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Foundational and mathemati
al usesof higher typesUlri
h Kohlenba
hBRICS�Department of Computer S
ien
eUniversity of AarhusNy MunkegadeDK-8000 Aarhus C, Denmarkkohlenb�bri
s.dkDedi
ated to Solomon Feferman for his 70th BirthdayAbstra
tIn this paper we develop mathemati
ally strong systems of analysis inhigher types whi
h, nevertheless, are proof-theoreti
ally weak, i.e. 
onser-vative over elementary resp. primitive re
ursive arithmeti
. These systemsare based on non-
ollapsing hierar
hies (�n-WKL+; 	n-WKL+) of prin
ipleswhi
h generalize (and for n = 0 
oin
ide with) the so-
alled `weak' K�onig'slemma WKL (whi
h has been studied extensively in the 
ontext of se
ond or-der arithmeti
) to logi
ally more 
omplex tree predi
ates. Whereas the se
ondorder 
ontext used in the program of reverse mathemati
s requires an en
odingof higher analyti
al 
on
epts like 
ontinuous fun
tions F : X ! Y betweenPolish spa
es X;Y , the more 
exible language of our systems allows to treatsu
h obje
ts dire
tly. This is of relevan
e as the en
oding of F used in reversemathemati
s ta
itly yields a 
onstru
tively enri
hed notion of 
ontinuous fun
-tions whi
h e.g. for F : ININ ! IN 
an be seen (in our higher order 
ontext)�Basi
 Resear
h in Computer S
ien
e, Centre of the Danish National Resear
h Foundation.1



to be equivalent to the existen
e of a 
ontinuous modulus of pointwise 
onti-nuity. For the dire
t representation of F the existen
e of su
h a modulus isindependent even of full arithmeti
 in all �nite types E-PA! plus quanti�er-free 
hoi
e, as we show using a priority 
onstru
tion due to L. Harrington.The usual WKL-based proofs of properties of F given in reverse mathemati
smake use of the enri
hment provided by 
odes of F , and WKL does not seemto be suÆ
ient to obtain similar results for the dire
t representation of F inour setting. However, it turns out that 	1-WKL+ is suÆ
ient.Our 
onservation results for (�n-WKL+; 	n-WKL+) are proved via a newelimination result for a strong non-standard prin
iple of uniform �01-bounded-ness whi
h we introdu
ed in 1996 and whi
h implies the WKL-extensions stud-ied in this paper.1 Introdu
tionThis paper addresses a 
entral theme of proof theory expressed by the followingquestion:`What parts of ordinary mathemati
s (in parti
ular of analysis) 
an be 
arried outin 
ertain restri
ted formal systems?'The relevan
e of this question is twofold:1) Foundational relevan
e: suppose a formal system TPA allows to formalizea great amount of mathemati
s but 
an be shown (by restri
ted means) to bea 
onservative extension of �rst order Peano Arithmeti
 PA, then that part ofmathemati
s has an arithmeti
al foundation (partial realization of H. Weyl'sprogram, see S. Feferman's dis
ussion in [8℄).If we work in a system TPRA whi
h 
an be shown (�nitisti
ally) even to be
onservative over Primitive Re
ursive Arithmeti
 PRA and identify (following[35℄) PRA with �nitism, then the parts of mathemati
s whi
h 
an be 
arriedout in TPRA have a �nitisti
 foundation (partial realization of D. Hilbert'sprogram, see e.g. [33℄).2) Mathemati
al relevan
e: here the guiding question is`What more do we known if we have proved a theorem by restri
ted meansthan if we merely know that it is true?' (G. Kreisel)The aim is to get additional mathemati
al information out of the fa
t that a
ertain theorem S has been proved by 
ertain restri
ted means. Su
h addi-tional information may be the extra
tability of a realizing 
onstru
tion for an2



existential statement or of an algorithm or a numeri
al bound for a 89-theoremby unwinding the given proof.Both motivations are of 
ourse 
losely related and resear
h on them has mutuallyin
uen
ed ea
h other: e.g. a proof of a �02-theorem 
arried out in a system whi
h
an be (e�e
tively) redu
ed to PRA allows to extra
t at least a primitive re
ursivealgorithm. In the other dire
tion, e.g. our analysis of proofs in approximation theory(whi
h used the prin
iple of the attainment of the maximum of f 2 C[0; 1℄, see [20℄)led us to an elimination pro
edure of the weak K�onig's lemma WKL over a varietyof subsystems of arithmeti
 in all �nite types thereby 
ontributing to `1)' above (see[19℄). Likewise our treatment of e.g. the Bolzano-Weierstra� prin
iple in [26℄ via anelimination te
hnique of Skolem fun
tions yielded also new 
onservation results for
omprehension prin
iples ([27℄).However, there are also important di�eren
es due to the di�erent points emphasizedin 1) and 2):Whereas there are hardly foundational (understood in the sense of Hilbert) reasons tostudy systems weaker than PRA, merely primitive re
ursive algorithms and boundsare in most 
ases mu
h too 
omplex to be of any mathemati
al value. So on the onehand further restri
tions are needed to guarantee the extra
tability of mathemati-
ally more interesting data whereas on the other hand e.g. proofs of large 
lasses oflemmas (having a 
ertain logi
al form) 
an be shown not to 
ontribute to the 
om-plexity or growth of algorithms or bounds extra
ted from proofs of theorems usingthese lemmas. Hen
e su
h lemmas 
an be treated simply as axioms (no matter hownon-
onstru
tive their proofs might be) in the 
ourse of the analysis of a given proofs.Also, for su

essful unwindings the 
omplexity of the proof transformations used is
riti
al. It has turned out that methods using fun
tionals of �nite type like appropri-ate versions of G�odel's fun
tional interpretation or modi�ed realizability 
ombinedwith tools like negative translation and/or the Friedman-Dragalin translation aremost useful (in parti
ular 
ompared to te
hniques whi
h try to avoid any passagethrough higher types, see [29℄).Whereas we have fo
used on `2)' in several publi
ations (see [21℄,[20℄,[24℄ among oth-ers), this paper addresses `1)' to whi
h S. Feferman has 
ontributed so profoundly.We study mathemati
al strong, but nevertheless PRA-redu
ible, systems in all �nitetypes emphasizing the need of third order variables already for a faithful formaliza-tion of 
ontinuous fun
tions between Polish spa
es.Let us re
all very brie
y some of the history of resear
h on `1)'. As Feferman pointedout in [7℄, `Hermann Weyl initiated a program for the arithmeti
al foundation of3



mathemati
s' in his book `Das Kontinuum' ([39℄. In this book, Weyl observed thatlarge parts of analysis 
an be developed on the basis of arithmeti
al 
omprehension.This theme was further developed in the 50's by P. Lorenzen among others. In thelate 70's Feferman [5℄ and G. Takeuti [36℄ independently designed formal systemsbased on arithmeti
al 
omprehension in the framework of higher order arithmeti
whi
h are 
onservative over PA. For this property it is important that the s
hemaof indu
tion is restri
ted to arithmeti
al formulas only.1 Work on the program of so-
alled reverse mathemati
s by H. Friedman, S. Simpson and others has shown thatalmost all of the mathemati
s that 
an be developed based on arithmeti
al 
ompre-hension at all 
an also be 
arried out if indu
tion is restri
ted in this way. This workuses a se
ond order fragment ACA0 (formulated in the language of se
ond orderarithmeti
) of the system from [5℄ (whi
h is formulated in the language of fun
tion-als of all �nite types). Via appropriate representations and 
odings of higher obje
ts(like 
ontinuous fun
tions between Polish spa
es) a great deal of mathemati
s 
anbe developed already in ACA0 (see [34℄ for a 
omprehensive treatment).Feferman's system, however, allows a more dire
t treatment of su
h obje
ts andtheir mathemati
s and also 
ontains a strong uniform (`expli
it') version of arith-meti
al 
omprehension via a non-
onstru
tive �-operator. These features hold in aneven stronger form for theories with 
exible (variable) types whi
h were developedsu

essively by Feferman in his framework of expli
it mathemati
s in [4℄,[6℄,[7℄ 
ulmi-nating in a formal system 
alled W (where `W' stands for `Weyl') whi
h was shownto be proof-theoreti
ally redu
ible to and 
onservative over PA in [11℄. The enor-mous mathemati
al power and 
exibility of the system W led Feferman in [9℄ to theformulation of the thesis that all (or almost all) s
ienti�
ally appli
able mathemati
s
an be developed in W.In the late 70's, H. Friedman observed that large parts of the mathemati
s that 
an be
arried out in ACA0 are already formalizable in a subsystem WKL0 whi
h insteadof the s
hema of arithmeti
al 
omprehension is based on the binary K�onig's lemma(for quanti�er-free trees) and �01-indu
tion only (see again [34℄ for a 
omprehensivetreatment of ordinary mathemati
s in WKL0). This fa
t is of foundational rele-van
e sin
e WKL0 
an be proof-theoreti
ally redu
ed to and is �02-
onservative overPRA (H. Friedman (1976, unpublished) and [32℄; for a histori
al dis
ussion whi
hin parti
ular points out various errors in the literature on WKL see [23℄ (p.69)).1As was shown by Feferman in [5℄, the 
orresponding system with full indu
tion is proof-theoreti
ally stronger than PA. In [36℄, Takeuti 
onsiders in addition the variant where param-eters (ex
ept arithmeti
al ones) are not permitted in the s
hema of arithmeti
al 
omprehension. Inthis 
ase the resulting system is 
onservative over PA even in the presen
e of the full s
hema ofindu
tion. 4



In [19℄ we introdu
ed an extension (in the spirit of Feferman's PA-
onservative sys-tem from [5℄ mentioned above) of WKL0 to all �nite types and proved among otherthings that this extension still 
an be proof-theoreti
ally redu
ed to PRA and is�02-
onservative over PRA.Although this extension is already mu
h more 
exible than the system WKL0, theuse of WKL still requires a 
ompli
ated en
oding of analyti
al obje
ts. While work-ing on `2)' mentioned above and investigating what parts of analysis produ
e onlyprovable re
ursive fun
tion(al)s whi
h 
an be bounded by polynomials (see [24℄ for asurvey) we fa
ed the problem that already the formulation of WKL involves 
odingdevi
es of exponential growth. That is why we introdu
ed a non-standard axiom Fwhi
h together with some form of quanti�er-free 
hoi
e proves a strong prin
iple ofuniform boundedness �01-UB whi
h allows to give short proofs of the usual WKL-appli
ations in analysis relative to very weak (polynomially bounded) systems (see[23℄,[25℄) but does not 
ontribute to the growth of provably re
ursive fun
tionals.This axiom as well as the prin
iple of uniform boundedness is `non-standard' in thesense that it is not true in the full set-theoreti
 type stru
ture. Nevertheless all of itsanalyti
 (i.e. se
ond order) 
onsequen
es are true. In [23℄ we also studied a restri
tedversion F� of F whi
h yields a 
orrespondingly restri
ted version of uniform bound-edness whi
h is suÆ
ient for many appli
ations (although a bit more 
ompli
ated touse, see [25℄) but whi
h allows a very easy proof-theoreti
al elimination. In se
tion3 of this paper we show that in the presen
e of the axiom of extensionality and aform of quanti�er-free 
hoi
e, F a
tually is implied by F� so that in this 
ontext(whi
h we use throughout this paper) the F�-elimination applies to proofs based onF as well. The proof of this fa
t uses an argument due to Grilliot [14℄. The resultallows to 
onstru
t a PRA-redu
ible �nite type system T � whi
h is based on �01-UB.The foundational relevan
e of this is due to fa
t that T � allows to treat 
ontinuousfun
tions between Polish spa
es dire
tly as 
ertain type-2-fun
tionals and to prove allthe usual WKL-
onsequen
es known from reverse mathemati
s without the 
oding ofsu
h obje
ts used reverse mathemati
s. We investigate that 
oding and show that itta
itly yields a 
onstru
tively enri
hed representation of 
ontinuous fun
tions. Morepre
isely, we show that already for 
ontinuous fun
tions f : ININ ! IN, the represen-tation used in reverse mathemati
s entails the existen
e of a (
ontinuous) modulusof pointwise 
ontinuity fun
tional, whi
h for the dire
t formulation of su
h fun
tionsas type-2-fun
tionals is not even provable in E-PA!+QF-AC1;0 (arithmeti
 in all �-nite types with full indu
tion and G�odel's T plus quanti�er-free 
hoi
e, see below fora pre
ise de�nition). In the presen
e of arithmeti
al 
omprehension, the di�eren
ebetween both representations disappears, sin
e the existen
e of su
h a modulus of5



pointwise 
ontinuity 
an be proved using arithmeti
al 
omprehension and QF-AC1;0.However, for theories based on WKL instead this does not seem to be possible.The main part of this paper (se
tions 5-7) analyzes that greater mathemati
al strengthof the non-standard prin
iple �01-UB 
ompared to WKL in terms of standard ex-tensions of WKL. We develop a non-
ollapsing hierar
hy �n-WKL+ of extensionsof WKL. Basi
ally, �n-WKL+ extends WKL from binary trees whi
h are given byquanti�er-free predi
ates to binary trees whi
h are given by formulas belonging to alarger 
lass �n (see se
tion 5 below for details). �0-WKL+ is equivalent to WKL,but for n � 1, �n-WKL+ is not even provable in E-PA!+QF-AC1;0 + � (here � isFeferman's non-
onstru
tive �-operator mentioned above). Nevertheless, �n-WKL+is provable in T � for all n 2 IN so that by the results mentioned before the whole hi-erar
hy 
an be redu
ed proof-theoreti
ally to PRA. Already �2-WKL+ (and even avariant 	1-WKL+ in between this prin
iple and WKL) allows to 
arry out the usualWKL-appli
ations now even for the dire
t representation of 
ontinuous fun
tionsinstead of their 
onstru
tively enri
hed en
oding the WKL-based proofs in reversemathemati
s rely on. The (PRA-redu
ible) system T , whi
h results from T � berepla
ing �01-UB by �1-WKL+ := Sn2INf�n-WKL+g, 
an be viewed as a standardapproximation to T �.One might also ask for an expli
it version (with 
exible types) of su
h systems basedon (extensions of) WKL. However, things are quite deli
ate in this 
ase. Alreadyfor the uniform (`expli
it') version UWKL of WKL (analogously to the uniform ver-sion of arithmeti
al 
omprehension given by �), the strength of the resulting system
ru
ially depends on the amount of extensionality available (see [30℄).2 Des
ription of the theories E-GnA!, E-PRA!and E-PA!The set T of all �nite types is de�ned indu
tively by(i) 0 2 T and (ii) �; � 2 T) �(�) 2 T:Terms whi
h denote a natural number have type 0. Elements of type �(�) arefun
tions whi
h map obje
ts of type � to obje
ts of type � .The set P � T of pure types is de�ned by(i) 0 2 P and (ii) � 2 P) 0(�) 2 P:Bra
kets whose o

urren
es are uniquely determined are often omitted, e.g. wewrite 0(00) instead of 0(0(0)). Furthermore we write for short ��k : : : �1 instead of6



�(�k) : : : (�1). Pure types 
an be represented by natural numbers: 0(n) := n+ 1.Our theories T used in this paper are based on many{sorted 
lassi
al logi
 formu-lated in the language of fun
tionals of all �nite types plus the 
ombinators ��;� ;�Æ;�;�whi
h allow the de�nition of �{abstra
tion.The systems E-GnA! (for all n � 1) are introdu
ed in [23℄ to whi
h we refer for de-tails. E-GnA! has as primitive relations =0;�0 for obje
ts of type 0, the 
onstant 00,fun
tions min0;max0; S00 (su

essor), A0; : : : ; An, where Ai is the i{th bran
h of theA
kermann fun
tion (i.e. A0(x; y) = y0; A1(x; y) = x+ y; A2(x; y) = x � y; A3(x; y) =xy; : : :), fun
tionals of degree 2: �1; : : : ;�n, where �1fx = max0(f0; : : : ; fx) and �iis the iteration of Ai�1 on the f{values for i � 2, i.e. �2fx = xPi=0 fi;�3fx = xQi=0 fi; : : :.We also have a bounded sear
h fun
tional �b and bounded predi
ative re
ursion pro-vided by re
ursor 
onstants ~R� (where `predi
ative' means that re
ursion is possibleonly at the type 0 as in the 
ase of the (unbounded) Kleene-Feferman re
ursors bR�).In this paper our systems always 
ontain the axioms of extensionality(E) : 8x�; y�; z��(x =� y ! zx =� zy)for all �nite types (x =� y is de�ned as 8z�11 ; : : : ; z�kk (xz1 : : : zk =0 yz1 : : : zk) where� = 0�k : : : �1).In [23℄ we had in addition to the de�ning axioms for the 
onstants of our theories alltrue senten
es having the form 8x�A0(x), where A0 is quanti�er{free and deg(�) � 2,added as axioms.2By `true' we refer to the full set{theoreti
 model S!. In given proofs of 
ourse onlyvery spe
ial universal axioms are used whi
h 
an be proved in suitable extensions ofour theories. Nevertheless one 
an in
lude them all as axioms if one is only insterestedin the applied aspe
t `2)' dis
ussed above, sin
e they (more pre
isely their proofs)do not 
ontribute to the provable re
ursive fun
tion(al)s of the system. In parti
ularthis 
overs all instan
es of the s
hema of quanti�er-free indu
tion. In this paper,however, we in
lude only the s
hema of quanti�er-free 
hoi
e to E-GnA! insteadof taking arbitrary universal axioms, sin
e we are interested in proof-theoreti
alredu
tions.E-PRA! results if we add the fun
tional�it0yf =0 y; �itx0yf =0 f(x;�itxyf)2The restri
tion deg(�) � 2 has a te
hni
al reason dis
ussed in [23℄.7



to E-G1A! := Sn2!fE-GnA!g: The system E-PRA! is equivalent to Feferman's sys-tem E-dPA!jn from [5℄ sin
e �it allows (relative to E-G1A!) to de�ne the predi
ativere
ursor 
onstants bR� (see [23℄).E-PA! is the extension of E-PRA! obtained by the addition of the s
hema of fullindu
tion and all (impredi
ative) primitive re
ursive fun
tionals in the sense of [13℄.The s
hema of full 
hoi
e is given byAC�;� : 8x�9y�A(x; y)! 9Y �(�)8x�A(x; Y x); AC := [�;�2TfAC�;�g:The s
hema of quanti�er-free 
hoi
e QF-AC�;� is de�ned as the restri
tion ofAC�;� to quanti�er-free formulas A0.3The theory T + � results from T if we add the non-
onstru
tive �-operator �2 to Ttogether with the 
hara
terizing axiom�(f) = 8><>: the least x su
h that f(x) =0 0, if 9x0(f(x) =0 0)0; otherwise.Notation: For � = 0�k : : : �1, we de�ne 1� := �x�11 : : : x�kk :10, where 10 := S0:De�nition 2.1 1) Between fun
tionals of type � we de�ne the relation ��:8><>: x1 �0 x2 :� x1 � x2;x1 ��� x2 :� 8y�(x1y �� x2y);2) 8><>: min0(x01; x02) := min(x1; x2);min�� (x��1 ; x��2 ) := �y� :min�(x1y; x2y):In the following we will need the de�nition of the binary (`weak') K�onig's lemma asgiven in [38℄:De�nition 2.2 (Troelstra(74))WKL:� 8f 1(T (f) ^ 8x09n0(lth n =0 x ^ fn =0 0) ! 9b �1 �k:18x0(f(bx) =0 0)),whereTf :� 8n0; m0(f(n �m) =0 0! fn =0 0) ^ 8n0; x0(f(n � hxi) =0 0! x �0 1)(i.e. T (f) asserts that f represents a 0,1{tree).3Throughout this paper A0; B0; C0; : : : denote quanti�er-free formulas.8



3 On two non-standard prin
iplesIn this se
tion we in parti
ular prove a new 
onservation result for the non-standardaxiom F whi
h was introdu
ed �rst in [23℄4 (and has been applied e.g. in [25℄):F :� 8�2(0); y1(0)9y0 �1(0) y8k08z �1 yk(�kz �0 �k(y0k)):We 
all this axiom `non-standard' sin
e it does not hold in the full set-theoreti
 typestru
ture S!. Nevertheless its use 
an be eliminated from 
ertain proofs therebyyielding 
lassi
ally true results. This has been dis
ussed extensively in [23℄ to whi
hwe refer for further information. In that paper we mainly made use of a weakerversion F� of F whi
h allows a dire
t proof-theoreti
 elimination whereas the elim-ination of F was based on a model-theoreti
 argument. In this paper however weneed the full version F . We show { using an argument known as Grilliot's tri
k in the
ontext of re
ursion theory for the 
ountable fun
tionals (see [14℄)5 { that in the fullyextensional 
ontext of theories like E-PRA!+QF-AC1;0, F� a
tually implies F . Thisallows to extend the proof-theoreti
 elimination of F� to F thereby strengtheningresults in [23℄.We apply F via one of its 
onsequen
es, the following prin
iple of uniform �01-boundedness:De�nition 3.1 ([23℄) The s
hema6 of uniform �01{boundedness is de�ned as�01{UB : 8><>: 8y1(0)(8k08x �1 yk9z0 A(x; y; k; z)! 9�18k08x �1 yk9z �0 �k A(x; y; k; z));where A � 9lA0(l) and l is a tuple of variables of type 0 and A0 is a quanti�er{freeformula (whi
h may 
ontain parameters of arbitrary types).Proposition 3.2 ([23℄) Let T :=E-GnA! (n � 2), E-PRA! or E-PA!. ThenT +QF-AC1;0 + F ` �01-UB.Proposition 3.3 ([23℄) E-G3A! + �01-UB ` WKL.4A spe
ial 
ase of F was studied already in [21℄ and 
alled also F in that paper but F0 in [23℄.5This argument re
ently has had a further proof-theoreti
 appli
ation in [30℄.6�01-UB 
an be written as a single axiom. However the s
hemati
 version is easier to apply.9



�01-UB implies the existen
e of a modulus of uniform 
ontinuity for ea
h extensional�1(1) on fz1 : z �1 yg (where `
ontinuity' refers to the usual metri
 on the Bairespa
e ININ):Proposition 3.4 ([23℄)E-G2A! + �01-UB `8�1(1)8y19�18k08z1; z2 �1 y( Vi�0�k(z1i =0 z2i)! Vj�0k(�z1j =0 �z2j)):Remark 3.5 The argument above 
an a
tually be used to show that a sequen
e offun
tionals �1(1)i has a sequen
e of moduli of uniform 
ontinuity on a sequen
e ofsets fz : z �1 yig.As mentioned above, in [23℄ we mainly studied a weaker versionF� :� 8�2(0); y1(0)9y0 �1(0) y8k0; z1; n0( ^i<0n(zi �0 yki)! �k(z; n) �0 �k(y0k))(where, for z�0, (z; n)(k0) :=� zk, if k <0 n and := 0�, otherwise) of F and gavea proof-theoreti
 elimination pro
edure for the use of F� whi
h { relative to so-
alled weakly extensional variants WE-GnA!+QF-AC of our systems E-GnA!+QF-AC1;0+QF-AC0;1 { applies for quite general 
lasses of formulas. In the presen
e ofthe full extensionality axiom (E) we got 
orresponding results if the types involvedwere somewhat restri
ted. We now show that in the presen
e of (E), F is alreadyimplied by F� and so that these results extend to F as well.Proposition 3.6 E-G3A!+QF-AC1;0 + F� ` F:Proof: From [23℄ it follows that E-G3A!+QF-AC1;0+F� proves the following weak-ening of �01-UB:�01{UB� : 8>><>>: 8y1(0)(8k08x �1 yk9z0 A(x; y; k; z)! 9�18k0; x1; n0( Vi<0n(xi �0 yki)! 9z �0 �k A((x; n); y; k; z)));with A � 9l0A0(l) as in �01-UB. �01-UB� 
ombined with (E) in turn yields that(1) 8�1(1); y19�18x; ~x �1 y8k0( �k̂i=0(xi =0 ~xi)! 8z0(�(x; z)k =0 �(~x; z)k)):10



So if �1(1) satis�es the spe
ial 
ase of pointwise 
ontinuity(2) 8x8k09n8m � n(�(x;m)k =0 �xk);then we obtain(3) � is uniformly 
ontinuous for x �1 y and has a modulus of uniform 
ontinuity �.It is easy to see, that (3) implies F (relative to E-G3A!). So it remains to show that(4) E-G3A!+QF-AC1;0 + F� ` (2):Suppose that :(2), i.e. there exist �1(1); k0; x1 su
h that(5) 8n09m � n(�(x;m)k 6= �xk):By QF-AC0;0 (whi
h follows from QF-AC1;0); (5) implies(6) 9f 18n(fn > n ^ �(x; fn)k 6= �xk):Hen
e for xi := x; fi we have(7) 8i08j � i(xj(i) =0 x(i))and (8) 8i0(�(xi; k) 6= �xk):De�ne 	y1 :=0 8><>: 1; if �yk 6= �xk0; if �yk = �xk.Then (9) 8i; j(	xi =0 	xj 6= 	x):Now one 
an apply an argument from [14℄, whi
h 
an be formalized in E-G3A! (see[30℄ for details on this and a further proof-theoreti
 appli
ation of that argument),to derive (10) 9'28f 1('f = 0$ 9x(fx = 0))from (7) and (9). (10), however, 
ontradi
ts F� (relative to E-G3A!+QF-AC1;0),sin
e F� implies that every �2 is bounded on the set of all fun
tions x; n with x �11; n 2 IN, whereas QF-AC1;0 together with (10) yields the existen
e of a fun
tional� su
h that 8f 1(9x0(fx = 0)! f(�(f)) = 0);whi
h obviously is unbounded on this set. 211



Theorem 3.7 Let 8f 1; x09y0A0(f; x; y) be a senten
e of the language of T whereT :=E-GnA! (n � 3), E-PRA! or E-PA!. Then the following rule holds8>>>>><>>>>>: T + QF-AC1;0+QF-AC0;1 + F ` 8f 1; x09y0A0(f; x; y)) one 
an extra
t a 
losed term 	001 of T su
h thatT ` 8f 1; x0A0(f; x;	fx):Proof: The theorem follows from proposition 3.6 together with theorem 4.21 from[23℄. 24 Continuous fun
tions: dire
t representations ver-sus 
odesA fun
tional �1(1) is 
ontinuous at x1 if8k09n08y1( n̂i=0(xi =0 yi)! k̂j=0(�xj =0 �yj)):� is 
ontinuous if it is 
ontinuous at every x.Using a suitable so-
alled standard represenation of 
omplete seperable metri
 (`Pol-ish') spa
es X (whi
h in turn relies on a representation of real numbers as Cau
hysequen
es of rational numbers with �xed rate of 
onvergen
e), elements of X 
an berepresented by number-theoreti
 fun
tions x1 and, moreover, every su
h fun
tion 
anbe 
onsidered as a representative of a uniquely determined element of X (see [2℄ and[20℄ for details). On these representatives we have a pseudo metri
 dX . The elementsof X 
an be identi�ed with the equivalen
e 
lasses w.r.t. x =Y x :� (dX(x; y) =IR 0):Fun
tions G : X ! Y between Polish spa
es therefore are just fun
tionals �1(1)Gwhi
h repe
t =X ;=Y , i.e.8x1; y1(x =X y ! �Gx =Y �Gy):�G represents a 
ontinuous fun
tion G : X ! Y if8x18k09n08y1(dX(x; y) �IR 1n+ 1 ! dY (�Gx;�Gy) �IR 1k + 1):This de�nition is just the usual "-Æ{de�nition of 
ontinuous fun
tions. One 
ould also
onsider to de�ne 
ontinuity as sequential 
ontinuity. In the presen
e of QF-AC0;112



(whi
h is in
luded in all the systems we 
onsider in this paper) both de�nitions areequivalent as we will show now.As usual G : X ! Y is 
alled sequentially 
ontinuous in x i�8x1(0)(�) ( limn!1xn =X x! limn!1�G(xn) =Y �G(x));where ( limn!1xn =X x) :� 8k09n08m �0 n(dX(xm; x) � 1k+1).Proposition 4.1 The theory E-G3A!+QF-AC0;1 proves8G : X ! Y 8x 2 X(G is sequentially 
ontinuous at x$ G is "{Æ{
ontinuous at x):Proof: ` ': Obvious!`!': Suppose that G is not "{Æ{
ontinuous at x, i.e.(�) 9k08n09y1( dX(x; y) <IR 1n + 1 ^ dY (�G(x);�G(y)) >IR 1k + 1| {z }�:A2�01 ):By 
oding pairs of natural numbers and numbers into fun
tions one 
an express 9y1Ain the form 9y1A0. Hen
e QF-AC0;1 applied to (�) yields9k0; �1(0)8n0(dX(x; �n) <IR 1n + 1 ^ dY (�G(x);�G(�n)) >IR 1k + 1);i.e. (�n)n2IN represents a sequen
e of elements of X whi
h 
onverges to x. But: limn!1�G(�n) =IR �G(x) and thus G is not sequentially 
ontinuous at the pointrepresented by x. 2Remark 4.2 The use of QF-AC0;1 in the proof of `!' in the proposition above isunavoidable already for X = Y = IR sin
e in this 
ase the impli
ation is known tobe unprovable even in Zermelo{Fraenkel set theory ZF, see [16℄,[15℄ and [12℄.We now dis
uss the indire
t representation of 
ontinuous fun
tions G : X ! Ybetween Polish spa
es X; Y via 
odes g as used in the 
ontext of reverse mathe-mati
s (see de�nition II.6.1 in [34℄). Sin
e reverse mathemati
s takes pla
e in thelanguage of se
ond-order arithmeti
 (instead of a language with higher types), thedire
t representation of su
h 
ontinuous fun
tion whi
h is available in our systemsis not possible. We will show that provably in E-G3A!+QF-AC1;0, for every su
h13




ode g there exists a dire
t representation in our sense of the fun
tion 
oded by g,but that the reverse dire
tion in general is not even provable in E-PA!+QF-AC. Thelatter phenomenon is due to the fa
t that the indire
t representation of 
ontinuousfun
tions G via 
odes g ta
itly yields a 
onstru
tive enri
hment of the dire
t rep-resentation of G by a modulus of pointwise 
ontinuity. To be more spe
i�
, let us
onsider the spe
ial 
ase X = Baire spa
e, Y = IN (with the usual metri
s). Thenthe existen
e of a 
ode g for a 
ontinuous fun
tional �2 is (relative to E-G3A!+QF-AC1;0) equivalent to the existen
e of a 
ontinuous modulus of pointwise 
ontinuityfun
tional 	2 for �2 whi
h in turn is equivalent to the existen
e of an asso
iate of �in the sense of the Kleene/Kreisel 
ountable fun
tionals.De�nition 4.3 1) �1 is a neighborhood fun
tion if(a) 8�19n0(�(�n) > 0) and(b) 8m;n(m v n ^ �(m) > 0 ! �(m) = �(n)); where `m v n' expressesthe (elementary re
ursive) predi
ate that the sequen
e en
oded by m is aninitial segment of the one en
oded by n.2) �1 is an asso
iate of �2 if(a) 8�19n0(�(�n) > 0) and(b) 8�; n(n least s.t. �(�n) > 0! �(�n) = �� + 1):Without loss of generality we may assume that an asso
iate of �2 is a neighborhoodfun
tion, sin
e otherwise we de�ne~�(n) := 8><>: �(m); where m shortest initial segment of n s.t. �(m) > 0, if existing0; otherwise.Proposition 4.4 E-G3A!+QF-AC1;0 proves (uniformly in �2) that the followingproperties are pairwise equivalent:1) 9f(f is an r.m.-
ode of �),72) 9�1(� is an asso
iate of �),7By `r.m-
ode' we here refer to de�nition II.6.1 in [34℄ spe
ialized to bA := ININ and bB := IN. Weidentify the set � in that de�nition with its 
hara
teristi
 fun
tion f .14



3) 9!2�(!� is a 
ontinuous modulus of pointwise 
ontinuity for �):Proof: `1)! 3)': Let f be a r.m.-
ode of �2. Sin
e � is total, we have88�19a0; r0; b0; s0(d(�; �i:(a)i) <IR 2�r ^ (a; r)f(b; s) ^ 2�s <Q 1)and hen
e8�19a0; r0; b0; s0; l0( d(�; �i:(a)i) + 2�l <IR 2�r ^ (a; r)f(b; s) ^ 2�s <Q 1| {z }�:9v0A0(f;�;a;r;b;s;l;v) );where A0 is quanti�er-free. By quanti�er-free indu
tion and QF-AC1;0 we obtain afun
tional X2 su
h that8�(X� minimal s.t. A0(f; �; �61(X�); : : : ; �66(X�))):It is 
lear that X is 
ontinuous9 and that �� = �63(X�): With X, also!�� :=Q 2��65(X�)is 
ontinuous. One easily veri�es that !� is a modulus of pointwise 
ontinuity for �.`3)! 2)': Let !� be a 
ontinuous modulus of pointwise 
ontinuity for �2. Then(1) 8�; 
(�(!��) =0 
(!��)! �� =0 �
)and (2) 8�9n0(!�(�; n) � n)(where �; n is the 
ontinuation of �n with 0).De�ne �(n) := 8><>: �(�i:(n)i) + 1; if !�(�i:(n)i) � lth(n)0; otherwise.(2) yields 8�9k(�(�k) > 0):8As in reverse mathemati
s we represent real numbers as Cau
hy sequen
es with �xed rate of
onvergen
e. As a 
onsequen
e of this, <IR2 �01.9Here we use the fa
t that A0(f; �; a; r; b; s; l; v) 
an be written as tA0(f; �; a; r; b; s; l; v) =0 0 fora suitable 
losed term tA0 of E-G3A! and that every 
losed term t2 of E-G3A! is provably pointwise
ontinuous. 15



Assume that �(�k) > 0, then { by (1) and the de�nition of � { !�(�; k) � k ^�(�; k) = �� and therefore �(�k) = �� + 1:`2)! 1)': Let � be an asso
iate for �. By the remark above we may assume that �is a neighborhood fun
tion. De�ne an r.m.-
ode f for � by(a; r)f(b; s) :� �((�i:(a)i)r) > 0 ^ j(�(�i:(a)ir)� 1)� bj < 2�s:This is a quanti�er-free (and hen
e �01-)predi
ate (whi
h we identify with its 
har-a
teristi
 fun
tion). It is straightforward to verify that f satis�es the properties ofan r.m.-
ode and that f is a 
ode for �. We omit the tedious details. 2Remark 4.5 For the equivalen
e between 2) and 3), see also [2℄ (p.143, E.8).Theorem 4.6 E-PA!+QF-AC1;0+QF-AC0;1 does not prove that every 
ontinuousfun
tional �2 has an r.m.-
ode (i.e. that � is 
ontinuous in the sense of reversemathemati
s).Proof: In [31℄(6.4) a type-stru
ture A = hAkik2IN over ! is 
onstru
ted with thefollowing properties:(i) E2jnA1 =2 A2, where E2(f 1) = 0$ 9x(fx = 0);(ii) A is 
losed under 
omputation in the sense of Kleene's s
hemata S1-S9.(iii) there exists a � 2 A2 su
h that � has no asso
iate in A1. By (ii), A is a modelof the restri
tion of E-PA!+QF-AC1;0 to the fragment with pure types only. Mod-ulo the well-known redu
tion to pure types (see [37℄(1.8.5-1.8.8)), E-PA!+QF-AC1;0therefore has a model in whi
h there exists a fun
tional �2 whi
h has no asso
iateand therefore { by the previous proposition { no r.m.-
ode f . Nevertheless, all fun
-tionals �2 of type 2 are 
ontinuous: one 
ould use here an argument due to [14℄to show that the existen
e of a non-
ontinuous fun
tional in A2 would 
ontradi
t(i). However, it requires some 
are to verify that this argument (whi
h usually isformulated for the full type-stru
ture) relativises to A. We therefore use dire
tly the
onstru
tion of A whi
h is based on a 
ertain type-2 fun
tional F : ININ ! IN (
on-stru
ted by L. Harrington using a 
ompli
ated priority 
onstru
tion, see [31℄(4.21))whi
h has the following properties(i) F is 
ontinuous (and therefore has an asso
iate in ININ),(ii) F jnREC is not 
omputable (in the sense of S1-S9) and therefore has no re
ursiveasso
iate, 16



(iii) 1-s
(F ) =REC.A1 :=REC, Ak+1 := f� : Ak ! IN : � 
omputable in F jnREC:gIt is 
lear that every � 2 A2 is 
ontinuous.As a further 
onsequen
e of this, QF-AC0;1 redu
es in A to QF-AC0;0 sin
e8x09f 1A0(x; f)! 8x09y0A0(�i:(y)i): So A j= QF-AC0;1. 2The fa
t that the representation of 
ontinuous fun
tions in reverse mathemati
s via
odes goes together with a 
onstru
tive enri
hment is also used heavily in many proofsof basi
 properties of 
ontinuous fun
tions in the system WKL0, while WKL doesnot seem to be suÆ
ient to prove the same results for our dire
t representation. Wedis
uss this for simpli
ity again for the 
ase of 
ontinuous fun
tions � : ININ ! IN.As we have seen above, reverse mathemati
s treats � via an asso
iate �1. Thisrepresentation allows to prove the uniform 
ontinuity of � on the Cantor spa
e of all0-1-fun
tions by WKL. De�ne a binary tree byf(n) := 8><>: 1; if 8i < lth(n)((n)i � 1) ^ �(n) > 00; otherwise.Sin
e we may assume that � is a neighborhood fun
tion, f satis�es T (f). The
ontraposition of WKL applied to f yields8� �1 19x0(�(�x) > 0! 9x8� �1 1(�(�x) > 0);i.e. �� = �(�minn[�(�n) > 0℄)� 1 is uniformly 
ontinuous on f� : � � 1g.Together with QF-AC0;0, WKL even implies the existen
e of a modulus of uniform
ontinuity fun
tion for 
ontinuous fun
tionals �1(1) on f� : � � 1g (if given by anasso
iate or { equivalently { by an r.m.-
ode). This is due to the fa
t that WKLyields 9k08x09� �1 1(�(hki � �x) = 0)! 9k9� � 18x(�(hki � �x) = 0)and so with QF-AC0;0 (and the fa
t that `9� �1 1(�(hki � �x) = 0)' 
an be writtenas a quanti�er-free formula) using 
ontraposition(+) 8k8� �1 19x(�(hki � �x) > 0)! 9!18k8� � 1(�(hki � �(!k)) > 0):Thus ! is a modulus of uniform 
ontinuity for the fun
tional �1(1) en
oded by �.This argument 
an be adopted to real fun
tions 
oded as in reverse mathemati
s17



and is reponsible for the fa
t that in that 
ontext one 
an prove e.g. that every
ontinuous fun
tion f : [0; 1℄ ! IR is uniformly 
ontinuous and has a modulus ofuniform 
ontinuity.In our dire
t type-2-treatment of 
ontinuous fun
tions � : ININ ! IN as fun
tionals�2 satisfying 8f 19n08g1(fn = gn! �f = �g);the binary tree to whi
h we have to apply K�onig's lemma in order to prove theuniform 
ontinuity of � on ff : f �1 1g is given byTree(n) :� 9g; h �1 1( ^i<lth(n)(g(i) = (n)i = h(i)) ^ �g 6= �h)whi
h no longer is quanti�er-free and apparently does not possess a 
hara
teristi
fun
tion (in E-PA!+QF-AC1;0) whi
h would be ne
essary to apply WKL. So we needan extension of WKL to trees of the form Tree above. To show the existen
e of amodulus of 
ontinuity fun
tion for a 
ontinuous �1(1) on ff : f �1 1g, not eventhis extension is enough sin
e QF-AC no longer suÆ
es to prove the version of thisextension 
orresponding to (+) above.On the other hand { as we saw in proposition 3.4 { the non-standard prin
iple �01-UBeasily proves the existen
e of su
h a modulus fun
tion for arbitrary fun
tionals �1(1)(and also of fun
tions G : [0; 1℄d ! IR represented dire
tly as type-2 fun
tionals; see[23℄,[25℄).In the next se
tion we study extensions �n-WKL+ and 	n-WKL+ of WKL to treesgiven by �n- (resp. 	n-)formulas, where, roughly, a formula is in �n (	n) if it has nalternating bounded fun
tion quanti�ers { starting with a universal (resp. existen-tial) one { in front of a �01-formula.10 For n = 0, these prin
iples are equivalent tothe usual WKL, but from n � 1 (resp. n � 2) on they form a proper hierar
hy (evenrelative to E-PA!+QF-AC1;0+�, where � is Feferman's non-
onstru
tive �-operator
orresponding to the E2-fun
tional). Adopting the argument above, one 
an showthat 	1-WKL+ suÆ
es to prove the existen
e of a modulus of uniform 
ontinuityfor 
ontinuous fun
tionals �2 on ff 1 : f � 1g but also (using the representationof [0; 1℄d; IR from [26℄) for 
ontinuous fun
tions f : [0; 1℄d ! IR (and { via suitablestandard representations { for other Polish spa
es K,Y instead of [0; 1℄d; IR with K10That we allow a universal number quanti�er underneath the bounded fun
tion quanti�ers isusefull for the treatment of 
ontinuous fun
tions G : K ! X for spa
es like K = [0; 1℄d; X = IRinstead of 2IN; ININ. 18




ompa
t) in their dire
t type-2 representation.For all n 2 IN, the prin
iples �n-WKL+ and 	n-WKL+ (whi
h { in 
ontrast to�01-UB { are true in the full set-theoreti
 model) follow from �01-UB (relative toE-G3A!+QF-AC1;0). So by theorem 3.7 (and proposition 3.2), proof-theoreti
allythese extensions of WKL are not stronger than WKL whi
h allows to de�ne PRA-redu
ible systems of analysis whosemathemati
al strength goes beyond that of thesystem WKL0 used in reverse mathemati
s and whi
h in parti
ular allow to treat
ontinuous fun
tions dire
tly without a 
onstru
tively enri
hed representation.We 
lose this se
tion with an open problem whose solution whi
h we 
onje
ture to betrue would relativise the foundational signi�
an
e of WKL for a partial realization ofHilbert's program (see [33℄): It seems unlikely in view of the 
omments above, thatWKL (used in a �nite type extension like E-PRA!+QF-AC1;0 of the base systemRCA0 used in reverse mathemati
s) suÆ
es to prove e.g. the existen
e of a modulusof uniform 
ontinuity for 
ontinuous fun
tions F : [0; 1℄! IR or F : 2IN ! ININ whenthose are represented dire
tly as type-2 obje
ts (and not via r.m.-
odes). Howeverwe have not been able to show its unprovability. This problem has 
onne
tions to ap-parently rather non-trivial questions in the 
ontext of re
ursion theory for 
ontinuousfun
tionals. We now formulate a 
onje
ture whi
h would imply this unprovability:11Conje
ture: There exists a type-stru
ture A = hAnin2IN su
h that1) A is 
losed under �-re
ursion;2) A0 = !;3) A1 is a model of WKL;4) every � 2 A2 is 
ontinuous (in the usual sense);5) there exists a �(f; n) 2 A2 su
h that the restri
tion of � to x 2 ! and f 2 A1with f � 1 does not have an asso
iate in A1.Corollary 4.7 (to the 
onje
ture) E-PRA!+QF-AC1;0+QF-AC0;1+WKL does notprove that every 
ontinuous �1(1) has a modulus of uniform 
ontinuity when restri
tedto 2IN. Thus the prominent role of WKL in the 
ontext of analysis for 
ontinuousfun
tions as 
arried out in reverse mathemati
s 
ru
ially depends on the parti
ular {11We are indebted to Professor Dag Normann for 
orresponden
e about this problem and whi
hled us to formulate it as a 
onje
ture. 19




onstru
tively enri
hed { representation of 
ontinuous fun
tions via 
odes (enfor
edby the restri
ted language of se
ond-order arithmeti
 used in reverse mathemati
s).Proof: By 1)-3), A is a model of (the pure-type fragment of)E-PRA!+QF-AC1;0+QF-AC0;1+WKL. If the (restri
tion of the) fun
tional � from5) had su
h a modulus in A1, then one 
ould 
onstru
t an asso
iate for this restri
tionin A1. 2Remark 4.8 A stronger version of this 
onje
ture results if 1) is repla
ed by `1*)A is 
losed under S1-S9 
omputation'. This strong version implies that even E-PA!+QF-AC1;0+QF-AC0;1+WKL does not prove the existen
e of a modulus of uni-form 
ontinuity for 
ontinuous fun
tions F : 2IN ! ININ.5 Generalization of WKL to more 
omplex trees:�1-WKL+De�nition 5.1 1) A 2 �n ifA � 8f1 �1 s1[a℄9f2 �1 s2[a℄ : : :8(d)fn �1 sn[a℄8x0A0(a; f1; : : : ; fn; x);where A0 is quanti�er-free and a 
ontains all free variables of A and si (whi
hmay have arbitrary types). The fi must not o

ur in a.2) A 2 	n ifA � 9f1 �1 s1[a℄8f2 �1 s2[a℄ : : :9(d)fn �1 sn[a℄8x0A0(a; f1; : : : ; fn; x);where A0 and si as above.3) The 
lasses ��n and 	�n result if we restri
t ourselves to parameters a of typelevel � 1 in A0 and si.Remark 5.2 One 
ould also allow further universal number quanti�ers 8x0 (but noexistential quanti�ers) to o

ur in between the bounded fun
tion quanti�ers in thede�nition of �n. The results of this paper easily extend to this slightly generalized
ase. However, for appli
ations to 
ontinuous fun
tions on Polish spa
es one appar-ently does not need this. So we restri
t ourselves to the de�nition of �n as statedabove in order to improve the readability of the proofs.20



Remark 5.3 In the extensional 
ontext of our theories T we 
an 
ode pairs ofbounded fun
tion quanti�ers of the same sort together:8f1 �1 s18f2 �1 s2A(f1; f2)$ 8f �1 j(s1; s2)A(min1(j1f; s1);min1(j2f; s2))for some monotone fun
tion pairing as used e.g. in [23℄. Analogously for 9f �1 s.De�nition 5.4 The generalization of WKL to �n-trees is given by�n-WKL : 8n09f �1 18~n � nA(f ~n)! 9f �1 18n0A(fn);where A(k0) 2 �n (with arbitrary further parameters of arbitrary types). 	n-WKLis de�ned analogously. �1-WKL:= Sn2!f�n-WKLg:Remark 5.5 1) �n-WKL (	n-WKL) 
an be written as a single axiom for ea
h�xed n.2) Instead of the spe
ial bounding fun
tion �x:1 in �n-WKL we may also havea fun
tion variable g1. All proofs in this paper remain valid. For notationalsimpli
ity and be
ause of the fa
t that this more general version a
tually 
anbe derived from the spe
ial one, we formulate only the latter in this paper.The next proposition shows that in the absen
e of parameters of types � 2 (and soin parti
ular in a se
ond-order 
ontext) there is no point in 
onsidering �n-WKLinstead of WKL.12 For its proof we need the followingLemma 5.6 Let A0(a; g1; y0) be a quanti�er-free formula of T :=E-GnA! (n � 3),E-PRA! or E-PA! 
ontaining (in addition to g; y) only parameters a of type levels� 1 and let s be a term of T 
ontaining at most a as free variables. Then one 
an
onstru
t a �01-formula B(a) of T (
ontaining only a free) su
h thatT + WKL ` 8a(B(a)$ 9g �1 s[a℄8y0A0(a; g; y)):Proof: For T =E-PRA! and T = E-PA! this follows from (the proofs of) proposition4.14 and 
orollary 4.15 in [19℄. The use of the modulus ~txyk of pointwise 
ontinuityin y used in the proof of proposition 4.14 in [19℄ 
an easily be repla
ed by a modulusbtxk of uniform 
ontinuity on fy : y �1 sxg. For 
losed t 2E-GnA! su
h a modulus bt
an be 
onstru
ted in E-GnA! by the method of [18℄ sin
e the majorization argumentused there is available in E-GnA! as was shown in [23℄. 212This is in sharp 
ontrast to the 
ase where arbitrary parameters are allowed as we will seebelow. 21



Proposition 5.7 Let m;n � 0. Over T :=E-GkA! (k � 3), E-PRA! or E-PA! thefollowing prin
iples are equivalent:(i) WKL, (ii) �0-WKL, (iii) 	0-WKL, (iv) ��m-WKL, (v) 	�n -WKL.Proof: We �rst show the followingClaim: Let A(a) be a ��n (or 	�n ) formula 
ontaining only parameters a of typedegree � 1. Then one 
an 
onstru
t a �01-formula B(a) su
h thatT + WKL ` A(a)$ B(a):Proof of the 
laim: We pro
eed by meta-indu
tion on n:n = 0 : In this 
ase A 2 �01 and so B := A suÆ
es.n! n + 1 : Case 1: A 2 �n+1: Then A(a) � 8f �1 s[a℄ ~A(a; f), where ~A 2 	n. Bythe indu
tion hypothesis there exists a formula ~B(a; f) � 8y0 ~B0(a; f; y) 2 �01 withT + WKL ` A(a)$ 8f �1 s[a℄8y0 ~B0(a; f; y):Let t ~B0 be a 
losed term of T su
h thatT ` 8a; f; y(t ~B0(a; f; y) =0 0$ ~B0(a; f; y):From results in [18℄ (using for the 
ase of E-GkA! also [23℄) it follows that one 
an
onstru
t a 
losed term bt ~B0 of T su
h that bt ~B0(a; y) is (provably in T ) a modulusof uniform 
ontinuity for �f:t ~B0(a; f; y) on ff : f �1 s[a℄g. Using this modulus,8f �1 s[a℄ ~B0(a; f; y) 
an be written as a quanti�er-free formula and hen
e 8f �1s[a℄8y ~B0(a; f; y) as a �01-formula bB(a): SoT + WKL ` A(a)$ bB(a):Case 2: A(a) 2 	n+1: Then A(a) � 9f �1 s[a℄ ~A(a; f) with ~A(a; f) 2 �n: By I.H.there exists a formula ~B(a; f) � 8y0 ~B0(a; f; y) 2 �01 withT + WKL ` A(a)$ 9f �1 s[a℄8y0 ~B0(a; f; y):By the lemma, there exists a �01-formula bB(a) su
h thatT + WKL ` bB(a)$ 9f �1 s[a℄8y0 ~B0(a; f; y):22



So again T + WKL ` A(a)$ bB(a)with bB 2 �01. This �nishes the proof of the 
laim.The 
laim implies that T + WKL ` ��m-WKL$ 	�n -WKLfor all m;n � 0. Sin
e trivially ��0 -WKL $ �0-WKL, it therefore remains to showthat T ` �0-WKL $ 	0-WKL $ WKL:�0-WKL� 	0-WKL holds by de�nition. We have to show WKL$ �0-WKL:The right-hand side obviously implies the left-hand side sin
e �0-WKL allows thetree-predi
ate to be given even by a �01-formula whereas in WKL T (f) is quanti�er-free. So it remains to show that WKL! �0-WKL: Assume(+) 8n09g �1 18~n � n8z0A0(g~n; z):De�ne f su
h that(++) f(x) =0 0$ 8i < lth(x)((x)i � 1) ^ 8~x v x8z � lth(x)A0(~x; z);where `~x v x' means that ~x is the 
ode of an initial segment of the sequen
e 
oded byx (note that the right-hand side of (++) 
an be written as a quanti�er-free formulain T ).f satis�es T (f) and { by (+) { represents an in�nite binary tree, i.e.8n9g �1 1 (f(gn) = 0):Hen
e WKL yields 9g �1 18n (f(gn) = 0);whi
h implies 9g �1 18n8m � n8z � nA0(gm; z);and therefore 9g �1 18n8z A0(gn; z):2In the presen
e of higher type parameters, however, we get non-
ollapsing hierar
hiesof prin
iples �n-WKL and 	n-WKL as we will show now.23



De�nition 5.8 We de�ne the 
lasses of formulas �1;bn and 	1;bn simultaneously byindu
tion on n:(i) A 2 �1;b0 = �1;b0 , if A is quanti�er-free;(ii) if A(f) 2 �1;bn , then 9f �1 1A(f) 2 �1;bn+1;(iii) if A(f) 2 �1;bn , then 8f �1 1A(f) 2 �1;bn+1.A may 
ontain arbitrary parameters (of arbitrary types).Remark 5.9 �1;bn � �n and �1;bn � 	n:De�nition 5.10 1) The s
hema of �1;bn -
omprehension is given by�1;bn -CA : 9g18x0(gx = 0$ A(x));where A(x) 2 �1;bn and may 
ontain arbitrary parameters (of arbitrary types)in addition to x. �1;bn -CA is de�ned analogously but with �1;bn instead of �1;bn .2) The s
hema of �1;bn -
hoi
e for numbers is given by�1;bn -AC0;0 : 8x09y �0 1A(x; y)! 9g �1 18xA(x; gx);where A(x; y) 2 �1;bn and may 
ontain arbitrary parameters.Proposition 5.11 Let T :=E-PA!. ThenT + �n+1-WKL ` �1;bn -CA(Likewise for 	n+1-WKL).Proof: We use the following tree-predi
ate from [38℄:~A(k) :� 8>>>>><>>>>>: (k)lth(k)�� 1 � 1 ^ ((k)lth(k)�� 1 = 0! A(lth(k)�� 1))^((k)lth(k)�� 1 = 1! :A(lth(k)�� 1))); if lth(k) > 0true; otherwise:For A 2 �1;bn , ~A(k) 
an be written as a �n+1-formula (using remark 5.3). By indu
tionon n we 
an prove in E-PA! that8n09f �1 18~n � n ~A(f ~n):�n+1-WKL therefore yields the 
hara
teristi
 fun
tion for A(n). 224



Proposition 5.12 E-PA! + �1;bn -CA+� 
ontains (modulo a 
anoni
al embeddingwhi
h doesn't 
hange the �rst order part) the se
ond order system (�1n-CA) knownfrom reverse mathemati
s.13Proof: Systems formulated in the language of se
ond-order arithmeti
 with setvariables like (�1n-CA) 
an be embedded in (suitable) systems formulated in thelanguage of fun
tionals of all �nite types by representing setsX by their 
hara
teristi
fun
tions �X and repla
ing formulas `t 2 X' by `�X(t) =0 0'. In doing so and usingthe fa
t that the presen
e of � allows to absorb an arbitrary arithmeti
al quanti�er-pre�x in front of a quanti�er-free formula with arbitrary parameters uniformly inthese parameters, the 
omprehension s
hema of (�1n-CA) redu
es to �1;bn -CA above.2The two propositions above show that the systems E-PA!+QF-AC1;0+QF-AC0;1 +�+ �n-WKL (and similar with 	n-WKL) form a non-
ollapsing hierar
hy whi
h asn in
reases eventually exhausts full se
ond-order arithmeti
.Together with the result due to Feferman that E-PA!+QF-AC1;0+QF-AC0;1+� 
anbe redu
ed proof-theoreti
ally to (�01-CA)<"014 and hen
e is proof-theoreti
ally mu
hweaker than (�11-CA), it in parti
ular follows that for n � 2, �n-WKL and 	n-WKLare underivable in E-PA!+QF-AC1;0+QF-AC0;1+�. The next proposition improvesthis further:Proposition 5.13 E-PA!+QF-AC1;0+QF-AC0;1 + � =̀�1-WKL.Proof: One easily veri�es that E-PA! + �1-WKL proves �1;b1 -AC0;0 whi
h in thepresen
e of � yields the so-
alled �11-separation prin
iple (see [34℄), hen
e (again by[34℄) the subsystem ATR of se
ond order arithmeti
, whose proof-theoreti
 strengthis mu
h higher than that of (�01-CA)<"0, is 
ontained in E-PA!+QF-AC1;0+QF-AC0;1 + �+ �1-WKL. 2Remark 5.14 A more detailed analysis of the proof-theoreti
 strength of the sys-tems E-PA!+QF-AC1;0+QF-AC0;1 + � + �n-WKL whi
h would allow to determinethe pre
ise relationship between �n-WKL and 	m-WKL has to be postponed for asubsequent paper.As we have seen already above, 	1-WKL suÆ
es to prove the uniform 
ontinuity of
ontinuous fun
tions � : [0; 1℄d ! IR (and more general: for 
ontinuous fun
tions13In the notation of [34℄, (�1n-CA) is the system �1n-CA0+full indu
tion.14This follows from [5℄ together with elimination of extensionality (see also [1℄).25



from 
ompa
t metri
 spa
es into Polish spa
es). However, in order to show theexisten
e of a modulus of uniform 
ontinuity fun
tion we apparently need a slightlystronger form 	1-WKL+:De�nition 5.15 Let A(a0; k0) 2 �n (with arbitrary parameters).�n-WKL+ : 8h19a09f �1 18~n � h(a)A(a; f ~n)! 9a9f �1 18n0A(a; fn)(	n-WKL+ is de�ned analogously with A 2 	n.)Remark 5.16 In T :=E-GkA! (k � 3), E-PRA! or E-PA!, trivially �n-WKL+ !�n-WKL.For n = 0, �0-WKL (and hen
e WKL) together with QF-AC0;0 implies already�0-WKL+:Proposition 5.17 Let T :=E-GkA! (k � 3), E-PRA! or E-PA!. ThenT +QF-AC0;0 ` �0-WKL$ �0-WKL+:Proof: The dire
tion ` ' is trivial.`!': For A(a; k) 2 �0 (= �01), �0-WKL implies9a08n09f �1 18~n � nA(a; f ~n)! 9a9f �1 18n0A(a; fn):`9f �1 1' in `9f �1 18~n � nA(a; f ~n)' 
an be repla
ed by a bounded numberquanti�er. Together with the fa
t that the �01-
olle
tion prin
iple is derivable inT +QF-AC0;0, this implies that `9f �1 18~n � nA(a; f ~n)' 
an be written as a �01-formula. Hen
e (again using QF-AC0;0), T +QF-AC0;0 proves9a08n09f �1 18~n � nA$ 8h19a09f �1 18~n � h(a)A;whi
h 
on
ludes the proof. 2The proposition above is the reason for the phenomenon that in the 
ontext ofreverse mathemati
s (where the more 
onstru
tive de�nition of 
ontinuous fun
tionsused makes it possible to repla
e the use of 	1-WKL by WKL=�0-WKL) WKLsuÆ
es even to show the existen
e of a modulus of uniform 
ontinuity. For ourdire
t representation of 
ontinuous fun
tions, however, we have to use 	1-WKL+whi
h does not seem to be implied by 	1-WKL and QF-AC0;0.In the next two se
tions we will show that, nevertheless, proof-theoreti
ally �1-WKL+ (=	1-WKL+) is not stronger than WKL.26



6 The 
omputational strength of �1-WKL+Proposition 6.1 Let T :=E-GkA! (k � 3), E-PRA! or E-PA!. ThenT + QF-AC1;0 + F� ` �1-WKL+:Proof: Be
ause of proposition 3.6 it suÆ
es to show thatT + QF-AC1;0 + F ` �1-WKL+:The idea of the proof is to use proposition 3.4 (together with propositions 3.2 and 3.3)to show similarly to the argument in the proof of proposition 5.7 that every A 2 �n(or 2 	n) 
an be written as a �01-formula B. Whereas in the proof of proposition5.7 we 
ould use the fa
t that for every term t2[a℄ of T 
ontaining only variablesa of type � 1 one 
an 
onstru
t a modulus of uniform 
ontinuity on fx : x �1 bg(uniformly in a and b), we have to use proposition 3.4 in the presen
e of arbitraryparameters. The latter provides su
h a modulus of uniform 
ontinuity only uniformlyin number parameters but not uniformly in fun
tion parameters f unless the latterare themselves restri
ted to a 
ompa
t set ff : f �1 bg (in whi
h 
ase a modulusthat is independent of f does exist). However this is just the 
ase in the situation athand sin
e all fun
tion variables f1; : : : ; fn of A 2 �n whi
h are not parameters arebounded. So all we need is(�)8><>: 8�; a9�18x0; z0(�f:(�xzfa)0 is uniformly 
ontinuous for allf1 �1 s1[x; a℄; : : : ; fn �1 sn[x; a℄ with modulus �xz);where a are all the remaining free variables of si (whi
h may have arbitrary types).15(�) is implied by(��)8><>: 8�; a; b1(0)9�18x0; z0(�f:(�xzfa)0 is uniformly 
ontinuous for allf1 �1 b1x; : : : ; fn �1 bnx with modulus �xz):But this follows in T + �01-UB (and therefore in T +QF-AC1;0 + F by proposition3.2) similarly to the proof of proposition 3.4. Sin
e by proposition 3.3 also WKL15Here `z' is the variable from the �01-kernel of A (whi
h of 
ourse 
an be merged together withx). 27



is available in this theory, we 
an argue as in the proof of the 
laim in the proof ofproposition 5.7 and show that for A(x) 2 �n (with arbitrary additional parameters)T + �01-UB ` 9�8x0(A(x)$ 8z0(�xz =0 0)):Hen
e for all n 2 IN(� � �)T + �01-UB ` �0-WKL+ ! �n-WKL+and therefore (using propositions 3.3,5.7 and 5.17)T +QF-AC0;0 + �01-UB ` �n-WKL+and therefore by proposition 3.2T +QF-AC1;0 + F ` �n-WKL+;whi
h 
on
ludes the proof. 2Corollary to the proof of proposition 6.1:T +QF-AC0;0 + �01-UB ` �1-WKL+7 PRA-redu
ible theoriesTheorem 7.1 1) E-G3A!+QF-AC1;0+QF-AC0;1+�01-UB is �02-
onservative overEA,2) E-PRA!+QF-AC1;0+QF-AC0;1 + �01-UB is �02-
onservative over PRA,3) E-PA!+QF-AC1;0+QF-AC0;1 + �01-UB is 
onservative over PA.Proof: We �rst prove 3): Let A be a senten
e of PA whi
h is provable in E-PA!+QF-AC1;0+QF-AC0;1+�01-UB and hen
e (using proposition 3.2) in E-PA!+QF-AC1;0+QF-AC0;1 + F . Then the Herbrand normal form AH � 8f9yA0(f; y) of A isprovable there a-fortiori. Hen
e by theorem 3.7E-PA! ` 8f A0(f;	(f))for suitable 
losed terms 	 of E-PA!. ThusE-PA! ` AH :28



By [17℄(thm.4.1) we 
an 
on
lude that16PA ` A:1) and 2): For �02-senten
es A the argument above applies equally to E-G3A! (resp.E-PRA!) yielding E-G3A! ` A (resp. E-PRA! ` A). The 
on
lusion now followsfrom the fa
t that E-G3A! (resp. E-PRA!) is �02-
onservative over EA (resp. PRA).2Theorem 7.21) E-G3A!+QF-AC1;0+QF-AC0;1 + �1-WKL+ is �02-
onservative over EA,2) E-PRA!+QF-AC1;0+QF-AC0;1 + �1-WKL+ is �02-
onservative over PRA,3) E-PA!+QF-AC1;0+QF-AC0;1 + �1-WKL+ is 
onservative over PAProof: The theorem follows from theorem 7.1, proposition 6.1 and 3.2. 2Remark 7.3 The purely proof-theoreti
 proofs of theorems 7.1 and 7.2 also yield
orresponding proof-theoreti
 redu
tions.Summary about PRA-redu
ibility:In this paper we in parti
ular have 
onstru
ted two new mathemati
ally strong PRA-redu
ible and �02-
onservative extensions of PRA. One of these systemsT � := E-PRA!+QF-AC1;0+QF-AC0;1 + �01-UBis a non-standard system in the sense that the full set-theoreti
 type stru
ture S! isnot a model of T �.Analysing the greater mathemati
al strength of T � (w.r.t. to derivable 
onsequen
eswhi
h are true in S!) in terms of generalizations of WKL to logi
ally more 
omplexbinary trees, we developed the subsystemT := E-PRA!+QF-AC1;0+QF-AC0;1 + �1-WKL+whi
h has S! as a model.In parti
ular, T allows to 
arry out substantial parts of 
lassi
al analysis in amu
h more dire
t way than the se
ond order system WKL0 or even E-PRA!+QF-AC1;0+QF-AC0;1+WKL.16Warning: this argument does not apply to the subsystems E-PRA!, PRA; see [17℄ for a 
oun-terexample to this. 29



Con
luding remarks:1) There is also a di�erent route to design PRA-redu
ible systems whi
h is basedon E-G1A! instead of E-PRA!. Although E-G1A! 
ontains all primitive re-
ursive fun
tions and primitive re
ursive fun
tionals of every Grzegor
zyk leveln, it does not 
ontain all ordinary Kleene-primitive re
ursive fun
tionals of type2, in parti
ular it does not 
ontain �it. As a 
onsequen
e of this, E-G1A!+QF-AC0;0 does not prove the s
hema of �01-indu
tion. As we have shown in [26℄,[27℄and [28℄, one 
an add to E-G1A!+QF-AC1;0+ QF-AC0;1 fun
tion parameter-free s
hemati
 forms of e.g. �01-
omprehension, the Bolzano-Weierstra� prin-
iple for sequen
es in [0; 1℄d, the Arzela-As
oli lemma et
. and still obtain aPRA-redu
ible system (whereas the addition of any of these prin
iples to E-PRA! would make the A
kermann fun
tion provably total). This result wasobtained via a 
ertain �02-generalization of the prin
iple �01-UB� mentioned inthe proof of proposition 3.6. Using the results of this paper we 
an even allow a
orresponding generalization of the prin
iple �01-UB instead. As a 
onsequen
eof this and the fa
t that �1-WKL+ follows from �01-UB already relative toE-G1A!, we may add �1-WKL+ to the prin
iples listed above without losingPRA-
onservation. This results in a mathemati
ally fairly strong system (notethat E-G1A!+QF-AC0;0 allows to interpret the weak base system RCA�0 fromreverse mathemati
s and see remark X.4.3 in [34℄) whi
h is in
ompatible withthe systems studied in this paper. A detailed treatment of this theme, however,has to be postponed for another paper.2) The results of this paper and [30℄ suggest to propose the following extension ofthe program of reverse mathemati
s to �nite types: Repla
e the base systemRCA0 by its �nite type extension RCA!0 := E-PRA!+QF-AC1;0. This system
an be shown to be 
onservative over (an inessential variant with fun
tionvariables instead of set variable of) RCA0. So for se
ond order statementsA;B (i.e. the type of statements whi
h 
an be dis
ussed in the frameworkof 
urrently existing reverse mathemati
s) nothing is lost if we prove anequivalen
e between A and B relative to RCA!0 instead of RCA0. However, theri
her language allows to 
onsider new statements (in their dire
t formulation)whi
h 
an not even be expressed in RCA0 and to apply reverse mathemati
sto them as well. As �rst example, we 
an re
ast a result from [30℄ as a resultin reverse mathemati
s in this extended sense:`Relative to RCA!0 , the uniform weak K�onig's lemma UWKL and the existen
eof Feferman's �-operator are equivalent'.30
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