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Fast Binary Block Matching Motion Estimation 
using Efficient One-Bit Transform 

Ye-Kui Wang and Guo-Fang Tu 

  Abstract—Binary block matching algorithm employs one-bit transform (1BT) to transform video sequences from full 

resolution representation (8-bit/pixel in general) to 1-bit/pixel bit-plane, then performs block matching motion estimation 

in bit-plane to save computations. Unfortunately, current 1BT algorithms either have bad output motion vectors or are 

computational intensive. In this paper, a novel fast and efficient 1BT algorithm called the overlap-windowed thresholding 

algorithm (OWT), and a new fast binary block matching algorithm (FBBMA) based on OWT are proposed. Besides OWT, 

there are three other novelties in FBBMA, namely fast binary block matching, adaptive central-search-point prediction and 

center-biased search order, in which significant modifications are contained. Four more existing techniques are employed in 

FBBMA to further improve performance. Experimental results show the superiorities of all the proposed algorithms and 

modifications. With similar quality of predicted sequence, the proposed OWT algorithm performs 37 times faster than the 

filter thresholding method, which gives the best quality among current 1BTs. FBBMA significantly outperforms over 

several other fast motion estimation algorithms, including the diamond search algorithm that was recently adopted in 

MPEG-4, in terms of both speed up ratio and quality of predicted sequence. In addition, the output motion vectors of 

FBBMA need fewer bits to be encoded than most if not all other ME algorithms.  

  Index Terms—Binary block matching motion estimation, fast motion estimation, video compression, one-bit transform. 

I. INTRODUCTION 

  Motion estimation (ME) and compensation is efficient in eliminating temporal redundancy in video sources, and 

has become a central component of most video coding standards such as ISO MPEG-1/2/4 [1]-[3] and ITU-T 

H.261/263/26L [4]-[6]. Among the existing ME algorithms, the block matching algorithm (BMA) [7] is most widely 

used for its simplicity and high performance. The full search (FS) BMA provides an optimal solution in the sense of 

minimizing mean absolute difference (MAD) or sum of absolute difference (SAD) when MAD or SAD is used as the 

block distortion measure (BDM). However, FS is computational too costly for practical real-time applications and 

cannot produce in general the optimal bit rate, especially for very low-bit-rate video coding, which uses a significant 

portion of bits for motion vector (MV) encoding [8]. To resolve these problems, many fast search algorithms [9]-[15] 

and rate-distortion optimized algorithms [8], [16]-[18] were developed. 

  The fast search algorithms reduce computational complexity either by reducing the number of test positions 

[9]-[14] or by reducing the computational cost of BDM for each position [15], [19]-[31]. The binary block matching 
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algorithms (BBMAs) [20]-[21] based on one-bit transform (1BT) belong to the latter. BBMA first uses 1BT to 

transform the luminance component of video sequences from full resolution representation (8-bit/pixel in general) to 

1-bit/pixel bit-plane. Then a different BDM, called the number of not matching points (NNMP), is used instead of 

SAD in the matching process. The SAD and NNMP of position (m,n) in blocks of size NxN are given as: 
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where ),( nmIt  and ),( nmBt  are the luminance intensity of the 8-bit/pixel representation and the binary value of 

one-bit transformed bit-plane in the current frame, ),( ynxmI it ++−  and ),( ynxmB it ++−  are those values in a 

previous frame, and ⊗  denotes the exclusive-or operation. By changing the subtraction and absolute operations to 

exclusive-or operations in calculating BDM for each test position, BBMA can achieve great computation reduction.  

1BT plays a key role in BBMA. However, current 1BT algorithms either result in bad motion vectors with low 

quality of predicted sequence, or are computational intensive. Thus calls upon new fast and efficient 1BT algorithm. 

  Rate-distortion optimized ME algorithms try to obtain better rate-distortion performance in video coding by 

considering simultaneously block distortion and the number of bits for MV encoding. Usually they combine the 

block distortion and the bit-rate by a Lagrangian multiplier as the BDM in motion search, thus results in intensive 

computation.  

  In this paper, a thorough study of BBMA and 1BT is first presented. The drawbacks of existing 1BT methods are 

analyzed. To overcome the drawbacks, a novel fast and efficient 1BT algorithm called the overlap-windowed 

thresholding algorithm (OWT) is then proposed. To further improve the search speed and the prediction performance 

of the BBMA based on OWT, seven other techniques are employed. Thus the novel fast ME algorithm named fast 

binary block matching algorithm (FBBMA) is obtained. These improving techniques are: 1) fast binary block 

matching; 2) adaptive central-search-point prediction; 3) center-biased search order; 4) still macroblock detecting; 5) 

halfway stop in block distortion computation; 6) variable search distance; and 7) multiple candidates selection. The 

first three of them contain significant modifications made by the authors, and are proposed literarily here in the first 

time. The later four are existing techniques.  

  Among the seven techniques, the 1st, 4th, 5th and 6th can improve the search speed, the 7th can improve the 

quality of predicted sequence, and the 2nd can improve both. The 3rd, center-biased search order, can improve not 

only both of the search speed and the prediction performance, but also the rate-distortion performance. It produces 
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more correlative MVs that need fewer bits to be encoded, therefore more bits can be used for the predicted error and 

better rate-distortion performance can be acquired. What’s more, the computational complexity of center-biased 

search order is much lower than the conventional rate-distortion optimized ME algorithms. 

  Our experimental results show the superiorities of all the proposed algorithms and modifications, including the 

modifications in the improving techniques. 

  The structure of this paper is organized as follows: Section II presents the overview of BBMA and 1BT. Then 

OWT is described in Section III. In Section IV, the FBBMA scheme and the seven improving techniques are 

presented. Experimental results of different 1BT methods, the modifications in the improving techniques, and 

various ME algorithms are provided in Section V. Finally, Section VI draws the conclusion. 

II. OVERVIEW OF BBMA AND 1BT 

  The concept of binary bit-plane matching is first proposed by Lee [22]. He exploits the bit-plane combined with 

the block/sub-block means as the matching criterion in a hierarchical motion search scheme. Later, he and his 

colleagues expanded the work extensively [23]-[27]. In [20] and [28], Feng et al exploit bit-plane matching as a 

preprocessing step to sort out the improbable locations where NNMPs are larger than a predefined threshold, and 

then the conventional FS is applied to the remained locations. For each block, the 8-bit luminance pixel data I (of 

either the current or the reference frame) is transformed into bit-plane B as 
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where bm is the block mean. We called this straightforward transforming strategy as the block mean thresholding 

(BMT) technique.  

  In [29], Mizuki et al use the binary edge maps as the bit-plane. The bit-plane is given by 
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Although this edge-detection based (EDB) 1BT can sometimes improve the estimating accuracy of moving object 

boundaries [30], it cannot be applied to the blocks where the number of edge pixels is small [29]-[30]. In addition, in 

the following case, EDB will give a wrong matching result. Assume there are two blocks of 4x4 as shown in Fig. 1(a) 

and (b). If EDB is used to transform them into bit-planes, the transforming results will be identical, as shown in Fig. 

1(c). Therefor NNMP between the two blocks is 0 and will result in a wrong match. In the scenario of BBMA, the 

ideal one-bit transformed results for Fig. 1(a) and (b) should be as shown in Fig. 1 (d) and (e), respectively. The 

objective is to protect not only the edge information, but also the smoothness of smooth areas. Fortunately, BMT [20], 
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FT [21] and the proposed OWT can fit this requirement.  

  In FT, each 8-bit frame I is filtered with a 17x17 kernel K as given in Eqn. 5, to obtain the filtered frame I ′ . The 

bit-plane is then given by Eqn. 6. 
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From the frequency response of K (as shown in Fig. 2), we find that K is a multi-band-pass filter rather than a 

band-pass filter as stated in [21] and [31]. The low-frequency signal component is also reserved besides the edge 

information; thus the smoothness of smooth areas is also protected. 

  It should be pointed out that there is a wrong opinion in the field of BBMA on [32]. In [21] and [27], [32] is cited 

and said that binary matching is applied there. As a matter of fact, the strategy used in [32] is as follows: the pixels in 

current block are compared with the corresponding pixels in the shifted block of the reference frame, and classified 

as matching or mismatching pixels according to the difference between the two luminance values; then the position 

with the largest number of matching pixels is taken as the best match. We can see that it does not use bit-plane to 

represent multi-bit data, and no binary matching between bit-planes is carried out. 

  The size of the transforming block or the filter kernel K in BMT or FT is an important parameter that imposes 

great influence upon BBMA performance. 17x17 is selected for K in [21] because the author1 thought that a smaller 

kernel might be too sensitive to noise in the video frames whereas too large a kernel would give a poor estimate of 

the thresholds to be used in 1BT. The additional reason been said was that inter-correlation among pixels falls off 

rapidly and for a pixel distance greater than 8 the correlation was very poor, so using a neighborhood of 17x17 pretty 

much was the limit of the good correlation neighborhood. We have tested other K sizes ranging from 7x7 to 41x41, 

finding that 17x17 is almost the best for several standard test sequences. However, it is not true for BMT that 8 is the 

best distance regarding the pixel correlation, as can be seen from Fig. 3. 

  Fig. 3 gives the peak-peak signal-to-noise ratio (PSNR) results of different transforming block sizes ranging from 

4x4 to 100x100 in BMT. The PSNR is averaged from the predicted frames of the sequence Miss America (CIF, 10 

frame/sec). The original previous frame is taken as the reference frame. Full search BBMA is performed with the 

MV range [-7, 7]. The block size for ME is 16x16. Three typical bit-planes of the first frame (only the  central part) 

are shown in Fig.4 (a)-(c), where a binary value 1/0 is represented as a white/black point. 

                                                        
1 The authors have discussed the question with Dr. Vasudev Bhaskaran, one of the authors of [21], through e-mails. 
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  It is seen from Fig. 3 that PSNR of BMT improves rapidly when the block size increases from a small value. 

However, when the block size continues to increase after a moderate value (about 20), the performance is inclined to 

degrade. The explanation for this phenomenon can be partly if not all found from Fig. 4. If the transforming block is 

too small such as of 4x4, the blocky effect (the many horizontal and vertical pseudo edges in Fig. 4(a)) is so serious 

that the overall contours are almost submerged by the artifacts. On the contrary, if the transforming block is too large 

such as of 352x288, the blocky effect is removed, however at this time many important details are lost, as shown in 

Fig. 4(c). In both the above cases, BBMA is apt to be trapped into a non-optimal location. If a moderate block size is 

applied, there will be a compromise between the blocky effect and the detail information, thus results in a better 

performance. However, the blocky effect is still apparent, as can be seen in Fig. 4(b). A question arises: is there any 

1BT method that can simultaneously preserve detail information and remove the blocky effect? 

  FT happens to be a good candidate. However, filtering operation is required in FT, which makes FT computational 

too intensive, especially in the software implementation. We have implemented FT in software using the library of 

Fastest Fourier Transform in the West (FFTW) [33], while the computational cost of FT is still 52 times higher than 

BMT. If other methods such as convolution method are used, the computational cost of FT will be higher. Therefore, 

a fast and efficient 1BT method becomes imperative for BBMA.  

  In the next section, we will provide a solution by presenting OWT, which can do as well as and sometimes even 

better than FT in terms of predicting efficiency, with much lower computational complexity. 

III. OVERLAP-WINDOWED THRESHOLDING 1BT 

  A deduction can be derived from Fig. 4(a)-(c) that: if enough detail information is to be preserved, BMT should be 

performed by a small block wise; if the blocky effect is to be removed, the transforming thresholds should be 

calculated based on a large block. Then, what if we calculate the threshold based on a large window while using a 

small transforming block? This is the idea where OWT comes from. Fig. 4(d) is the resulting bit-plane of OWT with 

the transforming block of 4x4 and the threshold window of 22x22. It is seen that the blocky effect is well removed 

with plenty of detail information. 

A. The Algorithm 

  The luminance frame is transformed block by block. For each nxn transforming block, we first calculate the 

average luminance value of all the pixels within the threshold window, which covers the transforming block, as 

shown in Fig. 5. The block locates in the center of the window, which is of mxm (m=n+2w) and moves following 

with the block. The bit-plane is given by 
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where wm is the mean of the threshold window. 

B. The Values of Parameters w And n 

  Similar as the transforming block size that is important in BMT, m (or w) and n are important in OWT. For the 

binary ME purpose, there must exist a best combination of m and n. Here, both w and n are confined to be integer 

times of 4 for fast calculation of the window mean. The values are obtained is as follows: 

  First to find a proper value for n. Let w to be a moderate value such as 8, and n varies from 4 to 32 stepped by 4. 

For each n, the average PSNRs of the motion predicted frames are calculated for several standard test sequences. The 

best n is selected from the curve of the average PSNR versus n. The best n is 4. 

  Then to find a proper value for w. Let n to be 4 and w varied from 4 to 32 stepped by 4. For each w, the average 

PSNRs of the motion predicted frames are calculated for the same sequences. The best w is selected from the curve 

of the average PSNR versus w. The result for w is 16. 

  At last, repeat the first step with w set to be 16. The result keeps unchanged. It proves that the results are 

valid. 

C. Fast Calculation of OWT 

  In some software implementations of video encoder such as H.263 TMN Version 2.0 [34], the mean value of each 

4x4 block in the luminance frame is calculated before ME. These mean values are used to examine if there exists 

motion between a macroblock in current frame and the corresponding macroblock in the reference frame. In OWT, 

these mean values can be efficiently utilized to speed up the calculation of the transforming threshold. That is the 

reason why the parameters w and n are confined to be integer times of 4. 

  Assume that the luminance frame is F. Let us define a new frame F4, in which each pixel represents a 4x4 block 

of pixels in F, and the pixel intensity is the mean of the corresponding block. As shown in Fig. 6, suppose that the 

current transforming block is pixel 1 in F4. We denote the F4 pixels in the nth transforming window corresponding 

to the transforming block n (such as 1, 2, 3 and 4 shown in Fig. 6) as wn(i, j), where i and j, ranging from 0 to 8, 

represent the order of row and column, respectively. Therefore the threshold for block 1 is given by Eqn. 8, and for 

block 2, 3 and 4, the thresholds thn (n=2, 3, 4) are given by Eqn. 9 to 11, respectively. 
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The window mean wm used in Eqn. 7 can be gained by dividing thn (n=1 to 4) with the number of blocks covered in 

the window. Computations of thresholds for other blocks are as similar. Using this method, much time can be saved 

in calculating the transforming thresholds. 

  From Fig.6, we can see that w3(i,0)=w1(i+1,0) and w4(i,0)=w2(i+1,0) for i=0 to 7. Therefore in Eqn. 9 and 11 

there are many repetitive computations. These relationships are utilized to further speed up the computation.  

  Applying the ideas described above, the computation strategy of the transforming thresholds for OWT is taken as 

the following steps: 

1) For each block in the left edge of a frame, i.e. F4(i,0) (i=0 to NoL-1, and NoL is the number of lines in F4), a 

summative value Row_Sum(i) is calculated as 
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2) For each block (including the ones in the left edge), a summative value Col_Sum(i,j) is calculated as Eqn. 13, 

where F4(k,j)=0 if k<0 or k> NoL-1. 
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3) Calculate the thresholds for the left-edge blocks. For the top-left block, the threshold th(0,0) is given by Eqn. 

14. For the other left-edge blocks F4(i,0), i=1 to NoL-1, the threshold th(i,0) is given by Eqn. 15, where 

Row_Sum(k)=0 if k<0 or k> NoL-1. 
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4) Calculate the thresholds for the remaining blocks. The thresholds are given by Eqn. 16, where Col_Sum(i,k)=0 

if k<0 or k> NoC-1, and NoC is the number of columns in F4. 
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  The window mean wm used in Eqn. 7 can be gained by dividing th(i,j) with the number of blocks covered in the 

window. 

  Now let’s consider the overall computations required for OWT. For a frame of N lines with M pixels per line, 

according to Eqn. 12-16, the computation amount is 48
5 ++ NMN  additions. In addition, each 4x4 block needs a 

division and each pixel needs a compare operation. So the overall computation amount of OWT for an entire frame is 

48
5 ++ NMN  additions, MN16

1  divisions and MN  compares. Note that the computations of calculating the 

block means is not taken into account because they are already available. From the simulation results we will see that 

even those computations are considered, the transforming speed of OWT is still 37 times faster than FT. 

D. The Identity of OWT, BMT and FT 

  Although OWT, BMT and FT seem very different from each other, they have something identical. Let’s consider 

the filter kernel K of rxr (r is an odd number) as 

jiallforrK ji ,,/1 2
, =          (17) 

In fact, this is an averaging filter, and the FT with this filter kernel is identical to the OWT with n=1 and w=(r-1)/2. 

The filter in [21] is actually a subsampled version of the averaging filter. In addition, BMT is apparently a special 

case of OWT with w=0. The other identity among them is that all of their objectives are to identify the pixel attribute 

of brighter or darker compared to its surroundings. If a pixel is brighter than its surroundings, it will be denoted as 1; 

otherwise it will be denoted as 0. 

  According to the above analysis, OWT can be looked as a fast approximate implementation of FT. This might 

have general meaning in filter implementation. 

IV. THE FAST BINARY BLOCK MATCHING ALGORITHM 

  This section presents the proposed fast ME algorithm FBBMA, which is based on OWT and seven improving 

techniques. First the improving techniques are described one by one. Then the details of FBBMA will be given at the 

end of this section. 

A. Still Macroblock Detection 

  Each MB contains 16 sub-blocks of 4x4. If all the 16 absolute differences between each sub-block and the 
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corresponding sub-block in the reference frame are smaller than the predefined threshold th1, then the MB is looked 

as still. 

  If a MB cannot be declared as a still MB according to the sub-block means, then calculate SAD of position (0,0), 

i.e., SAD(0,0). If SAD(0,0) is smaller than the predefined threshold th2, the MB is looked as still; otherwise the MB 

is not a still MB. 

B. Adaptive Central-Search-Point Prediction 

  The central-search-point prediction technique [35]-[38] utilizes the spatio-temporal correlation of MVs to estimate 

a central search point. The average distance from the predicted point to the optimal point is shorter than that from the 

zero point. Therefore the size of the search window can be reduced and the searching speed can be increased. 

Recently, this class of methods has gained a great deal of developments [39]-[43]. 

  A typical case is that the central search point is predicted as Eqn. 18, which is employed in H.263 TMN Version 

2.0 [34]. 

2/)]'22()'11[('00 mvmvmvmvmvmv −+−+=        (18) 

where mv0 is the predicted MV of current MB, mv1 and mv2 are the MVs of the left-hand-side and top-side 

neighboring MBs in current frame, the ones with prime signs are the MVs of the corresponding MBs in the reference 

frame, respectively, as shown in Fig. 7. 

  There are two modifications in the proposed adaptive center-search-point prediction. One is called search center 

selection; and the other is search range limitation. 

  Search Center Selection  Sometimes mv0 is not a good prediction compared to the zero point (0,0). In our 

method, the central search point (px,py) is decided according to the SADs of mv0 and (0,0). If SAD of mv0 is smaller 

than SAD(0,0), then (px,py) is set to be mv0, otherwise it is set to be (0,0). 

  Search Range Limitation  In video coding, the resulting MV is usually limited to a predefined range. In this case, 

when the predicted central search point (px,py) is not identical to (0,0), the resulting MV might locate outside of the 

MV range even when a small search distance is used. As shown in Fig. 8, (px,py) is the central search point, the 

search distance is w and the MV range is [-w, w]. Assume that point A wins at last in the motion estimation process, 

then the actual result will be B, which is the truncated result of A. However, it is possible that there exists a point C, 

and the order of the SAD values of ABC is SAD(A) < SAD(C) < SAD(B). Therefore B is not as good as C, and it is 

not the best candidate within the search range. In order to get rid of such cases, we can discard the 

outside-search-range points before calculating the SAD. By using this strategy, better MV results can be obtained and 
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much computational cost can be saved, as can be seen from the experimental results. 

C. Variable Search Distance 

  Generally, the center-search-point prediction process can give good prediction therefore the predicted point (px,py) 

is close to the optimal point, and the search can be performed in a small range. However, sometimes the predicted 

results are not very good, then the search distance should be a larger value. In our method, the search distance SD is 

decided according to the SAD value of the predicted result (px,py), as given by 
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where w is related to the predefined MV range, i.e., the MV range is [-w, w]. 

D. Fast Binary Block Matching 

  There are two modifications in fast binary block matching. One is to employ 32-bit exclusive-or operation to 

perform the binary bit-plane match; the other is to avoid the repetition in obtaining the 32-bit data from bit-plane. 

  In Eqn. 2, ),( nmBt  and ),( ynxmB it ++−  are 1-bit binary values, and ⊗  denotes 1-bit exclusive-or operation. 

Therefore computing NNMP once needs 256 exclusive-or operations and 255 additions if the standard macroblock of 

16x16 is used. However, if multi-bit values are used to perform the exclusive-or operation, the computation will be 

greatly reduced. Here, we use 32-bit values. Then Eqn. 2 is changed to 
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where u(i) and v(i) are 32-bit unsigned values from the 16x16 blocks, ⊗  denotes bitwise-exclusive-or operation, 

and NumOf1s(x) returns the number of “1” bits in the unsigned 32-bit value x. In u(i) and v(i), each bit represents one 

pixel, therefore one 32-bit value represent 2 lines of pixels and there are totally 8 32-bit unsigned values in a 16x16 

block. According to Eqn. 20, computing NNMP once needs only 8 exclusive-or operations and 7 additions. To get 

the number of “1” bits, we use a look-up table with 256 entrances for an 8-bit value. Therefore, it needs 4 

look-up-table operations and 3 additions to get the number of “1” bits in a 32-bit value.  

  Computation of NNMP can be further sped up by removing repetitive operations in obtaining the 32-bit data from 

bit-plane. Let’s consider a special case as shown in Fig. 9. After 1BT, the bit-planes are stored in buffers, which are 

addressed byte by byte. Assume that the MB to be matched is the one that starts from (0,0), therefore the first 32-bit 

value u(0) is formed by 4 bytes: the first 2 bytes in line 0 and the first 2 byte in line 1. When testing the position (0,0) 
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of the reference frame, the first 32-bit value v(0) is formed similarly as u(0). However, testing the position (3,4) will 

be totally different. Now v(0) is formed by part of the first 3 bytes in line 4 and line 5. Let the addresses of line 4 and 

line 5 be p4 and p5, respectively, then v(0) is given by 
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        (21) 

where << and >> are bitwise left shift and right shift operators, and | denotes bitwise-inclusive-or operation. Other 

u(i) and v(i) are obtained as similar. From Eqn. 21 we can see that to get the 32-bit values needs complex operations. 

What’s more, the operation might be repeatedly performed for certain positions. Now assume that the MB to be 

matched is the MB starting from (16,0). The position (3,4) is within the search range when a search distance not 

smaller than 13 is used. Therefore the 32-bit values for position (3,4) are needed again. To remove the repetitive 

computations, we calculate the 32-bit values beforehand for each possible position and save them in a buffer. When a 

value is needed, the only operation is to bring it out from the buffer.  

E. Halfway Stop in Block Distortion Computation 

  In a block matching ME scheme, after the BDM of each position is calculated, it is compared to the minimum 

BDM of the tested positions. The computation for current position might be stopped anytime when part of its BDM 

is already larger than the minimum BDM. A detailed description can be found in [44]. In Eqn. 20, there are 8 steps to 

add up the entire NNMP. We compare current part of NNMP to the minimum NNMP (MNNMP) of the tested 

positions after each step. If current part of NNMP is not smaller than MNNMP, then the testing position will be 

discarded immediately without further computations; otherwise continue to the next step. 

F. Center-Biased Search Order 

  There are two significant modifications in our proposed center-biased search order: one is unshaped zonal search 

(UZS) and the other is minimum BDM decrease. UZS is enlightened by the zonal search algorithm [45] and its 

developments [46]-[47]. In the standards of MPEG1/2/4 and H.261/263, MVs are differentially encoded and the 

encoding pattern is as shown in Fig.10. The reason that the class of zonal search algorithms [45-47] became better 

and better is just because that they are more and more compliant with the encoding pattern. However, as can be seen 

from Fig. 10, there is no regular zonal partitioning according to bits required for encoding MVs. Therefore any 

regular zonal search such as circular zonal search [46] or diamond zonal search [47] is not the best search pattern.  
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  Unshaped Zonal Search (UZS)  To fully utilize the encoding pattern, we use an unshaped zonal partitioning 

strategy instead of any regular method in our scheme. Zones are partitioned purely according to the bits required for 

encoding MVs. That is, all positions with the MVs that require the same number of encoding bits are partitioned into 

one zone. Therefore there are totally 20 zones when the search distance is 15, as shown in Fig. 19. UZS is defined as 

follows: 

1) Partition the all the candidate positions into different zones according to the method described above. 

2) The search is performed zone by zone. The more the bits of a zone, the latter in the zone the search would be 

performed. 

3) Within a zone, the search order of different positions is decided according to their distances from the search 

center. The closer the distance, the earlier the position is tested. 

  Minimum BDM Decrease  To further benefit the central positions, a more strict comparing condition is 

employed: each time the search zone is changed, MNNMP is reduced by a small number. 

  Due to the center-biased characteristic of MVs, both of the two modifications in the proposed center-biased search 

order can bring forward averagely the time when the optimal point is found. Therefore in the early search stages 

MNNMP will be smaller, and the improving technique halfway stop in block distortion computation can perform 

more efficiently. Moreover, the output MVs will require fewer bits to be encoded. These can be seen from the 

experimental results. 

G. Multiple Candidates Selection 

  In multiple candidates selection, not one but th5 candidates with the minimum NNMPs are found in BBMA. Then 

the best is selected amongst the th5 candidates and the predicted center (px,py). The position with the minimum SAD 

will be the final winner. In order to benefit the central position, SAD(px,py) is decreased by 100 before compared to 

other SADs, similar as in H.263 TMN encoder 2.0. 

H. FBBMA 

  The algorithm FBBMA is defined as the following steps: 

1) Each frame is partitioned into non-overlapping 4x4 blocks, and the block mean is calculated for each block. 

Then OWT is employed to obtain the bit-plane. After that, the following steps are performed MB wisely, and 

they are not performed for the first frame. 

2) For each MB, the technique still macroblock detection is first applied to detect whether current MB is a still 

MB. If the MB is still, then the motion vector mv=(0,0) and go to next MB; otherwise go to step 3. 
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3) Applying the technique adaptive center-search-point prediction to predict the central search point (px,py), and 

calculate SAD(px,py) if (px,py) is not (0,0). If SAD(px,py) is smaller than the threshold th2, then mv=(px,py) 

and go to next MB; otherwise go to step 4. 

4) Decide the search distance by employing the technique variable search distance. 

5) According to the search order defined by the technique center-biased search order, applying the techniques fast 

binary block matching and halfway stop in block distortion computation, beginning with (px,py), search th5 

candidates with the minimal NNMPs. 

6) Applying the technique multiple candidates selection to find the final MV for current MB from the th5 

candidates, and then go to next MB. 

  The predicting performance and the searching speed can be compromised by adjusting the five parameters th1-5. 

V. EXPERIMENTAL RESULTS 

  The test sequences are Flower Garden, Football, Mobile & Calendar and Table Tennis, all with the size 352x240 

and frame rate 30 frame/s. The frame number of each sequence is 115, 125, 140 and 112, respectively. Only the 

luminance component is considered. In ME, the original previous frame is taken as the reference frame, the MV 

range is [-15, 15], and the block size for ME is 16x16. All the PSNR values in the following tables are calculated 

between the predicted sequence and the original sequence, the unit is decibel (dB). The values for the five parameters 

th1-5 are respectively 3、768、3072、7680 and 4. They are relatively robust for different situations and video 

sequences. 

A. Performance of OWT 

  To compare the performances of different 1BT algorithms, we combine them with the conventional FS and one of 

the fast ME algorithms, the three-step search (TSS) algorithm [10]. The transforming block size for BMT is 

16×16. The results are shown in Table I, where PSNR-FS or PSNR-TSS is the output PSNR of 1BT method when 

FS or TSS is used as the ME search strategy; Speed Up is the speed up ratio versus FT. All the necessary overhead 

computation costs are taken into account. None of the seven improving techniques is applied in this experiment, and 

the exclusive-or operation is performed in 8-bit wise. 

  It is seen from Table I that, whatever under the full search or the fast search, the PSNR of OWT is much higher 

than BMT, and similar (slightly higher for Flower Garden and Football, and slightly lower for the other two 

sequences) as FT. With such a good predicting performance, OWT can perform 37 times faster than FT. 
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B. Performance of Fast Binary Block Matching 

  Table II shows the speed up ratios, with comparison to the 8-bit exclusive-or operation case, of OWT/FS with 

different binary block matching methods. OWT/FS denotes the ME algorithm that employing OWT as 1BT method 

and FS as the search strategy. None of the other six improving techniques is applied.  

  We can see that applying 32-bit instead of 8-bit exclusive-or operation makes the matching speed doubled. By 

avoiding the repetition operations in obtaining the 32-bit data from bit-plane, the speed up ratio can be increased to 

about 2.5 times. 

C. Performance of Adaptive Central-Search-Point Prediction 

  Three cases are considered to show the performance of the proposed technique adaptive central-search-point 

prediction: No Prediction that the central search point is always (0,0); Original Prediction that the predicting method 

in Eqn. 18 is applied; and the proposed method. The results are shown in Table III, where the speed up ratio is 

obtained with comparison to the no-prediction case. Note that all of the other six improving techniques are employed 

in this experiment.  

  It can be seen that the proposed prediction method performs better than the original prediction method in terms of 

both PSNR and speed up ratio. By using the adaptive central-search-point prediction, the PSNR is improved by up 

to 0.14 dB, and the computational cost is reduced by 1.3 to 2.6 times for different sequences. 

D. Performance of Center-Biased Search Order 

  In order to show the performance of the proposed technique center-biased search order, the natural scan order and 

the diamond zonal search (DZS) [47] are implemented for comparison. The results are shown in Table IV, where the 

parameter Bits4MV denotes the average bits required for encoding the MVs of each macroblock, the unit is bits/MB. 

Here the speed up ratio is obtained with comparison to the case of the scan order. Note that three of the improving 

techniques fast binary block matching, adaptive central-search-point prediction, and halfway stop in block distortion 

computation are applied in this experiment.  

  Due to the center-biased characteristic of the MV of real world sequences, the search orders (such as DZS and the 

proposed method) that benefit central positions give better PSNR performance. Because of the reason as described in 

Subsection IV.F, they can also improve the searching speed. In addition, the output MVs will be more natural and 

correlative thus need fewer bits to be encoded. It is seen from Table IV that, compared to the scan order: DZS can 
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improve PSNR from 0.01 to 0.06 dB for different sequences, the speed up ratio is 1.1 to 1.2 times, and the bits 

required for encoding MV are reduced by 0.1 to 0.3 bits/MB; the proposed method can improve PSNR from 0.05 to 

0.16 dB for different sequences, the speed up ratio is 1.2 to 1.4 times, and the bits required for encoding MV are 

reduced by 0.3 to 1.0 bits/MB. The superiority of the proposed center-biased search order over DZS is obvious. 

E. Performance of FBBMA 

  FBBMA is compared, in terms of PSNR, speed up ratio to FS, and the average bits required for encoding the MVs 

of each macroblock, versus the ME algorithms FS, TSS [10], MPC [32] and DS [14]. The results are shown in Table 

V. The value of the threshold needed by MPC is set to be 28, which provides the best PSNR performance among all 

possible values for the tested sequences. Note that all the necessary overhead computation costs are taken into 

account when calculating the speed up ratios. 

  It is obvious from the results that the proposed FBBMA is significantly faster than all these algorithms while 

achieving close and in most cases significantly better PSNR. On the average, for the sequences examined in this test, 

FBBMA is roughly 2.7, 77.2 and 1.4 times faster whereas its PSNR is approximately 1.10dB, 0.11dB and 0.24dB 

higher than TSS, MPC and DS, respectively. For the cases examined, FBBMA is about 69.5 times faster than FS, 

while having an average PSNR loss of only 0.23dB. In addition, the output MVs of FBBMA need the least bits to be 

encoded, even compared to FS.  

  In Figures 11 to 14, which show the per frame results, FBBMA is obviously significantly better than TSS, MPC 

and DS, and its PSNR is close to FS for almost all the frames of each sequence. 

VI. CONCLUSIONS 

  In this paper, we propose a novel simple and efficient 1BT algorithm, called the overlap-windowed thresholding 

algorithm (OWT), and a new fast block based motion estimation algorithm, called the fast binary block matching 

algorithm (FBBMA). The proposed FBBMA is based on OWT and the seven improving techniques 1) fast binary 

block matching; 2) adaptive central-search-point prediction; 3) center-biased search order; 4) still macroblock 

detecting; 5) halfway stop in block distortion computation; 6) variable search distance; and 7) multiple candidates 

selection. The first three of them contain significant modifications done by the authors, and are proposed literarily 

here in the first time. 

  Our experimental results demonstrate the superiorities of all the proposed algorithms and modifications. With 

similar PSNR performance, OWT can perform 37 times faster than the 1BT algorithm that provides the best PSNR 

performance among the existing methods. Fast binary block matching can improve the matching speed by 2.5 times. 
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Both adaptive central-search-point prediction and center-biased search order can improve not only PSNR but also 

the searching speed. What’s more for center-biased search order is that it also decreases at the same time the bits 

required for encoding the output MVs. For the examined sequences, the proposed FBBMA performs averagely 69.5 

times faster than FS, with PSNR of the predicted sequences degraded by only 0.23 dB, while at the same time the 

bits for MV encoding is reduced. The algorithm performs significantly better in terms of all the three parameters than 

the classical fast algorithm TSS, the similar algorithm MPC, and the recent algorithm DS, which was recently 

adopted to the MPEG-4 verification model.  
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Fig. 6.  Geometry for calculating the transforming thresholds of OWT. 
 

 
Fig. 7.  Geometry of macroblocks for predicting the initial motion vector. 
 

 
Fig. 8.  Search range limitation. 
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Fig. 9.  Geometry of binary block matching. 
 
 

 
 
Fig. 10. Bits required for encoding MVs according to distance from the predicted central search point. Here the 
maximum distance is 15. 
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TABLE I 
PERFORMANCE OF OWT WITH COMPARSIONS TO OTHER 1BT ALGORITHMS 

 
Sequences 1BT 

Algorithm 
Performance 

Parameter Flower 
Garden Football Mobile & 

Calendar Table Tennis 

PSNR-FS 22.90 21.01 22.33 27.76 
PSNR-TSS 20.09 20.25 21.95 26.75 BMT 
Speed Up 52.5 54.2 55.4 52.7 
PSNR-FS 23.31 21.83 22.71 28.76 

PSNR-TSS 20.32 20.69 22.26 27.21 FT 
Speed Up 1.0 1.0 1.0 1.0 
PSNR-FS 23.41 21.93 22.69 28.59 

PSNR-TSS 20.48 20.89 22.21 27.32 OWT 
Speed Up 37.6 37.4 40.0 38.0 

 
TABLE II 

SPEED UP PERFORMANCE OF FAST BINARY BLOCK MATCHING 
 

Sequences Binary Block 
Matching Method Flower 

Garden Football Mobile & 
Calendar 

Table 
Tennis 

8-bit XOR 1.0 1.0 1.0 1.0 
32-bit XOR 2.0 2.0 2.0 2.0 
32-bit XOR  

+ No Repetition 2.5 2.6 2.6 2.5 

 
TABLE III 

PERFORMANCE OF ADAPTIVE CENTRAL-SEARCH-POINT PREDICTION 
 

Sequences Predicting 
Method 

Performance 
Parameter Flower 

Garden Football Mobile & 
Calendar Table Tennis 

PSNR 23.69 22.44 22.96 29.36 No 
Prediction Speed Up 1.0 1.0 1.0 1.0 

PSNR 23.67 22.41 22.95 29.31 Original 
Prediction Speed Up 1.0 1.1 1.0 1.0 

PSNR 23.71 22.50 22.96 29.45 Proposed 
Prediction Speed Up 2.6 1.3 1.5 1.3 

 
TABLE IV 

PERFORMANCE OF CENTER-BIASED SEARCH ORDER 
 

Sequences 
Search Order Performance 

Parameter Flower 
Garden Football Mobile & 

Calendar Table Tennis 

PSNR 23.40 21.93 22.81 28.61 
Speed Up 1.0 1.0 1.0 1.0 Scan Order 
Bits4MV 4.7 6.6 2.9 5.2 

PSNR 23.43 21.96 22.82 28.67 
Speed Up 1.2 1.1 1.1 1.1 Diamond 

Zonal Search Bits4MV 4.4 6.5 2.8 5.1 
PSNR 23.49 22.03 22.86 28.77 

Speed Up 1.4 1.2 1.2 1.2 Proposed 
Search Order Bits4MV 3.7 6.1 2.6 4.5 
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TABLE V 
PERFORMANCE OF FBBMA WITH COMPARISONS TO OTHER ME ALGORITHMS 

 
Sequences ME 

Algorithm 
Performance 

Parameter Flower 
Garden Football Mobile & 

Calendar 
Table 
Tennis 

Average

PSNR 23.79 22.87 22.99 29.86 24.88 
Speed Up 1.0 1.0 1.0 1.0 1.0 FS 
Bits4MV 3.8 6.1 2.6 4.6 4.2 

PSNR 21.48 21.76 22.59 28.38 23.55 
Speed Up 25.0 25.3 24.9 25.9 25.3 TSS 
Bits4MV 6.7 7.1 2.8 6.9 5.9 

PSNR 23.53 22.43 22.78 29.42 24.54 
Speed Up 0.9 0.9 0.9 0.9 0.9 MPC 
Bits4MV 4.6 6.8 2.8 5.9 5.0 

PSNR 23.52 22.13 22.89 29.07 24.41 
Speed Up 42.8 44.9 54.7 50.3 48.2 DS 
Bits4MV 3.9 5.8 2.6 4.2 4.1 

PSNR 23.71 22.50 22.96 29.45 24.65 
Speed Up 57.5 49.2 61.4 109.8 69.5 FBBMA 
Bits4MV 3.6 5.8 2.6 4.2 4.0 

 
 
 

 

 
 
Fig. 11. Per frame PSNR of different ME algorithms for the sequence Flower Garden. 
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Fig. 12. Per frame PSNR of different ME algorithms for the sequence Football. 
 
 

 
 
Fig. 13. Per frame PSNR of different ME algorithms for the sequence Mobile & Calendar. 
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Fig. 14. Per frame PSNR of different ME algorithms for the sequence Table Tennis. 
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Footnotes 

 
 

1. Footnote of the first page 
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2. Footnote 1  

  We have discussed this question with Dr. Vasudev Bhaskaran, one of the authors of [19], 

through e-mails. 

  
 


