
A Balancing Act: Analyzing a Distributed LiftSystemJ.F. GrooteEindhoven University of TechnologyTechnical Applications, Computing Science DepartmentP.O. Box 513, 5600 MB Eindhoven, The NetherlandsE-mail: jfg@win.tue.nlPhone: +31 40 247 5003Fax: +31 40 2468508J. Pang & A.G. WoutersCentre for Mathematics and Computer Science (CWI)Department of Software EngineeringP.O. Box 94079, 1090 GB Amsterdam, The NetherlandsE-mail: Jun.Pang@cwi.nl, Arno.Wouters@cwi.nlPhone: +31 20 592 4165Fax: +31 20 592 4199AbstractThe process-algebraic language �crl is used to analyze an existing dis-tributed system for lifting trucks. Four errors were found in the originaldesign. We propose solutions for these problems and show by meansof model-checking that the modi�ed system meets the requirements.1 IntroductionAs is well known, distributed systems form a major aspect of system design.Verifying the correctness of the protocols that regulate the behavior of suchsystems is usually a formidable task, as even simple behaviors become wildlycomplicated when they are carried out in parallel.Algebraic approaches to the study of concurrent systems focus on themanipulation of process descriptions. Processes are represented by meansof process terms consisting of process names, action terms (which representatomic activities) and operators (specifying the order in which the activitiescan be carried out). A set of axioms speci�es how process terms can bemanipulated in such way that the processes they represent are in a certainsense the same. 1

Traditional process algebras such as ccs [Mil89], csp [Ros98] and acp[Fok00] are well suited for the study of elementary behavioral properties ofdistributed systems. However, when it comes to the study of more real-istic systems, these languages turn out to lack the ability to handle dataadequately.In order to solve this problem the language �crl [GP95] has been de-veloped. This language combines the process algebra acp with equationalabstract data types [LEW96]. This is done by parameterizing action andprocess terms with data. A conditional (if-then-else construct) can be usedto have data inuence the course of a process, and alternative quanti�cationis added to sum over possibly in�nitely many data elements of some datatype.To each �crl speci�cation there belongs a process graph, being a di-rected graph in which the states are process terms and the edges are labeledwith actions. If this process graph consists of �nitely many states, thenthe �crl tool set [Wou00] can be used in combination with the C�sarAld�ebaran Development Package (cadp) [FGK+97] to generate, vi-sualize and analyze the process graph. For example, one can detect thepresence of deadlocks and livelocks, single step through the graph, and ap-ply model checking [CGP00] to check the validity of temporal logic formulas.This paper reports on the analysis of a real-life system for lifting trucks(lorries, railway carriages, busses and other vehicles). The system consistsof a number of lifts; each lift supports one wheel of the truck that is beinglifted and has its own microcontroller. The controls of the di�erent lifts areconnected by means of a circular network. A special purpose protocol hasbeen developed to let the lifts operate synchronously.This system has been designed and implemented by a Dutch company.When testing the implementation the developers found three problems.They solved these problems in an ad hoc manner, although the causes oftwo of the three problems were unclear. Moreover, the developers were un-sure that there were no other bugs hidden in the system. In close cooperationwith the developers, we speci�ed the lift system in �crl; we strove to stayas close as possible to the actual implementation. Next, we analyzed theresulting speci�cation with the �crl tool set and cadp. The three knownproblems turned up in our speci�cation (which indicates that our speci�ca-tion is valid). In addition we found a fourth error. This error was unknownand found its way into the implementation of the lift system. We proposesolutions for these problems. We have analyzed the �crl speci�cation thatresults from the incorporation of the proposed solutions, showing that thisspeci�cation meets the requirements of the developers.This article is set up as follows. After this introduction, we give aninformal speci�cation of the lift system (Section 2). Next we discuss therequirements which the system should satisfy (Section 3) and the methodswe used to verify these requirements (Section 4). Then, we report on the2

problems we found and we propose solutions to the problems (Section 5).We conclude by drawing some conclusions (Section 6). Our initial speci�ca-tion, the modi�ed speci�cation, the transition systems generated with the�crl tool set and the formulas used for model checking can be found onthe world wide web at <http://www.cwi.nl/~arnow/lift/>. A technicalreport which details and explains the speci�cation is in preparation [GPW].2 Description of the lift systemFirst, we explain the general layout of the lift system (Section 2.1). Thenwe explain the manner in which lift movement is controlled (Section 2.2).2.1 Layout of the lift systemThe system studied in this paper consists of an arbitrary number of lifts.Each lift supports one wheel of a vehicle being lifted. The system is op-erated by means of buttons on the lifts. There are four such buttons oneach lift: up, down, setref and axis. The system knows three kinds ofmovements. If the up or down button of a certain lift is pressed, all the liftsof the system should go up, respectively down. If the up or down buttonis pressed together with setref, only one lift (the one of which the buttonsare pressed) should go up or down. This allows the operator to adjust theheight of a lift to inequalities in the surface of the oor. If the up or downbutton is pressed together with the axis button, the opposite lifts (and onlythose) are supposed to move up or down, respectively. This is needed toreplace the axis of a truck. As di�erent trucks may have di�erent numbersof wheels, the operator may add or remove lifts to or from the system. Wehave only studied the �rst kind of movement and for that reason we willrestrict the remainder of the paper to that mechanism.Normally, the lifts contain a locking pin which is intended to prevent thelift from moving down when motors fail, or oil is leaking from the hydraulicpumps or valves. This pins restrict the movement of the lifts. If one wantsto move the lifts over a larger distance this pin has to be retracted. Thisdetail is not taken into account in our speci�cation.Lift movement is controlled by means of a microcontroller. The liftcontroller can adopt eight di�erent states. For our study the following statesare important: startup, standby, up, and down. The meaning of thesestates will become clear in the course of the discussion.The lift controls of the di�erent lifts belonging to a system are connectedto a `circular' can bus [Rob91] which is interrupted by relays (see Figure 1).The di�erent controllers connected to the bus are called `stations'. There isa relay between every pair of adjacent stations and each relay is controlledby the station at the left side. When the system is switched on all relaysare open. After initialization, all relays but one should be closed. In e�ect3

this means that if the initialization succeeds all the stations are connectedto one linear bus.The can bus is a simple, low-cost, multi-master serial bus with excellenterror detection capabilities. Multi-master means that all stations can claimthe bus at each bus cycle and several stations can claim the bus simulta-neously, in which case a non-destructive arbitration mechanism determineswhich message is transmitted by the bus. A message on the bus is imme-diately received by all other stations connected to the sending station viaclosed relays. The can protocol does not use addresses.In the lift system, the user data �eld of the messages transfered over thebus contain three pieces of information: the position of the sender station,the type of the message, and the (measured) height of the sender's lift.There are two kinds of messages: sync messages and `state' messages. Statemessages report the state of the sender station (e.g., startup, standby,up, down). sync messages initiate physical movement. In response to async message each station will immediately transfer its state to the inputof the motor of its lift. This means that if the station is in the up state aftera sync message, the lift will move up a �xed distance; if the station is inthe down state, the lift will move down a �xed distance; and if the stationis in standby it will not move.The system continuously checks the heights broadcasted in the messagesto determine if they do not di�er too much. If there is something wrong anemergency stop is brought about. This is not modeled in our speci�cation.2.2 Control of lift movementTo assure that all lifts move simultaneously in the same direction, the stationinitiating a certain movement must verify whether all stations are in theappropriate state before it sends the sync message.The can protocol allows several stations to claim the bus at the sametime. However, in the lift system, the controls are programmed in such away that (during normal operation) the stations take turns claiming the bus.They claim the bus in a �xed order (turn left in Figure 1).To achieve this orderly usage of the bus, each station must know itsposition in the network. Furthermore, in order to be able to �nd out whetherall stations are in the same state, each station must know how many stationsthere are in the network. This is achieved by means of a startup phase inwhich all the stations come to know their position in the network as well asthe total number of stations in the network. This startup phase is discussedin Section 2.2.1, normal operation in Section 2.2.2.
4

D

A B

C

a

b

c

d

D

A B

C

a

d

c

b

1

23

4Figure 1: State of the relays before (left) and after (right) initialization2.2.1 StartupAs said, when the system is switched on, all the relays are open (see the leftpart of Figure 1).In the startup phase two things might happen to a station:� The setref button of that station might be pressed. In this case thestation will initiate the startup phase as follows:1. it stores that it has position 1,2. it adopts the startup state,3. it closes its relay,4. it broadcasts a startup message,5. it opens its relay,6. it waits for a startup message,7. it stores the position of the sender of that message as the numberof stations in the network,8. it adopts the standby state,9. it broadcasts this state.� The station might receive a startup message from another station.In this case:1. it adds 1 to the position of the sender of that message and storesthis as its own position,2. it stores its own position as the number of stations in the network,3. it adopts the startup state,4. it closes its relay,5. it sends a startup message,5

6. { if it receives a startup message it stores the position ofthe sender of that message as the number of stations in thenetwork,{ if it receives a standby message it adopts the standby state(if the station has position 2 it will in addition initiate normaloperation by broadcasting its state).Assume, for example that in the system of Figure 1 the setref buttonof lift B is pressed. The station of this lift gets position (`logical address')1. It closes the relay between B and C, broadcast a startup message, andopen this relay again. The startup message from B is received by onlyone station (C). This station draws the conclusion that it has position 2.It subsequently closes the relay to D and broadcasts a startup message.This message is received by only one station (D). This station draws theconclusion that it has position 3, closes the relay to A and sends a startupmessage. This message is received by A and C. C draws the conclusion thatnow there are three stations in the network. A draws the conclusion that ithas position 4, closes the relay to B and broadcasts a startupmessage. Thismessage is received by B, C, and D. C and D draw the conclusion that nowthere are four stations in the network. Station B draws the conclusion thatthe circle is completed. It stores the position of the sender of that message(4) as the number of stations in the network, adopts the standby state andinitiates normal operation by sending a standby message. This message isreceived by C, D, and A which adopt the standby state in response.The result is that all stations are connected in the manner pictured inthe right part of Figure 1, that all stations know how many stations thereare in the network and what their position is, and that all stations are instandby. Normal operation starts when station 2 broadcasts its state.2.2.2 Normal operationDuring normal operation, the �rst station broadcasts its state and height,then the next station broadcasts its state and height and so on, until thelast station has broadcast its state and height after which the �rst stationstarts again.The transition diagram of each lift during normal operation is sketchedin Figure 2. Initially all stations are in standby. A station in standbychanges to another state if one of its buttons is pressed or if it receives amessage with another state. The station that is initiating a certain change(i.e., when it is in standby and a button is pressed) is called the activestation. All other stations are passive. If the up or down button of acertain lift is pressed and its station is in standby that station becomesactive and changes its state to up or down, respectively. When a passivestation receives a state message it adopts the state in that message. An6

receive DOWN
receive SBY

receive UP UP pressed

UP released

Up

Down

SBY

Active
UP

Passive

receive SYNC, move(up)

receive SYNC

receive DOWN

DOWN released

DOWN pressed
receive UP

receive SBY

 receive SYNC, move(down)

receive DOWN

receive SYNC, move(down)

receive UP

receive SYNC, move(up)

ActivePassive
Down

Figure 2: State transitions of an individual lift during normal operationactive station does not change its state in response to state messages. Thestate of an active station changes only if the appropriate button is released.In that case its state changes to standby and the station becomes passiveagain.As said, physical movement is initiated by a sync message. In order toassure that all lifts move in the same direction the active station will countthe number of messages that contain the intended state. The active stationwill send a sync message if and only if it has counted enough messages withthe right state when it is its turn to use the bus.Assume, for example, that all stations are in standby and that the upbutton of station 4 is pressed. This station adopts the up state. When itis this station's turn to use the bus it will broadcast its state; in responsethe other stations will adopt the up state too. Next, it is station 1's turnto use the bus. This station will broadcast its state (which is up). Themessage from station 1 is received by all other stations, among which theactive station 4. As the state in the message is the same as that of the activestation 4, this latter station will count this message. In the next two cyclesstation 2 and station 3 claim the bus in turn and broadcast their states (up),both messages are counted by station 4. So, if all goes well, station 4 willhave received the right number of up messages when it is its turn to use thebus again and it will send a sync message to initiate physical movement.7

3 RequirementsThere are �ve requirements for the lift system. Each requirement describesa di�erent aspect of the system's behavior.1. Deadlock freeness: the lift system never ends up in a state where itcannot perform any action.2. Liveness I : though the system might ignore buttons temporarily, it isalways possible to return to a state in which pressing the up or downbutton of any lift will yield the appropriate response.3. Liveness II : if exactly one up or exactly one down button is pressedand not released, then all the lifts will (eventually) move up or down,respectively.4. Safety I : if one of the lifts moves, all the other lifts should simultane-ously move in the same direction.5. Safety II : if the lifts move, an appropriate button is pressed. In otherwords, the lifts will not move if no one has pressed an appropriatebutton.4 MethodsWe speci�ed the lift system in �crl. As is demonstrated by this case study,this language is useful as a tool to analyze medium-sized distributed systems.The language �crl has been the basis for the development of a prooftheory (the cone and foci method) [GP94] that has enabled the formal ver-i�cation of distributed systems in a precise and logical way. When provinga system correct the axioms of �crl are applied to a �crl speci�cationof that system to show that that speci�cation is identical to a speci�cationof the intended external behavior. Proving the correctness of a system byhand is an elaborate and time consuming task which is infeasible for largesystems.In our case, proving is not an option, not only because of the size of thespeci�cation but also because the intended external behavior is di�cult todescribe. For that reason we studied the system by model checking.Model checking is an automatic technique to determine whether a statetransition system satis�es certain requirements [CW96]. It has been success-fully applied to a large number of communication protocols, such as the linklayer protocol of the futurebus+cache coherence protocol [CGH+93], theieee 802.3 Ethernet csma/cd protocol [NS94] and the access.bus protocol[BG96]. In order to check whether a certain requirement holds, it should�rst be expressed as a temporal logic formula. A model checker searches the8

reachable states of a certain labeled transition system to determine whetherthis formula holds. If the model checker �nds that the formula does not holdit presents a fragment of the state space that violates the requirement.In our study, the �crl tool set was used to generate a transition systemfrom the initial �crl speci�cation. This transition system was analyzedwith the cadp tool set. When an error was found the speci�cation wasmodi�ed and the modi�ed speci�cation was analyzed again.A notorious problem when model checking is the state explosion causedby the fact that the number of states grows exponentially with the numberof components of a distributed system. One way to �ght the explosion ofstates, is to abstract away from the internal behavior of a system. In linewith this approach we rename all internal behavior into the silent action� , and consider the resulting process graph modulo weak equivalence. Thisallows an e�cient minimization of the state space [Mil89].5 ResultsFour errors were found in the original design. We discuss these problem sep-arately and propose solutions (Sections 5.1{5.4). The modi�ed speci�cationresulting from the incorporation of our suggestions was shown to meet therequirements (Section 5.5).5.1 Problem 1The �rst problem occurs if station 2 sends a startup message before therelay between station 1 and 2 is opened. This startup message is receivedby station 1 which will draw the erroneous conclusion that the circle iscompleted. From this all sorts of errors may occur (depending on the exacttiming). For example, if the relay between station 1 and station 2 is closedbefore station 1 sends the sby message which initiates normal operationno station will receive this message. The start up phase will continue asintended until station 1 receives the startup message from the last stationin the system. As this is unexpected it will adopt the stop state, resultingin a deadlock.The developers had spotted this problem in the test phase but they wereunaware of its cause. They had solved the problem by adding delays beforesending a startup message. Our experiments indicate that this solves theproblem adequately (if the delay is long enough to make sure that the relaybetween 1 and 2 is opened before station 2 sends the startup message).They also indicate that it su�ces to delay only the second startupmessage.
9

5.2 Problem 2The second problem occurs if the setref buttons of two lifts are pressedat the same time. This may result in di�erent lifts moving in di�erentdirections. Assume that the system consists of four lifts (A, B, C, D) andthat the setref buttons of A and C are pressed at the same time. BothA and C send a startup message which is received by respectively B andD. The relays between A and B, and between C and D are opened again.Next B closes the relay between B and C and then B broadcasts a startupmessage. This message is received by C. Station C draws the conclusionthat the circle is completed and initiates normal operation. At the sametime D closes the relay between D and A and sends a startup messagethat is received by A, after which A initiates normal operation. The resultis that there are two independently operating networks, one consisting of Aand D; the other of B and C. There is no way in which the stations or thebus can prevent or detect this situation.A similar situation may occur if the setref buttons of two adjacent lifts(say A and B) are pressed. Assume that B sends a startupmessage slightlybefore A does so. The message from B is received by C. Assume that nextthe relay between B and C is opened again and that A subsequently sendsits startup message. Station B receives it and draws the conclusion thatthe circle is completed and initiates normal operation. Station A opens therelay between A and B, and after receiving a startup message from D it�nishes the startup phase. The result is that B is isolated from the rest ofthe network. Again the system will not detect this error.Given the chosen bus it seems impossible to solve this problem satisfacto-rily. The developers choose to emphasize in the manual that it is importantto make sure that in the initial phase the setref button of only one lift ispressed.We have modi�ed the speci�cation in such way that it is impossible toinitiate the system by pressing the setref button of several lifts at once.In our opinion this is a dangerous assumption, but the developers have adi�erent opinion.5.3 Problem 3The third problem occurs if a button is pressed and released at the wrongmoment. Suppose that in a network of four stations all stations are standby,and that the down button of station 1 is pressed as a result of which it ac-quires the down state. When it is the turn of station 1 to use the bus itwill broadcast the down state, and all other stations will adopt this statein response. Suppose that the down button is released after station 3 sendsits down message, but before station 4 has done this. As a result station 1returns to the standby state. In this state it adopts the state of all state10

messages it receives, so when station 4 sends its state message it adopts thedown state. We now have the situation that all stations are in down state,but there is no active station. This means that they will remain in thatstate until the system is shut down.This problem was discovered by the developers when testing the systemand they solved it by means of an initiator ag. In our example this ag is setin station 1 if the down button is pressed. When the ag is set, the stationdoes not accept state changes from the bus until both its own state and thereceived state are standby. Then the ag is reset and new commands areaccepted. A simpler solution would be to let the station wait to becomepassive after the button is released, until it is that station's turn to use thebus. This is the solution incorporated in our modi�ed speci�cation.5.4 Problem 4The fourth problem occurs when two buttons on di�erent lifts are pressed atthe same time. Suppose there are four stations in the network and that thedown buttons of station 1 and station 2 are pressed at the same moment asthe result of which both stations become active. Assume that it is station1's turn to use the bus. It sends a down message, and in response station3 and station 4 adopt the down state. In turn stations 2, 3 and 4 senda down message. When it is the turn of station 1 to use the bus again,it has counted three down messages so it sends sync (after which all liftsmove down), and as the down button is still pressed it then sends down.Now it is station 2's turn and as this station is active and has counted threedown messages it sends a sync message. Suppose (and now comes theproblem) that the down button of station 1 is released after station 1 hassent the down message and before station 2 sends the sync message. As aresult station 1 is in standby when it receives the sync message, and itslift remains at the same height while the others move down.A similar problem occurs if the up button of station 2 is released justafter station 3 has sent its down message but before station 1 sends itssync message. In this case lift 2 will remain at the same height while theothers move down.This problem was not known to the developers and found its way intothe implementation. We propose to solve this problem by allowing a stationto become active only when it is its turn to use the bus and only when atthat moment there is no other station active (i.e., when the message fromthe previous station is standby).5.5 Veri�cation of the modi�ed speci�cationAll �ve requirements stated in Section 3 were shown to be satis�ed by mod-i�ed speci�cations of systems with respectively 2, 3, 4 and 5 lifts.11

Number states transitions states transitions cpu timeof lifts generated generated reduced reduced generation2 391 742 67 162 5s243 7,369 19,245 346 1110 18s914 129,849 422,884 1,317 5,300 5m15s955 2,165,446 8,723,465 4,256 20,680 3h07m00s00Table 1: Transition system dimensionsThe dimensions of the generated state spaces are summarized in table 1.For each of the lift systems, the size of the generated transition system, thesize of that system after reduction modulo weak bisimulation and the timeit took to generate the system are given. Generation was performed on a300 MHz SUN Ultra 10 Processor with 1024Mb memory.6 ConclusionLet us take stock. We have discovered four real errors in the design of areal system. Three of these problems were also found by the developers ofthat system in the test phase. The fourth was unknown and has found itsway into the �nal release. For two of the three known problems, it was onlyknown that the problem occurred but not what its causes were. We havediscovered the causes of those problems. We were able to solve three of thefour problems and showed by means of model checking that the modi�edsystem meets the requirements. The fourth problem is di�cult to solvewithin the restrictions of the chosen hardware.7 AcknowledgementsWe like to thank Wan Fokkink for comments on earlier versions of this paperand Izak van Langevelde for help in model checking as well as comments onearlier versions.References[BG96] Bernard Boigelot and Patrice Godefroid. Model checking in prac-tice: an analysis of the access.bus protocol using spin. In FormalMethods Europe'96, Oxford, volume 1051 of Lecture Notes inComputer Science, pages 465{478. Springer-Verlag, March 1996.[CGH+93] E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long,K.L. McMillan, and L.A. Ness. Veri�cation of the futurebus+12

cache coherence protocol. In L.Claesen, editor, Proceedings ofthe Eleventh International Symposium on Computer HardwareDescription Languages and their Applications. North-Holland,April 1993.[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.MIT Press, 2000.[CW96] E.M. Clarke and J. Wing. Formal methods: State of the art andfuture directions. ACM Computing Surveys, 28:626{643, 1996.[FGK+97] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Ma-teescu, and M. Sighireanu. CADP { a protocol validationand veri�cation toolbox. In R. Alur and T.A. Henzinger, edi-tors, Proceedings 8th Conference on Computer-Aided Veri�cation(CAV'96), volume 1102 of Lecture Notes in Computer Science,pages 437{440. Springer-Verlag, 1997.[Fok00] W. J. Fokkink. Introduction to Process Algebra. Texts in Theo-retical Computer Science. Springer-Verlag, 2000.[GP94] J.F. Groote and A. Ponse. Proof theory for �CRL: A languagefor processes with data. In D.J. Andrews, J.F. Groote, and C.A.Middelburg, editors, Proceedings of the International Workshopon Semantics of Speci�cation Languages, Workshops in Comput-ing Series, pages 231{250. Springer-Verlag, 1994.[GP95] J.F. Groote and A. Ponse. The syntax and semantics of �CRL. InA. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra ofCommunicating Processes '94, Workshops in Computing Series,pages 26{62. Springer-Verlag, 1995.[GPW] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a dis-tributed system for lifting trucks. To appear as a technial reportof the Department of Software Engineering CWI, Amsterdam.[LEW96] J. Loeckx, H.-D. Ehrich, and M. Wolf. Speci�cation of AbstractData Types. Wiley/Teubner, 1996.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall,1989.[NS94] V.G. Naik and A.P. Sistla. Modeling and veri�cation of a reallife protocol using symbolic model checking. In D.L. Dill, editor,Computer Aided Veri�cation, volume 818 of Lecture Notes inComputer Science, pages 194{206. Springer-Verlag, 1994.13

[Rob91] Robert Bosch Gmbh, Postfach 30 02 40, D-70442 Stuttgart, Ger-many. CAN Speci�cation. Version 2.0, 1991.[Ros98] A.W. Roscoe. The Theory and Practice of Concurrency. PrenticeHall, 1998.[Wou00] A. G. Wouters. Manual for the �CRL Toolset. Department ofSoftware Engineering, CWI, 2000.

14

