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Foundational and mathematial usesof higher typesUlrih KohlenbahBRICS�Department of Computer SieneUniversity of AarhusNy MunkegadeDK-8000 Aarhus C, Denmarkkohlenb�bris.dkDediated to Solomon Feferman for his 70th BirthdayAbstratIn this paper we develop mathematially strong systems of analysis inhigher types whih, nevertheless, are proof-theoretially weak, i.e. onser-vative over elementary resp. primitive reursive arithmeti. These systemsare based on non-ollapsing hierarhies (�n-WKL+; 	n-WKL+) of prinipleswhih generalize (and for n = 0 oinide with) the so-alled `weak' K�onig'slemma WKL (whih has been studied extensively in the ontext of seond or-der arithmeti) to logially more omplex tree prediates. Whereas the seondorder ontext used in the program of reverse mathematis requires an enodingof higher analytial onepts like ontinuous funtions F : X ! Y betweenPolish spaes X;Y , the more exible language of our systems allows to treatsuh objets diretly. This is of relevane as the enoding of F used in reversemathematis taitly yields a onstrutively enrihed notion of ontinuous fun-tions whih e.g. for F : ININ ! IN an be seen (in our higher order ontext)�Basi Researh in Computer Siene, Centre of the Danish National Researh Foundation.1



to be equivalent to the existene of a ontinuous modulus of pointwise onti-nuity. For the diret representation of F the existene of suh a modulus isindependent even of full arithmeti in all �nite types E-PA! plus quanti�er-free hoie, as we show using a priority onstrution due to L. Harrington.The usual WKL-based proofs of properties of F given in reverse mathematismake use of the enrihment provided by odes of F , and WKL does not seemto be suÆient to obtain similar results for the diret representation of F inour setting. However, it turns out that 	1-WKL+ is suÆient.Our onservation results for (�n-WKL+; 	n-WKL+) are proved via a newelimination result for a strong non-standard priniple of uniform �01-bounded-ness whih we introdued in 1996 and whih implies the WKL-extensions stud-ied in this paper.1 IntrodutionThis paper addresses a entral theme of proof theory expressed by the followingquestion:`What parts of ordinary mathematis (in partiular of analysis) an be arried outin ertain restrited formal systems?'The relevane of this question is twofold:1) Foundational relevane: suppose a formal system TPA allows to formalizea great amount of mathematis but an be shown (by restrited means) to bea onservative extension of �rst order Peano Arithmeti PA, then that part ofmathematis has an arithmetial foundation (partial realization of H. Weyl'sprogram, see S. Feferman's disussion in [8℄).If we work in a system TPRA whih an be shown (�nitistially) even to beonservative over Primitive Reursive Arithmeti PRA and identify (following[35℄) PRA with �nitism, then the parts of mathematis whih an be arriedout in TPRA have a �nitisti foundation (partial realization of D. Hilbert'sprogram, see e.g. [33℄).2) Mathematial relevane: here the guiding question is`What more do we known if we have proved a theorem by restrited meansthan if we merely know that it is true?' (G. Kreisel)The aim is to get additional mathematial information out of the fat that aertain theorem S has been proved by ertain restrited means. Suh addi-tional information may be the extratability of a realizing onstrution for an2



existential statement or of an algorithm or a numerial bound for a 89-theoremby unwinding the given proof.Both motivations are of ourse losely related and researh on them has mutuallyinuened eah other: e.g. a proof of a �02-theorem arried out in a system whihan be (e�etively) redued to PRA allows to extrat at least a primitive reursivealgorithm. In the other diretion, e.g. our analysis of proofs in approximation theory(whih used the priniple of the attainment of the maximum of f 2 C[0; 1℄, see [20℄)led us to an elimination proedure of the weak K�onig's lemma WKL over a varietyof subsystems of arithmeti in all �nite types thereby ontributing to `1)' above (see[19℄). Likewise our treatment of e.g. the Bolzano-Weierstra� priniple in [26℄ via anelimination tehnique of Skolem funtions yielded also new onservation results foromprehension priniples ([27℄).However, there are also important di�erenes due to the di�erent points emphasizedin 1) and 2):Whereas there are hardly foundational (understood in the sense of Hilbert) reasons tostudy systems weaker than PRA, merely primitive reursive algorithms and boundsare in most ases muh too omplex to be of any mathematial value. So on the onehand further restritions are needed to guarantee the extratability of mathemati-ally more interesting data whereas on the other hand e.g. proofs of large lasses oflemmas (having a ertain logial form) an be shown not to ontribute to the om-plexity or growth of algorithms or bounds extrated from proofs of theorems usingthese lemmas. Hene suh lemmas an be treated simply as axioms (no matter hownon-onstrutive their proofs might be) in the ourse of the analysis of a given proofs.Also, for suessful unwindings the omplexity of the proof transformations used isritial. It has turned out that methods using funtionals of �nite type like appropri-ate versions of G�odel's funtional interpretation or modi�ed realizability ombinedwith tools like negative translation and/or the Friedman-Dragalin translation aremost useful (in partiular ompared to tehniques whih try to avoid any passagethrough higher types, see [29℄).Whereas we have foused on `2)' in several publiations (see [21℄,[20℄,[24℄ among oth-ers), this paper addresses `1)' to whih S. Feferman has ontributed so profoundly.We study mathematial strong, but nevertheless PRA-reduible, systems in all �nitetypes emphasizing the need of third order variables already for a faithful formaliza-tion of ontinuous funtions between Polish spaes.Let us reall very briey some of the history of researh on `1)'. As Feferman pointedout in [7℄, `Hermann Weyl initiated a program for the arithmetial foundation of3



mathematis' in his book `Das Kontinuum' ([39℄. In this book, Weyl observed thatlarge parts of analysis an be developed on the basis of arithmetial omprehension.This theme was further developed in the 50's by P. Lorenzen among others. In thelate 70's Feferman [5℄ and G. Takeuti [36℄ independently designed formal systemsbased on arithmetial omprehension in the framework of higher order arithmetiwhih are onservative over PA. For this property it is important that the shemaof indution is restrited to arithmetial formulas only.1 Work on the program of so-alled reverse mathematis by H. Friedman, S. Simpson and others has shown thatalmost all of the mathematis that an be developed based on arithmetial ompre-hension at all an also be arried out if indution is restrited in this way. This workuses a seond order fragment ACA0 (formulated in the language of seond orderarithmeti) of the system from [5℄ (whih is formulated in the language of funtion-als of all �nite types). Via appropriate representations and odings of higher objets(like ontinuous funtions between Polish spaes) a great deal of mathematis anbe developed already in ACA0 (see [34℄ for a omprehensive treatment).Feferman's system, however, allows a more diret treatment of suh objets andtheir mathematis and also ontains a strong uniform (`expliit') version of arith-metial omprehension via a non-onstrutive �-operator. These features hold in aneven stronger form for theories with exible (variable) types whih were developedsuessively by Feferman in his framework of expliit mathematis in [4℄,[6℄,[7℄ ulmi-nating in a formal system alled W (where `W' stands for `Weyl') whih was shownto be proof-theoretially reduible to and onservative over PA in [11℄. The enor-mous mathematial power and exibility of the system W led Feferman in [9℄ to theformulation of the thesis that all (or almost all) sienti�ally appliable mathematisan be developed in W.In the late 70's, H. Friedman observed that large parts of the mathematis that an bearried out in ACA0 are already formalizable in a subsystem WKL0 whih insteadof the shema of arithmetial omprehension is based on the binary K�onig's lemma(for quanti�er-free trees) and �01-indution only (see again [34℄ for a omprehensivetreatment of ordinary mathematis in WKL0). This fat is of foundational rele-vane sine WKL0 an be proof-theoretially redued to and is �02-onservative overPRA (H. Friedman (1976, unpublished) and [32℄; for a historial disussion whihin partiular points out various errors in the literature on WKL see [23℄ (p.69)).1As was shown by Feferman in [5℄, the orresponding system with full indution is proof-theoretially stronger than PA. In [36℄, Takeuti onsiders in addition the variant where param-eters (exept arithmetial ones) are not permitted in the shema of arithmetial omprehension. Inthis ase the resulting system is onservative over PA even in the presene of the full shema ofindution. 4



In [19℄ we introdued an extension (in the spirit of Feferman's PA-onservative sys-tem from [5℄ mentioned above) of WKL0 to all �nite types and proved among otherthings that this extension still an be proof-theoretially redued to PRA and is�02-onservative over PRA.Although this extension is already muh more exible than the system WKL0, theuse of WKL still requires a ompliated enoding of analytial objets. While work-ing on `2)' mentioned above and investigating what parts of analysis produe onlyprovable reursive funtion(al)s whih an be bounded by polynomials (see [24℄ for asurvey) we faed the problem that already the formulation of WKL involves odingdevies of exponential growth. That is why we introdued a non-standard axiom Fwhih together with some form of quanti�er-free hoie proves a strong priniple ofuniform boundedness �01-UB whih allows to give short proofs of the usual WKL-appliations in analysis relative to very weak (polynomially bounded) systems (see[23℄,[25℄) but does not ontribute to the growth of provably reursive funtionals.This axiom as well as the priniple of uniform boundedness is `non-standard' in thesense that it is not true in the full set-theoreti type struture. Nevertheless all of itsanalyti (i.e. seond order) onsequenes are true. In [23℄ we also studied a restritedversion F� of F whih yields a orrespondingly restrited version of uniform bound-edness whih is suÆient for many appliations (although a bit more ompliated touse, see [25℄) but whih allows a very easy proof-theoretial elimination. In setion3 of this paper we show that in the presene of the axiom of extensionality and aform of quanti�er-free hoie, F atually is implied by F� so that in this ontext(whih we use throughout this paper) the F�-elimination applies to proofs based onF as well. The proof of this fat uses an argument due to Grilliot [14℄. The resultallows to onstrut a PRA-reduible �nite type system T � whih is based on �01-UB.The foundational relevane of this is due to fat that T � allows to treat ontinuousfuntions between Polish spaes diretly as ertain type-2-funtionals and to prove allthe usual WKL-onsequenes known from reverse mathematis without the oding ofsuh objets used reverse mathematis. We investigate that oding and show that ittaitly yields a onstrutively enrihed representation of ontinuous funtions. Morepreisely, we show that already for ontinuous funtions f : ININ ! IN, the represen-tation used in reverse mathematis entails the existene of a (ontinuous) modulusof pointwise ontinuity funtional, whih for the diret formulation of suh funtionsas type-2-funtionals is not even provable in E-PA!+QF-AC1;0 (arithmeti in all �-nite types with full indution and G�odel's T plus quanti�er-free hoie, see below fora preise de�nition). In the presene of arithmetial omprehension, the di�erenebetween both representations disappears, sine the existene of suh a modulus of5



pointwise ontinuity an be proved using arithmetial omprehension and QF-AC1;0.However, for theories based on WKL instead this does not seem to be possible.The main part of this paper (setions 5-7) analyzes that greater mathematial strengthof the non-standard priniple �01-UB ompared to WKL in terms of standard ex-tensions of WKL. We develop a non-ollapsing hierarhy �n-WKL+ of extensionsof WKL. Basially, �n-WKL+ extends WKL from binary trees whih are given byquanti�er-free prediates to binary trees whih are given by formulas belonging to alarger lass �n (see setion 5 below for details). �0-WKL+ is equivalent to WKL,but for n � 1, �n-WKL+ is not even provable in E-PA!+QF-AC1;0 + � (here � isFeferman's non-onstrutive �-operator mentioned above). Nevertheless, �n-WKL+is provable in T � for all n 2 IN so that by the results mentioned before the whole hi-erarhy an be redued proof-theoretially to PRA. Already �2-WKL+ (and even avariant 	1-WKL+ in between this priniple and WKL) allows to arry out the usualWKL-appliations now even for the diret representation of ontinuous funtionsinstead of their onstrutively enrihed enoding the WKL-based proofs in reversemathematis rely on. The (PRA-reduible) system T , whih results from T � bereplaing �01-UB by �1-WKL+ := Sn2INf�n-WKL+g, an be viewed as a standardapproximation to T �.One might also ask for an expliit version (with exible types) of suh systems basedon (extensions of) WKL. However, things are quite deliate in this ase. Alreadyfor the uniform (`expliit') version UWKL of WKL (analogously to the uniform ver-sion of arithmetial omprehension given by �), the strength of the resulting systemruially depends on the amount of extensionality available (see [30℄).2 Desription of the theories E-GnA!, E-PRA!and E-PA!The set T of all �nite types is de�ned indutively by(i) 0 2 T and (ii) �; � 2 T) �(�) 2 T:Terms whih denote a natural number have type 0. Elements of type �(�) arefuntions whih map objets of type � to objets of type � .The set P � T of pure types is de�ned by(i) 0 2 P and (ii) � 2 P) 0(�) 2 P:Brakets whose ourrenes are uniquely determined are often omitted, e.g. wewrite 0(00) instead of 0(0(0)). Furthermore we write for short ��k : : : �1 instead of6



�(�k) : : : (�1). Pure types an be represented by natural numbers: 0(n) := n+ 1.Our theories T used in this paper are based on many{sorted lassial logi formu-lated in the language of funtionals of all �nite types plus the ombinators ��;� ;�Æ;�;�whih allow the de�nition of �{abstration.The systems E-GnA! (for all n � 1) are introdued in [23℄ to whih we refer for de-tails. E-GnA! has as primitive relations =0;�0 for objets of type 0, the onstant 00,funtions min0;max0; S00 (suessor), A0; : : : ; An, where Ai is the i{th branh of theAkermann funtion (i.e. A0(x; y) = y0; A1(x; y) = x+ y; A2(x; y) = x � y; A3(x; y) =xy; : : :), funtionals of degree 2: �1; : : : ;�n, where �1fx = max0(f0; : : : ; fx) and �iis the iteration of Ai�1 on the f{values for i � 2, i.e. �2fx = xPi=0 fi;�3fx = xQi=0 fi; : : :.We also have a bounded searh funtional �b and bounded prediative reursion pro-vided by reursor onstants ~R� (where `prediative' means that reursion is possibleonly at the type 0 as in the ase of the (unbounded) Kleene-Feferman reursors bR�).In this paper our systems always ontain the axioms of extensionality(E) : 8x�; y�; z��(x =� y ! zx =� zy)for all �nite types (x =� y is de�ned as 8z�11 ; : : : ; z�kk (xz1 : : : zk =0 yz1 : : : zk) where� = 0�k : : : �1).In [23℄ we had in addition to the de�ning axioms for the onstants of our theories alltrue sentenes having the form 8x�A0(x), where A0 is quanti�er{free and deg(�) � 2,added as axioms.2By `true' we refer to the full set{theoreti model S!. In given proofs of ourse onlyvery speial universal axioms are used whih an be proved in suitable extensions ofour theories. Nevertheless one an inlude them all as axioms if one is only insterestedin the applied aspet `2)' disussed above, sine they (more preisely their proofs)do not ontribute to the provable reursive funtion(al)s of the system. In partiularthis overs all instanes of the shema of quanti�er-free indution. In this paper,however, we inlude only the shema of quanti�er-free hoie to E-GnA! insteadof taking arbitrary universal axioms, sine we are interested in proof-theoretialredutions.E-PRA! results if we add the funtional�it0yf =0 y; �itx0yf =0 f(x;�itxyf)2The restrition deg(�) � 2 has a tehnial reason disussed in [23℄.7



to E-G1A! := Sn2!fE-GnA!g: The system E-PRA! is equivalent to Feferman's sys-tem E-dPA!jn from [5℄ sine �it allows (relative to E-G1A!) to de�ne the prediativereursor onstants bR� (see [23℄).E-PA! is the extension of E-PRA! obtained by the addition of the shema of fullindution and all (imprediative) primitive reursive funtionals in the sense of [13℄.The shema of full hoie is given byAC�;� : 8x�9y�A(x; y)! 9Y �(�)8x�A(x; Y x); AC := [�;�2TfAC�;�g:The shema of quanti�er-free hoie QF-AC�;� is de�ned as the restrition ofAC�;� to quanti�er-free formulas A0.3The theory T + � results from T if we add the non-onstrutive �-operator �2 to Ttogether with the haraterizing axiom�(f) = 8><>: the least x suh that f(x) =0 0, if 9x0(f(x) =0 0)0; otherwise.Notation: For � = 0�k : : : �1, we de�ne 1� := �x�11 : : : x�kk :10, where 10 := S0:De�nition 2.1 1) Between funtionals of type � we de�ne the relation ��:8><>: x1 �0 x2 :� x1 � x2;x1 ��� x2 :� 8y�(x1y �� x2y);2) 8><>: min0(x01; x02) := min(x1; x2);min�� (x��1 ; x��2 ) := �y� :min�(x1y; x2y):In the following we will need the de�nition of the binary (`weak') K�onig's lemma asgiven in [38℄:De�nition 2.2 (Troelstra(74))WKL:� 8f 1(T (f) ^ 8x09n0(lth n =0 x ^ fn =0 0) ! 9b �1 �k:18x0(f(bx) =0 0)),whereTf :� 8n0; m0(f(n �m) =0 0! fn =0 0) ^ 8n0; x0(f(n � hxi) =0 0! x �0 1)(i.e. T (f) asserts that f represents a 0,1{tree).3Throughout this paper A0; B0; C0; : : : denote quanti�er-free formulas.8



3 On two non-standard priniplesIn this setion we in partiular prove a new onservation result for the non-standardaxiom F whih was introdued �rst in [23℄4 (and has been applied e.g. in [25℄):F :� 8�2(0); y1(0)9y0 �1(0) y8k08z �1 yk(�kz �0 �k(y0k)):We all this axiom `non-standard' sine it does not hold in the full set-theoreti typestruture S!. Nevertheless its use an be eliminated from ertain proofs therebyyielding lassially true results. This has been disussed extensively in [23℄ to whihwe refer for further information. In that paper we mainly made use of a weakerversion F� of F whih allows a diret proof-theoreti elimination whereas the elim-ination of F was based on a model-theoreti argument. In this paper however weneed the full version F . We show { using an argument known as Grilliot's trik in theontext of reursion theory for the ountable funtionals (see [14℄)5 { that in the fullyextensional ontext of theories like E-PRA!+QF-AC1;0, F� atually implies F . Thisallows to extend the proof-theoreti elimination of F� to F thereby strengtheningresults in [23℄.We apply F via one of its onsequenes, the following priniple of uniform �01-boundedness:De�nition 3.1 ([23℄) The shema6 of uniform �01{boundedness is de�ned as�01{UB : 8><>: 8y1(0)(8k08x �1 yk9z0 A(x; y; k; z)! 9�18k08x �1 yk9z �0 �k A(x; y; k; z));where A � 9lA0(l) and l is a tuple of variables of type 0 and A0 is a quanti�er{freeformula (whih may ontain parameters of arbitrary types).Proposition 3.2 ([23℄) Let T :=E-GnA! (n � 2), E-PRA! or E-PA!. ThenT +QF-AC1;0 + F ` �01-UB.Proposition 3.3 ([23℄) E-G3A! + �01-UB ` WKL.4A speial ase of F was studied already in [21℄ and alled also F in that paper but F0 in [23℄.5This argument reently has had a further proof-theoreti appliation in [30℄.6�01-UB an be written as a single axiom. However the shemati version is easier to apply.9



�01-UB implies the existene of a modulus of uniform ontinuity for eah extensional�1(1) on fz1 : z �1 yg (where `ontinuity' refers to the usual metri on the Bairespae ININ):Proposition 3.4 ([23℄)E-G2A! + �01-UB `8�1(1)8y19�18k08z1; z2 �1 y( Vi�0�k(z1i =0 z2i)! Vj�0k(�z1j =0 �z2j)):Remark 3.5 The argument above an atually be used to show that a sequene offuntionals �1(1)i has a sequene of moduli of uniform ontinuity on a sequene ofsets fz : z �1 yig.As mentioned above, in [23℄ we mainly studied a weaker versionF� :� 8�2(0); y1(0)9y0 �1(0) y8k0; z1; n0( ^i<0n(zi �0 yki)! �k(z; n) �0 �k(y0k))(where, for z�0, (z; n)(k0) :=� zk, if k <0 n and := 0�, otherwise) of F and gavea proof-theoreti elimination proedure for the use of F� whih { relative to so-alled weakly extensional variants WE-GnA!+QF-AC of our systems E-GnA!+QF-AC1;0+QF-AC0;1 { applies for quite general lasses of formulas. In the presene ofthe full extensionality axiom (E) we got orresponding results if the types involvedwere somewhat restrited. We now show that in the presene of (E), F is alreadyimplied by F� and so that these results extend to F as well.Proposition 3.6 E-G3A!+QF-AC1;0 + F� ` F:Proof: From [23℄ it follows that E-G3A!+QF-AC1;0+F� proves the following weak-ening of �01-UB:�01{UB� : 8>><>>: 8y1(0)(8k08x �1 yk9z0 A(x; y; k; z)! 9�18k0; x1; n0( Vi<0n(xi �0 yki)! 9z �0 �k A((x; n); y; k; z)));with A � 9l0A0(l) as in �01-UB. �01-UB� ombined with (E) in turn yields that(1) 8�1(1); y19�18x; ~x �1 y8k0( �k̂i=0(xi =0 ~xi)! 8z0(�(x; z)k =0 �(~x; z)k)):10



So if �1(1) satis�es the speial ase of pointwise ontinuity(2) 8x8k09n8m � n(�(x;m)k =0 �xk);then we obtain(3) � is uniformly ontinuous for x �1 y and has a modulus of uniform ontinuity �.It is easy to see, that (3) implies F (relative to E-G3A!). So it remains to show that(4) E-G3A!+QF-AC1;0 + F� ` (2):Suppose that :(2), i.e. there exist �1(1); k0; x1 suh that(5) 8n09m � n(�(x;m)k 6= �xk):By QF-AC0;0 (whih follows from QF-AC1;0); (5) implies(6) 9f 18n(fn > n ^ �(x; fn)k 6= �xk):Hene for xi := x; fi we have(7) 8i08j � i(xj(i) =0 x(i))and (8) 8i0(�(xi; k) 6= �xk):De�ne 	y1 :=0 8><>: 1; if �yk 6= �xk0; if �yk = �xk.Then (9) 8i; j(	xi =0 	xj 6= 	x):Now one an apply an argument from [14℄, whih an be formalized in E-G3A! (see[30℄ for details on this and a further proof-theoreti appliation of that argument),to derive (10) 9'28f 1('f = 0$ 9x(fx = 0))from (7) and (9). (10), however, ontradits F� (relative to E-G3A!+QF-AC1;0),sine F� implies that every �2 is bounded on the set of all funtions x; n with x �11; n 2 IN, whereas QF-AC1;0 together with (10) yields the existene of a funtional� suh that 8f 1(9x0(fx = 0)! f(�(f)) = 0);whih obviously is unbounded on this set. 211



Theorem 3.7 Let 8f 1; x09y0A0(f; x; y) be a sentene of the language of T whereT :=E-GnA! (n � 3), E-PRA! or E-PA!. Then the following rule holds8>>>>><>>>>>: T + QF-AC1;0+QF-AC0;1 + F ` 8f 1; x09y0A0(f; x; y)) one an extrat a losed term 	001 of T suh thatT ` 8f 1; x0A0(f; x;	fx):Proof: The theorem follows from proposition 3.6 together with theorem 4.21 from[23℄. 24 Continuous funtions: diret representations ver-sus odesA funtional �1(1) is ontinuous at x1 if8k09n08y1( n̂i=0(xi =0 yi)! k̂j=0(�xj =0 �yj)):� is ontinuous if it is ontinuous at every x.Using a suitable so-alled standard represenation of omplete seperable metri (`Pol-ish') spaes X (whih in turn relies on a representation of real numbers as Cauhysequenes of rational numbers with �xed rate of onvergene), elements of X an berepresented by number-theoreti funtions x1 and, moreover, every suh funtion anbe onsidered as a representative of a uniquely determined element of X (see [2℄ and[20℄ for details). On these representatives we have a pseudo metri dX . The elementsof X an be identi�ed with the equivalene lasses w.r.t. x =Y x :� (dX(x; y) =IR 0):Funtions G : X ! Y between Polish spaes therefore are just funtionals �1(1)Gwhih repet =X ;=Y , i.e.8x1; y1(x =X y ! �Gx =Y �Gy):�G represents a ontinuous funtion G : X ! Y if8x18k09n08y1(dX(x; y) �IR 1n+ 1 ! dY (�Gx;�Gy) �IR 1k + 1):This de�nition is just the usual "-Æ{de�nition of ontinuous funtions. One ould alsoonsider to de�ne ontinuity as sequential ontinuity. In the presene of QF-AC0;112



(whih is inluded in all the systems we onsider in this paper) both de�nitions areequivalent as we will show now.As usual G : X ! Y is alled sequentially ontinuous in x i�8x1(0)(�) ( limn!1xn =X x! limn!1�G(xn) =Y �G(x));where ( limn!1xn =X x) :� 8k09n08m �0 n(dX(xm; x) � 1k+1).Proposition 4.1 The theory E-G3A!+QF-AC0;1 proves8G : X ! Y 8x 2 X(G is sequentially ontinuous at x$ G is "{Æ{ontinuous at x):Proof: ` ': Obvious!`!': Suppose that G is not "{Æ{ontinuous at x, i.e.(�) 9k08n09y1( dX(x; y) <IR 1n + 1 ^ dY (�G(x);�G(y)) >IR 1k + 1| {z }�:A2�01 ):By oding pairs of natural numbers and numbers into funtions one an express 9y1Ain the form 9y1A0. Hene QF-AC0;1 applied to (�) yields9k0; �1(0)8n0(dX(x; �n) <IR 1n + 1 ^ dY (�G(x);�G(�n)) >IR 1k + 1);i.e. (�n)n2IN represents a sequene of elements of X whih onverges to x. But: limn!1�G(�n) =IR �G(x) and thus G is not sequentially ontinuous at the pointrepresented by x. 2Remark 4.2 The use of QF-AC0;1 in the proof of `!' in the proposition above isunavoidable already for X = Y = IR sine in this ase the impliation is known tobe unprovable even in Zermelo{Fraenkel set theory ZF, see [16℄,[15℄ and [12℄.We now disuss the indiret representation of ontinuous funtions G : X ! Ybetween Polish spaes X; Y via odes g as used in the ontext of reverse mathe-matis (see de�nition II.6.1 in [34℄). Sine reverse mathematis takes plae in thelanguage of seond-order arithmeti (instead of a language with higher types), thediret representation of suh ontinuous funtion whih is available in our systemsis not possible. We will show that provably in E-G3A!+QF-AC1;0, for every suh13



ode g there exists a diret representation in our sense of the funtion oded by g,but that the reverse diretion in general is not even provable in E-PA!+QF-AC. Thelatter phenomenon is due to the fat that the indiret representation of ontinuousfuntions G via odes g taitly yields a onstrutive enrihment of the diret rep-resentation of G by a modulus of pointwise ontinuity. To be more spei�, let usonsider the speial ase X = Baire spae, Y = IN (with the usual metris). Thenthe existene of a ode g for a ontinuous funtional �2 is (relative to E-G3A!+QF-AC1;0) equivalent to the existene of a ontinuous modulus of pointwise ontinuityfuntional 	2 for �2 whih in turn is equivalent to the existene of an assoiate of �in the sense of the Kleene/Kreisel ountable funtionals.De�nition 4.3 1) �1 is a neighborhood funtion if(a) 8�19n0(�(�n) > 0) and(b) 8m;n(m v n ^ �(m) > 0 ! �(m) = �(n)); where `m v n' expressesthe (elementary reursive) prediate that the sequene enoded by m is aninitial segment of the one enoded by n.2) �1 is an assoiate of �2 if(a) 8�19n0(�(�n) > 0) and(b) 8�; n(n least s.t. �(�n) > 0! �(�n) = �� + 1):Without loss of generality we may assume that an assoiate of �2 is a neighborhoodfuntion, sine otherwise we de�ne~�(n) := 8><>: �(m); where m shortest initial segment of n s.t. �(m) > 0, if existing0; otherwise.Proposition 4.4 E-G3A!+QF-AC1;0 proves (uniformly in �2) that the followingproperties are pairwise equivalent:1) 9f(f is an r.m.-ode of �),72) 9�1(� is an assoiate of �),7By `r.m-ode' we here refer to de�nition II.6.1 in [34℄ speialized to bA := ININ and bB := IN. Weidentify the set � in that de�nition with its harateristi funtion f .14



3) 9!2�(!� is a ontinuous modulus of pointwise ontinuity for �):Proof: `1)! 3)': Let f be a r.m.-ode of �2. Sine � is total, we have88�19a0; r0; b0; s0(d(�; �i:(a)i) <IR 2�r ^ (a; r)f(b; s) ^ 2�s <Q 1)and hene8�19a0; r0; b0; s0; l0( d(�; �i:(a)i) + 2�l <IR 2�r ^ (a; r)f(b; s) ^ 2�s <Q 1| {z }�:9v0A0(f;�;a;r;b;s;l;v) );where A0 is quanti�er-free. By quanti�er-free indution and QF-AC1;0 we obtain afuntional X2 suh that8�(X� minimal s.t. A0(f; �; �61(X�); : : : ; �66(X�))):It is lear that X is ontinuous9 and that �� = �63(X�): With X, also!�� :=Q 2��65(X�)is ontinuous. One easily veri�es that !� is a modulus of pointwise ontinuity for �.`3)! 2)': Let !� be a ontinuous modulus of pointwise ontinuity for �2. Then(1) 8�; (�(!��) =0 (!��)! �� =0 �)and (2) 8�9n0(!�(�; n) � n)(where �; n is the ontinuation of �n with 0).De�ne �(n) := 8><>: �(�i:(n)i) + 1; if !�(�i:(n)i) � lth(n)0; otherwise.(2) yields 8�9k(�(�k) > 0):8As in reverse mathematis we represent real numbers as Cauhy sequenes with �xed rate ofonvergene. As a onsequene of this, <IR2 �01.9Here we use the fat that A0(f; �; a; r; b; s; l; v) an be written as tA0(f; �; a; r; b; s; l; v) =0 0 fora suitable losed term tA0 of E-G3A! and that every losed term t2 of E-G3A! is provably pointwiseontinuous. 15



Assume that �(�k) > 0, then { by (1) and the de�nition of � { !�(�; k) � k ^�(�; k) = �� and therefore �(�k) = �� + 1:`2)! 1)': Let � be an assoiate for �. By the remark above we may assume that �is a neighborhood funtion. De�ne an r.m.-ode f for � by(a; r)f(b; s) :� �((�i:(a)i)r) > 0 ^ j(�(�i:(a)ir)� 1)� bj < 2�s:This is a quanti�er-free (and hene �01-)prediate (whih we identify with its har-ateristi funtion). It is straightforward to verify that f satis�es the properties ofan r.m.-ode and that f is a ode for �. We omit the tedious details. 2Remark 4.5 For the equivalene between 2) and 3), see also [2℄ (p.143, E.8).Theorem 4.6 E-PA!+QF-AC1;0+QF-AC0;1 does not prove that every ontinuousfuntional �2 has an r.m.-ode (i.e. that � is ontinuous in the sense of reversemathematis).Proof: In [31℄(6.4) a type-struture A = hAkik2IN over ! is onstruted with thefollowing properties:(i) E2jnA1 =2 A2, where E2(f 1) = 0$ 9x(fx = 0);(ii) A is losed under omputation in the sense of Kleene's shemata S1-S9.(iii) there exists a � 2 A2 suh that � has no assoiate in A1. By (ii), A is a modelof the restrition of E-PA!+QF-AC1;0 to the fragment with pure types only. Mod-ulo the well-known redution to pure types (see [37℄(1.8.5-1.8.8)), E-PA!+QF-AC1;0therefore has a model in whih there exists a funtional �2 whih has no assoiateand therefore { by the previous proposition { no r.m.-ode f . Nevertheless, all fun-tionals �2 of type 2 are ontinuous: one ould use here an argument due to [14℄to show that the existene of a non-ontinuous funtional in A2 would ontradit(i). However, it requires some are to verify that this argument (whih usually isformulated for the full type-struture) relativises to A. We therefore use diretly theonstrution of A whih is based on a ertain type-2 funtional F : ININ ! IN (on-struted by L. Harrington using a ompliated priority onstrution, see [31℄(4.21))whih has the following properties(i) F is ontinuous (and therefore has an assoiate in ININ),(ii) F jnREC is not omputable (in the sense of S1-S9) and therefore has no reursiveassoiate, 16



(iii) 1-s(F ) =REC.A1 :=REC, Ak+1 := f� : Ak ! IN : � omputable in F jnREC:gIt is lear that every � 2 A2 is ontinuous.As a further onsequene of this, QF-AC0;1 redues in A to QF-AC0;0 sine8x09f 1A0(x; f)! 8x09y0A0(�i:(y)i): So A j= QF-AC0;1. 2The fat that the representation of ontinuous funtions in reverse mathematis viaodes goes together with a onstrutive enrihment is also used heavily in many proofsof basi properties of ontinuous funtions in the system WKL0, while WKL doesnot seem to be suÆient to prove the same results for our diret representation. Wedisuss this for simpliity again for the ase of ontinuous funtions � : ININ ! IN.As we have seen above, reverse mathematis treats � via an assoiate �1. Thisrepresentation allows to prove the uniform ontinuity of � on the Cantor spae of all0-1-funtions by WKL. De�ne a binary tree byf(n) := 8><>: 1; if 8i < lth(n)((n)i � 1) ^ �(n) > 00; otherwise.Sine we may assume that � is a neighborhood funtion, f satis�es T (f). Theontraposition of WKL applied to f yields8� �1 19x0(�(�x) > 0! 9x8� �1 1(�(�x) > 0);i.e. �� = �(�minn[�(�n) > 0℄)� 1 is uniformly ontinuous on f� : � � 1g.Together with QF-AC0;0, WKL even implies the existene of a modulus of uniformontinuity funtion for ontinuous funtionals �1(1) on f� : � � 1g (if given by anassoiate or { equivalently { by an r.m.-ode). This is due to the fat that WKLyields 9k08x09� �1 1(�(hki � �x) = 0)! 9k9� � 18x(�(hki � �x) = 0)and so with QF-AC0;0 (and the fat that `9� �1 1(�(hki � �x) = 0)' an be writtenas a quanti�er-free formula) using ontraposition(+) 8k8� �1 19x(�(hki � �x) > 0)! 9!18k8� � 1(�(hki � �(!k)) > 0):Thus ! is a modulus of uniform ontinuity for the funtional �1(1) enoded by �.This argument an be adopted to real funtions oded as in reverse mathematis17



and is reponsible for the fat that in that ontext one an prove e.g. that everyontinuous funtion f : [0; 1℄ ! IR is uniformly ontinuous and has a modulus ofuniform ontinuity.In our diret type-2-treatment of ontinuous funtions � : ININ ! IN as funtionals�2 satisfying 8f 19n08g1(fn = gn! �f = �g);the binary tree to whih we have to apply K�onig's lemma in order to prove theuniform ontinuity of � on ff : f �1 1g is given byTree(n) :� 9g; h �1 1( ^i<lth(n)(g(i) = (n)i = h(i)) ^ �g 6= �h)whih no longer is quanti�er-free and apparently does not possess a harateristifuntion (in E-PA!+QF-AC1;0) whih would be neessary to apply WKL. So we needan extension of WKL to trees of the form Tree above. To show the existene of amodulus of ontinuity funtion for a ontinuous �1(1) on ff : f �1 1g, not eventhis extension is enough sine QF-AC no longer suÆes to prove the version of thisextension orresponding to (+) above.On the other hand { as we saw in proposition 3.4 { the non-standard priniple �01-UBeasily proves the existene of suh a modulus funtion for arbitrary funtionals �1(1)(and also of funtions G : [0; 1℄d ! IR represented diretly as type-2 funtionals; see[23℄,[25℄).In the next setion we study extensions �n-WKL+ and 	n-WKL+ of WKL to treesgiven by �n- (resp. 	n-)formulas, where, roughly, a formula is in �n (	n) if it has nalternating bounded funtion quanti�ers { starting with a universal (resp. existen-tial) one { in front of a �01-formula.10 For n = 0, these priniples are equivalent tothe usual WKL, but from n � 1 (resp. n � 2) on they form a proper hierarhy (evenrelative to E-PA!+QF-AC1;0+�, where � is Feferman's non-onstrutive �-operatororresponding to the E2-funtional). Adopting the argument above, one an showthat 	1-WKL+ suÆes to prove the existene of a modulus of uniform ontinuityfor ontinuous funtionals �2 on ff 1 : f � 1g but also (using the representationof [0; 1℄d; IR from [26℄) for ontinuous funtions f : [0; 1℄d ! IR (and { via suitablestandard representations { for other Polish spaes K,Y instead of [0; 1℄d; IR with K10That we allow a universal number quanti�er underneath the bounded funtion quanti�ers isusefull for the treatment of ontinuous funtions G : K ! X for spaes like K = [0; 1℄d; X = IRinstead of 2IN; ININ. 18



ompat) in their diret type-2 representation.For all n 2 IN, the priniples �n-WKL+ and 	n-WKL+ (whih { in ontrast to�01-UB { are true in the full set-theoreti model) follow from �01-UB (relative toE-G3A!+QF-AC1;0). So by theorem 3.7 (and proposition 3.2), proof-theoretiallythese extensions of WKL are not stronger than WKL whih allows to de�ne PRA-reduible systems of analysis whosemathematial strength goes beyond that of thesystem WKL0 used in reverse mathematis and whih in partiular allow to treatontinuous funtions diretly without a onstrutively enrihed representation.We lose this setion with an open problem whose solution whih we onjeture to betrue would relativise the foundational signi�ane of WKL for a partial realization ofHilbert's program (see [33℄): It seems unlikely in view of the omments above, thatWKL (used in a �nite type extension like E-PRA!+QF-AC1;0 of the base systemRCA0 used in reverse mathematis) suÆes to prove e.g. the existene of a modulusof uniform ontinuity for ontinuous funtions F : [0; 1℄! IR or F : 2IN ! ININ whenthose are represented diretly as type-2 objets (and not via r.m.-odes). Howeverwe have not been able to show its unprovability. This problem has onnetions to ap-parently rather non-trivial questions in the ontext of reursion theory for ontinuousfuntionals. We now formulate a onjeture whih would imply this unprovability:11Conjeture: There exists a type-struture A = hAnin2IN suh that1) A is losed under �-reursion;2) A0 = !;3) A1 is a model of WKL;4) every � 2 A2 is ontinuous (in the usual sense);5) there exists a �(f; n) 2 A2 suh that the restrition of � to x 2 ! and f 2 A1with f � 1 does not have an assoiate in A1.Corollary 4.7 (to the onjeture) E-PRA!+QF-AC1;0+QF-AC0;1+WKL does notprove that every ontinuous �1(1) has a modulus of uniform ontinuity when restritedto 2IN. Thus the prominent role of WKL in the ontext of analysis for ontinuousfuntions as arried out in reverse mathematis ruially depends on the partiular {11We are indebted to Professor Dag Normann for orrespondene about this problem and whihled us to formulate it as a onjeture. 19



onstrutively enrihed { representation of ontinuous funtions via odes (enforedby the restrited language of seond-order arithmeti used in reverse mathematis).Proof: By 1)-3), A is a model of (the pure-type fragment of)E-PRA!+QF-AC1;0+QF-AC0;1+WKL. If the (restrition of the) funtional � from5) had suh a modulus in A1, then one ould onstrut an assoiate for this restritionin A1. 2Remark 4.8 A stronger version of this onjeture results if 1) is replaed by `1*)A is losed under S1-S9 omputation'. This strong version implies that even E-PA!+QF-AC1;0+QF-AC0;1+WKL does not prove the existene of a modulus of uni-form ontinuity for ontinuous funtions F : 2IN ! ININ.5 Generalization of WKL to more omplex trees:�1-WKL+De�nition 5.1 1) A 2 �n ifA � 8f1 �1 s1[a℄9f2 �1 s2[a℄ : : :8(d)fn �1 sn[a℄8x0A0(a; f1; : : : ; fn; x);where A0 is quanti�er-free and a ontains all free variables of A and si (whihmay have arbitrary types). The fi must not our in a.2) A 2 	n ifA � 9f1 �1 s1[a℄8f2 �1 s2[a℄ : : :9(d)fn �1 sn[a℄8x0A0(a; f1; : : : ; fn; x);where A0 and si as above.3) The lasses ��n and 	�n result if we restrit ourselves to parameters a of typelevel � 1 in A0 and si.Remark 5.2 One ould also allow further universal number quanti�ers 8x0 (but noexistential quanti�ers) to our in between the bounded funtion quanti�ers in thede�nition of �n. The results of this paper easily extend to this slightly generalizedase. However, for appliations to ontinuous funtions on Polish spaes one appar-ently does not need this. So we restrit ourselves to the de�nition of �n as statedabove in order to improve the readability of the proofs.20



Remark 5.3 In the extensional ontext of our theories T we an ode pairs ofbounded funtion quanti�ers of the same sort together:8f1 �1 s18f2 �1 s2A(f1; f2)$ 8f �1 j(s1; s2)A(min1(j1f; s1);min1(j2f; s2))for some monotone funtion pairing as used e.g. in [23℄. Analogously for 9f �1 s.De�nition 5.4 The generalization of WKL to �n-trees is given by�n-WKL : 8n09f �1 18~n � nA(f ~n)! 9f �1 18n0A(fn);where A(k0) 2 �n (with arbitrary further parameters of arbitrary types). 	n-WKLis de�ned analogously. �1-WKL:= Sn2!f�n-WKLg:Remark 5.5 1) �n-WKL (	n-WKL) an be written as a single axiom for eah�xed n.2) Instead of the speial bounding funtion �x:1 in �n-WKL we may also havea funtion variable g1. All proofs in this paper remain valid. For notationalsimpliity and beause of the fat that this more general version atually anbe derived from the speial one, we formulate only the latter in this paper.The next proposition shows that in the absene of parameters of types � 2 (and soin partiular in a seond-order ontext) there is no point in onsidering �n-WKLinstead of WKL.12 For its proof we need the followingLemma 5.6 Let A0(a; g1; y0) be a quanti�er-free formula of T :=E-GnA! (n � 3),E-PRA! or E-PA! ontaining (in addition to g; y) only parameters a of type levels� 1 and let s be a term of T ontaining at most a as free variables. Then one anonstrut a �01-formula B(a) of T (ontaining only a free) suh thatT + WKL ` 8a(B(a)$ 9g �1 s[a℄8y0A0(a; g; y)):Proof: For T =E-PRA! and T = E-PA! this follows from (the proofs of) proposition4.14 and orollary 4.15 in [19℄. The use of the modulus ~txyk of pointwise ontinuityin y used in the proof of proposition 4.14 in [19℄ an easily be replaed by a modulusbtxk of uniform ontinuity on fy : y �1 sxg. For losed t 2E-GnA! suh a modulus btan be onstruted in E-GnA! by the method of [18℄ sine the majorization argumentused there is available in E-GnA! as was shown in [23℄. 212This is in sharp ontrast to the ase where arbitrary parameters are allowed as we will seebelow. 21



Proposition 5.7 Let m;n � 0. Over T :=E-GkA! (k � 3), E-PRA! or E-PA! thefollowing priniples are equivalent:(i) WKL, (ii) �0-WKL, (iii) 	0-WKL, (iv) ��m-WKL, (v) 	�n -WKL.Proof: We �rst show the followingClaim: Let A(a) be a ��n (or 	�n ) formula ontaining only parameters a of typedegree � 1. Then one an onstrut a �01-formula B(a) suh thatT + WKL ` A(a)$ B(a):Proof of the laim: We proeed by meta-indution on n:n = 0 : In this ase A 2 �01 and so B := A suÆes.n! n + 1 : Case 1: A 2 �n+1: Then A(a) � 8f �1 s[a℄ ~A(a; f), where ~A 2 	n. Bythe indution hypothesis there exists a formula ~B(a; f) � 8y0 ~B0(a; f; y) 2 �01 withT + WKL ` A(a)$ 8f �1 s[a℄8y0 ~B0(a; f; y):Let t ~B0 be a losed term of T suh thatT ` 8a; f; y(t ~B0(a; f; y) =0 0$ ~B0(a; f; y):From results in [18℄ (using for the ase of E-GkA! also [23℄) it follows that one anonstrut a losed term bt ~B0 of T suh that bt ~B0(a; y) is (provably in T ) a modulusof uniform ontinuity for �f:t ~B0(a; f; y) on ff : f �1 s[a℄g. Using this modulus,8f �1 s[a℄ ~B0(a; f; y) an be written as a quanti�er-free formula and hene 8f �1s[a℄8y ~B0(a; f; y) as a �01-formula bB(a): SoT + WKL ` A(a)$ bB(a):Case 2: A(a) 2 	n+1: Then A(a) � 9f �1 s[a℄ ~A(a; f) with ~A(a; f) 2 �n: By I.H.there exists a formula ~B(a; f) � 8y0 ~B0(a; f; y) 2 �01 withT + WKL ` A(a)$ 9f �1 s[a℄8y0 ~B0(a; f; y):By the lemma, there exists a �01-formula bB(a) suh thatT + WKL ` bB(a)$ 9f �1 s[a℄8y0 ~B0(a; f; y):22



So again T + WKL ` A(a)$ bB(a)with bB 2 �01. This �nishes the proof of the laim.The laim implies that T + WKL ` ��m-WKL$ 	�n -WKLfor all m;n � 0. Sine trivially ��0 -WKL $ �0-WKL, it therefore remains to showthat T ` �0-WKL $ 	0-WKL $ WKL:�0-WKL� 	0-WKL holds by de�nition. We have to show WKL$ �0-WKL:The right-hand side obviously implies the left-hand side sine �0-WKL allows thetree-prediate to be given even by a �01-formula whereas in WKL T (f) is quanti�er-free. So it remains to show that WKL! �0-WKL: Assume(+) 8n09g �1 18~n � n8z0A0(g~n; z):De�ne f suh that(++) f(x) =0 0$ 8i < lth(x)((x)i � 1) ^ 8~x v x8z � lth(x)A0(~x; z);where `~x v x' means that ~x is the ode of an initial segment of the sequene oded byx (note that the right-hand side of (++) an be written as a quanti�er-free formulain T ).f satis�es T (f) and { by (+) { represents an in�nite binary tree, i.e.8n9g �1 1 (f(gn) = 0):Hene WKL yields 9g �1 18n (f(gn) = 0);whih implies 9g �1 18n8m � n8z � nA0(gm; z);and therefore 9g �1 18n8z A0(gn; z):2In the presene of higher type parameters, however, we get non-ollapsing hierarhiesof priniples �n-WKL and 	n-WKL as we will show now.23



De�nition 5.8 We de�ne the lasses of formulas �1;bn and 	1;bn simultaneously byindution on n:(i) A 2 �1;b0 = �1;b0 , if A is quanti�er-free;(ii) if A(f) 2 �1;bn , then 9f �1 1A(f) 2 �1;bn+1;(iii) if A(f) 2 �1;bn , then 8f �1 1A(f) 2 �1;bn+1.A may ontain arbitrary parameters (of arbitrary types).Remark 5.9 �1;bn � �n and �1;bn � 	n:De�nition 5.10 1) The shema of �1;bn -omprehension is given by�1;bn -CA : 9g18x0(gx = 0$ A(x));where A(x) 2 �1;bn and may ontain arbitrary parameters (of arbitrary types)in addition to x. �1;bn -CA is de�ned analogously but with �1;bn instead of �1;bn .2) The shema of �1;bn -hoie for numbers is given by�1;bn -AC0;0 : 8x09y �0 1A(x; y)! 9g �1 18xA(x; gx);where A(x; y) 2 �1;bn and may ontain arbitrary parameters.Proposition 5.11 Let T :=E-PA!. ThenT + �n+1-WKL ` �1;bn -CA(Likewise for 	n+1-WKL).Proof: We use the following tree-prediate from [38℄:~A(k) :� 8>>>>><>>>>>: (k)lth(k)�� 1 � 1 ^ ((k)lth(k)�� 1 = 0! A(lth(k)�� 1))^((k)lth(k)�� 1 = 1! :A(lth(k)�� 1))); if lth(k) > 0true; otherwise:For A 2 �1;bn , ~A(k) an be written as a �n+1-formula (using remark 5.3). By indutionon n we an prove in E-PA! that8n09f �1 18~n � n ~A(f ~n):�n+1-WKL therefore yields the harateristi funtion for A(n). 224



Proposition 5.12 E-PA! + �1;bn -CA+� ontains (modulo a anonial embeddingwhih doesn't hange the �rst order part) the seond order system (�1n-CA) knownfrom reverse mathematis.13Proof: Systems formulated in the language of seond-order arithmeti with setvariables like (�1n-CA) an be embedded in (suitable) systems formulated in thelanguage of funtionals of all �nite types by representing setsX by their harateristifuntions �X and replaing formulas `t 2 X' by `�X(t) =0 0'. In doing so and usingthe fat that the presene of � allows to absorb an arbitrary arithmetial quanti�er-pre�x in front of a quanti�er-free formula with arbitrary parameters uniformly inthese parameters, the omprehension shema of (�1n-CA) redues to �1;bn -CA above.2The two propositions above show that the systems E-PA!+QF-AC1;0+QF-AC0;1 +�+ �n-WKL (and similar with 	n-WKL) form a non-ollapsing hierarhy whih asn inreases eventually exhausts full seond-order arithmeti.Together with the result due to Feferman that E-PA!+QF-AC1;0+QF-AC0;1+� anbe redued proof-theoretially to (�01-CA)<"014 and hene is proof-theoretially muhweaker than (�11-CA), it in partiular follows that for n � 2, �n-WKL and 	n-WKLare underivable in E-PA!+QF-AC1;0+QF-AC0;1+�. The next proposition improvesthis further:Proposition 5.13 E-PA!+QF-AC1;0+QF-AC0;1 + � =̀�1-WKL.Proof: One easily veri�es that E-PA! + �1-WKL proves �1;b1 -AC0;0 whih in thepresene of � yields the so-alled �11-separation priniple (see [34℄), hene (again by[34℄) the subsystem ATR of seond order arithmeti, whose proof-theoreti strengthis muh higher than that of (�01-CA)<"0, is ontained in E-PA!+QF-AC1;0+QF-AC0;1 + �+ �1-WKL. 2Remark 5.14 A more detailed analysis of the proof-theoreti strength of the sys-tems E-PA!+QF-AC1;0+QF-AC0;1 + � + �n-WKL whih would allow to determinethe preise relationship between �n-WKL and 	m-WKL has to be postponed for asubsequent paper.As we have seen already above, 	1-WKL suÆes to prove the uniform ontinuity ofontinuous funtions � : [0; 1℄d ! IR (and more general: for ontinuous funtions13In the notation of [34℄, (�1n-CA) is the system �1n-CA0+full indution.14This follows from [5℄ together with elimination of extensionality (see also [1℄).25



from ompat metri spaes into Polish spaes). However, in order to show theexistene of a modulus of uniform ontinuity funtion we apparently need a slightlystronger form 	1-WKL+:De�nition 5.15 Let A(a0; k0) 2 �n (with arbitrary parameters).�n-WKL+ : 8h19a09f �1 18~n � h(a)A(a; f ~n)! 9a9f �1 18n0A(a; fn)(	n-WKL+ is de�ned analogously with A 2 	n.)Remark 5.16 In T :=E-GkA! (k � 3), E-PRA! or E-PA!, trivially �n-WKL+ !�n-WKL.For n = 0, �0-WKL (and hene WKL) together with QF-AC0;0 implies already�0-WKL+:Proposition 5.17 Let T :=E-GkA! (k � 3), E-PRA! or E-PA!. ThenT +QF-AC0;0 ` �0-WKL$ �0-WKL+:Proof: The diretion ` ' is trivial.`!': For A(a; k) 2 �0 (= �01), �0-WKL implies9a08n09f �1 18~n � nA(a; f ~n)! 9a9f �1 18n0A(a; fn):`9f �1 1' in `9f �1 18~n � nA(a; f ~n)' an be replaed by a bounded numberquanti�er. Together with the fat that the �01-olletion priniple is derivable inT +QF-AC0;0, this implies that `9f �1 18~n � nA(a; f ~n)' an be written as a �01-formula. Hene (again using QF-AC0;0), T +QF-AC0;0 proves9a08n09f �1 18~n � nA$ 8h19a09f �1 18~n � h(a)A;whih onludes the proof. 2The proposition above is the reason for the phenomenon that in the ontext ofreverse mathematis (where the more onstrutive de�nition of ontinuous funtionsused makes it possible to replae the use of 	1-WKL by WKL=�0-WKL) WKLsuÆes even to show the existene of a modulus of uniform ontinuity. For ourdiret representation of ontinuous funtions, however, we have to use 	1-WKL+whih does not seem to be implied by 	1-WKL and QF-AC0;0.In the next two setions we will show that, nevertheless, proof-theoretially �1-WKL+ (=	1-WKL+) is not stronger than WKL.26



6 The omputational strength of �1-WKL+Proposition 6.1 Let T :=E-GkA! (k � 3), E-PRA! or E-PA!. ThenT + QF-AC1;0 + F� ` �1-WKL+:Proof: Beause of proposition 3.6 it suÆes to show thatT + QF-AC1;0 + F ` �1-WKL+:The idea of the proof is to use proposition 3.4 (together with propositions 3.2 and 3.3)to show similarly to the argument in the proof of proposition 5.7 that every A 2 �n(or 2 	n) an be written as a �01-formula B. Whereas in the proof of proposition5.7 we ould use the fat that for every term t2[a℄ of T ontaining only variablesa of type � 1 one an onstrut a modulus of uniform ontinuity on fx : x �1 bg(uniformly in a and b), we have to use proposition 3.4 in the presene of arbitraryparameters. The latter provides suh a modulus of uniform ontinuity only uniformlyin number parameters but not uniformly in funtion parameters f unless the latterare themselves restrited to a ompat set ff : f �1 bg (in whih ase a modulusthat is independent of f does exist). However this is just the ase in the situation athand sine all funtion variables f1; : : : ; fn of A 2 �n whih are not parameters arebounded. So all we need is(�)8><>: 8�; a9�18x0; z0(�f:(�xzfa)0 is uniformly ontinuous for allf1 �1 s1[x; a℄; : : : ; fn �1 sn[x; a℄ with modulus �xz);where a are all the remaining free variables of si (whih may have arbitrary types).15(�) is implied by(��)8><>: 8�; a; b1(0)9�18x0; z0(�f:(�xzfa)0 is uniformly ontinuous for allf1 �1 b1x; : : : ; fn �1 bnx with modulus �xz):But this follows in T + �01-UB (and therefore in T +QF-AC1;0 + F by proposition3.2) similarly to the proof of proposition 3.4. Sine by proposition 3.3 also WKL15Here `z' is the variable from the �01-kernel of A (whih of ourse an be merged together withx). 27



is available in this theory, we an argue as in the proof of the laim in the proof ofproposition 5.7 and show that for A(x) 2 �n (with arbitrary additional parameters)T + �01-UB ` 9�8x0(A(x)$ 8z0(�xz =0 0)):Hene for all n 2 IN(� � �)T + �01-UB ` �0-WKL+ ! �n-WKL+and therefore (using propositions 3.3,5.7 and 5.17)T +QF-AC0;0 + �01-UB ` �n-WKL+and therefore by proposition 3.2T +QF-AC1;0 + F ` �n-WKL+;whih onludes the proof. 2Corollary to the proof of proposition 6.1:T +QF-AC0;0 + �01-UB ` �1-WKL+7 PRA-reduible theoriesTheorem 7.1 1) E-G3A!+QF-AC1;0+QF-AC0;1+�01-UB is �02-onservative overEA,2) E-PRA!+QF-AC1;0+QF-AC0;1 + �01-UB is �02-onservative over PRA,3) E-PA!+QF-AC1;0+QF-AC0;1 + �01-UB is onservative over PA.Proof: We �rst prove 3): Let A be a sentene of PA whih is provable in E-PA!+QF-AC1;0+QF-AC0;1+�01-UB and hene (using proposition 3.2) in E-PA!+QF-AC1;0+QF-AC0;1 + F . Then the Herbrand normal form AH � 8f9yA0(f; y) of A isprovable there a-fortiori. Hene by theorem 3.7E-PA! ` 8f A0(f;	(f))for suitable losed terms 	 of E-PA!. ThusE-PA! ` AH :28



By [17℄(thm.4.1) we an onlude that16PA ` A:1) and 2): For �02-sentenes A the argument above applies equally to E-G3A! (resp.E-PRA!) yielding E-G3A! ` A (resp. E-PRA! ` A). The onlusion now followsfrom the fat that E-G3A! (resp. E-PRA!) is �02-onservative over EA (resp. PRA).2Theorem 7.21) E-G3A!+QF-AC1;0+QF-AC0;1 + �1-WKL+ is �02-onservative over EA,2) E-PRA!+QF-AC1;0+QF-AC0;1 + �1-WKL+ is �02-onservative over PRA,3) E-PA!+QF-AC1;0+QF-AC0;1 + �1-WKL+ is onservative over PAProof: The theorem follows from theorem 7.1, proposition 6.1 and 3.2. 2Remark 7.3 The purely proof-theoreti proofs of theorems 7.1 and 7.2 also yieldorresponding proof-theoreti redutions.Summary about PRA-reduibility:In this paper we in partiular have onstruted two new mathematially strong PRA-reduible and �02-onservative extensions of PRA. One of these systemsT � := E-PRA!+QF-AC1;0+QF-AC0;1 + �01-UBis a non-standard system in the sense that the full set-theoreti type struture S! isnot a model of T �.Analysing the greater mathematial strength of T � (w.r.t. to derivable onsequeneswhih are true in S!) in terms of generalizations of WKL to logially more omplexbinary trees, we developed the subsystemT := E-PRA!+QF-AC1;0+QF-AC0;1 + �1-WKL+whih has S! as a model.In partiular, T allows to arry out substantial parts of lassial analysis in amuh more diret way than the seond order system WKL0 or even E-PRA!+QF-AC1;0+QF-AC0;1+WKL.16Warning: this argument does not apply to the subsystems E-PRA!, PRA; see [17℄ for a oun-terexample to this. 29



Conluding remarks:1) There is also a di�erent route to design PRA-reduible systems whih is basedon E-G1A! instead of E-PRA!. Although E-G1A! ontains all primitive re-ursive funtions and primitive reursive funtionals of every Grzegorzyk leveln, it does not ontain all ordinary Kleene-primitive reursive funtionals of type2, in partiular it does not ontain �it. As a onsequene of this, E-G1A!+QF-AC0;0 does not prove the shema of �01-indution. As we have shown in [26℄,[27℄and [28℄, one an add to E-G1A!+QF-AC1;0+ QF-AC0;1 funtion parameter-free shemati forms of e.g. �01-omprehension, the Bolzano-Weierstra� prin-iple for sequenes in [0; 1℄d, the Arzela-Asoli lemma et. and still obtain aPRA-reduible system (whereas the addition of any of these priniples to E-PRA! would make the Akermann funtion provably total). This result wasobtained via a ertain �02-generalization of the priniple �01-UB� mentioned inthe proof of proposition 3.6. Using the results of this paper we an even allow aorresponding generalization of the priniple �01-UB instead. As a onsequeneof this and the fat that �1-WKL+ follows from �01-UB already relative toE-G1A!, we may add �1-WKL+ to the priniples listed above without losingPRA-onservation. This results in a mathematially fairly strong system (notethat E-G1A!+QF-AC0;0 allows to interpret the weak base system RCA�0 fromreverse mathematis and see remark X.4.3 in [34℄) whih is inompatible withthe systems studied in this paper. A detailed treatment of this theme, however,has to be postponed for another paper.2) The results of this paper and [30℄ suggest to propose the following extension ofthe program of reverse mathematis to �nite types: Replae the base systemRCA0 by its �nite type extension RCA!0 := E-PRA!+QF-AC1;0. This systeman be shown to be onservative over (an inessential variant with funtionvariables instead of set variable of) RCA0. So for seond order statementsA;B (i.e. the type of statements whih an be disussed in the frameworkof urrently existing reverse mathematis) nothing is lost if we prove anequivalene between A and B relative to RCA!0 instead of RCA0. However, theriher language allows to onsider new statements (in their diret formulation)whih an not even be expressed in RCA0 and to apply reverse mathematisto them as well. As �rst example, we an reast a result from [30℄ as a resultin reverse mathematis in this extended sense:`Relative to RCA!0 , the uniform weak K�onig's lemma UWKL and the existeneof Feferman's �-operator are equivalent'.30
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