
Dynamially Fault-Tolerant Content Addressable NetworksJared Saia � Amos Fiaty Steve Gribble� Anna R. Karlin� Stefan Saroiu�AbstratWe desribe a ontent addressable network whih is robust in the fae of massive adversarialattaks and in a highly dynami environment. Our network is robust in the sense that at anytime, an arbitrarily large fration of the peers an reah an arbitrarily large fration of the dataitems. The network an be reated and maintained in a ompletely distributed fashion.1 IntrodutionDistributed denial-of-servie attaks on the Internet are highly prevalent, targeting a wide-rangeof vitims [3℄. Peer-to-peer systems are partiularly vulnerable to suh attaks, sine peers lakthe tehnial expertise and resoures needed for maintaining a high level of protetion. In additionto being vulnerable to suh attaks, we an expet peer-to-peer systems to be onfronted with ahighly dynami peer turnover rate [8℄. For example, in both Napster and Gnutella, half of thepeers partiipating in the system will be replaed by new peers within one hour. Thus, maintainingfault-tolerane in the fae of massive targeted attaks and in a highly dynami environment isritial to the suess of a peer-to-peer system.The ontributions of this paper are two-fold. First, we de�ne the notion of dynamially strongfault-tolerane. Our de�nition aptures the properties that a peer-to-peer system must have to berobust to orhestrated attaks and in a highly dynami environment. Seond, we present a ontentaddressable network [9℄ whih is dynamially strong fault-tolerant.1.1 Dynami Fault ToleraneTo better address fault-tolerane in peer-to-peer networks, we de�ne a new notion of dynamiallystrong fault-tolerane. First, we assume an adversarial fail-stop model { at any time, the adversaryhas omplete visibility of the entire state of the system and an hoose to "delete" any peer itwishes. A "deleted" peer stops funtioning immediately, but is not assumed to be Byzantine.Seond, we require our network to remain \robust" at all times provided that in any time intervalduring whih the adversary deletes some number of peers, some larger number of new peers jointhe network. Eah new peer knows only one other live peer in the network.More formally, we say that an adversary is limited if for some onstants  > 0 and Æ > , duringany period of time in whih the adversary deletes n peers from the network, at least Æn new peersjoin the network (where n is the number of peers initially in the network). We assume that eahof these new peers knows only one random peer urrently in the network.We say that a ontent addressable network (CAN) is �-robust at some partiular time if all butan � fration of the peers in the CAN an aess all but an � fration of the ontent.Finally, we say that a CAN (initially ontaining n peers) is �-dynamially strong fault-tolerant(or simply �-dynamially fault-tolerant) if, with high probability, the CAN is always �-robust duringa period when a limited adversary deletes a number of peers polynomial in n.�Department of Computer Siene and Engineering, University of Washington, Seattle, WA 98195; email: fsaia,gribble, karlin, tzoompyg�s.washington.eduyDepartment of Computer Siene, Tel Aviv University; email: fiat�tau.a.il1



In setion 2, we present an �-dynamially fault-tolerant CAN for any arbitrary � > 0, and anyonstants  and Æ suh that  < 1 and Æ >  + �. Our CAN stores n data items1, and has thefollowing harateristis:1. With high probability, at any time, an arbitrarily large fration of the nodes an �nd all anarbitrarily large fration of the data items.2. Searh takes time O(log n) and requires O(log2 n) messages in total.3. Every peer maintains pointers to O(log3 n) other peers.4. Every peer stores O(log n) data items.5. Peer insertion takes time O(log n).The onstants in these resoure bounds are funtions of �,  and Æ. The tehnial statement ofthis result is presented in Theorem A.3.We note that, as we have de�ned it, an �-dynamially fault-tolerant CAN is �-robust for only apolynomial number of peer deletions by the limited adversary. To address this issue, we imagine thatvery infrequently, there is an all-to-all broadast among all live peers to reonstrut the CAN(detailsof how to do this are in [1℄). Even with these infrequent reonstrutions, the amortized ost perinsertion will be small.1.2 Related WorkFiat and Saia [1℄ present a ontent addressable network for whih even after adversarial removal ofa linear number of nodes in the network, an arbitrarily large fration of the remaining nodes anaess an arbitrarily large fration of the original data items. While the Fiat-Saia network is animportant �rst step towards the goal of a strongly fault-tolerant CAN, this sheme is inherentlystati. Thus, even if many new peers join the network, the CAN eases to be �-robust when all theoriginal peers die.Weaker forms of stati fault-tolerane are known to exist for other peer-to-peer systems. Exper-imental measurements of a onneted omponent of the real Gnutella network have been studied [8℄,and it has been found to still ontain a large onneted omponent even with a 1/3 fration of ran-dom peer deletions.Several address ontent addressable networks are robust under random node deletions [4, 9, 2℄.For example, Chord orretly routes queries in O(log(n)) expeted time even after eah nodefails with probability 1=2. However, it is unlear whether it is possible to extend any of thesesystems to remain robust under orhestrated attaks. In addition, many known network topologiesare known to be vulnerable to adversarial deletions. For example, with a linear number of nodedeletions, the hyperube an be fragmented into omponents all of whih have size no more thanO(n=plog n) ([5℄).2 A Dynamially Fault-Tolerant Content Addressable NetworkOur sheme is most easily desribed by imagining a \virtual CAN". The spei�ation of this CANonsists of desribing the network onnetions between virtual nodes, the mapping of data itemsto virtual nodes, and some additional auxiliary information. In Setion 2.1, we desribe the virtualCAN. In Setion 2.2, we go on to desribe how the virtual CAN is implemented by the peers.1For simpliity, we've assumed that the number of items and the number of initial nodes is equal. However, forany n nodes and m � n data items, our sheme will work, where the searh time remains O(log n), the number ofmessages remains O(log2 n), and the storage requirements are O(log3 n�m=n) per node.2



Figure 1: The buttery network of supernodes.2.1 The Virtual CANThe virtual CAN, onsisting of n virtual nodes, is losely based on the [1℄ sheme. We make use ofa buttery network of depth log n� log logn, we all the nodes of the buttery network supernodes(see Figure 1). Every supernode is assoiated with a set of virtual nodes. We all a supernode atthe topmost level of the buttery a top supernode, one at the bottommost level of the network abottom supernode and one at neither the topmost or bottommost level a middle supernode.We use a set of hash funtions for mapping virtual nodes to supernodes of the buttery and formapping data items to supernodes of the buttery. We assume these hash funtions are approxi-mately random. 2The virtual network is onstruted as follows:� We hoose an error parameter � > 0, and as a funtion of � we determine onstants C, D, �and �. (See [1℄ for detailed information on how this is done).� Every virtual node v is hashed to C random top supernodes (we denote by T (v) the set ofC top supernodes v hashes to), C random bottom supernodes (denoted B(v)) and C lognrandom middle supernodes (denoted M(v)) to whih the virtual node will belong.� All the virtual nodes assoiated with any given supernode are onneted in a lique. (We dothis only if the set of virtual nodes in the supernode is of size at least �C lnn and no morethan �C lnn.)� Between two sets of virtual nodes assoiated with two supernodes onneted in the butterynetwork, we have a omplete bipartite graph. (We do this only if both sets of virtual nodesare of size at least �C lnn and no more than �C lnn.)� We map the n data items to the n= log n bottom supernodes in the buttery: eah dataitem, say d, is hashed to D random bottom supernodes; we denote by S(d) the set of bottomsupernodes that data item d is mapped to. (Typially, we would not hash the entire dataitem but only it's title, e.g., \Singing in the Rain").� The data item d is then stored in all the omponent virtual nodes of S(d) (if any bottomsupernode has more than �B lnn data items hashed to it, it drops out of the network.)� Finally, we map the meta-data assoiated with eah of the n virtual nodes in the network tothe n= log n bottom supernodes in the buttery. For eah virtual node v, information about v2We use the random orale model ([6℄) for these hash funtion, it would have suÆed to have a weaker assumptionsuh as that the hash funtions are expansive. 3



is mapped to D bottom supernodes. We denote by I(v) the set of bottom supernodes storinginformation about virtual node v. (if any bottom supernode has more than �B lnn virtualnodes hashed to it, it drops out of the network.)� For eah virtual node v in the network, we do the following:1. We store the id of v on all omponent virtual nodes of I(v).2. A omplete bipartite graph is maintained between the virtual nodes assoiated withsupernodes I(v) and the virtual nodes in supernodes T (v), M(v) and B(v).2.2 Implementation of Virtual CAN by PeersEah peer that is urrently live will map to exatly one node in the virtual network and eah nodein the virtual network will be assoiated with at most one live peer. At all times we will maintainthe following two invariants:1. If peers p1 and p2 map to virtual nodes x and y and x links to y in the virtual network, thenp1 links to p2 in the physial overlay network.2. If peer p maps to virtual node x, then p stores the same data items that x stores in the virtualnetwork.Reall that eah virtual node in the network partiipates in C top, C logn middle and C bottomsupernodes. When a virtual node v partiipates in a supernode s in this way, we say that v is amember of s. For a supernode s, we de�ne V (s) to be the set of virtual nodes whih are membersof s. Further we de�ne P (s) to be the set of live peers whih map to virtual nodes in V (s).2.3 Searh for a Data ItemWe will now desribe the protool for searhing for a data item from some peer p in the network.We will let v be the virtual node p maps to and let d be the desired data item.1. Let b1; b2; : : : ; bD be the bottom supernodes in the set S(d).2. Let t1; t2; : : : ; tC be the top supernodes in the set T (v).3. Repeat in parallel for all values of k between 1 and C:(a) Let ` = 1.(b) Repeat until suessful or until ` > B:i. Let s1; s2; : : : sm be the supernodes in the path in the buttery network from tk tothe bottom supernode b`.� Transmit the query to all peers in the set P (s1).� For all values of j from 2 to m do:{ The peers in P (sj�1) transmit the query to all the peers in P (sj).� When peers in the bottom supernode are reahed, feth the ontent from what-ever peer has been reahed.� The ontent, if found, is transmitted bak along the same path as the query wastransmitted downwards.ii. Inrement `.2.4 Content and Peer InsertionAn algorithm for inserting new ontent into the network is presented in [1℄. In this setion, wedesribe the new algorithm for peer insertion. We assume that the new peer knows one otherrandom live peer in the network. We all the new peer p and the random, known peer p0.4



1. p �rst hooses a random bottom supernode, whih we will all b. p then searhes for b in themanner spei�ed in the previous setion. The searh starts from the top supernodes in T (p0)and ends when we reah the node b(or fail).2. If b is suessfully found, we let W be the set of all virtual nodes, v , suh that meta-data forv is stored on the peers in P (b). We let W 0 be the set of all virtual nodes in W whih are noturrently mapped to some live peer.3. If b an not be found, or if W 0 is empty, p does not map to any virtual node. Instead it justperforms any desired searhes for data items from the top supernodes, T (p0).4. If there is some virtual node v in W 0, p takes over the role of v as follows:(a) Let S = T (v) [M(v) [B(v). Let F be the set of all supernodes, s in S suh that P (s)is not empty. Let E = S � F .(b) For eah supernode s in F :i. Let R be the set of supernodes that neighbor s in the buttery.ii. p opies the links to all peers in P (r) for eah supernode r in R. These links anall be opied at one from one of the peers in P (s). Note that eah peer in P (b)ontains a pointer to some peer in P (s).iii. p noti�es all peers to whih it will be linking to also link to it. For eah supernoder in R, p sends a message to one peer in P (r) notifying it of p's arrival. The peerreeiving the message then relays the message to all peers in P (r). These peers thenall point to p.iv. If s is a bottom supernode, p opies all the data items that map to s. It opies thesedata items from some peer in P (s).() If E is non-empty, we will do one broadast to all peers that are reahable from p.We will �rst broadast from the peers in all top supernodes in T (p) to the peers in allreahable bottom supernodes. We will then broadast from the peers in these bottomsupernodes bak up the buttery network to the peers in all reahable top supernodes.3: i. p broadasts the id of v along with the ids of all the supernodes in E. All peers thatreeive this message, whih are in supernodes neighboring some supernode in E willonnet to p.ii. In addition to forging these links, we seek to retrieve data items for eah bottomsupernode whih is in the set E. Hene, we also broadast the ids for these dataitems. We an retrieve these data items if they are still stored on other peers.43 ConlusionIn this paper, we have introdued the notion of a dynamially strong fault-tolerane and havedesribed a ontent addressable network that has this property. Future diretions inlude reduingthe number of messages sent for searh and node insertion and reduing the number of pointersstored at eah peer.3This broadast takes O(log n) time but requires a large number of messages. However, we antiipate that thistype of broadast will our infrequently. In partiular, under the assumption of random failures, this broadast willnever our with high probability.4We note that, using the sheme in [7℄, we an retrieve the desired data items, even in the ase where we areonneted to no more than n=2 live peers. To use this sheme, we need to store, for eah data item of size s, someextra data of size O(s=n) on eah node in the network. Details on how to do this are ommitted.5
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A AppendixIn this appendix, we provide proofs for the statements made in the paper.A.1 Dynami Fault-ToleraneWe will be using the following two theorems whih follow from results in [1℄. We �rst de�ne a peeras �-good if it is onneted to all but 1� � of the bottom supernodes.Lemma A.1. Assume at any time, at least �n of the virtual nodes map to live peers for some� < 1. Then for any �, we an hoose appropriate onstants C and D for the virtual network suhthat at all times, all but an � fration of the top supernodes are onneted to all but an � frationof the bottom nodes.Proof. This lemma follows diretly from Theorem 4.1 in [1℄ by plugging in appropriate values.Lemma A.2. Assume at any time, at least �n of the virtual nodes map to live peers for some� < 1. Then for any � < 1=2, we an hoose appropriate onstants C and D for the virtual networksuh that at all times, all �-good nodes are onneted in one omponent with diameter O(log n).Proof. By Lemma A.1, we an hoose C and D suh that all �-good peers an reah more than a1=2 fration of the bottom supernodes. Then for any two �-good peers, there must be some bottomsupernode suh that both peers are onneted to that same supernode. Hene, any two �-goodpeers must be onneted. In addition, the path between these two �-good peers must be of lengthO(log n) sine the path to any bottom supernode is of length O(log n)Theorem A.3. For all � > 0 and value P whih is polynomial in n, there exist onstants k1(�),k2(�) and k3(�) and k4(�) suh that the following holds with high probability for the CAN for deletionof up to P peers by the limited adversary:� At any time, the CAN is �-robust� Searh takes time no more than k1(�) log n.� Peer insertion takes time no more than k2(�) log n.� Searh requires no more than k3(�) log2 n messages total.� Every node stores no more than k4(�) log3 n pointers to other nodes and k3(�) log n data items.Proof. We briey sketh the argument that our CAN is dynamially fault-tolerant. For onrete-ness, we will prove dynami fault-tolerane with the assumption that 2n=10 peers are added when-ever (1=10 � �)n peers are deleted by the adversary. The argument for the general ase is similar.Consider the state of the system when exatly 2n=10 virtual nodes map to no live peers. We willfous on what happens for the time period during whih the adversary kills o� (1=10 � �)n morepeers. By assumption, during this time, 2n=10 new peers join the network. In this proof sketh,we will show that with high probability, the number of virtual nodes whih are not live at the endof this period is no more than 2n=10. The general theorem follows diretly.We know that Lemma A.1 applies during the time period under onsideration sine there arealways at least n=2 live virtual nodes. Let R be the set of virtual nodes that at some point duringthis time period are not �-good. By Lemma A.2, peers in virtual nodes that are not in the setR have been onneted in the large omponent of �-good nodes throughout the onsidered timeinterval. Thus these peers have reeived information broadasted during suessful peer insertions.However, the peers mapping to virtual nodes in R may at some point have not been onneted toall the other �-good nodes and so may not have have reeived information broadasted by inserted7



peers. We note that jRj is no more than �n by Lemma A.1 (sine even with no insertions in thenetwork, no more than �n virtual nodes would be not be �-good at any point in the time periodunder onsideration). Hene we will just assume that those peers with stale information, i.e. thepeers in R, are dead. To do this, we will assume that the number of adversarial node deletions isn=10. (We further note that all peers whih are not �-good will atually be onsidered dead by allpeers whih are �-good. This is true sine no bottom supernode reahable from an �-good node willhave a link to a peer whih is not �-good. Hene, suh a virtual node will be fair game for a newpeer to map to.)We laim that during the time interval, at least n=10 of the inserted peers will map to virtualnodes. Assume not. Then there is some subset, S, of the 2n=10 peers that were inserted suhthat jSj = n=10 and all peers in S did not onnet to any bottom supernodes with informationon virtual nodes that had no live peers. Further there is some subset V , ontaining n=10 of the2n=10 originally empty virtual nodes suh that all virtual nodes in V have no peers after theinsertions. With high probability, there is some subset of the peers in S (and in fat any subset ofthe inserted peers of size n=10), whih are �-good and whih visited at least kn= log n unique bottomsupernodes for some onstant k > 0. For D (the onstant de�ned in the virtual network setion)hosen suÆiently large, this set of kn log n unique bottom supernodes must ontain more than9n=10 virtual node ids (by expansion properties). But this is a ontradition sine this implies thatone of the peers in S must have reahed a bottom supernode whih had information on a virtualnode in V .Hene during the time that n=10 peers were deleted from the network, at least n=10 virtualnodes were newly mapped to live peers. This implies that the number of virtual peers not mappedto live nodes an only have dereased. This then implies that the number of virtual peers notmapped to live nodes will not inrease above 3n=10.A.2 TimeThat the algorithm for searhing for data items takes O(log n) time and O(log2 n) messages isproven in [1℄.The ommon and fast ase for peer insertion is when all supernodes to whih the new peer's vir-tual node belongs already have some peer in them. In this ase, we spend onstant time proessingeah one of these supernodes so the total time spent is O(log n).In the degenerate ase where there are supernodes whih have no live nodes in them, a broadastto all nodes in the network is required and the insertion time an be substantially larger. In pratie,we believe that this ase would our infrequently.A.3 SpaeEah node partiipates in C top supernodes. The number of links that need to be stored to play arole in a partiular top supernode is O(log n). This inludes links to other nodes in the supernodeand links to the nodes that point to the given top supernode.Eah node partiipates in C logn middle supernodes. To play a role in a partiular middlesupernode takes O(log n) links to point to all the other nodes in the supernode and O(log n) linksto point to nodes in all the neighboring supernodes. In addition, eah middle supernode hasO(log n) roles assoiated with it and eah of these roles is stored in D bottom supernodes. Heneeah node in the supernode needs O(log2n) links bak to all the nodes in the bottom supernodeswhih store roles assoiated with this middle supernode.Eah node partiipates in C bottom supernodes. To play a role in a bottom supernode requiresstoring O(log n) data items. It also requires storing O(log n) links to other nodes in the supernode8



along with nodes in neighboring supernodes. In addition, it requires storing O(logn) links for eahof the O(logn) supernodes for eah of the O(log n) roles that are stored at the node. Hene thetotal number of links required is O(log3 n).
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