterate B0;1 as a type-3-level functional which goes beyond �(< "0)-recursion.In fact T2 +BR0;1 corresponds to T3;4 in [10] where it is shown that the computationsize of terms in T3;4 is < "!! and that this is optimal.12Here �11-DC denotes the schema of dependent choice of type 1 restricted to �11-formulas.19



Corollary 4.4 1) The same functionals of type level � 2 are de�nable in T and indPR! +BR0;1 (but there union T + BR0;1 allows to de�ne more functions).132) Let dPA!1 jn be the extension of dPA!jn obtained by adding the G�odel recursor R1 for type-1-recursion with its axioms. Let A := dPA!1 jn+AC0;0ar +AC-qf. If A ` 8x�9y�A0(x; y),where deg(�) � 1; deg(�) � 2 and A0(x; y) quanti�er-free with only x; y as free vari-ables, then one can extract a closed term t 2 T such thatS! j= 8x�A0(x; tx):3) Besides the usual functional interpretation (combined with negative translation) ofPA in T , PA also has { via PA � dPA!jn+ AC0;0ar { a functional interpretation indPR!+BR0;1. Both functional interpretations are faithful w.r.t. the provably recursivefunctions of PA whereas the interpretation in their union T + BR0;1 is not.Proof: 1) By proposition 4.2, every de�nable functional of type level � 2 is de�nable inT . The other direction follows from the facts that the de�nable function(al)s of types 0and 1 in T are just the �(< "0)-recursive ones, that all �(< "0)-recursive function(al)s oftype level � 2 are provably recursive in dPA!jn+ AC0;0ar (since the extension PA+ of PA byfunction parameters is a subsystem of dPA!jn+ AC0;0ar ) and that this system has (via negativetranslation) a functional interpretation in dPR! + BR0;1 (see the proof of proposition 3.7).2) From the fact that A has (via negative translation) a functional interpretation in T1 +BR0;1 (see again the proof of proposition 3.7) and proposition 4.2 it follows that HA! +BR0;1 ` 8x�A0(x; tx) for some closed t 2 T . The type structure of all continuous set-theoretical functionals C from [23] (called S by Scarpellini) is a model of HA! + BR0;1.The conclusion now follows from the facts that C0 = S0 and C1 = S1 and that 8f 2!!([�]Cf = [�]Sf) for all closed terms � 2 T of type 2.3) follows from the proof of 2). 2Using proposition 3.7 and proposition 4.2 we obtain that PA!; T su�ces for a pointwisen.c.i. of the modus ponens rule:Proposition 4.5 Let A;B be prenex formulas in L(PA) and (A ! B)pr some prenexnormal form of A! B. Then there are functionals � 2 dPR! +BR0;1 such that:13Note that each closed term t2 2 dPR! + BR0;1 represents a functional in S! (so that the comparisonwith the type-2-functionals de�nable in T makes sense). This can be seen e.g. by interpreting t in the modelof all continuous set-theoretical functionals C from [23] since C1 = !!.20



If �A;�(A!B)pr 2 S! are continuous14 then also �(�A;�(A!B)pr) 2 S! are continuous andif in addition (1) S! j= (�A n:c:i:A)^ (�(A!B)pr n:c:i: (A! B)pr);then (2) S! j= �(�A;�(A!B)pr) n:c:i: B:Furthermore if �A;�(A!B)pr are closed terms of T then �(�A;�(A!B)pr) can e�ectively bewritten as functionals in T .As in proposition 3.7 this generalizes to the case where A;B contain function parameters�; � yielding � as functionals in �A;�(A!B)pr ; �; � with ��; �:�(�A;�(A!B)pr ; �; �) 2 T if�A;�(A!B)pr 2 T .Proof: The �rst part follows from proposition 3.7 using the fact that the extensional typestructure C of all continuous functionals from [23] (denoted by S in [23]) is a model ofPA! + BR0;1, C1 = S1, C2 � S2 and the fact that `�A;�(A!B)pr 2 S! continuous' i�`�A;�(A!B)pr 2 C' since the type levels of these functionals are � 2.The second part follows using proposition 4.2 2Remark 4.6 Note that for every IN-true prenex formula A 2 L(PA) there are alwayscontinuous functionals �A 2 S! satisfying the n.c.i. of A: apply unbounded search to �ndthe least hx1; : : : ; xki such that A0(x1; h1x1; : : :). Furthermore by bounded search one canconstruct uniformly in �A functionals ��A such that the implication(�A n:c:i: A)) (��A n:c:i A) ^ (��A are continuous)holds for all �A 2 S!.Proposition 4.5 implies the following result (which does not follow from the approaches tothe no-counterexample interpretation via cut-elimination or functional interpretation)Corollary 4.7 The n.c.i. of PA in T (or -equivalently { by all �(< "0)-recursive function-als) satis�es Kreisel's condition (�) in the following sense: Let A;B 2 L(PA) be prenex.If �A n:c:i: A is true for some tuple of closed terms �A 2 Tand PA ` A! B;then one can construct �B 2 T such that�B n:c:i: B is true:14Here we assume that �A;�(A!B)pr have the appropriate types to make them candidates for the n.c.i.of A resp. (A! B)pr. 21



Proof: By functional interpretation one extract �(A!B)pr 2 T such thatPA! ` �(A!B)pr n:c:i: (A! B)pr;where (A ! B)pr is any prenex normal form of A ! B. The corollary now follows from4.5. 2.Remark 4.8 By inspecting carefully the instances of BR0;1 used in the proof of proposition3.7 for given �A;�(A!B)pr 2 T and using the fact that proposition 4.1 can be formalizedin HA! there should be no problem to obtain corollary 4.7 also as a rule w.r.t. to PA!-provability, i.e.PA! ` �A n:c:i: A) PA! ` �B n:c:i: B (even HA! ` �B n:c:i: B):However we will not spell out the details here.In [17], Kreisel gives a de�nition of an `interpretation of a theory T in a constructive systemF ' which essentially replaces the condition (�) from his previous de�nition in [15] by therequirement (�0) : the interpretation An of A implies A logically:Kreisel mentions in his discussion in remark 2.2 of [17] that this condition is satis�ed forthe n.c.i. of predicate logic as well as of PA only if `logically' is understood in the sense of(classical) second-order logic, i.e. �rst-order logic extended by function quanti�er and theaxiom of choice schema 8x9y A(x; y)! 9f8xA(x; fx):(�) does not imply (�0) since the trivial interpretation mentioned in [15](pp.248-249) satis�es(�) but not (�0). In the other direction (�0) does not imply (�) either. E.g. the n.c.i. ofPAn+1 in Tn trivially satis�es (�0) (again in the sense of second-order logic) but does notsatisfy (�) by corollary 2.4 above.In [19] Kreisel formulates both (�0) and a version of (�) which reads as follows`Having made a guess at A�, which, in the case of the no-counterexample interpretationabove is A0(F; f), we try to �nd, for each axiom A, a functional sA such thatP ` A�(sA; t) for variable t;and for each rule of inference, deriving A from A and A say, a functor �A such thatP ` A�[�A(s1; s2); t] holds provided both P ` A�(s1; t1) and P ` A�(s2; t2) hold (forvariables t1 and t2 of appropriate type)' (p. 378).This is stronger than the previous formulation of (�) from [15] by requiring the existenceof functors which perform the rules pointwise (for provably correct interpretations for A22



and A) but also weaker by assuming the P-provability of these interpretations. Howeverthe latter does not change the failure of the condition for the n.c.i. of PAn+1 in Tn.Finally we consider Kreisel's condition (
) from his de�nition of an interpretation as givenin [15]. For the n.c.i. of PA in T this condition spells out as follows(
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