
Dynami
ally Fault-Tolerant Content Addressable NetworksJared Saia � Amos Fiaty Steve Gribble� Anna R. Karlin� Stefan Saroiu�Abstra
tWe des
ribe a 
ontent addressable network whi
h is robust in the fa
e of massive adversarialatta
ks and in a highly dynami
 environment. Our network is robust in the sense that at anytime, an arbitrarily large fra
tion of the peers 
an rea
h an arbitrarily large fra
tion of the dataitems. The network 
an be 
reated and maintained in a 
ompletely distributed fashion.1 Introdu
tionDistributed denial-of-servi
e atta
ks on the Internet are highly prevalent, targeting a wide-rangeof vi
tims [3℄. Peer-to-peer systems are parti
ularly vulnerable to su
h atta
ks, sin
e peers la
kthe te
hni
al expertise and resour
es needed for maintaining a high level of prote
tion. In additionto being vulnerable to su
h atta
ks, we 
an expe
t peer-to-peer systems to be 
onfronted with ahighly dynami
 peer turnover rate [8℄. For example, in both Napster and Gnutella, half of thepeers parti
ipating in the system will be repla
ed by new peers within one hour. Thus, maintainingfault-toleran
e in the fa
e of massive targeted atta
ks and in a highly dynami
 environment is
riti
al to the su

ess of a peer-to-peer system.The 
ontributions of this paper are two-fold. First, we de�ne the notion of dynami
ally strongfault-toleran
e. Our de�nition 
aptures the properties that a peer-to-peer system must have to berobust to or
hestrated atta
ks and in a highly dynami
 environment. Se
ond, we present a 
ontentaddressable network [9℄ whi
h is dynami
ally strong fault-tolerant.1.1 Dynami
 Fault Toleran
eTo better address fault-toleran
e in peer-to-peer networks, we de�ne a new notion of dynami
allystrong fault-toleran
e. First, we assume an adversarial fail-stop model { at any time, the adversaryhas 
omplete visibility of the entire state of the system and 
an 
hoose to "delete" any peer itwishes. A "deleted" peer stops fun
tioning immediately, but is not assumed to be Byzantine.Se
ond, we require our network to remain \robust" at all times provided that in any time intervalduring whi
h the adversary deletes some number of peers, some larger number of new peers jointhe network. Ea
h new peer knows only one other live peer in the network.More formally, we say that an adversary is limited if for some 
onstants 
 > 0 and Æ > 
, duringany period of time in whi
h the adversary deletes 
n peers from the network, at least Æn new peersjoin the network (where n is the number of peers initially in the network). We assume that ea
hof these new peers knows only one random peer 
urrently in the network.We say that a 
ontent addressable network (CAN) is �-robust at some parti
ular time if all butan � fra
tion of the peers in the CAN 
an a

ess all but an � fra
tion of the 
ontent.Finally, we say that a CAN (initially 
ontaining n peers) is �-dynami
ally strong fault-tolerant(or simply �-dynami
ally fault-tolerant) if, with high probability, the CAN is always �-robust duringa period when a limited adversary deletes a number of peers polynomial in n.�Department of Computer S
ien
e and Engineering, University of Washington, Seattle, WA 98195; email: fsaia,gribble, karlin, tzoompyg�
s.washington.eduyDepartment of Computer S
ien
e, Tel Aviv University; email: fiat�tau.a
.il1



In se
tion 2, we present an �-dynami
ally fault-tolerant CAN for any arbitrary � > 0, and any
onstants 
 and Æ su
h that 
 < 1 and Æ > 
 + �. Our CAN stores n data items1, and has thefollowing 
hara
teristi
s:1. With high probability, at any time, an arbitrarily large fra
tion of the nodes 
an �nd all anarbitrarily large fra
tion of the data items.2. Sear
h takes time O(log n) and requires O(log2 n) messages in total.3. Every peer maintains pointers to O(log3 n) other peers.4. Every peer stores O(log n) data items.5. Peer insertion takes time O(log n).The 
onstants in these resour
e bounds are fun
tions of �, 
 and Æ. The te
hni
al statement ofthis result is presented in Theorem A.3.We note that, as we have de�ned it, an �-dynami
ally fault-tolerant CAN is �-robust for only apolynomial number of peer deletions by the limited adversary. To address this issue, we imagine thatvery infrequently, there is an all-to-all broad
ast among all live peers to re
onstru
t the CAN(detailsof how to do this are in [1℄). Even with these infrequent re
onstru
tions, the amortized 
ost perinsertion will be small.1.2 Related WorkFiat and Saia [1℄ present a 
ontent addressable network for whi
h even after adversarial removal ofa linear number of nodes in the network, an arbitrarily large fra
tion of the remaining nodes 
ana

ess an arbitrarily large fra
tion of the original data items. While the Fiat-Saia network is animportant �rst step towards the goal of a strongly fault-tolerant CAN, this s
heme is inherentlystati
. Thus, even if many new peers join the network, the CAN 
eases to be �-robust when all theoriginal peers die.Weaker forms of stati
 fault-toleran
e are known to exist for other peer-to-peer systems. Exper-imental measurements of a 
onne
ted 
omponent of the real Gnutella network have been studied [8℄,and it has been found to still 
ontain a large 
onne
ted 
omponent even with a 1/3 fra
tion of ran-dom peer deletions.Several address 
ontent addressable networks are robust under random node deletions [4, 9, 2℄.For example, Chord 
orre
tly routes queries in O(log(n)) expe
ted time even after ea
h nodefails with probability 1=2. However, it is un
lear whether it is possible to extend any of thesesystems to remain robust under or
hestrated atta
ks. In addition, many known network topologiesare known to be vulnerable to adversarial deletions. For example, with a linear number of nodedeletions, the hyper
ube 
an be fragmented into 
omponents all of whi
h have size no more thanO(n=plog n) ([5℄).2 A Dynami
ally Fault-Tolerant Content Addressable NetworkOur s
heme is most easily des
ribed by imagining a \virtual CAN". The spe
i�
ation of this CAN
onsists of des
ribing the network 
onne
tions between virtual nodes, the mapping of data itemsto virtual nodes, and some additional auxiliary information. In Se
tion 2.1, we des
ribe the virtualCAN. In Se
tion 2.2, we go on to des
ribe how the virtual CAN is implemented by the peers.1For simpli
ity, we've assumed that the number of items and the number of initial nodes is equal. However, forany n nodes and m � n data items, our s
heme will work, where the sear
h time remains O(log n), the number ofmessages remains O(log2 n), and the storage requirements are O(log3 n�m=n) per node.2



Figure 1: The butter
y network of supernodes.2.1 The Virtual CANThe virtual CAN, 
onsisting of n virtual nodes, is 
losely based on the [1℄ s
heme. We make use ofa butter
y network of depth log n� log logn, we 
all the nodes of the butter
y network supernodes(see Figure 1). Every supernode is asso
iated with a set of virtual nodes. We 
all a supernode atthe topmost level of the butter
y a top supernode, one at the bottommost level of the network abottom supernode and one at neither the topmost or bottommost level a middle supernode.We use a set of hash fun
tions for mapping virtual nodes to supernodes of the butter
y and formapping data items to supernodes of the butter
y. We assume these hash fun
tions are approxi-mately random. 2The virtual network is 
onstru
ted as follows:� We 
hoose an error parameter � > 0, and as a fun
tion of � we determine 
onstants C, D, �and �. (See [1℄ for detailed information on how this is done).� Every virtual node v is hashed to C random top supernodes (we denote by T (v) the set ofC top supernodes v hashes to), C random bottom supernodes (denoted B(v)) and C lognrandom middle supernodes (denoted M(v)) to whi
h the virtual node will belong.� All the virtual nodes asso
iated with any given supernode are 
onne
ted in a 
lique. (We dothis only if the set of virtual nodes in the supernode is of size at least �C lnn and no morethan �C lnn.)� Between two sets of virtual nodes asso
iated with two supernodes 
onne
ted in the butter
ynetwork, we have a 
omplete bipartite graph. (We do this only if both sets of virtual nodesare of size at least �C lnn and no more than �C lnn.)� We map the n data items to the n= log n bottom supernodes in the butter
y: ea
h dataitem, say d, is hashed to D random bottom supernodes; we denote by S(d) the set of bottomsupernodes that data item d is mapped to. (Typi
ally, we would not hash the entire dataitem but only it's title, e.g., \Singing in the Rain").� The data item d is then stored in all the 
omponent virtual nodes of S(d) (if any bottomsupernode has more than �B lnn data items hashed to it, it drops out of the network.)� Finally, we map the meta-data asso
iated with ea
h of the n virtual nodes in the network tothe n= log n bottom supernodes in the butter
y. For ea
h virtual node v, information about v2We use the random ora
le model ([6℄) for these hash fun
tion, it would have suÆ
ed to have a weaker assumptionsu
h as that the hash fun
tions are expansive. 3



is mapped to D bottom supernodes. We denote by I(v) the set of bottom supernodes storinginformation about virtual node v. (if any bottom supernode has more than �B lnn virtualnodes hashed to it, it drops out of the network.)� For ea
h virtual node v in the network, we do the following:1. We store the id of v on all 
omponent virtual nodes of I(v).2. A 
omplete bipartite graph is maintained between the virtual nodes asso
iated withsupernodes I(v) and the virtual nodes in supernodes T (v), M(v) and B(v).2.2 Implementation of Virtual CAN by PeersEa
h peer that is 
urrently live will map to exa
tly one node in the virtual network and ea
h nodein the virtual network will be asso
iated with at most one live peer. At all times we will maintainthe following two invariants:1. If peers p1 and p2 map to virtual nodes x and y and x links to y in the virtual network, thenp1 links to p2 in the physi
al overlay network.2. If peer p maps to virtual node x, then p stores the same data items that x stores in the virtualnetwork.Re
all that ea
h virtual node in the network parti
ipates in C top, C logn middle and C bottomsupernodes. When a virtual node v parti
ipates in a supernode s in this way, we say that v is amember of s. For a supernode s, we de�ne V (s) to be the set of virtual nodes whi
h are membersof s. Further we de�ne P (s) to be the set of live peers whi
h map to virtual nodes in V (s).2.3 Sear
h for a Data ItemWe will now des
ribe the proto
ol for sear
hing for a data item from some peer p in the network.We will let v be the virtual node p maps to and let d be the desired data item.1. Let b1; b2; : : : ; bD be the bottom supernodes in the set S(d).2. Let t1; t2; : : : ; tC be the top supernodes in the set T (v).3. Repeat in parallel for all values of k between 1 and C:(a) Let ` = 1.(b) Repeat until su

essful or until ` > B:i. Let s1; s2; : : : sm be the supernodes in the path in the butter
y network from tk tothe bottom supernode b`.� Transmit the query to all peers in the set P (s1).� For all values of j from 2 to m do:{ The peers in P (sj�1) transmit the query to all the peers in P (sj).� When peers in the bottom supernode are rea
hed, fet
h the 
ontent from what-ever peer has been rea
hed.� The 
ontent, if found, is transmitted ba
k along the same path as the query wastransmitted downwards.ii. In
rement `.2.4 Content and Peer InsertionAn algorithm for inserting new 
ontent into the network is presented in [1℄. In this se
tion, wedes
ribe the new algorithm for peer insertion. We assume that the new peer knows one otherrandom live peer in the network. We 
all the new peer p and the random, known peer p0.4



1. p �rst 
hooses a random bottom supernode, whi
h we will 
all b. p then sear
hes for b in themanner spe
i�ed in the previous se
tion. The sear
h starts from the top supernodes in T (p0)and ends when we rea
h the node b(or fail).2. If b is su

essfully found, we let W be the set of all virtual nodes, v , su
h that meta-data forv is stored on the peers in P (b). We let W 0 be the set of all virtual nodes in W whi
h are not
urrently mapped to some live peer.3. If b 
an not be found, or if W 0 is empty, p does not map to any virtual node. Instead it justperforms any desired sear
hes for data items from the top supernodes, T (p0).4. If there is some virtual node v in W 0, p takes over the role of v as follows:(a) Let S = T (v) [M(v) [B(v). Let F be the set of all supernodes, s in S su
h that P (s)is not empty. Let E = S � F .(b) For ea
h supernode s in F :i. Let R be the set of supernodes that neighbor s in the butter
y.ii. p 
opies the links to all peers in P (r) for ea
h supernode r in R. These links 
anall be 
opied at on
e from one of the peers in P (s). Note that ea
h peer in P (b)
ontains a pointer to some peer in P (s).iii. p noti�es all peers to whi
h it will be linking to also link to it. For ea
h supernoder in R, p sends a message to one peer in P (r) notifying it of p's arrival. The peerre
eiving the message then relays the message to all peers in P (r). These peers thenall point to p.iv. If s is a bottom supernode, p 
opies all the data items that map to s. It 
opies thesedata items from some peer in P (s).(
) If E is non-empty, we will do one broad
ast to all peers that are rea
hable from p.We will �rst broad
ast from the peers in all top supernodes in T (p) to the peers in allrea
hable bottom supernodes. We will then broad
ast from the peers in these bottomsupernodes ba
k up the butter
y network to the peers in all rea
hable top supernodes.3: i. p broad
asts the id of v along with the ids of all the supernodes in E. All peers thatre
eive this message, whi
h are in supernodes neighboring some supernode in E will
onne
t to p.ii. In addition to forging these links, we seek to retrieve data items for ea
h bottomsupernode whi
h is in the set E. Hen
e, we also broad
ast the ids for these dataitems. We 
an retrieve these data items if they are still stored on other peers.43 Con
lusionIn this paper, we have introdu
ed the notion of a dynami
ally strong fault-toleran
e and havedes
ribed a 
ontent addressable network that has this property. Future dire
tions in
lude redu
ingthe number of messages sent for sear
h and node insertion and redu
ing the number of pointersstored at ea
h peer.3This broad
ast takes O(log n) time but requires a large number of messages. However, we anti
ipate that thistype of broad
ast will o

ur infrequently. In parti
ular, under the assumption of random failures, this broad
ast willnever o

ur with high probability.4We note that, using the s
heme in [7℄, we 
an retrieve the desired data items, even in the 
ase where we are
onne
ted to no more than n=2 live peers. To use this s
heme, we need to store, for ea
h data item of size s, someextra data of size O(s=n) on ea
h node in the network. Details on how to do this are ommitted.5



Referen
es[1℄ Amos Fiat and Jared Saia. Censorship Resistant Peer-to-Peer Content Addressable Networks.In Symposium on Dis
rete Algorithms, 2002.[2℄ B.Y. Zhao, K.D. Kubiatowi
z and A.D. Joseph. Tapestry: An Infrastru
ture for Fault-ResilientWide-Area Lo
ation and Routing. Te
hni
al Report UCB//CSD-01-1141, University of Cali-fornia at Berkeley Te
hni
al Report, April 2001.[3℄ David Moore, Geo�rey Voelker and Stefan Savage. Inferring internet denial-of-servi
e a
tivity.In Pro
eedings of the 2001 USENIX Se
urity Symposium, 2001.[4℄ Ion Stoi
a, Robert Morris, David Karger, Frans Kaashoek and Hari Balakrishnan. Chord: AS
alable Peer-to-peer Lookup Servi
e for Internet Appli
ations. In Pro
eedings of the ACMSIGCOMM 2001 Te
hni
al Conferen
e, San Diego, CA, USA, August 2001.[5℄ Johan Hastad, Thomson Leighton and Mark Newman. Fast 
omputation using faulty hyper-
ubes. In Pro
eedings of the 21st Annual ACM Symposium on Theory of Computing, 1989.[6℄ Mihir Bellare and Phillip Rogaway. Random ora
les are pra
ti
al: a paradigm for designingeÆ
ient proto
ols. In The First ACM Conferen
e on Computer and Communi
ations Se
urity,pages 62{73, 1993.[7℄ Noga Alon, Haim Kaplan, Mi
hael Krivelevi
h, Dahlia Malkhi and Julien Stern. S
alable se
urestorage when half the system is faulty. In Pro
eedings of the 27th International Colloquium onAutomata, Languages and Programming, 2000.[8℄ Stefan Saroiu, P. Krishna Gummadi and Steven D. Gribble. A Measurement Study of Peer-to-Peer File Sharing Systems. In Pro
eedings of Multimedia Computing and Networking, 2002.[9℄ Sylvia Ratnasamy, Paul Fran
is, Mark Handley, Ri
hard Karp and S
ott Shenker. A S
alableContent-Addressable Network. In Pro
eedings of the ACM SIGCOMM 2001 Te
hni
al Confer-en
e, San Diego, CA, USA, August 2001.

6



A AppendixIn this appendix, we provide proofs for the statements made in the paper.A.1 Dynami
 Fault-Toleran
eWe will be using the following two theorems whi
h follow from results in [1℄. We �rst de�ne a peeras �-good if it is 
onne
ted to all but 1� � of the bottom supernodes.Lemma A.1. Assume at any time, at least �n of the virtual nodes map to live peers for some� < 1. Then for any �, we 
an 
hoose appropriate 
onstants C and D for the virtual network su
hthat at all times, all but an � fra
tion of the top supernodes are 
onne
ted to all but an � fra
tionof the bottom nodes.Proof. This lemma follows dire
tly from Theorem 4.1 in [1℄ by plugging in appropriate values.Lemma A.2. Assume at any time, at least �n of the virtual nodes map to live peers for some� < 1. Then for any � < 1=2, we 
an 
hoose appropriate 
onstants C and D for the virtual networksu
h that at all times, all �-good nodes are 
onne
ted in one 
omponent with diameter O(log n).Proof. By Lemma A.1, we 
an 
hoose C and D su
h that all �-good peers 
an rea
h more than a1=2 fra
tion of the bottom supernodes. Then for any two �-good peers, there must be some bottomsupernode su
h that both peers are 
onne
ted to that same supernode. Hen
e, any two �-goodpeers must be 
onne
ted. In addition, the path between these two �-good peers must be of lengthO(log n) sin
e the path to any bottom supernode is of length O(log n)Theorem A.3. For all � > 0 and value P whi
h is polynomial in n, there exist 
onstants k1(�),k2(�) and k3(�) and k4(�) su
h that the following holds with high probability for the CAN for deletionof up to P peers by the limited adversary:� At any time, the CAN is �-robust� Sear
h takes time no more than k1(�) log n.� Peer insertion takes time no more than k2(�) log n.� Sear
h requires no more than k3(�) log2 n messages total.� Every node stores no more than k4(�) log3 n pointers to other nodes and k3(�) log n data items.Proof. We brie
y sket
h the argument that our CAN is dynami
ally fault-tolerant. For 
on
rete-ness, we will prove dynami
 fault-toleran
e with the assumption that 2n=10 peers are added when-ever (1=10 � �)n peers are deleted by the adversary. The argument for the general 
ase is similar.Consider the state of the system when exa
tly 2n=10 virtual nodes map to no live peers. We willfo
us on what happens for the time period during whi
h the adversary kills o� (1=10 � �)n morepeers. By assumption, during this time, 2n=10 new peers join the network. In this proof sket
h,we will show that with high probability, the number of virtual nodes whi
h are not live at the endof this period is no more than 2n=10. The general theorem follows dire
tly.We know that Lemma A.1 applies during the time period under 
onsideration sin
e there arealways at least n=2 live virtual nodes. Let R be the set of virtual nodes that at some point duringthis time period are not �-good. By Lemma A.2, peers in virtual nodes that are not in the setR have been 
onne
ted in the large 
omponent of �-good nodes throughout the 
onsidered timeinterval. Thus these peers have re
eived information broad
asted during su

essful peer insertions.However, the peers mapping to virtual nodes in R may at some point have not been 
onne
ted toall the other �-good nodes and so may not have have re
eived information broad
asted by inserted7



peers. We note that jRj is no more than �n by Lemma A.1 (sin
e even with no insertions in thenetwork, no more than �n virtual nodes would be not be �-good at any point in the time periodunder 
onsideration). Hen
e we will just assume that those peers with stale information, i.e. thepeers in R, are dead. To do this, we will assume that the number of adversarial node deletions isn=10. (We further note that all peers whi
h are not �-good will a
tually be 
onsidered dead by allpeers whi
h are �-good. This is true sin
e no bottom supernode rea
hable from an �-good node willhave a link to a peer whi
h is not �-good. Hen
e, su
h a virtual node will be fair game for a newpeer to map to.)We 
laim that during the time interval, at least n=10 of the inserted peers will map to virtualnodes. Assume not. Then there is some subset, S, of the 2n=10 peers that were inserted su
hthat jSj = n=10 and all peers in S did not 
onne
t to any bottom supernodes with informationon virtual nodes that had no live peers. Further there is some subset V , 
ontaining n=10 of the2n=10 originally empty virtual nodes su
h that all virtual nodes in V have no peers after theinsertions. With high probability, there is some subset of the peers in S (and in fa
t any subset ofthe inserted peers of size n=10), whi
h are �-good and whi
h visited at least kn= log n unique bottomsupernodes for some 
onstant k > 0. For D (the 
onstant de�ned in the virtual network se
tion)
hosen suÆ
iently large, this set of kn log n unique bottom supernodes must 
ontain more than9n=10 virtual node ids (by expansion properties). But this is a 
ontradi
tion sin
e this implies thatone of the peers in S must have rea
hed a bottom supernode whi
h had information on a virtualnode in V .Hen
e during the time that n=10 peers were deleted from the network, at least n=10 virtualnodes were newly mapped to live peers. This implies that the number of virtual peers not mappedto live nodes 
an only have de
reased. This then implies that the number of virtual peers notmapped to live nodes will not in
rease above 3n=10.A.2 TimeThat the algorithm for sear
hing for data items takes O(log n) time and O(log2 n) messages isproven in [1℄.The 
ommon and fast 
ase for peer insertion is when all supernodes to whi
h the new peer's vir-tual node belongs already have some peer in them. In this 
ase, we spend 
onstant time pro
essingea
h one of these supernodes so the total time spent is O(log n).In the degenerate 
ase where there are supernodes whi
h have no live nodes in them, a broad
astto all nodes in the network is required and the insertion time 
an be substantially larger. In pra
ti
e,we believe that this 
ase would o

ur infrequently.A.3 Spa
eEa
h node parti
ipates in C top supernodes. The number of links that need to be stored to play arole in a parti
ular top supernode is O(log n). This in
ludes links to other nodes in the supernodeand links to the nodes that point to the given top supernode.Ea
h node parti
ipates in C logn middle supernodes. To play a role in a parti
ular middlesupernode takes O(log n) links to point to all the other nodes in the supernode and O(log n) linksto point to nodes in all the neighboring supernodes. In addition, ea
h middle supernode hasO(log n) roles asso
iated with it and ea
h of these roles is stored in D bottom supernodes. Hen
eea
h node in the supernode needs O(log2n) links ba
k to all the nodes in the bottom supernodeswhi
h store roles asso
iated with this middle supernode.Ea
h node parti
ipates in C bottom supernodes. To play a role in a bottom supernode requiresstoring O(log n) data items. It also requires storing O(log n) links to other nodes in the supernode8



along with nodes in neighboring supernodes. In addition, it requires storing O(logn) links for ea
hof the O(logn) supernodes for ea
h of the O(log n) roles that are stored at the node. Hen
e thetotal number of links required is O(log3 n).

9


